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1. Introduction

Let the statistical experiment be generated by the couples of observations Y (n) =
(Xi, Yi)i=1,...n, n ∈ N∗ where (Xi, Yi) satisfies the equation

Yi = f(Xi)× Ui, i = 1, . . . , n. (1.1)

Here f : [0, 1]d → R is an unknown function and we are interested in estimating
f at a given point y ∈ [0, 1]d from the observation Y (n).

The random variables (the noise) (Ui)i∈1,...,n are supposed to be independent
and uniformly distributed on [0, 1].

The design points (Xi)i∈1,...,n are deterministic and without loss of generality
we will assume that

Xi ∈
{

1/n1/d, 2/n1/d, . . . , 1
}d
, i = 1, . . . , n.

All along the paper the unknown function f is supposed to be smooth, in par-
ticular, it belongs to the Hölder ball of functions Hd(β, L,M) (cf. Definition 1
below). Here β > 0 is the smoothness of f , M is the sum of upper bounds of f
and its partial derivatives and L > 0 is the Lipschitz constant.
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Moreover, we will consider only the functions f separated away from zero by
some positive constant. From now on we will suppose that there exists 0 < A <
M such that f ∈ Hd(β, L,M,A), where

Hd(β, L,M,A) =

{
g ∈ Hd(β, L,M) : inf

x∈[0,1]d
g(x) ≥ A

}
.

Motivation. The theoretical interest to the multiplicative regression model
(1.1) with discontinuous noise is dictated by the following fact. The typical ap-
proach to the study of the models with multiplicative noise consists in their
transformation into the model with an additive noise. After that in the appli-
cation, the linear smoothing technic are used, based on standard methods like
kernel smoothing, local polynomials, etc. But these technics are not always op-
timal. Let us illustrate the latter approach by the consideration of one of the
most popular non-parametric model namely multiplicative gaussian regression

Yi = σ(Xi) ξi, i = 1, . . . , n. (1.2)

Here (ξi)i=1,...,n are i.i.d. standard gaussian random variables and the goal is to
estimate the variance σ2(·).

Set Y ′i = Y 2
i and ηi = ξ2

i − 1, one can transform the model (1.2) into the
heteroscedastic additive regression:

Y ′i = σ2(Xi) + σ2(Xi) ηi, i = 1, . . . , n,

where, obviously, Eηi = 0. Applying any of the linear methods mentioned above
to the estimation of σ2(·), one can construct an estimator whose estimation

accuracy is given by n−
β

2β+d and which is optimal in minimax sense (See Def-
inition 2). The latter result is proved under assumptions on σ2(·) which are
similar to the assumption imposed on the function f(·). In particular, β de-
notes the regularity of the function σ2(·). The same result can be obtained for
any noise variables ξi with continuously differentiable density known, possessing
sufficiently many moments.

The situation changes dramatically when one considers the noise with dis-
continuous distribution density. Although, the transformation of the original
multiplicative model to the additive one is still possible, in particular, the model
(1.1) can be rewritten as

Y ′i = 2Yi = f(Xi) + f(Xi) ηi, ηi = 2Ui − 1, i = 1, . . . , n,

the linear methods are not optimal anymore. As it is proved in Theorem 2.1

the optimal accuracy is given by n−
β
β+d . To achieve this rate the non-linear

estimation procedure, based on locally bayesian approach, is proposed in Section
2.

Another interesting feature is the selection from a given family of estimators
(cf. [2], [3]). Such selections are used for construction of data-driven (adaptive)
procedures. In this context, several approaches to the selection from the family
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of linear estimators were recently proposed, see for instance [3], [4], [7] and the
references therein. However, these methods are heavily based on the linearity
property. As we already mentioned the locally bayesian estimators are non-linear
and in Section 3 we propose the selection rule from this family. It requires, in
particular, to develop new non-asymptotical exponential inequalities, which may
have an independent interest.

Besides the theoretical interest, the multiplicative regression model is ap-
plied in various domains, in particular in the image processing, for example in
the so-called nonparametric frontier model (cf. [1], [18]) can be considered as
a particular case of the model (1.1). Indeed, the reconstruction of the regres-
sion function f can be viewed as the estimation of a production set P. Indeed,
∀i, Yi ≤ f(Xi), and therefore the estimation of f is reduced to finding the upper
boundary of P. In this context, one can also cite [10] dealing with the estima-
tion of function’s support. It is worth mentionning that although nonparametric
estimation in the latter models is studied, the problem of adaptive estimation
was not considered in the literature.

Minimax estimation. The first part of the paper is devoted to the minimax
estimation over Hd(β, L,M,A). That means in particular that the parameters
β, L,M and A are supposed to be known a priori. We find the minimax rate
of convergence (1.3) on Hd(β, L,M,A) and we propose an optimal estimator in
minimax sense (cf. Definition 2). Our first result (Theorem 2.1) in this direction
consists in establishing a lower bound for maximal risk on Hd(β, L,M,A). We
show that for any β ∈ R∗+, the minimax rate of convergence is bounded by the
sequence

ϕn(β) = n−
β
β+d . (1.3)

Next, we propose the minimax estimator, i.e. the estimator achieving the
normalizing sequence (1.3). To construct the minimax estimator we use so-called
locally bayesian estimation construction which is described in the following. Let
for any y = (y1, . . . , yd) ∈ [0, 1]d

Vh(y) =

d⊗
j=1

[
yj − h/2, yj + h/2

]
,

be the neighborhood around y such that Vh(y) ⊆ [0, 1]d, where h ∈ (0, 1) is a
given scalar. Let Pb =

{
p = (p1, . . . , pd) ∈ Nd : 0 ≤ |p| ≤ b

}
, with |p| = p1 +

· · ·+ pd, b is a fixed integer number and we denote Db the cardianal of Pb. We
define the local polynomial

ft(x) =
∑
p∈Pb

tp

(
x− y
h

)p
IVh(y)(x), x ∈ Rd, t = (tp : p ∈ Pb), (1.4)

where zp = zp11 · · · z
pd
d for z = (z1, . . . , zd) and I denotes the indicator function.

The local polynomial ft can be viewed as an approximation of the regression
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function f inside the neighborhood Vh and Db as the number of coefficients of
this polynomial. One introduces the following subset of RDb

Θ
(
A,M

)
=

t ∈ RDb : A ≤
∑
p∈Pb

tpz
p ≤ 3M, ∀z ∈ [−1/2, 1/2]d

 . (1.5)

Θ(A,M) can be interpreted as the set of coefficients t such that A ≤ ft(x) ≤ 3M
for all t ∈ Θ(A,M) and for all x in the neighbourhood Vh(y). Consider the
pseudo likelihood ratio

Lh
(
t, Y (n)

)
=

∏
i:Xi∈Vh(y)

[
ft(Xi)

]−1I[
0,ft(Xi)

](Yi), t ∈ Θ
(
A,M

)
.

Set also

πh(t) =

∫
Θ(A,M)

‖t− u‖1 Lh
(
u, Y (n)

)
du, t ∈ Θ

(
A,M

)
, (1.6)

where ‖ · ‖1 is the `1-norm on RDb . Let θ̂(h) be the solution of the following
minimization problem:

θ̂(h) = arg min
t∈Θ(A,M)

πh(t). (1.7)

The locally bayesian estimator f̄h(y) of f(y) is defined now as f̄h(y) = θ̂0,...,0(h).
Note that this local approach allows us to estimate successive derivatives of
function f . In this paper, only the estimation of f at a given point is studied.

We note that similar locally parametric approach based on maximum likeli-
hood estimators has been recently proposed in [8] and [17] for regular statistical
models. But when the density of observations is discontinuous, the bayesian
approach outperforms the maximum likelihood estimator. This phenomenon is
well known in parametric estimation (cf. [5]). Moreover, in order to establish
statistical properties of bayesian estimators, we need much weaker assumptions
than whose used for analysis of maximum likelihood estimators.

As we see our construction contains an extra-parameter h to be chosen. To
make this choice we use quite standard arguments. First, we note that in view
of the definition of Hölder class Hd(β, L,M), we have ∀f ∈ Hd(β, L,M), ∃θ =
θ(f, y, h) ∈ [−M,M ]Db such that

0 ≤ fθ(x)− f(x) ≤ 2Ldhβ , ∀x ∈ Vh(y).

We will define θ in (5.5) and we will show that if f ∈ Hd(β, L,M,A), then
θ ∈ Θ(A,M) (cf. (5.6) and (5.7) below). Thus, if h is chosen sufficiently small,
our original model (1.1) is well approximated inside Vh(y) by the “parametric”
model

Yi = fθ(Xi)× Ui, i = 1, . . . , nhd, nhd ∈ N∗.
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With this model, the bayesian estimator θ̂ is rate-optimal (See Theorem 2.2).
It is worth mentioning that the analysis of the deviation of (Xi,Yi)i=1,...nhd

from Y (nhd) is not simple. Namely here the requirements 0 < A ≤ f(·) ≤ M,
are used. This assumption, which seems not to be necessary, allows us to make
a presentation of basic ideas and to simplify routine computations (cf. also
Remark 1).

Finally, h = hn(β, L) = (Ldn)−1/(β+d) is chosen as the solution of the follow-
ing minimization problem

Ldhβ + 1/nhd → min
h
. (1.8)

Moreover we show that the corresponding estimator f̄hn(β,L)(y) is minimax for
f(y) on Hd(β, L,M,A) for any given value of the parameter β > 0 (cf. Theorem
2.2).

We notice that in regular statistical models where linear methods are usually
optimal, the choice of the bandwidth h is due to the relation

Ldhβ + 1/
√
nhd → min

h
,

with the solution hlin = (Ldn)−1/(2β+d). That explains the improvement of

the rate of convergence, n−
β
β+d compared to n−

β
2β+d , in the model with the

discontinuous density.

Adaptive estimation. The second part of the paper is devoted to the adap-
tive minimax estimation over collection of isotropic functional classes in the
model (1.1). To the best of my knowledge, the problem of adaptive estimation
in the multiplicative regression with noise having discontinuous density, is not
studied in the literature.

Well-known drawback of minimax approach is the dependence of the minimax
estimator on the parameters describing functional class on which the maximal
risk is determined. In particular, the locally bayesian estimator f̄h(·) depends
obviously on the parameters A and M via the solution of the minimization
problem (1.7). Moreover hn(β, L) optimally chosen in view of (1.8) depends
explicitly on β and L. To overcome this drawback the minimax adaptive ap-
proach has been proposed (cf. [11], [12] and [15]). The first question arising in
the adaptation can be formulated as follows.

Does there exist an estimator which would be minimax on Hd(β, L,M,A)
simultaneously for all values of β, L,A and M belonging to some given subset
of R4

+ ?

In section 3, we show that the answer to this question is negative, that is
typical for the estimation of the function at a given point (cf. [14], [19], [20]).
This answer can be reformulated in the following manner: the family of rates of
convergence

{
ϕn(β), β ∈ R∗+

}
is unattainable for the considered problem.
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Thus, we need to find another family of normalizations for maximal risk
which would be attainable and, moreover, optimal in view of some criterion
of optimality. Nowadays, the most developed criterion of optimality is due to
Klutchnikoff [9].

We show that the family of normalizations being optimal in view of this
criterion, is

φn(β) =

(
ρn(β)

n

) β
β+d

, ρn(β) = 1 + ln

(
ϕn(β)

ϕn(b)

)
, (1.9)

whenever β ∈]0, b] and the parameter b > 0 can be chosen arbitrarly. The
factor ρn can be considered as the price to pay for adaptation in the context of
pointwise estimation (cf. [11]).

