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1 Outline

We want to compute MM-estimates on data with many factors.
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2 Example: NOxEmissions

A typical medium sized environmental data set with hourly measurements

of NOx pollution content in the ambient air.

The dataset consists of 8088 observations on the following 4 variables.

LNOx log of hourly mean of NOx concentration in ambient air [ppb] next to a highly

frequented motorway.

LNOxEm log of hourly sum of NOx emission of cars on this motorway in arbitrary

units.

sqrtWS Square root of wind speed [m/s].

julday day number, a factor with levels ‘373’ ... ‘730’, typically with 24 hourly mea-

surements.

(The data set comes with the R package robustbase.)

August 2012 Manuel Koller/Department of Mathematics/Seminar für Statistik 3



DMATH
Department of Mathematics
Seminar für Statistik

0

2

4

6

4 5 6 7 8
LNOxEm

LN
O

x

0

2

4

6

1 2 3
sqrtWS

LN
O

x

August 2012 Manuel Koller/Department of Mathematics/Seminar für Statistik 4



DMATH
Department of Mathematics
Seminar für Statistik

When using (an older version) of lmrob on such a dataset, it usually failed

to compute the initial S-estimate:

> lmrob(LNOx ~ ., data = NOxEmissions)

Too many singular resamples

Aborting fast_s_w_mem()

Error in lmrob.S(x, y, control = control) :

C function R_lmrob_S() exited prematurely

(lmrob is a function in the R package robustbase. It computes MM-estimates.)
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3 The problem

MM-estimates consist of

• an initial S-estimate with high breakdown point,

• a final M-estimate with high efficiency.

The algorithm for computing the initial S-estimate usually involves sub-

sampling, which is problematic for such data.
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S-estimates are defined as

β̂ = argmin
β

σ̂ (r (β)) ,

where σ̂ () is an M-estimate of scale and r () are the residuals.

The algorithm to compute S-estimates, simplified:

1. Take a random subsample of size p, the number of parameters; solve

the problem on the subsample.

2. Find local minimum starting from the solution found in 1.

3. Repeat for a fixed number of times.

The S-estimate is then the result of 2. with the smallest scale estimate.
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Zooming in the design matrix from the NOxEmissions example.
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A valid subsample in this example must not contain any 0 only columns.
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4 Strategies before robustbase version 0.9

The user had the following options:

• increase the allowed number of singular subsamples,

• use lmRob (R package robust) that uses an M/S-estimate as initial

estimate for such datasets,

• switch to another estimator to solve the problem, e.g., M or L1.

In other words: wait a long time or ditch lmrob.
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So. . . we improved lmrob!

As of version 0.9 of robustbase:

• Support for M/S-estimates.

• Improved algorithm to compute S-estimates to deal with such datasets

as well (nonsingular subsampling).
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5 Nonsingular subsampling

“Algorithm”:

Build up the subsample observation by observation, checking for collinear-

ities each time. If an observation introduces collinearities, then discard it

and continue with another one.

This always works, except if:

• such a subsample does not exist, i.e., the design matrix is not of full

rank, or,

• the design matrix is ill-conditioned, causing numerical problems.

And the best thing about it:

Checking for collinearities comes (almost) for free.
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6 LU-factorization

The LU-decomposition of a nonsingular matrix A consists of

• a lower triangular matrix L,

• an upper triangular matrix U, and,

• a permutation matrix P (to avoid divisions by 0),

such that

PA = LU.

This is used, e.g., for solving linear systems of equations Aβ = b, since

β = U−1L−1P−1b.

Basic algorithm to compute the LU-factorization: a series of Gaussian

eliminations (Doolittle’s algorithm).
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Example: Compute LU-factorization of the (singular) matrix A.

6 18 24 12

3 17 20 2

2 4 6 15

3 5 8 8





A

Note: The third column is the sum of the first two columns.
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LU-doolittle step 1:

1 0 0 0

−0.5 1 0 0

−0.33 0 1 0

−0.5 0 0 1





6 18 24 12

0 8 8 −4

0 −2 −2 11

0 −4 −4 2





L1 A(1)
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LU-doolittle step 2:

1 0 0 0

0 1 0 0

0 0.25 1 0

0 0.5 0 1





6 18 24 12

0 8 8 −4

0 0 0 10

0 0 0 0





L2 A(2)
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LU-doolittle step 3:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 NaN 1





6 18 24 12

0 8 8 −4

0 0 0 10

NaN NaN NaN NaN





L3 A(3)
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Better: Gaxpy variant of LU-factorization algorithm.

