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Abstract

The datasets used in statistical analyses are often small in the sense
that the number of observations n is less than 5 times the number of
parameters p to be estimated. In contrast, methods of robust regres-
sion are usually optimized in terms of asymptotics with an emphasis
on efficiency and maximal bias of estimated coefficients. Inference,
i.e., determination of confidence and prediction intervals, is proposed
as complementary criteria. An analysis of MM-estimators leads to the
development of a new scale estimate, the Design Adaptive Scale Esti-
mate, and to an extension of the MM-estimate, the SMDM-estimate,
as well as a suitable ¢-function. A simulation study shows and a real
data example illustrates that the SMDM-estimate has better perfor-
mance for small n/p and that the use of the new scale estimate and
of a slowly redescending -function is crucial for adequate inference.

Keywords: MM estimator, Robust Regression, Robust Inference

*koller@stat.math.ethz.ch
fstahel@stat.math.ethz.ch


mailto:koller@stat.math.ethz.ch
mailto:stahel@stat.math.ethz.ch

1 Introduction

The literature provides many proposals for robust linear regression. In this
paper, we focus on variations of MM-estimators, which consist of an initial
S-estimate followed by an M-estimate of regression. They have the benefit
of allowing for the specification of a breakdown point as well as asymptotic
efficiency at the normal distribution. Some properties of such estimators
depend critically on the choice of the ¥-function of the M-step.

The papers we found on the topic of choosing v for MM-estimators focus
on properties of the estimated parameters only. The criteria applied are the
maximum asymptotic bias or a similar, simplified version like the contami-
nation sensitivity. Here, we take the whole statistical analysis into account.
This means to ask, apart from high efficiency, for accurate inference — de-
termination of confidence and prediction intervals — for a realistically small
sample size. In this paper, we consider only Wald-type inference. Other ap-
proaches such as robustified likelihood-ratio tests or saddle-point tests would
also be worth considering, but require more work for anything other than
tests for hypotheses on single parameters.

Accurate estimation of the scale proves essential in achieving this goal. It
is known that the scale determined by an S-estimator suffers bias if there are
a sizable number of parameters p compared to the number of observations n,
a situation often encountered in everyday statistical analyses. Maronna and
Yohai (2010) suggested an empirical correction to the scale. We propose a
novel scale estimate based on the MM-estimate’s residuals. We call it Design
Adaptive Scale Estimate or D-scale for short. Based on this scale we propose
to reestimate the coefficients by an additional M-estimation step, thereby
achieving a good match between estimated scale and coefficients. Since this
procedure combines an S-estimation, an M-step, a D-estimation of scale and
another M-step, we call it SMDM-estimator.

There are a number of papers discussing the choice of ¢-functions for
MM-estimators. Martin et al. (1989) derive the maximum asymptotic bias
of the S-estimate over an e-contamination neighborhood of the central model
as well as lower bounds for MM-estimates without an intercept. In Hennig
(1995) various types of i-functions are discussed and an upper bound for
the maximum asymptotic bias for MM-estimates is presented. The latter
is improved by Berrendero et al. (2007). Their maximum asymptotic bias
bounds coincide up to moderately large e (about 0.3). The so-called optimal
y-function is developed in Yohai and Zamar (1997) based on maximizing



efficiency with a bound on contamination sensitivity. Svarc et al. (2002) show
that the optimal -function is almost identical to the optimal -function
based on efficiency with a bound on the maximum asymptotic bias, at least
for moderate contamination ¢ < 0.2.

We will show that minimizing the maximum asymptotic bias, which en-
tails a quickly redescending i/-function, leads to poor inference properties
when p/n is not very small. As our simulations show, a remedy for this
problem is to use slowly redescending ¢-functions, corresponding to an early
insight of Frank Hampel, who set the maximal rate of descent of the Ham-
pel Y-function to half the maximal ascent. For further reference see Hampel
et al. (1986). Intuitively, this comes from a positive feedback loop: If obser-
vation ¢ has a positive residual with ¢'(r;/6) < 0 and if the parameters are
changed to slightly decrease the fitted value g;, then the residual r; increases
and the influence of the observation on ¢; decreases, which in turn decreases
y;- Hampel’s ¥-function has sharp corners. It turns out in simulations that
this is a disadvantage; therefore, we introduce a new family of ¢-functions
called lqq.