The most important step in proving the optimality of the family (1.9) is to
find an estimator, called adaptive, which attains the optimal family of norma-
lizations. Obviously, we seek an estimator whose construction is parameter-free,
i.e. independent of β, L,A and M . In order to explain our estimation procedure
let us make several remarks.

First we note that the role of the constants A,M and β, L in the construction
of the minimax estimator is quite different. Indeed, the constants A,M are used
in order to determine the set Θ

(
A,M

)
needed for the construction of the locally

bayesian estimator (see (1.6) and (1.7)). However, this set does not depend on
the localization parameter h > 0, in other words, the quantities A and M are not
involved in the selection of optimal size of the local neighborhood given by (1.8).
Contrarily the constants β, L are used for the derivation of the optimal size of
the local neighborhood (1.8), but they are not involved in the construction of
the collection of locally bayesian estimators

{
f̄h, h > 0

}
.

We will explain how to replace the unknown quantities A and M in the
definition of Θ

(
A,M

)
. Indeed, a simple observation consists in the following:

the estimator f̄hn(β,L) remains minimax if we replace Θ
(
A,M

)
in (1.6) and (1.7)

by Θ
(
Ã, M̃

)
with any 0 < Ã ≤ A and M ≤ M̃ < ∞. It follows from obvious

inclusion Hd(β, L,A,M) ⊆ Hd(β, L, Ã, M̃). The next observation is less trivial

and it follows from Proposition 1. Set hmax = n−
1
b+d and define for any function

f

A(f) = inf
x∈Vhmax (y)

f(x), M(f) =
∑
p∈Pb

∣∣∣∣ ∂mf(y)

∂xp11 · · · ∂x
pd
d

∣∣∣∣ . (1.10)

The following agreement will be used in the sequel: if the function f and m ≥ 1
are such that ∂mf does not exist we will put formally ∂mf = 0 in the definition
of M(f).

It remains to note that contrary to the quantities A and M the functionals
A(f) and M(f) can be consistently estimated from the observation (1.1) and one
defines Â and M̂ be the corresponding estimators. Now we want to determine
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the collection of locally bayesian estimators
{
f̂h, h > 0

}
by replacing Θ

(
A,M

)
in (1.6) and (1.7) by the random parameter set Θ̂ which is defined as follows.

Θ̂ = Θ
(
Â/2, 2M̂

)
=

t ∈ RDb : Â/2 ≤
∑
p∈Pb

tpz
p ≤ 6M̂, ∀z ∈ [−1/2, 1/2]d

 .

In this context, it is important to emphasize that the estimators Â and M̂ are
built from the same observation as the one used for the construction of the
family

{
f̂h, h > 0

}
.

Contrary to all saying above, the constants β and L cannot be estimated con-
sistently. In order to select an “optimal” estimator from the family

{
f̂h, h > 0

}
we use the general adaptation scheme due to Lepski [11] and [13]. To the best of
our knowledge it is the first time this method is applied in the statistical model
with multiplicative noise and discontinuous distribution. Moreover, except al-
ready mentioned papers [8] and [17], Lepski’s procedure is typically applied to
the selection from the collection of linear estimators (kernel estimators, locally
polynomial estimator, etc.). In the present paper we apply this method to very
complicated family of nonlinear estimators, obtained by the use of bayesian ap-
proach on the random parameter set. It requires in particular to establish the
exponential inequality for the deviation of locally bayesian estimator from the
parameter to be estimated (Proposition 1). It generalizes the inequality proved
for the parametric model (cf. [5] Chapter 1, Section 5), this result seems to be
new.

Simulations. In the present paper we adapt the local parametric approxima-
tion to a purely non parametric model. As proven, this strategy leads to the
theoretically optimal statistical decisions. But the minimax as well as the min-
imax adaptive approach are asymptotical and it seems natural to check how
proposed estimators work for reasonable sample size. In the simulation study,
we test the bayesian estimator in the parametric and nonparametric cases. We
show that the adaptive estimator approaches the oracle estimator. The oracle

estimator is selected from the family
{
f̂h, h > 0

}
under the hypothesis that

f is known. We show that the bayesian estimator performs well starting with
n ≥ 100.

This paper is organized as follows. In Section 2 we present the results con-
cerning minimax estimation and Section 3 is devoted to the adaptive estimation.
The simulations are given in Section 4. The proofs of main results are in Section
5 (upper bounds) and section 6 (lower bounds). Auxiliary lemmas are proven
in the appendix (Section 7) because they are technical results.
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2. Minimax estimation on isotropic Hölder class

In this section we present several results concerning minimax estimation. First,
we establish a lower bound for minimax risk defined on Hd(β, L,M,A) for any
β, L,M and A.

Definition 1. Fix β > 0, L > 0 and M > 0 and let bβc be the largest integer
strictly less than β. The isotropic Hölder class Hd(β, L,M) is the set of functions
f : [0, 1]d → R admitting on [0, 1]d all partial derivatives of order bβc and such
that ∀x, y ∈ [0, 1]d

∣∣∣∣∣∣f(x)−
∑

0≤|p|≤bβc

∂|p|f(y)

∂yp11 · · · ∂y
pd
d

d∏
j=1

(xj − yj)pj
pj !

∣∣∣∣∣∣ ≤ L

d∑
j=1

|xj − yj |β ,

∑
0≤|p|≤bβc

sup
x∈[0,1]d

∣∣∣∣ ∂|p|f(x)

∂xp11 · · · ∂x
pd
d

∣∣∣∣ ≤ M,

where xj and yj are the jth components of x and y.

This definition implies that if f ∈ Hd(β, L,M,A) (defined in the beginning of
this paper), then A ≤ A(f) and M(f) ≤M , where A(f) and M(f) are defined
in (1.10).

Maximal and minimax risk on Hd(β, L,M,A). To measure the perfor-
mance of estimation procedures on Hd(β, L,M,A) we will use minimax ap-
proach.

Let Ef = Enf be the mathematical expectation with respect to the probability

law of the observation Y (n) satisfying (1.1). We define first the maximal risk on
Hd(β, L,M,A) corresponding to the estimation of the function f at a given
point y ∈ [0, 1]d.
Let f̃ be an arbitrary estimator built from the observation Y (n). For any q > 0,
let

Rn,q
[
f̃ ,Hd(β, L,M,A)

]
= sup
f∈Hd(β,L,M,A)

Ef
∣∣f̃(y)− f(y)

∣∣q.
The quantity Rn,q

[
f̃ ,Hd(β, L,M,A)

]
is called maximal risk of the estimator f̃

on Hd(β, L,M,A) and the minimax risk on Hd(β, L,M,A) is defined as

Rn,q
[
Hd(β, L,M,A)

]
= inf

f̃
Rn,q

[
f̃ ,Hd(β, L,M,A)

]
,

where the infimum is taken over the set of all estimators.

Definition 2. The normalizing sequence ψn is called minimax rate of conver-
gence (MRT) and the estimator f̂ is called minimax (asymptotically minimax)
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if

lim inf
n→∞

ψ−qn Rn,q
[
f̂ ,Hd(β, L,M,A)

]
> 0;

lim sup
n→∞

ψ−qn Rn,q
[
f̂ ,Hd(β, L,M,A)

]
< ∞.

Theorem 2.1. For any β > 0, L > 0, M > 0, A > 0, q ≥ 1 and d ≥ 1

lim inf
n→∞

ϕ−qn (β)Rn,q
[
Hd(β, L,M,A)

]
> 0, ϕn(β) = n−

β
β+d .

Remark 1. The obtained result shows that on Hd
(
β, L,M,A

)
the minimax rate

of convergence cannot be faster than n−
β
β+d . In view of the obvious inclusion

Hd(β, L,M,A) ⊂ Hd(β, L,M) the minimax rate of convergence on an isotropic

Hölder class is also bounded by n−
β
β+d .

Put h̄ = (Ln)−
1

β+d and let f̄ h̄(y) = θ̂0,...,0

(
h̄
)

is given by (1.5), (1.6) and
(1.7) with h = h̄. The next theorem shows that this estimator, based on locally
bayesian approach, is minimax over Hölder classes.

Theorem 2.2. Let β > 0, L > 0, M > 0 and A > 0 fixed. Then there exists a

constant C∗ such that for any n ∈ N∗ satisfying nh̄d ≥
(
bβc+ 1

)d
ϕ−qn (β)Rn,q

[
f̄ h̄,Hd(β, L,M,A)

]
≤ C∗, ∀q ≥ 1.

The explicit form of C∗ is given in the proof.

Remark 2. We deduce from Theorems 2.1 and 2.2 that the estimator f̄ h̄(y) is
minimax on Hd(β, L,M,A).

3. Adaptive estimation on isotropic Hölder classes

This section is devoted to the adaptive estimation over the collection of the

classes
{
Hd(β, L,M,A)

}
β,L,M,A

. We will not impose any restriction on the pos-

sible values of L,M,A, but we will assume that β ∈ (0, b], where b, as previously,
is an arbitrary chosen integer.

We start by showing that there is no optimally adaptive estimator (here we
follow the terminology introduced in [11], [13]). It means that there is no esti-
mator which would be minimax simultaneously for several values of parameter
β even if all other parameters L,M and A are supposed to be fixed. This result
does not require any restriction on β as well.

Theorem 3.1. For any B ⊆ R+ \{0} such that card(B) ≥ 2, for any β1, β2 ∈ B
and any L > 0, M > 0, A > 0

lim inf
n→∞

inf
f̃

[
ϕ−qn (β1)Rn,q

(
f̃ ,Hd(β1, L,M,A)

)
+ϕ−qn (β2)Rn,q

(
f̃ ,Hd(β2, L,M,A)

)]
= +∞,

where the infimum is taken over all possible estimators.
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The assertion of Theorem 3.1 can be considerably specified if B = (0, b]. To
do that we need the following definition. Let Ψ = {ψn(β)}β∈(0,b] be a given
family of normalizations.

Definition 3. The family Ψ is called admissible if there exist an estimator f̂n
such that for some L > 0,M > 0 and A > 0

lim sup
n→∞

ψ−qn (β)Rn,q
(
f̂n,Hd(β, L,M,A)

)
<∞, ∀β ∈ (0, b]. (3.1)

The estimator f̂n satisfying (3.1) is called Ψ-attainable. The estimator f̂n is
called Ψ-adaptive if (3.1) holds for any L > 0,M > 0 and A > 0.

Note that Theorem 3.1 means that the family of rates of convergence {ϕn(β)}β∈(0,b]

is not admissible.
Denote by Φ the following family of normalizations:

φn(β) =

(
ρn(β)

n

) β
β+d

, ρn(β) = 1 + ln

(
ϕn(β)

ϕn(b)

)
, β ∈ (0, b].

We notice that φn(b) = ϕn(b) and ρn(β) ∼ lnn for any β 6= b.

Theorem 3.2. Let Ψ = {ψn(β)}β∈(0,b] be an arbitrary admissible family of
normalizations.
I. For any α ∈ (0, b] such that ψn(α) 6= ϕn(α), there exists an admissible family

{υn(β)}β∈(0,b] for which

lim
n→∞

υn(α)ψ−1
n (α) = 0.

II. If there exists γ ∈ (0, b) such that

lim
n→∞

ψn(γ)φ−1
n (γ) = 0, (3.2)

then necessarily

(a) lim
n→∞

ψn(β)φ−1
n (β) > 0, ∀β ∈ (0, γ);

(b) lim
n→∞

[
ψn(γ)

φn(γ)

] [
ψn(β)

φn(β)

]
=∞, ∀β ∈ (γ, b].

