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Abstract We introduce a robust and fully adaptive method for pointwise estimation in heteroscedastic
regression. We allow for noise and design distributions that are unknown and fulfill very weak assumptions
only. In particular, we do not impose moment conditions on the noise distribution. Moreover, we do
not require a positive density for the design distribution. In a first step, we study the consistency of
locally polynomial M-estimators that consist of a contrast and a kernel. Afterwards, minimax results
are established over unidimensional Hölder spaces for degenerate design. We then choose the contrast
and the kernel that minimize an empirical variance term and demonstrate that the corresponding M-
estimator is adaptive with respect to the noise and design distributions and adaptive (Huber) minimax
for contamination models. In a second step, we additionally choose a data-driven bandwidth via Lepski’s
method. This leads to an M-estimator that is adaptive with respect to the noise and design distributions
and, additionally, adaptive with respect to the smoothness of an isotropic, multivariate, locally polynomial
target function. These results are also extended to anisotropic, locally constant target functions. Our data-
driven approach provides, in particular, a level of robustness that adapts to the noise, contamination, and
outliers.
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1. Introduction

We introduce a new method for pointwise estimation in heteroscedastic regression that is adap-
tive with respect to the model, in particular, with respect to the noise and the design distribution
(D-adaptive) and the smoothness of the regression function (S-adaptive).

Let us first briefly summarize the related literature. First, the seminal paper [15] contains a
proof of the asymptotic normality of M-estimators for the location parameter in regular models.
Furthermore, the series of papers [30–33] provide minimax results for nonparametric regression.
More recently, a block median method was used in [6] to prove the asymptotic equivalence be-
tween Gaussian regression and homoscedastic regression for deterministic designs and possibly
heavy-tailed noises. Using a blockwise Stein’s Method with wavelets, this leads to an S-adaptive
estimator that is adaptive optimal over Besov spaces with respect to the L2-risk and adaptive op-
timal over isotropic Hölder classes with respect to the punctual risk. Moreover, using an estimate
of the noise density at 0 and a plug-in method, this also leads to a D-adaptive estimator. However,
in contrast to this paper, only homoscedastic regression is considered and multivariate regression
functions, in particular anisotropic functions, are not allowed for. Next, a modified version of Lep-
ski’s method was applied for homoscedastic regression in [27]. Finally, local M-estimators, also
for regression models with degenerate designs, were intensively studied in the case of Gaussian
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regression: S-adaptivity results of a local least squares estimator were derived in [9], sup-norm
S-minimax results were established in [10], and the effect of degenerate designs on the L2-norm
was investigated with wavelet-type estimators in [1]. However, in contrast to this paper, pointwise
estimation with random, possibly degenerate designs and heteroscedastic, possibly heavy-tailed
noises has not been included.

What is the main idea behind our approach? Consider the estimation of t0 ∈ R in the translation
model Y ∼ g(·−t0) for a probability density g. The M-estimator t̂ of t0 corresponding to the contrast
ρ(·) and the sample Y1, . . . ,Yn of Y is then

t̂ := arg min
t

n∑
i=1

ρ(Yi − t).

It holds that (see [15–17])

√
n(t̂− t0)

L−−−−→
n→∞

N (0,AV), where AV :=

∫
(ρ′)2dG(∫
ρ′′dG

)2 , (1.1)

G is the distribution of Y − t0, ρ′(·) and ρ′′(·) are the first and second derivatives of the contrast
ρ(·), and L indicates convergence in law. In other words, t̂ is asymptotically normal with asymp-
totic variance AV. This result suggests that an optimal estimator is obtained by minimizing the
asymptotic variance. Moreover, the Crámer-Rao Inequality and (see [15])

inf
ρ

∫
(ρ′)2dG(∫
ρ′′dG

)2 =
(
I(G)

)−1
, (1.2)

where I(·) is the Fisher information and the infimum is taken over all twice differentiable con-
trasts, imply that this M-estimator is efficient. Huber proposed in [15, Proposal 3] to minimize an
estimate of the above asymptotic variance (since the distribution G is not available in practice)
over the family of Huber contrasts (their definition is given below). He also conjectured that the
corresponding estimator is minimax for certain contamination models (for more details, see Sec-
tion A.1 in the arxiv version). More recently, in [2], an M-estimator with a contrast that minimizes
an estimate of the asymptotic variance was introduced for the parametric model, its asymptotic
normality was proved, and especially Huber contrasts indexed by their scale and a family of `p
losses were considered.