In Section 2, the MM-estimators are briefly reviewed. The Design Adap-
tive Scale Estimate and SMDM-estimates are defined in Sections 3 and 4.
Wald-type inference is discussed in Section 5 and -functions in Section 6.
The simulation study is outlined and discussed in Section 7. A real data
set is analyzed in Section 8 and Section 9 concludes the paper. Details to
the calculation of the Design Adaptive Scale estimate are included as an
Appendix.

2 MM-estimates

Our notation for the linear regression model is
T .
yi=x;B+e, 1=1...,n,

where the e; are i.i.d. and independent of x; with e; ~ N(0,0?) under the
central model. Here we adopt the attitude that we want to fit this model as
well as possible in the presence of contamination. We denote the residuals
asr; =r;(B) =y; — x! 3.

M-estimates of regression are defined as

n

B =arg min;p <ﬂ> , (1)



where p(r) is assumed to be a nondecreasing function of |r|, with p(0) = 0
and strictly increasing for » > 0 where p(r) < p(c0). Maronna et al. (2006)
restrict the term p-functions to this type of functions. If p is bounded, it
is assumed that p(oo) = 1 and the estimate defined by (1) is then called
redescending M-estimate of regression. The scale o is required to gain scale
equivariance and can either be an external scale estimate or estimated simul-
taneously. By differentiating (1) we get the estimating equation

where 1) is proportional to p’ and is usually chosen to have ¢’(0) = 1.
An M-estimate of scale of e = (ey,...,e,) is the solution & to the esti-
mating equation

Ti(B)

1=

where £ is a tuning constant and x(e) fulfills the same properties as p does.
S-estimates of regression are the parameter values B¢ that minimize the
M-estimate of scale 65 = d5(r(3g)) of the associated residuals,

Bs = argﬁmin as(r(83)).

The maximal breakdown point (1—p/n)/2 of the S-estimate is attained when
using K = (1 — p/n)/2. See Maronna et al. (2006) for details.

It is impossible for S-estimates to achieve a high breakdown point as
well as a high efficiency. Following the proposal of Yohai (1987), arbitrarily
high efficiency is possible by using MM-estimates. They are defined as a
local minimum of (1), obtained by using an iterative procedure started at an
initial S-estimate BS. The corresponding dg is used as scaling factor in (1).
For a suitable choice of p in (1), the MM-estimate preserves the breakdown
point of BS. The functions p, x are usually taken from the same family. The
tuning constant for p is determined such that the estimator reaches a desired
value for the asymptotic efficiency.

It will be shown that the standard MM-estimate has three main problems
for designs with a high p/n ratio:

e bias in the S-scale estimate,



e loss of efficiency of the estimated parameters,
e failure to keep the levels of tests at the desired value.

The first one is solved by using the Design Adaptive Scale Estimate while the
two latter ones depend on how quickly the ¢-function redescends.

3 Design Adaptive Scale Estimate

It is well known that for linear regression using the least squares estimate,
the residuals are correlated and heteroskedastically distributed. Therefore,
the maximum likelihood estimate of the variance parameter of the errors is
corrected to render it unbiased. This is done by dividing the sum of the
squared residuals by n — p instead of n. In the case of MM-estimates this
is also an issue. To the knowledge of the authors, all proposed corrections
depend only on n and p, but not on the design itself. Due to the nonlin-
ear nature of the M-estimate, such a correction will not suffice and further
correction factors are required at later stages of the analysis. Huber (1973)
developed elaborate small sample correction factors for the covariance matrix
estimate. It will be shown that appropriate standardization of the residuals
renders these corrections obsolete.
We propose to estimate scale by the estimating equation

Zw (o) [(a> - ] =0 2)

where w is a weighting function, 7; will be defined below, and x is used to
ensure Fisher consistency at the central model. We call this scale estimate the
Design Adaptive Scale Estimate. In the case of ordinary least squares, w(r) =
1, 7, =+/1—h; and kK = 1, and 6p reduces to the standard scale estimate. In
accordance with the M-step, an appropriate choice for the weighting function
is w(r) = (r)/r (cf. Maronna et al., 2006, Section 2.2.3).