We make several remarks.
We note that if the family of normalizations Φ is admissible, i.e. one can

construct Φ-attainable estimator, then Φ is an optimal family of normalizations
in view of Kluchnikoff criterion [9]. It follows from the second assertion of the
theorem. We note however that a Φ-attainable estimator may depend on L >
0,M > 0 and A > 0, and therefore, this estimator have only theoretical interest.
In the next section we construct a Φ-adaptive estimator which is fully parameter-
free by definition. Moreover, this estimator obviously proves that Φ is admissible,
and therefore optimal as it was mentioned above.
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The assertions of Theorem 3.2 allows us to give rather simple interpretation
of Kluchnikoff criterion. Indeed, the first assertion which is easily deduced from
Theorem 3.1, shows that any admissible family of normalizations can be im-
proved by another admissible family at any given point α ∈ (0, b] except maybe
one. In particular, it concerns the family Φ if it is admissible. On the other
hand, the second assertion of the theorem shows that there is no admissible
family which would outperform the family Φ at two points. Moreover, in view
of (a), Φ-adaptive (attainable) estimator, when it exists, has the same preci-
sion on Hd(β, L,M,A), β < γ, as any Ψ-adaptive (attainable) estimator when-
ever Ψ satisfies (3.2). Additionally, (b) implies that the gain in the precision
provided by Ψ-adaptive (attainable) estimator on Hd(γ, L,M,A) leads auto-
matically to much more losses on Hd(β, L,M,A) for any β > γ compared to
the precision provided by Φ-adaptive (attainable) estimator. We conclude that
Φ-adaptive (attainable) estimator outperforms any Ψ-adaptive (attainable) es-
timator whenever Ψ satisfies (3.2). It remains to note that any admissible family
not satisfying (3.2) is asymptotically equivalent to Φ.

Construction of Φ-adaptive estimator. As it was already mentioned in
the introduction the construction of our estimation procedure is decomposed
in several steps. First, we determine the set Θ̂, built from observation, which
is used later in order to define the family of locally bayesian estimators. Next,
based on Lepski’s method (cf. [11] and [15]), we propose data-driven selection
from this family.

First step: Determination of parameter set. Put hmax = n−
1
b+d and let θ̃ be

the solution of the following minimization problem.

inf
t∈RDb

n∑
i:Xi∈Vmax(y)

[
2Yi − t K>

(
Xi − y
hmax

)]2

, Vmax(y) = Vhmax
(y),

where K(z) = (zp : p ∈ Pb) is the Db-dimensional vector of monomials and the
sign > means the transposition. Thus, θ̃ is the local least squared estimator and
its explicit expression is given by

θ̃ = 2

 n∑
i:Xi∈Vmax(y)

K>
(
Xi − y
hmax

)
K

(
Xi − y
hmax

)−1 [
Kn(y)

]>
Y,

where Y = (Y1, . . . , Yn) and Kn(y) =
[
K>

(
Xi−y
hmax

)
IVmax(y)(Xi)

]
i=1,...n

is the

design matrix. Put
δ̃p = p1!...pd! h

−|p|
max θ̃p, |p| ≤ b.

We introduce the following quantities

Â = δ̃0...,0, M̂ =
∥∥δ̃∥∥

1
, (3.3)
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and we recall the definition of random parameter set

Θ̂ =

t ∈ RDb : Â/2 ≤
∑
p∈Pb

tpz
p ≤ 6M̂, ∀z ∈ [−1/2, 1/2]d

 . (3.4)

Second step: Collection of locally bayesian estimators. Put

π̂h(t) =

∫
Θ̂

‖t− u‖1 Lh
(
u, Y (n)

)
du; (3.5)

θ̂∗(h) = arg min
t∈Θ̂

π̂h(t). (3.6)

The family of locally bayesian estimator F̂ is defined now as follows.

F̂ =
{
f̂h(y) = θ̂∗0,...,0(h), h ∈

(
0, hmax

]}
. (3.7)

Third step: Data-driven selection from the collection F̂ . Put

hk = 2−khmax, k = 0, . . . , kn,

where kn is the largest integer such that hkn ≥ hmin = ln
b

d(b+d) n−1/d. Set

F̂∗ =
{
f̂ (k)(y) = θ̂∗0,...,0(hk), k = 0, . . . , kn

}
.

We put f̂∗(y) = f̂ (k̂)(y), where f̂ (k̂)(y) is selected from F̂∗ in accordance with
the rule:

k̂ = inf
{
k = 0, kn :

∣∣f̂ (k)(y)− f̂ (l)(y)
∣∣ ≤ M̂Sn

(
l
)
, l = k + 1, kn

}
. (3.8)

Here we have used the following notations.

Sn(l) = 432D3
b (32qd+ 16) λ−1

n

(
hl
) [1 + l ln 2

n
(
hl
)d
]
, l = 0, 1, . . . , kn,

and λn(h) is the smallest eigenvalue of the matrix

Mnh(y) =
1

nhd

n∑
i=1

K>
(
Xi − y
h

)
K

(
Xi − y
h

)
IVh(y)(Xi), (3.9)

which is completely determined by the design points and by the number of
observations. We will prove that there exists a nonnegative real λ, such that
λn(h) ≥ λ for any n ≥ 1 and any h ∈

[
hmin, hmax

]
(cf. Lemma 2).

Theorem 3.3. Let an integer number b > 0 fixed. Then for any β ∈ (0, b],
L > 0, M > 0, A > 0 and q ≥ 1

lim sup
n→∞

φ−qn (β)Rn,q

[
f̂∗,Hd(β, L,M,A)

]
<∞.
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Remark 3. The assertion of the theorem means that the proposed estimator
f̂∗(y) is Φ-adaptive. It implies in particular that the family of normalizations Φ
is admissible. This, together with Theorem 3.2 allows us to state the optimality
of Φ in view of Kluchnikoff criterion (cf. [9]).

4. Simulation study

We will consider the case d = 1. The data are simulated accordingly to the
model (1.1), where we use the following functions (Figure 1).

Figure 1. Test functions.

Here f1(x) = cos(2πx) + 2, f2(x) = 2.I[x≤1/3] + 1.I[1/3<x≤2/3] + 3.I[2/3<x] and
f3(x) = cos(2πx) + 2 + 0.3 sin(19πx)

To construct the family of estimators we use the linear approximation (b = 2),
i.e. within the neighbourhoods of the given size h, the locally bayesian estimator
has the form

f̂h(x) = θ̂0 + θ̂1x, x ∈ [0, 1].

We define the ideal (oracle) value of the parameter h̃ = h̃(f) as the minimizer
of the risk:

h̃ = arg inf
h∈[1/n,1]

Ef
∣∣f̂h(y)− f(y)

∣∣.
To compute it we apply Monte-Carlo simulations (10000 repetitions). Our first

objective is to compare the risk provided by the ”oracle” estimator f̂ h̃(·) and
the one provided by the adaptive estimator from Section 3. Figure 2 shows
the deviation of the adaptive estimator from the function to be estimated. In
several points, for example in y = 1/2, we notice the so-called over-smoothing
phenomenon, inherent to any adaptive estimator.

Oracle-adaptive ratio. We compute the risks of the oracle and the adaptive
estimator in 100 points of the interval (0, 1). The next tabular presents the mean
value of the ratio oracle risk/adaptive risk calculated for the functions f1, f2, f3

and n = 100, 1000.
Figure 4 presents the ”oracle risk/adaptive risk” ratio as the function of the

number of observations n.
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Figure 2. Examples of estimation with n = 100.

n = 100 n = 1000
function adaptive

risk
oracle-adaptive ra-
tio

adaptive
risk

oracle-adaptive ra-
tio

f1 0.13 0.84 0.03 0.85
f2 0.3 0.71 0.1 0.75
f3 0.28 0.65 0.2 0.68

Figure 3. Numeric values of risk.

Figure 4. Efficiency of bayesian estimator for three test functions.

Adaptation versus parametric estimation. We consider the function f4

(figure 5), which is linear inside the neighborhood of size h∗ = 1/8 around
point 1/2 and simulate n = 1000 observations in accordance with the model
(1.1). Using only the observations corresponding to the interval [3/8, 5/8] we

construct the bayesian estimator f̂1/8(1/2).
It is important to emphasize that this estimator is efficient [5] since the

model is parametric. Now our objective is to compare the risk of our adaptive
estimator with the risk provided by the estimator f̂1/8(1/2). We also try to
understand how far is the localization parameter hk̂ from the true value 1/8,
inherent to the construction of our adaptive estimator. We compute the risk
of each estimator via Monte-Carlo method with 10000 repetitions. For each

repetition the procedure select the adaptive bandwidth h
(j)

k̂
, j = 1, ..., 10000.
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Figure 5. local parametric test function.

We confirm once again the over-smoothing phenomenon since

h
(j)

k̂
∼ 0.1405 > h∗ = 0.1250, j = 1, ..., 10000.

Note however that the adaptive procedure selects the size of the neighborhood
which is quite close to the true one. We also compute the risks of both estima-
tors: “bayesian risk”=0.0206 and “adaptive risk”=0.0308. We conclude that the
estimation accuracy provided by our adaptive procedure is quite satisfactory.

5. Proofs of main results: upper bounds

Let Hn, n > 1 be the following subinterval of (0, 1).

Hn =

(b+ 1
)
∨
(

lnn
) 1

(d+d2)

n1/d
,

(
1

lnn

) 1
b+d

 . (5.1)

Later on we will consider only the values of h belonging to Hn. We start with
establishing the exponential inequality for the deviation of locally bayesian es-
timator f̂h(y) from f(y). The corresponding inequality is the basic technic to
prove minimax and minimax adaptive results.

5.1. Exponential Inequality

Let us introduce the following notations. For any h ∈ Hn, put ω = ω(f, y, h) ={
ωp : p ∈ Pb

}
, where ω0 = ω0,...,0 = f(y) and

ωp =
∂|p|f(y)

∂yp11 · · · ∂y
pd
d

h|p|

p1!...pd!
, p 6= 0. (5.2)
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Remind the agreement we follow in the present paper: if the function f and
vector p are such that ∂|p|f does not exist we put ωp = 0.

Let fω given by (1.4), be the local polynomial approximation of f inside
Vh(y) and let bh be the corresponding approximation error, i.e.

bh = sup
x∈Vh(y)

∣∣fω(x)− f(x)
∣∣. (5.3)

If f ∈ Hd(β, L,M), β > 0, one could remark that bh ≤ Ldhβ by the definition
of ω in (5.2) and Definition 2. Put also

Nh = bh × nhd, E(h) = exp

{
(1 + 6D2

b )Nh
6A(f)D2

b

}
. (5.4)

Introduce the random events GM̂ =
{∣∣M̂ − M(f)

∣∣ ≤ M(f)/2
}

and GÂ ={∣∣Â− A(f)
∣∣ ≤ A(f)/2

}
and set G = GM̂ ∩GÂ where Â and M̂ are defined in

(3.3).
Recall that λn(h) (cf. Section 3) is the smallest eigenvalue of the matrix

Mnh(y) =
1

nhd

n∑
i=1

K>
(
Xi − y
h

)
K

(
Xi − y
h

)
IVh(y)(Xi),

and K(z) is the Db-dimensional vector of the monomials zp, p ∈ Pb. In the
sequel, we denote Pf the probability measure of the observation Y (n).