This variant of the algorithm does the operations in a different order. It

only calculates the elements of U when they are actually needed.
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LU-gaxpy step 1:

1 0 0 0

0.5 1 0 0

0.33 0 1 0

0.5 0 0 1





6 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





L(1) U (1)
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LU-gaxpy step 2:

1 0 0 0

0.5 1 0 0

0.33 −0.25 1 0

0.5 −0.5 0 1





6 18 0 0

0 8 0 0

0 0 0 0

0 0 0 0





L(2) U (2)
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LU-gaxpy step 3:

1 0 0 0

0.5 1 0 0

0.33 −0.25 1 0

0.5 −0.5 NaN 1





6 18 24 0

0 8 8 0

0 0 0 0

0 0 0 0





L(3) U (3)
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LU-gaxpy step 2:

1 0 0 0

0.5 1 0 0

0.33 −0.25 1 0

0.5 −0.5 0 1





6 18 0 0

0 8 0 0

0 0 0 0

0 0 0 0





L(2) U (2)

August 2012 Manuel Koller/Department of Mathematics/Seminar für Statistik 21



DMATH
Department of Mathematics
Seminar für Statistik

Two key facts about LU-gaxpy:

• Collinearities are detected immediately.

• In the i-th step, the algorithm only touches columns 1 to i .
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Now consider the transposed design matrix:

columns = observations,

rows = predictor variables.

Applying the LU-gaxpy, we only need to repeat one step if an observation

introduces collinearity. All computations from the previous steps are still

valid.

The LU-factorization is needed anyway, so the only extra work comes from

repeating steps in case of collinearities.
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7 Where’s the random part?

Permute the observations in the design matrix.
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8 The nonsingular subsampling algorithm

1. Permute the observations in the design matrix randomly.

2. Run LU-gaxpy step by step on the transposed design matrix, discard-

ing any observation that introduces collinearities.

3. Use computed LU-factorization to solve the least-squares problem.
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9 Avoiding numerical problems

Sometimes, for ill-conditioned design matrices, the nonsingular subsam-

pling algorithm falsely declares a subsample nonsingular.

Preconditioning the design matrix helps to avoid this problem. lmrob uses

a technique called matrix equilibration on the whole design matrix.

Instead of

Aβ = y ,

we solve

(DrowADcol)β̄ = Drowy , β = Dcolβ̄.

The diagonal matrices Dcol and Dcol need to be computed only once for

the whole design matrix.
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10 M/S-estimates (Maronna & Yohai, 2000)

Split the design matrix in a categorical part and a continuous part.

• For the categorical part, use an M-estimate (usually L1), while

• for the continuous part, use an S-estimate.

This avoids computational difficulties on the categorical part while keeping

the better robustness for the continuous part.
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In formulas:

yi = xᵀ
1iβ1 + xᵀ

2iβ2 + εi .

Then use an S-estimate for the continuous part β2:

β̂2 = argmin
β2

σ̂ (r (β∗1 (β2) ,β2)) ,

and an M-estimate for the categorical part β1:

β∗1 (β2) = argmin
β1

n∑
i=1

ρ
(
yi − xᵀ

1iβ1 − xᵀ
2iβ2

)
.

What about interactions of categorical and continuous variables?
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11 Comparison

How long does it take to fit a multiple linear regression model?

LNOx ∼ 1 + LNOxEm + sqrtWS + julday

Estimator Running time [s]

Least Squares (lm) 1.213
L1 (lmrob.lar) 2.680
S, simple subsampling (max tries =∞) > 2592000
M/S 919.513
S, nonsingular subsampling 1082.109

Design matrix: n = 8088, p = 340.

August 2012 Manuel Koller/Department of Mathematics/Seminar für Statistik 29



DMATH
Department of Mathematics
Seminar für Statistik

Conclusions

• lmrob of the R-package robustbase is now suitable also for datasets

with many factors, even when some levels have low frequency.

• Nonsingular subsampling allows us to use the regular S-estimate.

This does not require extra work for easy problems.
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Data: p × p matrix A.
Result: Matrices L and U.

1 A(0) ← A
2 for j ← 1 to p do

3 Lj ←



1 0
. . .

1

−
a(j−1)

j+1,j

a(j−1)
j ,j

. . .

...
. . .

0 −
a(j−1)

p,j

a(j−1)
j ,j

1


4 A(j) ← Lj A(j−1)

5 U ← A(p)

6 L← I +
∑p

j=1

(
I − Lj

)
Algorithm 1: LU-doolittle (without pivoting).
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Data: n × p matrix X , response vector y , singularity treshold ε.

Result: Return code (0 for success, otherwise failing step), initial estimate β̂.

1 U ← 0; L← I ; s ← 1 : p; k ← 1
2 t ← perm(1 : n); A← Xᵀ

t ,1:p; y ← yt

3 for j in 1 to p do

4 if j == 1 then v1:p ← A1:p,k

5 else

6 U1:j−1,j ← L−1
1:j−1,1:j−1A1:j−1,k

7 vj :p ← Aj :p,k − Lj :p,1:j−1U1:j−1,j

8 if j < p then

9 if |vj | ≥ ε then

10 sj ← k
11 Lj+1:p,j ← vj+1:p/vj

...

...
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...

for j in 1 to p do

...

12 if |vj | < ε then

13 if k < n then

14 k ← k + 1
15 Goto 4

16 else

17 return j

18 U j ,j ← vj

19 k ← k + 1

20 β̂ ← L−ᵀU−ᵀys

21 return 0, β̂

Algorithm 2: Nonsingular subsampling using modified LU-gaxpy (without pivoting).

1 : p − 1 = (1, 2, ... , p − 1).
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