The correction factors 7; are designed to reflect the heteroskedasticity of
the distributions of the residuals r;. They depend on the leverage h; of the
1th observation as well as the y-function used. For each observation, the 7; is
chosen such that the expected value of the ith summand in (2) is zero. The
distribution of the residuals is approximated using a von Mises expansion of




1 n
T =y — T + — Y IF(ey,xp,0) + remainder | . 3
Y (5 nhz:; (en, Tn,0) > (3)

Details on how to calculate 7; are given in the Appendix. By simulation
we show that the standardization by 7; removes the bias in the scale almost
completely for all ratios p/n < 1/3 at least for suitable ¢-functions.

An important detail is the inclusion of x inside the sum in the given
weighted form. This has the benefit that outlying observations have no in-
fluence on the scale estimate and thus are rejected. The drawback of this
approach is that there might be multiple solutions to the estimating equa-
tion, for example when there is a large cluster of outlying observations. The
problem can be solved with the same trick as for the MM-estimate itself, by
choosing a suitable starting point for the calculation of the D-scale. This will
allow keeping the breakdown properties equal to those of the prior estimates.

4 SMDM-Estimates

We propose to extend the standard MM-estimate with two additional steps
to solve the problems outlined at the end of Section 2. Following the MM-
estimation step, calculate the Design Adaptive Scale Estimate. Then rees-
timate the regression parameters based on this new scale using the MM-
estimate as initial estimate. We will call this estimate the SMDM-estimate.
Other candidates of estimates could be SDM or SMD, i.e., MM-estimates
with an additional D-step either before or after the M-regression estimate.
Both of them turned out to be inferior to the SMDM-estimate. The D-scale
is only unbiased if the 7 factors are estimated correctly. If applied following
the S-step, estimating 7 proved difficult. For a more detailed explanation, we
refer to the Appendix. Consequently, the SDM estimate was not included in
the simulations. As for the SMD, the simulation study revealed that it does
not reach the desired efficiency. Since the S-scale used in the first M-step
is biased for larger p/n ratios, the effective tuning of the -function differs
from the intended one and thus the efficiency of the regression estimate is
lowered.



5 Wald-type inference

Under some regularity conditions, MM-estimates are asymptotically normal,
thereby allowing for Wald-type tests and confidence intervals. The covariance
matrix of the estimated parameters,

cov(,[:]) = JQ’YV;(l,

consists of three parts: a scale o, a correction factor v depending on the
Y-function used, and a matrix part, Vx = X* X.

We will estimate the three parts as correctly as possible, separately from
each other. That is, we do not want to rely on canceling effects or use any
correction factors later on. The first part, o, is taken care of by using the
scale of SMDM-estimates. The D-scale estimate is suitable for inference and
does not require any correction factors.

The correction factor v is given by the asymptotic normality theorem and
is usually estimated empirically by

n T 2
n+p Zi:l (G (E)
n T 27
[ 2w (2)]
where the factor 1/(n — p) is used instead of 1/n in order to recapture the
classical formula in the classical case (¢(x) = x), see Huber and Ronchetti
(2009), Section 7.6. This formula is usually used together with Huber’s small

sample correction, which will be discussed later. Here, we propose to use the
T-standardized residuals again,

A=

2
“ % Z?:l 1/} (:3)
Y= | _ PR (4>
e ()
For the third part, we follow the proposal of Yohai et al. (1991), namely to

use a weighted empirical covariance matrix estimate. The robustness weights
of the final M-step are used as weights,

‘7X = XTWX7 (5)

——
n Z?:l W
where w; = w(r;/&) and W = diag(wy, .. ., w,). This has expectation X* X.
The T-standardized residuals are not used here since to estimate the covari-
ance matrix shape, we want to give the observations the same weights as
used in the estimation of 3.