Proposition 1. For any h ∈ Hn and any f such that A(f) > A and M(f) <
M , then ∀ε > 144MDb(1 ∨Nh)/Aλn(h)

Pf
(
nhd

∣∣f̂h(y)− f(y)
∣∣ ≥ ε, G) ≤ B

(
A(f),M(f)

)
E(h) exp

{
− λn(h) ε

432M(f)D3
b

}
,

where f̂h(y) ∈ F̂ as defined in (3.7). The explicit expression of the function
B(·, ·) is given in the beginning of the proof of the proposition.

The next proposition gives us an upper bound for the risk of a locally bayesian
estimator.

Proposition 2. For any n ∈ N∗, h ∈ Hn and any f ∈ Hd(β, L,M,A), then
∃λ > 0 such that λn(h) ≥ λ and

Ef
∣∣f̂h(y)− f(y)

∣∣qIG ≤ C∗q (A(f),M(f)
) [1 ∨ Ld nhβ+d

nhd

]q
, q ≥ 1,

where

C∗q (a,m) =
1

q

[
432mD3

b (1 + 6D2
b )

3λaD2
b

]q
+
[
864mλ−1D3

b

]q
B(a,m)Γ(q), a,m > 0,

Γ(·) is the well-known Gamma function.
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Remark 4. The analysis of the proof of Proposition 1 allows to assert the
following inequality

Pf
(
nhd

∣∣f̄h(y)− f(y)
∣∣ ≥ ε) ≤ B

(
A,M

)
E(h) exp

{
− λn(h) ε

432M D3
b

}
,

where f̄h(y) is the locally bayesian estimator which is the minimizer of (1.6).
Thus, the latter inequality can be viewed as an analogue of the result of Propo-

sition 1 when A and M are known. By the same reasons, we have

Ef
∣∣f̄h(y)− f(y)

∣∣q ≤ C∗q (A,M)

[
1 ∨ Ld nhβ+d

nhd

]q
, q ≥ 1.

5.2. Proof of Proposition 1

Before starting the proof, let us breafly discuss its ingredients.

Discussion.
I. Remind that θ̂∗(h) minimizes π̂h as defined in (3.5). Hence, the obvious

following inclusion{
nhd

∥∥θ̂∗(h)− θ
∥∥

1
≥ ε
}
⊆
{

inf
nhd‖t−θ‖1≥ε

π̂h(t) ≤ π̂h(θ)

}
.

allows us to reduce the study of the deviation of θ̂∗(h) from θ to the study of
the behaviour of π̂h. Here, the vector θ = θ(f, y, h) =

{
θp : p ∈ Pb

}
is defined

as follows.
θ0 = θ0,...,0 = ω0 + bh, θp = ωp, |p| 6= 0, (5.5)

where the vector ω is the coefficients of Taylor polynomial defined in (5.2). The
definition of bh in (5.3) implies trivially

fθ(x) ≥ f(x) ≥ A(f) ≥ A, ∀x ∈ Vh(y). (5.6)

By definition of Hd(β, L,M,A), we can see that ∀x ∈ Vh(y)

fθ(x) = fω(x) + bh ≤ 2‖ω‖1 + ‖f‖∞ ≤ 3M(f) ≤ 3M, (5.7)

where ‖ · ‖∞ is the sup-norm.
Thus we have θ ∈ Θ

(
A(f),M(f)

)
⊆ Θ(A,M). Under the event G, we notice

that Θ
(
A(f),M(f)

)
⊆ Θ̂ = Θ

(
Â/2, 2M̂

)
⊆ Θ

(
A(f)/4, 3M(f)

)
where Θ and Θ̂

are respectively defined in (1.5) and (3.4).
II. We note that π̂h is the integral functional of the pseudo-likelihood Lh. As

the consequence, the behaviour of π̂h is completely determined by this process.
Following [5] (Chapter 1, Section 5, Theorem 5.2), where similar problems were
studied under parametric model assumption, we introduce the stochastic process

Zh,θ(u) =
Lh
(
θ + (nhd)−1u, Y (n)

)
Lh
(
θ, Y (n)

) .
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defined on Υn =
{
u ∈ RDb : u = nhd(t− θ), t ∈ Θ

(
A(f)/4, 3M(f)

)}
.

As it was noted in [5] (Chapter 1, Section 5, Theorem 5.2) the following
properties of the process Zh,θ are essential for the study of π̂h:

• Hölder continuity of its trajectories;
• the rate of its decay at infinity.

The exact statements are formulated in Lemma 1 below.
III. As it was shown in [5] (Chapter 1, Section 5, Theorem 5.2) in parametric

situation the properties of Zh,θ mentioned above, gives desirable behavior of the
following process

zh(u) =
Zh,θ(u)∫

Υ̂n
Zh,θ(v)dv

, u ∈ Υ̂n := nhd
(
Θ̂− θ

)
,

where the set Θ̂ is defined in (3.4). The exact statements are given in Assertions
1 and 2. The latter process is important in view of the following inclusion

{
nhd

∣∣f̂h(y)− f(y)
∣∣ ≥ ε} ⊆ {∫

Υ̂n(r)

‖u‖1zh(u)du >
r

2

}
.

Auxiliary Lemma. First, we note that in view of (5.6), for any Xi ∈ Vh(y)
the event Yi ≤ fθ(Xi) is always realized, because Yi ≤ f(Xi) ≤ fθ(Xi). Hence,
Zh,θ can be rewritten

Zh,θ(u) =
∏

i:Xi∈Vh(y)

fθ(Xi)

fθ+u(nhd)−1(Xi)
I[Yi≤ fθ+u(nhd)−1 (Xi)], u ∈ Υn. (5.8)

Lemma 1. For any f ∈ Hd(β, L,M,A) and h ∈ Hn
1. sup

u1,u2∈Υn

‖u1 − u2‖−1
1 Ef

∣∣Zh,θ(u1)− Zh,θ(u2)
∣∣ ≤ Ch,

2. EfZ1/2
h,θ (u) ≤ e−gh

(
||u||1

)
, ∀u ∈ Υn,

3. Pf

{∫
[0,δ]Db

Zh,θ(u)du <
δDb

2

}
< 2Chδ, ∀δ > 0.

where

Ch = 8
(
1 ∨ 4DbA

−1(f)
)

exp {1 +Nh/A(f)} , gh(a) =
λn(h)a

18M(f)Db
− Nh
A(f)

,

with a > 0 and λn(h) is the smallest eigenvalue of the matrix Mnh(y) defined
in (3.9).

Proof of Proposition 1. Define for any u > 0 and v > 0

B(a,m) = sup
z≥0

16e
(
1 ∨Dba

−1
)
Σ(m) [Bz + 6] exp

{
− λz

432vD3
b

}
, (5.9)
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where Bz = zDb+1 + 2(2z + 2
)2Db + 5 + Db

(
zDb + (2z + 2

)Db
2 −1

)
, λ > 0 is

defined such that: λn(h) ≥ λ for any n ∈ N∗, h ∈ Hn (for more details, see
Lemma 2) and

Σ(v) =
c2(v)

(
3− c(v)

)(
1− c(v)

)3 , c(v) = exp
{
− (54vD2

b )
−1
}
, v > 0.

Assertion 1. For any ε > 0, and for all r such that 0 < r < ε/3, we assume

Pf
(
nhd

∣∣f̂h(y)− f(y)
∣∣ ≥ ε,G) ≤ 2Pf

(∫
Υ̂n∩(‖u‖1>ε/4)

‖u‖1zh(u)du >
r

2
, G

)
.

Assertion 2. For all h ∈ Hn and any f such that A(f) > A and M(f) < M ,
then for any a > 36M(f)Db(1 ∨Nh)/(λA(f))

Ef

[∫
Υ̂n∩

{
‖u‖1>a

} ‖u‖1zh(u) du IG

]
≤ aΣ

(
M(f)

)
Ba Ch exp

{
− 1

6Db
gh(a)

}
,

where gh(·) is defined in Lemma 1.

10. Suppose that Assertions 1 and 2 are proved. Then, in view of Assertion
2, choosing a = ε/4, we get

Ef
∫

Υ̂n∩(‖u‖1>ε/4)

‖u‖1zh(u) IG du ≤
ε

4
Σ
(
M(f)

)
Bε/4 Ch e

− 1

6D2
b

gh(ε/4)
.

Using the Tchebychev inequality, we have in view of the last inequality

Pf

(∫
Υ̂n∩(‖u‖1>ε/4)

‖u‖1zh(u)du >
ε

8
, G

)
≤ 2Σ

(
M(f)

)
Bε/4 Ch e

− 1

6D2
b

gh(ε/4)
.

The assertion of Proposition 1 follows now from the last inequality, Assertion 1
and the definitions of Ch, gh(·) and the function B(·, ·).

20. Now, we will prove Assertion 1. The definitions of θ̂∗(h) and θ = θ(f, y, h)
imply ∀ε > 0

Pf
(
nhd

∣∣f̂h(y)− f(y)
∣∣ ≥ ε,G) ≤ Pf

(
nhd

∣∣θ̂∗0,...,0(h)− θ0,...,0

∣∣ ≥ ε,G)
≤ Pf

(
nhd

∥∥θ̂∗(h)− θ
∥∥

1
≥ ε,G

)
. (5.10)

We can make some remarks. First, it is easily seen that θ ∈ Θ
(
A(f),M(f)

)
(cf.

(5.6) and (5.7)). Therefore, if the event G holds then θ ∈ Θ̂. Remind also that

θ̂∗(h) minimizes π̂h defined in (3.5) and, therefore, the following inclusion holds

since θ̂∗(h) ∈ Θ̂.{(
nhd

∥∥θ̂∗(h)− θ
∥∥

1
≥ ε
)
∩G

}
⊆
{(

inf
nhd‖t−θ‖1≥ε

π̂h(t) ≤ π̂h(θ)

)
∩G

}
. (5.11)
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Moreover,

π̂h(t) = (nhd)−1

∫
Θ̂

∥∥nhd(t− u)
∥∥

1
Lh
(
u, Y (n)

)
du

= (nhd)−Db−1

∫
Υ̂n

∥∥nhd(t− θ)− u∥∥
1
Lh
(
θ + u(nhd)−1, Y (n)

)
du

= (nhd)−Db−1Lh
(
θ, Y (n)

) ∫
Υ̂n

∥∥nhd(t− θ)− u∥∥
1
Zh,θ(u)du.

Hence, τn = nhd
(
θ̂∗(h)− θ

)
is the minimizer of

χn(s) =

∫
Υ̂n

∥∥s− u∥∥
1

Zh,θ(u)∫
Υ̂n

Zh,θ(v)dv
du

and we obtain from (5.10) and (5.11) that for any ε > 0

Pf
(∥∥nhd(θ̂∗(h)− θ)

∥∥
1
> ε,G

)
≤ Pf

(
inf
‖s‖1>ε

χn(s) ≤ χn(0), G

)
. (5.12)

Let 0 < r < ε/3, be a number whose choice will be done later. We have

χn(0) ≤ r
∫

Υ̂n∩(‖u‖1≤r)
zh(u)du+

∫
Υ̂n∩(‖u‖1>r)

‖u‖1zh(u)du.

Note also that

inf
‖s‖1>ε

χn(s) ≥ inf
‖s‖1>ε

[∫
Υ̂n∩(‖u‖1≤r)

(
‖s‖1 − ‖u‖1

)
zh(u)du

]

≥ (ε− r)
∫

Υ̂n∩(‖u‖1≤r)
zh(u)du.

It yields in particular that

χn(0)− inf
‖s‖1>ε

χn(s)

≤ −(ε− 2r)

∫
Υ̂n∩(‖u‖1≤r)

zh(u)du+

∫
Υ̂n∩(‖u‖1>r)

‖u‖1zh(u)du.

