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Introduction

Notation and Assumptions

yi = x′iβ + ei for i = 1, . . . , n x′i = (1, xi1, . . . , xip−1)

ri (β̂) = yi − x′i β̂ β′ = (β0, . . . , βp−1)
ei

σ
∼ F i.i.d. scale family, symmetric

MM-estimation

1 high breakdown S-estimate (→ β̂S , σ̂S)

2 high efficiency M-estimate (→ β̂)
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Current Methods

Sensitivity curve of the t-value of the intercept (n = 20, p = 4).

lmRob (R−package robust)

e

t =
β̂

sê(β̂)
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Current Methods

Sensitivity curve of the t-value of the intercept (n = 20, p = 4).

lmrob (R−package robustbase)

e

t =
β̂

sê(β̂)
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Proposed Method

New scale and alternative covariance matrix estimate.

proposed method

e

t =
β̂

sê(β̂)
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1 ψ-functions

2 Inference for MM-estimates

3 Simulation Study

4 Conclusions
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2. ψ-functions

All redescending and tuned for 95%-efficiency

r

ψ(r)
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Optimality?

Optimal (as introduced by Yohai and Zamar (1997))
minimizes contamination sensitivity
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Optimality?

Bisquare is smooth

r
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Optimality?

Generalized Gaussweight (ggw) good for inference and p/n
ratios “not very small”
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3. Inference for MM-estimates

For convenience: use Wald-type inference

From an estimate of the covariance matrix, we can construct
tests, confidence and prediction intervals based on asymptotic
normality of the estimate.

Other possibilities

use likelihood-ratio-type or saddlepoint test.
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Wald type inference

Based on some regularity conditions we have asymptotic
normality of β̂ with covariance matrix

cov(β̂) = σ2γV−1
X = σ2 Eψ2

(Eψ′)2

(
E xx′

)−1
(1)

Based on three parts:

• Scale σ

• Correction factor γ

• Matrix part VX

Want to get all three right. Then expect result also to be
correct.
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Scale: last year

Use a standardization factor of the form

τi = (1− c1hi )
√

1− c2hi (2)

where hi is the leverage of the i-th observation. c1 and c2

depend on ψ.

(In case of OLS: τi =
√

1− hi ,
∑
τ2
i = n − p.)

And solve the following equation for σ̂.

n∑
i=1

τ2
i W

(
ri
τi σ̂

)[(
ri
τi σ̂

)2

− κ

]
= 0 (3)

where W (r) = ψ(r)/r is the function that produces the
robustness weights.
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Correction factor

In case of MM-estimation we have γ = Eψ
(Eψ′)2

.

Use the standardized residuals to estimate asymptotic
normality correction factor:

γ̂ =

1
n

∑n
i=1 ψ

(
ri
τi σ̂

)2

[
1
n

∑n
i=1 ψ

′
(

ri
τi σ̂

)]2 (4)

Current implementations use Huber’s small sample correction:

γ̂ = K 2
1

n−p

∑n
i=1 ψ

(
ri
σ̂

)2[
1
n

∑n
i=1 ψ

′
(

ri
σ̂

)]2 (5)
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Matrix part

Rejected observations should not play a role in inference.
Therefore we also use the weights to calculate E xx′:

Ê xx′ = n

[∑n
i=1 W

(
ri
σ̂

)
xix
′
i∑n

i=1 W
(

ri
σ̂

) ]
(6)

where W (r) = ψ(r)/r is the function that produces the
robustness weights.

(This is how its usually done.)

Note: Huber’s small sample correction does not take this into
account.
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ETH Zürich

Introduction

ψ-functions

Inference for
MM-
estimates

Simulation
Study

Conclusions

4. Simulation Study

Criteria for choosing a ψ-function:

• maximum asymptotic bias for given efficiency

I efficiency of the estimates for p/n “not very small” (β̂)

I good properties of the scale (σ̂)

I nominal level of the resulting tests and confidence
intervals (t-statistic)

• coverage probability of the prediction intervals

• length of confidence intervals (→ power!)
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4. Simulation Study

Criteria for choosing a ψ-function:

• maximum asymptotic bias for given efficiency

I efficiency of the estimates for p/n “not very small” (β̂)

I good properties of the scale (σ̂)

I nominal level of the resulting tests and confidence
intervals (t-statistic)

• coverage probability of the prediction intervals

• length of confidence intervals (→ power!)
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Setting

We used:

• multiple fixed as well as random designs for various n, p
combinations

• a variety of error distributions (normal, t, contaminated
normal, skewed t); (The same distribution was also used
to generate the designs in the random design case.)