Under the assumptions of a symmetric error distribution, a symmetric
p-function and a balanced matrix X, i.e., all leverages equal to p/n, Huber
(1973) showed that ~y (XTX)_1 contains a bias of the order O(p/n) (see also
Huber and Ronchetti (2009)). He derived a correction factor K? that makes
v (XTX)f1 unbiased up to O(p*/n?) terms,

n T n ri\ )2 2
P i (U (3) =2 2 (%))
n 12
g [t 2 v (3)]

This correction is only valid when taking V x = X X. The variant of Equa-
tion (5) was also mentioned, but deemed to be too complicated to calculate
a correction factor. Nevertheless, many implementations of MM-estimators
use this correction in combination with the matrix part as in (5).

K?= |1+

6 -functions

We propose a new, fully tunable ¢-function which we call lgq (“linear quadratic
quadratic”).

’ 2] < ¢

b(z) = sign() (|| — 55 (|z] — )*) c< |zl <b+e
sgnla) (c+0 =+ 52 (12 —a2)) bre< ol Satbre
0 otherwise,

where £ = |z| — b —c and a = (bs — 2b — 2¢)/(1 — s). The parameter
¢ determines the width of the central identity part. The sharpness of the
bend is adjusted by b while the maximal rate of descent is controlled by s
(s =1 — |min, ¢'(z)|). The length a of the final descent to 0 is determined
by b, ¢ and s.

We constructed this function as follows. Our initial proposal was the
Generalized Gauss-Weight function, or ggw for short,

x lz] < ¢

which is continuously differentiable. This function was appealing to us be-
cause it is possible to fix the maximal rate of descent and has the property of

8
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Figure 1: ¢-functions for MM-estimation with the same asymptotic efficiency.

reaching 0 only asymptotically. Moreover, since the function has a continu-
ous derivative, the sensitivity curves of various statistics, e.g., t-values, show
no jumps and less other irregularities as compared to the so-called optimal
or Hampel 1)-functions.

The ggw -function is only numerically integrable, however. This posed
a problem in the implementation, because the computationally expensive S-
step relies on many evaluations of the corresponding p-function. Even though
shortcuts like pre-calculating the integral exist, it is more straightforward to
simplify . The lgq ¥-function is designed to mimic ggw. The function is
constructed by integrating from ', which is continuous and consists of a
constant and two linear parts. The continuity of ¢’ is required to yield a
continuous sensitivity curve of the t test statistic.

As mentioned before, the tuning constants will be chosen such that the
decreasing slope for large residuals is less than the slope at 0. This is illus-
trated in Fig. 1. A list of recommended tuning constants for the lqq and ggw
1-function is given in Table 1. The use of slowly redescending -functions
requires a price to be paid with the maximum asymptotic bias. The latter
is considerably larger than for the optimal ¥-function with equal asymptotic
efficiency. Fig. 2 shows the maximum asymptotic bias bounds, calculated as
outlined in Berrendero et al. (2007).



max. asymptotic bias bounds

lqq ggw

eff. b c s a b c

S-estimate 0.4015 0.2677 1.5000 0.2037 1.5000 0.2959
M-estimate 0.85 1.0582 0.7055 1.5000 0.8372 1.5000 0.7594
0.9 1.2137 0.8092 1.5000 1.0283 1.5000 0.8709

0.95 1.4735 0.9823 1.5000 1.3864 1.5000 1.0628

Table 1: Recommended tuning constants for lgq and ggw -functions.

— lag

[ [ [
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
amount of contamination €

Figure 2: Maximum asymptotic bias bounds for the -functions used in the
simulation. The upper and lower bounds coincide for most of the plot.