Thus, ∀r ∈ (0, ε/3)

Pf
(
χn(0)− inf

‖s‖1>ε
χn(s) > 0, G

)
≤ Pf

(∫
Υ̂n∩(‖u‖1>r)

‖u‖1zh(u)du > (ε− 2r)

∫
Υ̂n∩(‖u‖1≤r)

zh(u)du,G

)

≤ Pf

(∫
Υ̂n∩(‖u‖1>r)

‖u‖1zh(u)du > r/2, G

)

+Pf

(
(ε− 2r)

∫
Υ̂n∩(‖u‖1≤r)

zh(u)du < r/2, G

)
. (5.13)
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We note that the second term in (5.13) can be control by the first one whenever
0 < r < ε/3. Indeed, setting Υ̂n(r) = Υ̂n ∩ (u ∈ RDb : ‖u‖1 > r) we get

Pf

(
(ε− 2r)

∫
Υ̂n∩(‖u‖1≤r)

zh(u)du < r/2, G

)

≤ Pf

(
r

∫
Υ̂n

Zh,θ(v)dv − r
∫

Υ̂n(r)

Zh,θ(u)du <
r

2

∫
Υ̂n

Zh,θ(v)dv,G

)

≤ Pf

(
r

∫
Υ̂n(r)

Zh,θ(u)du >
r

2

∫
Υ̂n

Zh,θ(v)dv,G

)

≤ Pf

(∫
Υ̂n(r)

‖u‖1zh(u)du > r/2, G

)
.

The last inequality together with (5.10), (5.12) and (5.13) yields

Pf
(
nhd

∣∣f̂h(y)− f(y)
∣∣ ≥ ε,G) ≤ 2Pf

(∫
Υ̂n(r)

‖u‖1zh(u)du >
r

2
, G

)
.

30. Now, let us prove Assertion 2. Put Υn(a) = Υn ∩ (u ∈ RDb : ‖u‖1 > a)
for all a > 0 and Ωυ = Υn(υ) \Υn(υ+ 1) for any υ ≥ a. Introduce the following
notations.

Iυ =

∫
Ωυ

Zh,θ(u)du, Qυ =

∫
Υ̂n∩ Ωυ

Zh,θ(u)du∫
Υ̂n

Zh,θ(u)du
.

Fix T > 0 whose choice will be done later. Consider the minimal number
N(Ωυ, 1/T ) of balls of radius 1/T that are needed to cover the set Ωυ. De-
note by uj the center of each ball. Since Ωυ is a compact of RDb , it implies
N(Ωυ, 1/T ) ≤ (v+1)DbTDb . Introduce the non-intersecting parts ∆1,∆2,∆3, . . .
as follows: ∆1 =

{
u ∈ Ωυ : ‖u− u1‖1 ≤ 1/T

}
and

∆j =
{
u ∈ Ωυ : ‖u− uj‖1 ≤ 1/T

}
\
j−1⋃
l=1

∆l, j = 2, . . . , N(Ωυ, 1/T ).

Put Sυ =
∑
j

∫
∆j
Zh,θ(u

j)du and notice that Sυ is stepwise approximation of

Iυ.

Control of Iυ. Remind that Ωυ =
⋃N(Ωυ,1/T )
j=1 ∆j and denote by |Ωυ| the

volume of Ωυ. We get for any σ > 0

Pf
(
Sυ > σ

)
≤ Pf

(
max
j
Z

1/2
h,θ (uj)

√
|Ωυ| >

√
σ

)
≤

∑
j

Pf
(
Z

1/2
h,θ (uj) >

√
|Ωυ|
√
σ
)
.



M. Chichignoud/Locally bayesian approach 22

Note that the number of summands on the right-hand side of the last inequality
does not exceed (v + 1)DbTDb . Applying Tchebychev inequality and Lemma 1
(2), we obtain

Pf
(
Sυ > σ

)
≤ (v + 1)DbTDb

√
|Ωυ|σ−1/2e−gh(υ). (5.14)

In view of to Lemma 1 (1),

Ef
∣∣Sυ − Iυ∣∣ ≤∑

j

∫
∆j

Ef
∣∣Zh,θ(u)− Zh,θ(uj)

∣∣du ≤ Ch∑
j

∫
∆j

‖u− uj‖1du.

By definition of ∆j , each summand does not exceed
∫

∆j
T−1du, therefore,

Ef
∣∣Sυ − Iυ∣∣ ≤ Ch|Ωυ|T−1. (5.15)

One has

Pf
(
Iυ > 2σ

)
≤ Pf

(
Sυ > σ

)
+ Pf

(∣∣Sυ − Iυ∣∣ > σ
)
.

Using (5.14), (5.15) and applying Tchebychev inequality, we get

Pf
(
Iυ > 2σ

)
≤ (v + 1)DbTDb

√
|Ωυ|σ−1/2e−gh(υ) + Ch|Ωυ|T−1σ−1. (5.16)

Control of Qυ. Set A =
{∫

Υ̂n
Zh,θ(u)du < δDb/2

}
. Since Qυ ≤ 1 we obtain

for any δ > 0, σ > 0

EfQυ = Ef [Qυ IA +Qυ IIυ>2σ,Ac +QυI Iυ≤2σ,Ac ] IG
≤ Pf (A, G) + Pf

(
Iυ > 2σ

)
+ 4δ−Dbσ.

Under the event G, we notice that [0, δ]Db ⊆ nhd
(
Θ
(
A(f),M(f)

)
− θ
)
⊆ Υ̂n

for any δ ≤
(
2M(f)−A(f)

)
. Using Lemma 1 (3) and the inequality (5.16), we

have

EfQυ ≤ 2Chδ + TDb
√
|Ωυ|σ−1/2e−gh(υ) + Ch|Ωυ|T−1σ−1 + 4δ−Dbσ.

Choosing T = exp
{

1
2Db

gh(υ)
}

, σ = exp
{
− 1

3Db
gh(υ)

}
and δ = exp

{
− 1

6D2
b
gh(υ)

}
,

we obtain

EfQυ ≤
[
2Ch + |Ωυ|

(
(v + 1)Db + Ch

)
+ 4
]

exp

{
− 1

6D2
b

gh(υ)

}
.

Conclusion of the proof of Assertion 2. The simplest algebra shows that

|Ωυ| ≤
(
2υ + 2

)Db , so we get

EfQυ ≤
[
υDb+1 + 2(2υ + 2

)2Db + 5
]
Ch exp

{
− 1

6D2
b

gh(υ)

}
, (5.17)
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Note that if the event G is realized then Υ̂n(a) ⊆ Υn(a) =
⋃∞
j=0 Ωa+j . We

obtain in view of (5.17)

Ef
∫

Υ̂n∩(‖u‖1>a)

‖u‖1zh(u) IG du ≤
∞∑
j=0

(
a+ j + 1

)
EfQa+j

= Σ
(
M(f)

)
aBa Ch exp

{
− 1

6D2
b

gh(a)

}
.

where we have put Ba = aDb+1 + 2(2υ+ 2
)2Db + 5 +Db

(
aDb + (2a+ 2

)Db
2 −1

)
.

5.3. Proof of Proposition 2

To prove the proposition it suffices to integrate the inequality obtained in Propo-
sition 1 and to use the following lemma which will be extensively exploited in
the sequel.

Lemma 2. There exists λ > 0 such that ∀n > 1 and ∀h ∈ Hn, we have

λn(h) ≥ λ.

where λn(h) is the smallest eigenvalue of the matrix

Mnh(y) =
1

nhd

n∑
i=1

K>
(
Xi − y
h

)
K

(
Xi − y
h

)
IVh(y)(Xi),

and K(z) is the Db-dimensional vector of the monomials zp, p ∈ Pb.

Proof of Proposition 2. In order to simplify the proof, let us introduce the
following constants

c1 =
(1 + 6D2

b )

6A(f)D2
b

, c2 =
λ

432M(f)D3
b

.

By definition of A(f), M(f) and B(., .) respectively in (1.10) and (5.9), we have
the following inequality B

(
A(f),M(f)

)
≤ B(A,M) for any f ∈ Hd(β, L,M,A).

By integration of the inequality of Proposition 1 and using Lemma 2, we get for
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any q ≥ 1 and f ∈ Hd(β, L,M,A)

Ef
∣∣f̂h(y)− f(y)

∣∣qIG
=

∫ +∞

0

ηq−1Pf
(∣∣f̂h(y)− f(y)

∣∣ ≥ η,G) dη
= (nhd)−q

∫ +∞

0

ηq−1Pf
(∣∣f̂h(y)− f(y)

∣∣ ≥ η

nhd
, G
)
dη

≤ (nhd)−q

[∫ 2c1
c2

(1∨Nh)

0

ηq−1 dη

+

∫ +∞

2c1
c2

(1∨Nh)

ηq−1Pf
(∣∣f̂h(y)− f(y)

∣∣ ≥ η

nhd
, G
)
dη

]

≤ (1 ∨Nh)q

(nhd)q

[
2qcq1
q cq2

+
2q

cq2
B
(
A(f),M(f)

)
Γ(q)

]
,

where Γ(·) is the well-known Gamma function. By definition of bh and Nh
respectively defined in (5.3) and (5.4), the assertion of Proposition 2 is proved:

Ef
∣∣f̂h(y)− f(y)

∣∣qIG ≤ C∗q (A(f),M(f)
) [1 ∨ Ld nhβ+d

nhd

]q
,

where

C∗q (a,m) =
1

q

[
432mD3

b (1 + 6D2
b )

3λaD2
b

]q
+
[
864mλ−1D3

b

]q
B(a,m)Γ(q), a,m > 0.

5.4. Proof of Theorem 2.2

By definition of h̄ = (Ln)−
1

β+d we have

Ldnh̄β+d = d, (nh̄d)−q = L
qd
β+dϕqn(β).

Applying the inequality given in Remark 4, we come to the assertion of the
theorem.

5.5. Proof of Theorem 3.3

This Proof is based on the Lepski scheme developed by [12] and adapted for
the bandwidth selection by [15]. We start the proof with formulating auxiliary
Lemmas whose proofs are given in Appendix (Section 7). Define

h∗ =

[
n−1c

(
1 +

(b− β)

(b+ d)(β + d)
lnn

)] 1
β+d

,
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where the positive constant c is chosen as follows

c < [1 ∧ 1/(Ld)] [1 ∧ 4/M(f)]
β + d− 1

β + d

[
1 ∧ A

144MDb

] [
1 ∧ 6AD2

b

1 + 6D2
b

]
,

and let the integer κ be defined as follows.

2−κhmax ≤ h∗ < 2−κ+1hmax. (5.18)

The definitions of h∗ and κ imply the following Lemmas.

Lemma 3.

Ef
∣∣f̂ (k)(y)− f(y)

∣∣qIG ≤ C̄q (1 + k ln 2)q

(nhdk)q
, ∀k ≥ κ,

where C̄q = C∗q
(
A(f),M(f)

) c(β + d)

(β + d− 1)(Ld)−1
.

Lemma 4. For any f ∈ Hd(β, L,M,A) and any k ≥ κ+ 1

Pf
(
k̂ = k, G

)
≤ J2B(A,M) exp

{
J1n(h∗)β+d

}
2−(k−1)(8qd+4),

where J1 = Ld(1 + 6D2
b )/6AD

2
b and J2 = (1− 2−(8qd+4))−1.

Lemma 5. There exists a universal constant ϑ > 0 such that

lim sup
n→∞

sup
f∈Hd(β,L,M,A)

exp

{
An

b
b+d

16Mϑ2D2
b

}
Pf
(
Gc
)

= 0.