• variations of methods discussed above (based on a
modified version of lmrob)

• for comparison we also ran the simulations on lmRob

• 1000 repetitions

Simulation design like in Maronna and Yohai (2009).
Only results for random designs will be shown.
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Example design
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For n = 25, p = 2, skew-t distribution with df = 5 and γ = 2.
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Simulated Methods: Legend

SM
Standard MM-estimate (initial S-, final M-estimate)

SMDM
MM-estimate, followed by D-estimate and M-estimate again.

SMDM(uw)
as SMDM, but using unweighted leverages
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Results: Scale bias
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(Simulated error distribution: standard normal)
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Results: Scale efficiency
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(Simulated error distribution: standard normal, calculating
mean and sd with 10% trimming.)
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Results: Efficiency of β̂

p/n

eff.
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Solid line connects standard normal results, the dashed line is
calculated using all results. Shape: error distribution.
(Comparing to an OLS estimate and calculating the average
with 10% trimming.)
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Results: Empirical nominal levels
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(Covariance matrix estimates as before; simulated error
distribution: standard normal)
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Results: Empirical nominal levels
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For n = 25, p = 2, and covariance matrix estimates as before.
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5. Conclusions

• ψ-function matters:
steep descent → difficult to correct for p/n.

• the proposed “generalized gaussweight” ψ-function is
continuously differentiable and slowly descending

• re-estimating σ and β (SMTM) helps keeping the
efficiency of β̂ at the desired level

• ψ-functions have strong influence on inference

• sensitivity curves can give insights into what goes wrong

• The proposed method is implemented in the development
version of robustbase, which can be downloaded at
https://r-forge.r-project.org/projects/robustbase/
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Generalized Gaussweight
ψ-function

ψ(x , c) =

{
x |x | ≤ c

exp
(
−1

2
(|x |−c)b

a

)
x |x | > c

(7)

Suggested parameters:

a = 1.387, b = 1.5 and c = 1.063 (for 95%-efficiency).
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Results: Empirical nominal levels
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Results: Maximum asymptotic bias

amount of contamination

max. bias
 limits
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Calculations as in Berrendero et al 2007
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Results: Scale
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shape: error distribution.
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Results: Scale
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Results: Correction factor A
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Solid line: corrected with 1
1−p/n .

Dashed line: estimator using τ standarized residuals.
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Dashed line: estimator using τ standarized residuals.



Robust
regression:

the influence
of

ψ-functions

Manuel Koller
and Werner
A. Stahel,

ETH Zürich

Introduction

ψ-functions

Inference for
MM-
estimates

Simulation
Study

Conclusions

Results: Correction factor

p/n

mean(γ̂)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

optimal, N(0,1)

●

●

●

●

● ● ●
●

●

●
●

●

●

●
● ●

●●● ●●
●

● ●●
●

●

●

●

●

●
●● ●

●
●

●
●

●
●

●

●

ggw, N(0,1)

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

● ●● ●●
●

●
●

●
●
●●●

●
● ●

●●●
●● ●●●●● ●

0.1 0.2 0.3 0.4 0.5

bisquare, N(0,1)

●

●

●

●

●●
●

●
●

●
●

●

●

●●

●

●●●●

●
●●
●

●● ●
● ●● ●●

●

●● ●● ●●●●
●

hampel, N(0,1)

●

●

●

●

●
● ●●

●
● ● ●

●● ●●●
● ●●● ●

●
● ●●●

● ●● ●●
●●

●
●

●●● ● ●●

0.1 0.2 0.3 0.4 0.5

n
● 25

50

100

400

Estimator
●● MM

●● SMDM(uw)

●● SMDM

Solid line: using 1
1−p/n

Dashed line: τ standarized residuals

(Simulated error distribution: standard normal).
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1−p/n and Huber’s small sample correction

Dashed line: τ standarized residuals

(Simulated error distribution: standard normal)
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(Covariance matrix estimates as before; simulated error
distribution: standard normal)
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For n = 25, p = 5, and covariance matrix estimates as before.
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