7 Simulation Study

To compare the proposed methods with other robust regression procedures,
we performed a simulation study. It was conducted with R version 2.11.1 (R
Development Core Team, 2010). The methods proposed have been imple-
mented in the R-package robustbase (Roussecuw et al., 2011). Because of
space constraints, we present here only a reduced set of results. The full sim-

ulation study is available as a vignette of the R-package robustbase (Koller,
2011).

7.1 Estimators

We compare the following estimators for B and &.

e MM, SMD, SMDM-estimates as implemented in the method lmrob of

10
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the R-package robustbase (Rousseeuw et al., 2011).

e MM-estimate as implemented in the method 1mRob of the package ro-
bust (Wang et al., 2010). We will denote it by MMrobust (and Gropust
for just the scale estimate) later on.

e MM-estimate using the S-scale correction ¢g as proposed by Maronna
and Yohai (2010). This method was implemented on the basis of 1mrob.
The scale estimate is multiplied by gg which is defined as

1
= 1 (1.29 — 6.02/n)p/n

for bisquare . When using gg it is necessary to adjust the tuning
constants of y to account for the dependence of x on p. We denote this
estimator by qgogs and MMgqy.

e ordinary least squares (OLS).

The covariance matrices are estimated as follows. For the standard MM-
estimator, we compare Avar; of Croux et al. (2003) and the weighted empiri-
cal covariance matrix estimate corrected by Huber’s small sample correction
(Wssc in the plot legend) as described in Huber and Ronchetti (2009). The
latter is also used for MMgqy. For the SMD and SMDM variants we use the
covariance matrix estimate as described in Section 5 (denoted by Wr).

We compare the bisquare, optimal, lqq, and Hampel -functions. They
are illustrated in Fig.1. Note that the Hampel 1-function is tuned to have a
downward slope of —1/3 instead of the originally proposed —1/2. This was
set to allow for a comparison to a more slowly redescending ¢-function.

7.2 Designs

The simulation setting used here is modeled on the one in Maronna and Yohai
(2010). The designs used in the simulation are random designs without an
intercept column. The distribution used to generate the errors is also used
to generate the designs. We simulate n = 25,50 and 100 with predictor—
observation ratios of p/n = 1/20,1/10,1/5,1/3,1/2. We round p to the
nearest smaller integer if necessary.

We simulate the following error distributions.

e Standard normal distribution,

11



4 t37

e centered skewed t, as introduced by Fernandez and Steel (1998) and
implemented in the R package skewt (King and Anderson, 2004), with
v =2, and df =5 (denoted by cskt(5,2)) and

e contaminated normal, A/(0,1) contaminated with 10% N (4,1) (asym-
metric, cnorm(0.1,4,1)).

We simulate 1000 replicates.

7.3 Criteria

The simulated methods are compared using the following criteria.

Scale estimates. The criteria for scale estimates are all calculated on
the log-scale. The bias of the estimators is measured by the 10% trimmed
mean. To recover a meaningful scale, the results are exponentiated before
plotting. It is easy to see that this is equivalent to calculating geometric
means. Since the methods are all tuned at the central model, N'(0,1), a
meaningful comparison of biases can only be made for N'(0,1) distributed
errors. The variability of the estimators, on the other hand, can be compared
over all simulated error distributions. It is measured by the 10% trimmed
standard deviation, rescaled by the square root of the number of observations.

Coefficients. The efficiency of estimated regression coefficients B is
characterized by their mean squared error (MSE). Since we simulate un-
der Hy : B = 0, this is determined by the covariance matrix of B We use

E [”ﬁ”%] =i var(f;) as a summary. When comparing to the MSE of

the ordinary least squares estimate (OLS), this gives the efficiency, which,
by the choice of tuning constants of 1, should yield

MSE(BOLS) ~ 0.95

MSE(8)

for standard normally distributed errors. The simulation mean of »7_, var( 3,
is calculated with 10% trimming. For other error distributions, this ratio
should be larger than 1, since by using robust procedures we expect to gain
efficiency at other error distributions (relative to the least squares estimate).
Covariance matrix estimate. The covariance matrix estimates are
compared indirectly over the performance of the resulting test statistics. We

12
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Figure 3: Geometric mean of scale estimates for normal errors and different
y-functions. The mean is calculated with 10% trimming. The lines connect
the median values for each simulated ratio p/n. qgds applies for bisquare v
only.

compare the empirical level of the hypothesis tests Hy : §; = 0 for some
j €{1,...,p}. The power of the tests is compared by testing for Hy : 5; = b
for several values of b > 0. The formal power of a more liberal test is generally
higher. Therefore, in order for this comparison to be meaningful, the critical
value for each test statistic was corrected such that all tests have the same
simulated level of 5%.