Proof of Theorem 3.3. We decompose the risk as follows

Ef
∣∣f̂ (k̂)(y)− f(y)

∣∣qIG
≤ Ef

∣∣f̂ (k̂)(y)− f(y)
∣∣qIk̂≤κ,G + Ef

∣∣f̂ (k̂)(y)− f(y)
∣∣qIk̂>κ,G

:= R1(f) +R2(f). (5.19)

First we control R1. Obviously∣∣f̂ (k̂)(y)− f(y)
∣∣ ≤ ∣∣f̂ (k̂)(y)− f̂ (κ)(y)

∣∣+
∣∣f̂ (κ)(y)− f(y)

∣∣.
Note that the realization of the event G implies M̂ ≤ 3M(f)/2. This together

with the definition of k̂ yields∣∣f̂ (k̂)(y)− f̂ (κ)(y)
∣∣Ik̂≤κ,G ≤ Csn(κ), sn(k) = (1 + k ln 2)q(nhdk)−q,

where C = 288MD3
bλ
−1(32qd+ 16). In view of Lemma 3 we also get

Ef
∣∣f̂ (κ)(y)− f(y)

∣∣q ≤ C̄qsn(κ).
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Noting that the right hand side of the obtain inequality is independent of f and
taking into account the definition of κ and h∗ we obtain

lim sup
n→∞

sup
f∈Hd(β,L,A,M)

φ−qn (β)R1(f) <∞. (5.20)

Now we will find a bound of R2. Applying Cauchy-Schwartz inequality we have
in view of Lemma 4

R2(f) =

kn∑
k>κ

Ef
∣∣f̂ (k)(y)− f(y)

∣∣qI[
k̂=k,G

]
≤

∑
k>κ

(
Ef
∣∣f̂ (k)(y)− f(y)

∣∣2q)1/2
√
Pf
{
k̂ = k,G

}
= ∆(h∗)

∑
k>κ

(
Ef
∣∣f̂ (k)(y)− f(y)

∣∣2q)1/2

2−(k−1)(4qd+2), (5.21)

where we have put ∆(h∗) = J2B(A,M) exp
{
J1n(h∗)β+d

}
. We obtain from

Lemma 3 and (5.21)

R2(f) ≤ J3 (nhdmax)−q exp
{
J1n(h∗)β+d

}
, (5.22)

where
J3 = J2B(A,M) 24qd+2 C̄

1/2
2q

∑
s≥0

(1 + s ln 2)q2−3sdq−2.

It remains to note that the definition of h∗ implies that

lim sup
n→∞

φ−qn (β)(nhdmax)−q exp
{
J1n(h∗)β+d

}
<∞

and that the right hand side of (5.22) is independent of f . Thus,we have

lim sup
n→∞

sup
f∈Hd(β,L,A,M)

φ−qn (β)R2(f) <∞.

that yields together with (5.19) and (5.20)

lim sup
n→∞

sup
f∈Hd(β,L,A,M)

φ−qn (β)Ef
∣∣f̂ (k̂)(y)− f(y)

∣∣qIG <∞.

To get the assertion of the theorem it suffices to show that

lim sup
n→∞

sup
f∈Hd(β,L,A,M)

φ−qn (β)Ef
∣∣f̂ (k̂)(y)− f(y)

∣∣qIGc <∞. (5.23)

Note that f̂ (k̂)(y) ≤ 6M̂ in view of (3.4). Note also that the local least square
estimator δ̃ is a linear function of observation Y (n) and moreover 0 ≤ Yi ≤
M, i = 1, ..., n. This together with the definition of M̂ , (expression (3.3)) allows
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us to state that there exists 0 < J4 < +∞ such that
∣∣f̂ (k̂)(y) − f(y)

∣∣ ≤ J4M .
Here we also have taken into account that ||f ||∞ ≤M .

Finally we obtain

Ef
∣∣f̂ (k̂)(y)− f(y)

∣∣qIGc ≤ Jq4 MqPf
{
Gc
}
.

and (5.23) follows now from Lemma 4.

6. Proofs of lower bounds

The proofs of Theorems 2.1 and 3.2 are based on the following proposition.

Put φn(γ) =
[
n−1

(
1 + (b− γ) lnn

)] γ
γ+d , γ ∈ (0, b] and let

R(q)
n (f̃ , v) = sup

f∈Hd(α,L,M,A)

Ef
[
φ−qn (α) |f̃(y)− f(y)|q

]
+ sup
f∈Hd(β,L,M,A)

Ef
[
n−vqφ−qn (β) |f̃(y)− f(y)|q

]
.

where v ≥ 0 and α, β ∈ (0, b]2.

Proposition 3. Let Ψ be admissible family of normalizations such that

ψn(α)
/
φn(α) −−−−→

n→∞
0.

Then, for any 0 ≤ v < (β − α)/(β + 1)(α+ 1)

lim inf
n→∞

inf
f̃
R(q)
n (f̃ , v) > 0.

The proof is given in section 6.3.

6.1. Proof of Theorem 2.1

Using the proposition 3 for β = α, we have to choose v = 0 and one gets

Rn,q
[
Hd(β, L,M,A)

]
= R(q)

n (f̃ , 0)

= sup
f∈Hd(α,L,M,A)

Ef
[
n−q

α
α+1

∣∣f̃(y)− f(y)
∣∣q] > 0, ∀f̃ .

6.2. Proof of Theorem 3.2

I. To prove the first assertion of the theorem it suffices to consider the family
{υn(β)}β∈(0,b], where υn(α) = ϕn(α) and υn(β) = 1 for any β 6= α. The corre-

sponding attainable estimator is the estimator being minimax on Hd(α,L,M,A).



M. Chichignoud/Locally bayesian approach 28

II. Let us consider the family {φn(β)}β∈]0,b], which is admissible in view of

Theorem 3.3. First, we note that γ = b is not possible since φn(b) = ϕn(b) is
the minimax rate of convergence on Hd(b, L,M,A).

Thus we assume that γ ∈]0, b[ satisfying (3.2). Let f̂Ψ be a Ψ(n)-attainable
estimator. Since ψn(γ)/φn(γ)→ 0, n→∞ in view of (3.2) then obviously

lim sup
n→∞

sup
f∈Hd(γ,L,M,A)

Ef
[
φ−qn (γ)

∣∣f̂Ψ(y)− f(y)
∣∣q] = 0.

Therefore, applying Proposition 3 with v = 0 we have for any β < γ

lim sup
n→∞

sup
f∈Hd(β,L,M,A)

Ef
[
φ−qn (β)

∣∣f̂Ψ(y)− f(y)
∣∣q] > 0.

We conclude that necessarily ψn(β) & φn(β) for any β < γ.
Moreover for any β > γ, applying Proposition 3 with an arbitrary 0 ≤ v <

(β − γ)/(β + 1)(γ + 1) we obtain that

ψn(β) & nvφn(β), β > γ.

It remains to note that the form of rate of convergence proved in Theorem 2.1
implies that

φn(γ)
/
ψn(γ) = o

(
[lnn]

γ
γ+d

)
.

6.3. Proof of Proposition 3

Let κ > 0 a parameter whose choice will be done later. Put

h =

(
κ

1 + (β − α) lnn

n

) 1
α+d

.

Without loss of generality we will assume later that L > 1.
Consider the functions: f0 ≡ 1 and

f1(x) = 1−
(
L− 1

)
κ

α
α+dφn(α)F

(
x1 − y1

h
, ...,

xd − yd
h

)
, x ∈ [0, 1]d.

Here F is a compactly supported positive function belonging to Hd(α, 1,M,A)
such that F (0) = 1 = maxx F (x).

We can easily see that f1 ∈ Hd(α,L,M,A). Therefore, we have

R(q)
n (f̃ , v) ≥ E0

∣∣∣n−vφ−1
n (β)

(
f̃(y)− 1

)∣∣∣q + E1

∣∣∣φ−1
n (α)

(
f̃(y)− f1(y)

)∣∣∣q
≥ E0

∣∣∣n−vφ−1
n (β)

(
f̃(y)− 1

)∣∣∣q + E1

∣∣∣φ−1
n (α)

(
f̃(y)− 1

)
+ z
∣∣∣q ,
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where z =
(
L− 1

)
κ

α
α+1F (0). Set

λ̃ = φ−1
n (α)

(
1− f̃(y)

)
, ςn = n−v

φn(α)

φn(β)
= n−v

(
lnn

n

)−%
,

where % = β−α
(β+1)(α+1) . We get

R(q)
n (f̃ , v) ≥ E0

∣∣ςnλ̃∣∣q + E1

∣∣z − λ̃∣∣q
≥ E0

∣∣ςnλ̃∣∣qI{|λ̃|>z/2} + E1

∣∣z − λ̃∣∣qI{|λ̃|≤z/2}
≥ E0

∣∣ςn z
2

∣∣qI{|λ̃|>z/2} + E1

∣∣z
2

∣∣qI{|λ̃|≤z/2}.
Noting that f1 ≤ f0, since F is positive, and putting cn

(
Y (n)

)
= I{|λ̃|>z/2} we

obtain

R(q)
n (f̃ , v) ≥ ςqn

zq

2q

∏n
i=1 f1(Xi)∏n
i=1 f1(Xi)

∫ f1(X1)

0

. . .

∫ f1(Xn)

0

cn(x)dx1 . . . dxn

+
zq

2q
1∏n

i=1 f1(Xi)

∫ f1(X1)

0

. . .

∫ f1(Xn)

0

1− cn(x)dx1 . . . dxn. (6.1)

We have

n∏
i=1

f1(Xi) =

n∏
i=1

(
1− (L− 1)κ

α
α+dφn(α)F

(
Xi − y
h

))
≥

(
1− (L− 1)κ

α
α+dφn(α)

)nhd ≥ e−(L−1)κn−(L−1)κ(β−α).(6.2)

We obtain in view of (6.1) and (6.2)

R(q)
n (f̃ , v) ≥ ςqn

zq

2q
e−(L−1)κn−(L−1)κ(β−α)

× 1∏n
i=1 f1(Xi)

∫ f1(X1)

0

. . .

∫ f1(Xn)

0

cn(x)dx1 . . . dxn

+
zq

2q
1∏n

i=1 f1(Xi)

∫ f1(X1)

0

. . .

∫ f1(Xn)

0

1− cn(x)dx1 . . . dxn

≥ zq

2q

(
1 ∧ ςqne−(L−1)κn−(L−1)κ(β−α)

)
.

Case 1: β = α. Choosing κ = 1, and noting that ςn = 1 and
∏n
i=1 f1(Xi) ≥

e−(L−1), we deduce from (6.1) that

inf
f̃
R(q)
n (f̃ , v) ≥ (L− 1)q

2q
e−(L−1) > 0.

Case 2: β > α. Put

κ =
q
(
%− v

)
− tn

1 + (L− 1)(β − α)
> 0, tn =

q

lnn
ln

1(
1 + (β − α) lnn

)−% −−−−→n→∞
0.
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This choice provides us with the following bound

ςqne
−(L−1)κn−(L−1)κ(β−α) =

(
1 + (β − α) lnn

)−q%
e−(L−1)κnq(%−v)−(L−1)κ(β−α)

≥
(
1 + (β − α) lnn

)−q%
e−

2
3 q(L−1)ntn ≥ e− 2

3 q(L−1).

This yields

inf
f̃
R(q)
n (f̃ , v) ≥ (L− 1)qκq

α
α+1

2q
e−

2
3 q(L−1) > 0.