In a first step, we derive general properties of M-estimators such as pointwise risk bounds. This
includes, in particular, S-minimax results for degenerate designs and allows us to recover results
in [8] (see Theorem 1 and Remark 1). In a second step, we then consider a local M-estimator that
consists of a contrast and a kernel that minimize an estimate of the variance and show, in partic-
ular, that this estimator mimics the oracle, which minimizes the true variance. Our data-driven
approach can be used, for example, for the selection of the scale of the Huber contrast with an
adaptive robustness with respect to outliers or for the selection of a suitable (even noncentered or
nonconvex) support that takes a maximal number of points around x0 into account (cf. [13] for the
latter objective). Finally, we show that our estimator is, under some restrictions on the design and
the noise level (see Condition 3), D-adaptive for various sets of contrasts and kernels with finite
entropy.

We finally study simultaneous D- and S-adaptation for anisotropic target functions. In a first
step, we study the case of isotropic target functions, where the standard Lepski’s method (see [22,
24]) can be applied. To this end, we assume that the variance of the estimator is decreasing with
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respect to the bandwidth and plug-in an estimate of the minimal variance for the D-adaptation
to apply Lepski’s method for the S-adaptation (see Section 4.1). This yields the first estimator
in heteroscedastic regression with random designs and heavy-tailed noise distributions that is
simultaneously D- and S-adaptive and optimal in a sense describe later. Furthermore, we note
that applications of Lepski’s method to nonlinear estimators are still nonstandard and can only
be found in a small number of examples in the literature ([7, 26, 27]). In a next step, we extend
our results to anisotropic target functions. For this, we restrict ourselves to locally constant target
functions and homoscedastic regression with uniform design and apply a modification of Lepski’s
method given in [19, 23] to construct an optimal, simultaneously S-and D-adaptive estimator. This
is the first application of Lepski’s method to nonlinear estimators of anisotropic target functions
and yields a selection of an anisotropic bandwidth which is of great interest for applications in the
context of image denoising (cf. [3]), for example.

Although we consider estimation problems, our approach may also be useful for inference, for ex-
ample, for the construction of confidence bands. While confidence bands for parametric estimation
are derived from central limit theorems (see (1.1)), confidence bands for nonparametric regression
are especially desired to be adaptive with respect to the smoothness of the target function. The
construction of such S-adaptive confidence bands is more difficult than in the parametric case (see
[14]), but since Lepski-type procedures have already been used in this context, see [11, Theorem
1 and Corollary 1], we expect that our approach may be useful for the construction of S-adaptive
confidence bands for regression with possibly heavy-tailed noises (see Section 5 for a discussion of
some technical aspects). Eventually, if for example the smoothness is known, our approach may be
used, plugging an estimate of the variance in the confidence band, to obtain D-adaptive confidence
bands, which are, in particular, adaptive with respect to the design and the noise distributions.

The structure of this paper is as follows: In the following section, we first introduce an estimator
which satisfies a risk bound (see Theorem 1). So, S-minimax results are deduced over Hölder spaces
(see Corollaries 1, 2, and 3). We then provide a choice for the contrast and the kernel (see Theorem
2) via the minimization of a nonasymptotic variance. Then, we provide a choice for the bandwidth
for isotropic, locally polynomial target functions (see Theorem 3) and for anisotropic, locally con-
stant target functions (see Theorem 4). After this, we give a discussion on our assumptions and
an outlook in Section 5. The proofs are finally conducted in Section 6 and in the appendix. For
conciseness, only the crucial proofs are presented here. For the remaining proofs and more details,
in particular, on the parametric model and on a comparison to classical results, we refer to the
longer version available on arxiv and the webpages of the authors.

2. Preliminary Definitions and Results

In this section, we give some preliminary definitions and results. After specifying the model, we
introduce a first estimator and then, we present a risk bound and S-minimax properties of this
estimator.