7.4 Results

The results are presented as a series of plots. The results for the different
-functions are each plotted in a different facet, except for Fig. 5, where
the facets distinguish the scale estimators, as well as Fig. 9 and 11, where
the facets show the results for various error distributions. The plots are
augmented with auxiliary lines to ease the comparison of the methods. The
lines connect the median values over the values of n for each simulated ratio
p/n. In many plots the y-axis has been truncated. Points in the gray shaded
area represent truncated values using a different scale.

Scale. Fig. 3 shows a clear dependence of the bias of & on p/n for the
S-scale estimate 5. This bias seems to be independent of which -function
is used. Surprising is the similarity between the uncorrected 65 and the
gr corrected scale estimate. The performance of the D-scale estimate op

13
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Figure 4: Variability of the scale estimates for normal errors and different
y-functions. Standard deviations are calculated with 10% trimming.
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Figure 5: Variability of the D-scale, S-scale with lgq -function, and for
OLS-estimators.
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Figure 6: Efficiency of 3 with respect to OLS for normal errors and different
-functions. The vertical axis is truncated at 0.7. Extreme values for the
vertical axis (shaded area) are shown on different scale.

depends on the i-function used. For the slowly descending -functions, the
bias is almost zero over the whole range of p/n. For these -functions, the
D-scale estimate is also more efficient at the central model than the S-scale
estimate, as Fig. 4 shows. For the other simulated distributions, this is also
the case (Fig. 5), except for ¢; distributed errors — a quite extreme situation
not shown on plots — where the S-scale estimate is more efficient. All scale
estimates suffer a loss of efficiency for larger p/n ratios. To keep the efficiency
high for all values of p/n, the D-scale estimate requires a slowly descending
1-function.

Coefficients. With increasing bias and a loss of efficiency of the scale
estimate, there is also a loss of efficiency of the regression estimate 3. Fig. 6
shows the results at the central model. For the optimal 1)-function, the loss
is quite dramatic, independent on what estimator is used. The results for the
MM and the SMD-estimates are the same since the D-scale estimate is not
used for estimating B The reestimation of the regression estimate by the
last M-step of the SMDM-estimate improves the results considerably. Here
the requirement of the slowly redescending v-functions is also clearly visible.
While for the optimal and bisquare 1-functions there is a considerable loss
of efficiency, there is no visible loss for the lqq and Hampel -functions.

In Fig. 7, empirical efficiencies of the estimates are plotted for different
error distributions. The differences between the methods are marginal com-
pared to the variance introduced by the different error distributions. In some
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Figure 7: Efficiency of B with respect to OLS for different ¢)-functions. The
lines connect the median values over the simulated error distributions for
each value of p/n. Results for n = 25 only.

cases the estimates using a quickly redescending -function are even less ef-
ficient than the OLS-estimate. This does not happen for slowly redescending
1-functions.

Levels. As can be seen from Fig. 8, there is a considerable difference in
the behavior of the estimate as implemented in 1mRob (denoted by MMro-
bust. Wssc) to the Imrob MM-estimate using Huber’s small sample correction
(MM.Wssc). Comparing the implementations of the two methods, the dif-
ference is quite subtle. While the latter uses the final residuals, the former
uses the residuals of the initial S-estimate for estimating the covariance ma-
trix. The method 1mRob, in order to gain maximal robustness, uses the most
robust residuals available to estimate the covariance matrix. This is a case
where too much robustification leads to an undesirable erratic behavior.