7. Appendix

7.1. Proof of Lemma 1

Without loss generality we will suppose later that nhd ∈ N∗. In order to
simplify understanding of this proof, we note the approximation polynomial
Aiu = fθ+u(nhd)−1(Xi), i = 1, . . . , n for all u ∈ Υn.

1. Note that for u ∈ Υn

EfZh,θ(u) ≤
∏

i:Xi∈Vh(y)

Ai0
f(Xi)

≤ eNh/A(f). (7.1)

The first inequality is the consequence of the definition of Zh,θ in (5.8) and the
following calculation

Ef I[Yi≤Aiu] = Pf
(
Yi ≤ Aiu

)
= 1 ∧ Aiu

f(Xi)
.

In (7.1), the second inequality is obtained with classical inequality 1+ρ ≤ eρ, ρ ∈
R and having on mind that ∀x ∈ Vh(y), fθ(x) ≥ f(x),∏

i:Xi∈Vh(y)

Ai0
f(Xi)

=
∏

i:Xi∈Vh(y)

(
1 +
Ai0 − f(Xi)

f(Xi)

)
≤ exp

{
bh × nhd

A(f)

}

Case 1: If ‖u1 − u2‖1 ≥ 1, the inequality (7.1) allows to get

Ef
∣∣Zh,θ(u1)− Zh,θ(u2)

∣∣ ≤ EfZh,θ(u1) + EfZh,θ(u2) ≤ 2eNh/A(f)‖u1 − u2‖1.

Case 2: Assume now that ‖u1 − u2‖1 < 1 and introduce the random events

F1 =
{
∀i = 1, . . . , n : Yi ≤ Aiu1

∧ Aiu2

}
,

F2 =
{
∀i = 1, . . . , n : Yi ≤ Aiu1

∨ Aiu2

}
∩
{
∃i : Yi > Aiu1

∧ Aiu2

}
,

F3 =
{
∃i : Yi > Aiu1

∨ Aiu2

}
.
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We have used the following notations: a∧b = min(a, b) and a∨b = max(a, b), a, b ∈
R. For any (u1, u2) ∈ Υ2

n, we have

Ef
∣∣Zh,θ(u1)− Zh,θ(u2)

∣∣ = Ef
∣∣Zh,θ(u1)− Zh,θ(u2)

∣∣ I[F1]

+Ef
∣∣Zh,θ(u1)− Zh,θ(u2)

∣∣ I[F2] + Ef
∣∣Zh,θ(u1)− Zh,θ(u2)

∣∣ I[F3]

= K1 +K2 +K3. (7.2)

The following bound will be extensively exploited in the sequel.

A(f)/4 ≤ fv(x) ≤ 9M(f), ∀v ∈ Θ
(
A(f)/4, 3M(f)

)
, x ∈ Vh(y).

Control of K1.

K1 =

∣∣∣∣∣∣
∏

i:Xi∈Vh(y)

Ai0
Aiu1

−
∏

i:Xi∈Vh(y)

Ai0
Aiu2

∣∣∣∣∣∣Pf{F1

}
, (7.3)

and

Pf
{
F1

}
=

∏
i:Xi∈Vh(y)

Pf
{
Yi ≤ Aiu1

∧ Aiu2

}
≤

∏
i:Xi∈Vh(y)

Aiu1
∧ Aiu2

f(Xi)
. (7.4)

Therefore, using (7.1), we have

K1 ≤

1−
∏

i:Xi∈Vh(y)

Aiu1
∧ Aiu2

Aiu1
∨ Aiu2

 ∏
i:Xi∈Vh(y)

Ai0
f(Xi)

≤ eNh/A(f)

1− exp

 ∑
i:Xi∈Vh(y)

ln
Aiu1
∧ Aiu2

Aiu1
∨ Aiu2


 . (7.5)

Remember that
∣∣Aiu1

− Aiu2

∣∣ ≤ (nhd)−1‖u1 − u2‖1 and Aiu ≥ A(f)/4. Let us
give the following calculation with inequality of finite increments for ln(·)

ln
Aiu1
∧ Aiu2

Aiu1
∨ Aiu2

= −
∣∣lnAiu1

∧ Aiu2
− lnAiu1

∨ Aiu2

∣∣ ≥ − (nhd)−1‖u1 − u2‖1
Aiu1
∧ Aiu2

Using last inequalities, (7.3), (7.4), (7.5), last inequality and the well known
inequality 1− e−ρ ≤ ρ, we have

K1 ≤
4

A(f)
eNh/A(f)‖u1 − u2‖1.

Control of K2. F2 can be rewritten as

F2 =
{
∀i = 1, . . . , n : Yi ≤ Aiu1

∨ Aiu2

}
\
{
∀i = 1, . . . , n : Yi ≤ Aiu1

∧ Aiu2

}
= G\F1.
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and define

G1 =
{
Xi ∈ Vh(y) : Aiu1

∨ Aiu2
< f(Xi)

}
,

G2 =
{
Xi ∈ Vh(y) : Aiu1

∧ Aiu2
< f(Xi)

}
.

Note that F1 ⊆ G and, therefore,

K2 ≤
∏

i:Xi∈Vh(y)

Ai0
Aiu1
∧ Aiu2

(
Pf
{
G
}
− Pf

{
F1

})
=

∏
i:Xi∈Vh(y)

Ai0
Aiu1
∧ Aiu2

( ∏
i:Xi∈G1

Aiu1
∨ Aiu2

f(Xi)
−

∏
i:Xi∈G2

Aiu1
∧ Aiu2

f(Xi)

)

The definition of G2 implies∏
i:Xi∈Vh(y)

1

Aiu1
∧ Aiu2

≤
∏

i:Xi∈G2

1

Aiu1
∧ Aiu2

∏
i:Xi∈Gc2

1

f(Xi)

Since G1 ⊆ G2, ‖u1 − u2‖1 < 1 and |fu(x)| ≤ ||u||1, ∀x ∈ [0, 1]d, ∀u ∈ Υn, using
the last inequality and (7.1), we obtain

K2 ≤
∏

i:Xi∈Vh(y)

Ai0
f(Xi)

( ∏
i:Xi∈G2

Aiu1
∨ Aiu2

Aiu1
∧ Aiu2

− 1

)
≤ 4Dbe

1+Nh/A(f)‖u1 − u2‖1/A(f).

Control of K3. We can rewrite the process Zh,θ with the notation Aiu

Zh,θ(u) =
∏

i:Xi∈Vh(y)

Ai0
Aiu

I[Yi≤Aiu].

Under the event F3, we get∣∣Zh,θ(u1)− Zh,θ(u2)
∣∣ I[F3] = 0

Then K3 = 0.

The first assertion of the lemma is proved with (7.2) and the bounds of K1,
K2 and K3.

2. For any u ∈ Υn, since the random variables (Yi)i are independent we have,

EfZ1/2
h,θ (u) =

∏
i:Xi∈Vh(y)

√
Ai0
Aiu

Pf
{
Yi ≤ Aiu

}
.
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For any i, we have√
Ai0
Aiu

Pf
{
Yi ≤ Aiu

}
=

√
Ai0
Aiu

[
1 ∧ Aiu

f(Xi)

]
≤ Ai0
f(Xi)

[
f(Xi)√
Ai0
√
Aiu
∧
√
Aiu√
Ai0

]
.

In view of (5.6) and (5.7), recall that A(f) ≤ f(x) ≤ fθ(x) ≤ 3M(f), ∀x ∈ Vh(y).
Moreover, for any u ∈ Υn = nhd

(
Θ
(
A(f)/4, 3M(f)

)
− θ
)

,

A(f)/4 ≤ fθ+u(nhd)−1(x) ≤ 9M(f), ∀x ∈ Vh(y).

Thus for all i : Xi ∈ Vh(y),√
Ai0
Aiu

Pf
{
Yi ≤ Aiu

}
≤ Ai0
f(Xi)

[√
Ai0√
Aiu
∧
√
Aiu√
Ai0

]
≤ Ai0
f(Xi)

[
1−

∣∣Ai0 −Aiu∣∣
9M(f)

]1/2

.

The last inequality implies

EfZ1/2
h,θ (u) ≤

∏
i:Xi∈Vh(y)

Ai0
f(Xi)

√
1−
|fu(nhd)−1(Xi)|

9M(f)

≤ eNh/A(f) exp

− 1

18M(f) nhd

∑
i:Xi∈Vh(y)

∣∣fu(Xi)
∣∣ . (7.6)

It remains to show

1

nhd

∑
i:Xi∈Vh(y)

∣∣fu(Xi)
∣∣ ≥ λn(h)D−1

b ||u||1. (7.7)

Let us remember that u = (up, p ∈ Pb) (where Pb is defined in (1.4)). First, we
get from the definition of fu

fu(x) = u K>
(
x− y
h

)
= K

(
x− y
h

)
u>, ∀x ∈ [0, 1]d,

and therefore,

1

nhd

∑
i:Xi∈Vh(y)

∣∣fu(Xi)
∣∣ =

1

nhd

∑
i:Xi∈Vh(y)

∣∣∣∣u K>(Xi − y
h

)∣∣∣∣ .
Assume u 6= 0 and put v = u/||u||1. Noting that |fv(x)| ≤ 1, ∀x ∈ [0, 1]d, we
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have

1

nhd

∑
i:Xi∈Vh(y)

∣∣fu(Xi)
∣∣

≥ 1

nhd

∑
i:Xi∈Vh(y)

∣∣∣∣u K>(Xi − y
h

)∣∣∣∣ |fv(Xi)|

=
1

||u||1nhd
∑

i:Xi∈Vh(y)

∣∣∣∣u K>(Xi − y
h

)
K

(
Xi − y
h

)
u>
∣∣∣∣

≥ 1

||u||1

∣∣∣∣∣∣u 1

nhd

∑
i:Xi∈Vh(y)

K>
(
Xi − y
h

)
K

(
Xi − y
h

)
u>

∣∣∣∣∣∣ .
The bound (7.7) follows now from Lemma 2. The assertion of the lemma follows
from (7.6) and (7.7).

3. In view of Lemma 1 (1), we have

Ef
∣∣Zh,θ(u)− Zh,θ(0)

∣∣ ≤ Ch‖u‖1, u ∈ Υn\0. (7.8)

Taking into account that Zh,θ(0) = 1 we obtain applying (7.8), Fubini’s theorem
and Tchebychev inequality

Pf

{∫ δ

0

· · ·
∫ δ

0

Zh,θ(v)dv <
1

2
δDb

}

= Pf

{∫ δ

0

· · ·
∫ δ

0

(
Zh,θ(v)− Zh,θ(0)

)
dv < −1

2
δDb

}

≤ Pf

{∫ δ

0

· · ·
∫ δ

0

∣∣Zh,θ(v)− Zh,θ(0)
∣∣dv > 1

2
δDb

}

≤ 2δ−Db
∫ δ

0

· · ·
∫ δ

0

Ef
∣∣Zh,θ(v)− Zh,θ(0)

∣∣dv
≤ 2Chδ

7.2. Proof of Lemma 2

First step: Mnh(y) is a nonnegative positive matrix.
Let Hn, n > 1 as defined in (5.1). First, we prove that

inf
h∈Hn

λn(h) > 0, ∀n > 1. (7.9)
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Suppose that ∃n1 > 1, hn1 ∈ Hn1 such that λn1

(
hn1

)
= 0. Recall that ft(x) =

t K(h−1(x− y)) for all t ∈ RDb and note that ∀τ ∈ RDb

τ>Mn1hn1
(y) τ =

1

nhdn1

∑
i:Xi∈Vhn1

(y)

[
τ K>

(
Xi − y
hn1

)]2

=
1

nhdn1

∑
i:Xi∈Vhn1

(y)

[
fτ (Xi)

]2 ≥ 0.