Let us first specify the model. The observations (Xi, Yi)i=1,...n satisfy the set of equations

Yi = f∗(Xi) + σ(Xi) ξi, i = 1, . . . , n, (2.1)

and are distributed according to the probability measure P := P(n)
f∗ with associated expectation

E := E(n)
f∗ . We aim at estimating the target function f∗ : [0, 1]d → [-M,M ] (for M > 0) at a given

point x0 on (0, 1)d. The target function is assumed to be smooth, more specifically, it is assumed
to belong to a Hölder class (see Definition 4 below). The target function is obscured by the second
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part of the above model, the noise. The noise variables (ξi)i∈1,...,n are assumed to be distributed
independently according to the densities gi(·) with respect to the Lebesgue measure on R. The
noise densities gi(·) may be unknown but are assumed to be symmetric. We stress that we do not
impose, unlike in the literature on the median (cf. [6]), any moment assumptions on the noise, and
we do not require that the noise densities are positive at 0. We postpone the detailed discussion on
the assumptions to the end of the next section. The noise level σ : [0, 1]d → [0,∞) is assumed to be
bounded, but may also be unknown. Usually, the noise level is the variance of the noise, however,
this is not the case if the noise distributions do not have any moments, for example. Finally, the
design points (Xi)i∈1,...,n are assumed to be distributed independently and identically according
to the density µ(·) with respect to the Lebesgue measure on R. We assume that µ(·) vanishes at at
most finitely many points. For ease of exposition, we also assume that (Xi)i∈1,...,n and (ξi)i∈1,...,n

are mutually independent.

Next, we introduce an estimator of f∗(x0) with a local polynomial approach (LPA) for a fixed
bandwidth, a fixed kernel, and a fixed contrast. The key idea of the LPA, as described for example
in [18] or in [34, Chapter 1], is to approximate the target function in a neighborhood of size
h ∈ (0, 1]d of a given point x0 by a polynomial. To start, we define for a fixed m ∈ N the set
P := {p = (p1, . . . , pd)

> ∈ Nd : 0 ≤ |p| ≤ m} with |p| = p1 + · · · + pd and denote its cardinality
by |P|. The cardinality |P| is exponential in d and enters the bounds derived below as a factor.
For any multi-indexed column vector t =

(
tp1,...,pd ∈ R : p ∈ P

)
∈ R|P| and for any x ∈ [0, 1]d, we

then define the desired polynomial as

Pt(x) := t> U

(
x− x0

h

)
:=
∑
p∈P

tp

(
x− x0

h

)p
.

Here, zp := zp1

1 · · · z
pd
d for all z ∈ Rd, and the division by h is understood coordinate wise. Next,

for M > 0, we define F :=
{

Pt : t ∈ [-M,M ]|P|
}

as a set of polynomials of degree at most m. We
now specify what we mean by a kernel and a contrast:

Definition 1. A function K : Rd → [0,∞) is called kernel (function) if it has the following
properties:

1. K(·) has a (not necessarily symmetric) support which is a hypercube having edge length one
and contains the origin;

2. ‖K‖∞ <∞ and
∫
K(x)dx = 1.

For ease of exposition, we set Πh :=
∏d
j=1 hj and use the notation Kh(·) := K ((· − x0)/h) /Πh at

some points. Moreover, we define the neighborhood of x0 of size h as Vh :=
{
x ∈ Rd : Kh(x) > 0

}
and assume for simplicity that the kernel is chosen such that Vh ⊆ [0, 1]d. Next, we specify what
we mean by a contrast:

Definition 2. A function ρ : R → [0,∞) is called contrast (function) if it has the following
properties:

1. ρ(·) is convex, symmetric and ρ(0) = 0;

2. the derivative ρ′(·) of ρ(·) is 1-Lipschitz and bounded;

3. the second derivative ρ′′(·) of ρ(·) is defined Lebesgue almost everywhere and is 1-Lipschitz
with respect to the measure P. Moreover, ‖ρ′′‖∞ ≤ 1.