There is a slight improvement when using (4) in combination with the
SMDM-estimate (SMDM.Wr). However, most of the improvement comes
from the slowly redescending v-function. The behavior for most of the esti-
mates is quite similar, also when considering other error distributions (Fig. 9).
The results for Avar; covariance matrix estimate depends strongly on the
number of observations n. While for a low number of observations the em-
pirical levels are a lot higher than the desired 5%, the results are much better
for larger numbers of observations, especially for t3 distributed errors. It is
worth mentioning that the test based on the OLS-estimate keeps the em-
pirical level of 5% for all the simulated error distributions (not shown on
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Figure 10: Empirical power of test Hy : f; = 0.4 for different i-functions.
Results for n = 25 and normal errors only.

plots).

Power. For comparing the power of the tests, we show only Fig. 10 and
11, where we test Hy : 51 = b = 0.4. Remember that the tests’ critical values
have been adjusted to keep the level of 0.05 — which would be tedious in
practice. Aside from higher power, the plots for larger values b look similar.
For lower values of b, the differences between the methods disappear.

For normally distributed errors, all tested methods lose a lot of power for
increasing ratios of p/n, as can be seen in Fig. 10. The more robust estimator
Avar; comes with the price of lower power than the other tested covariance
matrix estimators. In the situation shown in Fig. 11, Avar; behaves better
for asymmetric error distributions, but is still only equal in performance to
the other methods. Interestingly, for larger values of n, this improvement
disappears. All the simulated methods perform very badly for skewed t-
distributed errors, while for the other error distributions, the power is slightly
higher than for normally distributed errors.

8 A Real Data Example

As a complement to the simulation study, we also applied the proposed
method to the nuclear power station dataset used in Cox and Snell (1981),
which has been used by Davison and Hinkley (1997) and Brazzale et al.
(2007) to compare their methods with the classical approach. The data is
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Figure 11: Empirical power for test Hy : 51 = 0.4 for different error distribu-
tions. Results for n = 25 and lgq ¢-function only.

on the construction cost of 32 light water reactor plants built in the USA in
1967 - 71. The full dataset contains ten possible explanatory variables, four
of which can be dropped by some model selection technique as shown in the
above cited references. Under the remaining six explanatory variables, there
are two variables which are borderline significant. Subsequently, we will limit
the discussion to these two variables, the number of power plants constructed
by the same architect-engineer before (log(N)) and the indicator for plants
for which there was a partial turnkey guarantee (PT). The significance of
the latter is crucial for the alleged basic question for which the study was
undertaken.

When performing a residual analysis for the OLS fit, one will notice in
the qq plot of the residuals that there is a tendency to a longer tailed error
distribution. Davison and Hinkley (1997) consider the problem of predicting
a new observation, calculating prediction intervals via ordinary bootstrap.
We modified their approach to calculate confidence intervals for the param-
eter estimates. Brazzale et al. (2007) fitted a model where the responses
have a Student ¢-distribution with 4 degrees of freedom. Standard errors and
confidence intervals for the latter model were calculated using higher order
asymptotics. We compare the fits of these models with MM and SMDM-
estimates with bisquare and lgq )-functions. We used the covariance matrix
estimates described in Section 5.

The parameter estimates and associated 95% confidence intervals are
shown in Fig. 12. Since the correlation between log(N) and PT is —0.6,
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Figure 12: Estimates and 95% confidence intervals for selected explanatory
variables of the nuclear power plant data. The naming of the methods follows
the lines of Section 7.

the differences between the methods are quite similar for the two variables.
The MM-estimates stand out, especially because of the strong influence of
the y-function. While the initial S-estimate rejects observations 22 and 26
for both -functions, after the M-step only the estimate using the bisquare
-function rejects the two observations. In fact, the MM-estimates for the
two -functions are quite different from each other, bracketing all the other
results. After the D- and M-steps, because the D-scale estimate is substan-
tially larger than the initial S-scale estimate, the two observations are not
rejected anymore and the results are very similar for the two -functions.
For the SMDM-estimates, the minimum robustness weights are about 0.7,
i.e., there are no observations rejected as outliers.