Since λn1

(
hn1

)
is the smallest eigenvalue of the matrixMn1hn1

(y) the assump-

tion λn1

(
hn1

)
= 0 implies that there exist τ∗ belonging to the unit sphere of

RDb such that
1

nhdn1

∑
i:Xi∈Vhn1

(y)

[
fτ∗(Xi)

]2
= 0.

It obviously implies that fτ∗(Xi) = 0 for all Xi ∈ Vhn1
(y). It remains to note

that nhdn1
≥
(
b + 1

)d
since hn1

∈ Hn and to apply the result obtained in [16]
(page 20). It yields τ∗ = 0 and the obtained contradiction proves (7.9).

Second step: Mnh(y)
n→∞−−−−→M.

Let λ0 be the smallest eigenvalue of the matrix

M =

∫
[−1/2,1/2]d

K>(x)K(x) dx

whose general term is given by

Mp,q =

d∏
j=1

∫ 1
2

− 1
2

x
pj+qj
j dxj , 0 ≤ |p|, |q| ≤ b.

Let us prove that

lim sup
n→∞

sup
h∈Hn

∣∣λn(h)− λ0

∣∣ = 0. (7.10)

Put m = n1/d and without loss of generality we will assume that m is integer.
Remind that the general term of the matrix Mnh(y) is given by

(
Mnh(y)

)
p,q

=
1

nhd

∑
i:Xi∈Vh(y)

d∏
j=1

(
Xij − yj

h

)pj+qj
.
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where Xij = ij/m for all j = 1, . . . , d and Xi =
(
Xi1 , ..., Xid

)
. We get

1

nhd

∑
i:Xi∈Vh(y)

d∏
j=1

∫ ij

ij−1

(
xj/m− yj

h

)pj+qj
dxj

≤ 1

nhd

∑
i:Xi∈Vh(y)

d∏
j=1

(
Xij − yj

h

)pj+qj

≤ 1

nhd

∑
i:Xi∈Vh(y)

d∏
j=1

∫ ij+1

ij

(
xj/m− yj

h

)pj+qj
dxj ,

It yields by change of variables that

d∏
j=1

∫ 1
2

− 1
2−2(nhd)−1

x
pj+qj
j dxj ≤ 1

nhd

∑
i:Xi∈Vh(y)

d∏
j=1

(
Xij − yj

h

)pj+qj

≤
d∏
j=1

∫ 1
2 +2(nhd)−1

− 1
2

x
pj+qj
j dxj , (7.11)

Note that nhd ≥ ln
1

1+d (n) for any h ∈ Hn. This together with (7.11) yields

lim sup
n→∞

sup
h∈Hn

∣∣∣(Mnh(y)
)
p,q
−Mp,q

∣∣∣ = 0, 0 ≤ |p|, |q| ≤ b.

The last result obviously imply (7.10).

Third step: Conclusion.

First we show that λ0 > 0. Indeed, ∀τ ∈ RDb

τ>Mτ =

∫
[−1/2,1/2]d

[
fτ (x)

]2
dx ≥ 0.

Since λ0 is the smallest eigenvalue of the matrix M the assumption λ0 = 0
would imply that there exists τ∗ belonging to the unit sphere of RDb such that
fτ∗ ≡ 0. Since fτ∗ is a polynomial the last identity is possible if and only if
τ∗ = 0. The obtained contradiction shows that λ0 > 0.

Next, note that in view of (7.10) there exists n0 such that ∀n > n0 and
∀h ∈ Hn, λn(h) ≥ λ0/2.

On the other hand in view of (7.9) minn≤n0
infh∈Hn λn(h) > 0. It remains to

define λ > 0 as

λ = min

(
min
n≤n0

inf
h∈Hn

λn(h), λ0/2

)
.
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7.3. Proof of Lemma 3

Remind that hk ≤ hκ ≤ h∗ by definition of hk, h∗ and κ (cf. (5.18)). Using
Proposition 2 with h = hk, it yields

Ef
∣∣f̂ (k)(y)− f(y)

∣∣qIG ≤ C∗q
(
A(f),M(f)

)(1 ∨ Ld nhβ+d
k

nhdk

)q

≤ C∗q
(
A(f),M(f)

)(1 ∨ Ld n(h∗)β+d

nhdk

)q
.(7.12)

The control of n(h∗)β+d requires the following calculation.

n(h∗)β+d ≤ 1 +
b− β

(b+ d)(β + d)
lnn = ρn(β) (7.13)

where ρn(β) is the price to pay for adaptation defined in (1.9). By definition of
hk, we have

1 + κ ln 2 = 1 + ln
hmax

hk
≥ 1 + ln

hmax

h∗

≥ 1 +
b− β

(b+ d)(β + d)
lnn− 1

β + d
ln
[
c
(
1 + (b− β) lnn

)]
.

Using the classical inequality ln(1 + x) ≤ x and c ≤ 1, we obtain with the last
inequality

β + d− 1

β + d
ρn(β) ≤ 1 + κ ln 2 ≤ 1 + k ln 2,∀k ≥ κ. (7.14)

According to (7.12), (7.13) and (7.14), Lemma 3 is proved.

7.4. Proof of Lemma 4

Note that for any k ≥ κ+ 1 and by definition of k̂ in (3.8){
k̂ = k

}
= ∪l≥k

{∣∣f̂ (k−1)(y)− f̂ (l)(y)
∣∣ > M̂Sn(l)

}
.

Note that Sn(l) is monotonically increasing in l and, therefore,{
k̂ = k

}
⊆

{∣∣f̂ (k−1)(y)− f(y)
∣∣ > 2−1M̂Sn(k − 1)

}
∪
[
∪l≥k

{∣∣f̂ (l)(y)− f(y)
∣∣ > 2−1M̂Sn(l)

}]
.

Taking into account that the event G implies the realization of the event M̂ ≥
M(f)/2 ≥ A/2 we come to the following inequality: for any k ≥ κ+ 1

P
(
k̂ = k, G

)
≤ P

{∣∣f̂ (k−1)(y)− f̂(y)
∣∣ > 4−1M(f) Sn(k − 1), G

}
+
∑
l≥k

P
{∣∣f̂ (l)(y)− f(y)

∣∣ > 4−1M(f) Sn(l), G
}
. (7.15)
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Now we are going to justify the use of Proposition 1. Note that bhl ≤ Ldhβl
since f ∈ Hd(β, L,A,M) and, therefore, by definition of h∗, we have

Nhl ≤ Ldn(hl)
β+d ≤ Ldn(hκ)β+d ≤ Ldn(h∗)β+d ≤ cρn(β), ∀l ≥ k − 1. (7.16)

Remark that the definition of Sn(l) yields

nhdl Sn(l) ≥ 432D3
b (32qd+ 16)λ−1(hl)

[
1 + ln

(
hmax/hl

)]
.

Using (7.14), (7.16) and the last inequality, we have

M(f)

4
nhdl Sn(l) ≥ 144MDb(1 ∨Nhl)/(λn(hl)A). (7.17)

The last inequality allows us to apply Proposition 1 and Lemma 2 with

ε = M(f)
4 nhdl Sn(l), and we obtain ∀l ≥ k − 1

P
{∣∣f̂ (l)(y)− f(y)

∣∣ > (M(f)/4) Sn(l), G
}

≤ B(A,M)E(hl) [hmax/hl]
−8qd−4

= B(A,M)E(hl)2
−l(8qd+4). (7.18)

Here we have also used that k ≥ κ + 1. We obtain from (7.15), (7.18) and
(7.16) that k ≥ κ+ 1

P
(
k̂ = k, G

)
≤ J2B(A,M) exp

{
J1n(h∗)β+d

}
2−(k−1)(8qd+4),

where J2 = (1− 2−(8qd+4))−1.

7.5. Proof of Lemma 5

Set for any p ∈ Pb

W p
ni(y) = p1!...pd!

h
d−|p|
max

n
K>(0)M−1

nhmax
(y)K

(
Xi − y
hmax

)
IVmax(y)(Xi),

and note that δ̃p =
∑d
i=1 2YiW

p
ni(y).

The model (1.1) can be rewritten as 2Yi = f(Xi) + f(Xi)(2Ui − 1). Thus,
setting F (X) =

(
f(Xi)

)
i=1,...,n

, V (X) =
(
f(Xi)(2Ui − 1)

)
i=1,...,n

and

D(f) =

(
∂|p|f(y)

∂yp11 · · · ∂y
pd
d

, p ∈ Pβ
)
,

10. Deviations of M̂ . By definition of M̂ in (3.3), we obtain

|M̂ −M(f)| ≤ ||δ̃ −D(f)||1 ≤ ‖V F (X)−D(f)‖1 + ‖V V (X)‖1 .
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Here V is Db × n-matrix of general term Vpi = W p
ni(y) and ‖.‖1 is the `1-norm.

Let us prove that

Pf
{
|M̂ −M(f)| > M(f)/2

}
≤ exp

{
− n

b
b+d

8ϑ2
2D

2
b

}
. (7.19)

In view of the result proved in [6] and [21] there exist ϑ1, ϑ2 > 0 such that

‖V F (X)−D(f)‖1 ≤ ϑ1h
β−bβc
max ,

sup
i,x
|W p

ni(y)| ≤ ϑ2

nhdmax

, p ∈ Pβ .

Remind that hmax
n→∞−−−−→ 0 and, therefore, ∃n0 such that ϑ1h

β−bβc
max ≤ M(f)/4

for any n ≥ n0. Note that n0 can be chosen independently of f since M(f)/4 ≥
A/4. Thus, we get

Pf
{
|M̂ −M(f)| > M(f)/2

}
≤

∑
p∈Nd: 0≤|p|≤β

Pf


∣∣∣∣∣∣
∑

Xi∈[0,1]d

f(Xi)(2Ui − 1)W p
ni(y)

∣∣∣∣∣∣ > M(f)

4Db

 .

Noting that
∣∣f(Xi)(2Ui−1)W p

ni(y)
∣∣ ≤M(f)

ϑ2

nhdmax

, applying Höeffding inequal-

ity and the last inequality, we obtain

∑
p∈Nd: 0≤|p|≤β

Pf


∣∣∣∣∣∣
∑

Xi∈[0,1]d

f(Xi)(2Ui − 1)W p
ni(y)

∣∣∣∣∣∣ > M(f)

4Db


≤ Db exp

{
− nh

d
max

8ϑ2
2D

2
b

}
= Db exp

{
− n

b
b+d

8ϑ2
2D

2
b

}
. (7.20)

Therefore (7.19) is proved.
20. Deviations of Â. Since |f(y)−A(f)| ≤ Ldhβmax ≤ A(f)/4 for n ≥ n0 one

has
Pf
{
|Â−A(f)| > A(f)/2

}
≤ Pf

{
|M̂ −M(f)| > A(f)/4

}
.

Repeating previous calculations we obtain

Pf
{
|Â−A(f)| > A(f)/2

}
≤ Db exp

{
−

[
A(f)

]2
n

b
b+d

16
[
M(f)

]2
ϑ2

2D
2
b

}

≤ Db exp

{
− An

b
b+d

16Mϑ2
2D

2
b

}
. (7.21)

Since Pf
(
Gc
)
≤ Pf

(
Gc
Â

)
+ Pf

(
Gc
M̂

)
the assertion of the lemma follows from

(7.20) and (7.21).
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