The constants in the Lipschitz condition and the boundedness condition in the last definition are
set to 1 for ease of exposition only. Well-known contrasts are the Huber contrast (see [15]), for any
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scale γ > 0 and z ∈ R,

ρH,γ(z) :=

 z2/2 if |z| ≤ γ

γ(|z| − γ/2) otherwise
(2.2)

and the contrast induced by the arctan function (see [30])

ρarc,γ(z) := γz arctan(z/γ)− γ2

2
ln(1 + z2/γ2). (2.3)

Note that the square loss and the absolute loss do not satisfy the above definition. However, they
can be mimicked by the Huber contrast with γ small (median) and γ large (mean). Let us define,
for any function ζ, the empirical measure as Pnζ := 1

n

∑n
i=1 ζ(Xi, Yi). We can now combine a

kernel and a contrast to obtain the λ-LPA estimator f̂λ(x0) of f∗(x0) defined as:

f̂λ := arg min
f∈F

Pnλ(f), where λ(f)(x, y) := ρ
(
y − f(x)

)
Kh(x) for x ∈ [0, 1]d and y ∈ R. (2.4)

The coefficients of the estimated polynomial can be considered as estimators of the derivatives of
the function f∗ at x0. In this paper, however, we focus on the estimation of f∗(x0).

2.1. A First Risk Bound

In this section, we present a risk bound for the estimator introduced above. This estimator
involves, in particular, fixed contrasts, kernels, and bandwidths.

To ease the presentation, we introduce some additional definitions. First, we define the best
approximation of the target f∗ in F as

f0 := arg min

{
sup
x∈Vh

∣∣f(x)− f∗(x)
∣∣ : f ∈ F , f(x0) = f∗(x0)

}
(2.5)

and the associated bias term as

bh(F) := sup
x∈Vh

|f0(x)− f∗(x)|. (2.6)

The minimum is not necessarily unique, but all minimizers work for our derivations. We then fix
a multi-indexed vector t0 = (t0p1,...,pd

)p∈P such that Pt0 = f0. We recall that the entropy with
bracketing of a set of functions A for a given radius u > 0 with respect to a (pseudo)metric ∆

is the logarithm of the minimal number of pairs of functions (f
(j)
1 , f

(j)
2 ) ∈ A × A such that for

any f ∈ A, there is a couple (f
(j)
1 , f

(j)
2 ) such that f

(j)
1 ≤ f ≤ f

(j)
2 and ∆(f

(j)
1 , f

(j)
2 ) ≤ u. Here,

in particular, HF (·) denotes the entropy with bracketing of F with respect to the pseudometric√
ΠhEPn [λ′(f1)− λ′(f2)]

2
, f1, f2 ∈ F , where

λ′(f)(x, y) := ρ′
(
y − f(x)

)
Kh(x) for x ∈ [0, 1]d and y ∈ R. (2.7)

The entropy HF (·) cannot be calculated if the probability law is unknown. However, it can be
upper bounded invoking an upper bound for the pseudometric. For this, one may use that√

ΠhEPn [λ′(f1)− λ′(f2)]
2 ≤ ‖K‖∞‖t(1) − t(2)‖1

due to the continuity of ρ′(·) and the definition of F . Here, t(1) and t(2) ∈ [-M,M ]|P| are such
that Pt(1) = f1 and Pt(2) = f2, respectively. Therefore, the entropy HF (·) can be bounded by |P|
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times the entropy of [-M,M ] with respect to the Euclidean distance multiplied by ‖K‖∞ (this is,
in particular, independent of n).

As a next step, we introduce the condition under which we derive the risk bound.

Condition 1. Let ρ(·) be a contrast, K(·) a kernel, n ∈ {1, 2, ...}, and h ∈ (0, 1]d. We say that
Condition 1 is satisfied if the smallest eigenvalue Φh of the matrix

1

n

n∑
i=1

E
[
U

(
Xi − x0

h

)
U>

(
Xi − x0

h

)
ρ′′ (σ(Xi)ξi)Kh(X)

]
is positive, nΠh ≥ 1, and, defining

δh :=
2|P|2

Φh

E[Kh(X)]bh(F) +
54‖ρ′‖∞

(√
E[ΠhK2

h(X)] + ‖K‖∞√
nΠh

)
√
nΠh

(
ln(n|P|) +

∫ 1

0
H

1/2
F (u)du+HF (1)

)-1
 ,

that

4(bh(F) + δh) ≤ inf
x∈Vh

1

n

n∑
i=1

E [ρ′′ (σ(x)ξi)] . (2.8)

Condition 1 can be interpreted in the following sense: n must be sufficiently large and h appropri-
ate for the setting under consideration. In particular, h, as a function of n, is usually chosen such
that h→ 0 and nΠh →∞ as n→∞ to satisfy Condition 1. We postpone a detailed discussion of
Condition 1 to after the main result of this section.