The comparison of all the methods does not really give any insights on
which one of log(N) and PT should be treated as significant variable. The
differences in the widths of the intervals are small compared to the differences
in the parameter estimates. Therefore it is the location of the estimate that
tips the scales and not the estimate of uncertainty. The upper ends of the
bootstrap confidence intervals are so close to 0 that their sign depends on
the random seed used. Thus the bootstrap results are also inconclusive. (To
interested readers looking for a more satisfying answer, we recommend to
plot date versus N using PT to color the points.)
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9 Conclusions

The rate of redescent of the ¢-function used for MM-estimation is crucial for
preserving the properties of the estimates with realistically small sample sizes.
While all the compared -functions have the same asymptotic efficiency, we
have shown that there are large differences for larger ratios of number of
predictors to observations. It is worth using a -function not reaching the
minimal possible maximal asymptotic bias. The proposed D-scale estimate in
combination with a second M-step improves the performance of the estimates.
The SMDM-estimate has the advantage of not requiring any correction fac-
tors for further inference. Using the m-standardized residuals is enough, even
for small samples.

The proposed method has been implemented in the function lmrob of
the R-package robustbase (Rousseeuw et al., 2011, version 0.6-5 or younger)
With the argument setting="KS2011", the recommended parameters are
set automatically: SMDM-estimator with the lgq -function tuned for 95%
asymptotic efficiency and the covariance estimate using (4) and (5) as de-
scribed in Section 5. This setting was denoted as p, SMDM and SMDM. Wr
above.

Appendix. Details on the Design Adaptive
Scale Estimate

For OLS, the scale estimator can be written as the solution of

n . 2
gﬁ«(z)_gza
i=1 i

with 7, = /1 — h;. This equation, which can be solved explicitly, makes
the argument for dividing the sums of squares by n — p instead of n more
transparent: Every summand in this implicit equation has the expectation
0, which leads to the unbiasedness of 62. We robustify this equation by
introducing the robustness weights to get (2), where s is needed to obtain
consistency at the central model as usual, i.e.,

_ Eyfw(©e]
By [w(e)] |

21



The subscript 0 indicates the evaluation at the central model with scale
parameter 1. The D-scale can be reliably calculated by means of an iterative
reweighing algorithm. The starting value,

A Z?:l wirf

Oy = n
27
“Ziﬂ w;T;

using the robustness weights w; from the last M-step proved to be efficient.
We define 7; as the value that zeroes the expectation of the ith summand

in (2), 2
() E) ) o

Since the exact distribution of the residuals is unknown, we approximate it
using a von Mises Expansion of 3, see (3). After splitting the contributions
of the ith observation and the other observations, and approximating the
latter by a normally distributed random variable, we get

1
~o ,
e IF(e;, @i, 0) +u_y,

o Eo[v* ()] (o
. N(o,EOW(e)]Q (h hz)>.

We are then able to solve (6) using the above approximations and standard
numerical integration and root-search procedures. Finding the root of (6) can
be difficult for -functions with very small support. In this case the curve
around the real root is very flat and therefore a small error in the numerical
integration can translate to a comparably large error in the solution. Because
the ¥-functions of the M-step are tuned for high efficiency and thus have a
quite large support, this causes no concern in applications.

It turns out that 7; depends only on the -function used as well as the
leverage of the ith observation. It can be shown that the values are well
approximated by a function of the form

T~ (]_ — Clhi)\/ 1-— Cth‘, (7)

_ oEolv(e)e]  Eo[v(e)’]
Eo[0'(e)]  Eo[v/(e)]?
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while ¢; is determined empirically by fitting (7) (with, e.g., a MM-estimator)
to the exact solutions of (6) for a set of leverages ranging from 0 to 0.8.
Since robustness is needed with regard to the leverage, we use the robustified
estimator V' x to calculate the h;s,

hi = wzm;‘F(XTWX)_la:,
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