The variance term of the estimator is crucial for the following. To state it explicitly, we need to
introduce some more notation: First, we introduce λ′′ (similarly as λ′ in (2.7)) as

λ′′(f)(x, y) := ρ′′
(
y − f(x)

)
Kh(x) for x ∈ [0, 1]d and y ∈ R.

We then introduce the crucial quantity

V(λ) :=


√

ΠhEPn [λ′(f∗)]
2

+ ‖ρ′‖∞‖K‖∞ ln2(n)√
nΠh

EPnλ′′(f∗)


2

. (2.9)

We call it nonasymptotic variance, since it plays the role of the variance in the risk bounds in
the theorems below. From Condition 1 and Definitions 1 and 2, we conclude that V(λ) <∞. The

term ‖ρ′‖∞‖K‖∞ ln2(n)√
nΠh

depends on h and n. However, the bandwidth is typically chosen such that

nΠh →∞ for n→∞ so that this term vanishes asymptotically. Additionally, besides the normal-
ization

√
Πh in front of the first term, a dependence on h is given through λ. We will discuss this

after giving the main result of this section. If h = (1, . . . , 1)> (parametric case), the nonasymptotic
variance V (λ) tends towards the asymptotic variance AV(λ) defined in (1.1) as n→∞.

The main result of this section reads:

Theorem 1. Let λ be as in (2.4), n ∈ {1, 2, . . .}, and h ∈ (0, 1]d such that Condition 1 is satisfied.
Then, for all q ≥ 1,

E
∣∣f̂λ(x0)− f∗(x0)

∣∣q ≤ Cq (bh(F) +

[
27

∫ 1

0

H
1/2
F
(
u
)
du+

4HF (1)

ln2(n)
+ 1

] √
V(λ)√
nΠh

)q
+ 2q

Mq

n2
,
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for a constant Cq (Cq = 4q|P|68q Gamma(q) works, where Gamma(·) is the classical Gamma
function).

The proof can be easily deduced integrating the result of Proposition 3 and using Proposition 2
(the propositions can be found in the appendix, see also the more detailed arxiv version).

Remark 1. In contrast to Huber’s asymptotic results (see [15] and also [2, 30–33]), the above
theorem holds for finite (but sufficiently large) sample sizes n. We note that the desired variance
term V(λ) is found up to constants, which are of minor interest for this paper. Moreover, a wide
range of designs (including degenerate designs, for example) and noise levels (including zero noise,
for example) is covered. Let us compare this result to [8]: assume that d = 1 and the noise (σ(Xi)ξi)i
is identically and independently normal distributed with variance σ > 0, and consider the local
Huber estimator with ρ(·) = ρH,ln(n)(·) (2.2), where γ = ln(n), and the indicator kernel K(·) =
1l[-1/2,1/2](·). As we mentioned above, the Huber estimator, with a large parameter γ, mimics the
local least squares estimator. Indeed it holds√

V(λ)√
nΠh

� σ√
n
∫ x0+h/2

x0−h/2 µ(x)dx
.

The term on the right hand side is the classical standard deviation of the local least squares esti-
mator. Theorem 1 then implies the results of [8, Theorem 1 and Proposition 1] in the Gaussian
case and extends them to heteroscedastic, heavy-tailed noises.

Remark 2. While the above bound is - to the best of our knowledge - already a new result, the
final goal is to provide a specific λ that minimizes this bound since the second term 2qMq/n2 is
neglectable and since the bias term bh(F) is independent of λ. However, the bandwidth h, which
accounts for the smoothness of the target function, is included in V(λ). This makes simultaneous
D- and S-adaptation difficult. The specific dependences of the numerator and the denominator on
h can be deduced from

ΠhEPn[λ′(f∗)]2 =Πh

∫
µ(x)K2

h(x)

∫ [
ρ′
(
σ(x)z

)]2
n-1
∑
i

gi (z) dz dx (2.10)

and EPnλ′′(f∗) =

∫
µ(x)Kh(x)

∫
ρ′′
(
σ(x)z

)
n-1
∑
i

gi (z) dz dx. (2.11)

We study this in detail in the following section for three examples.

Discussion of Condition 1: The condition Φh > 0 is fulfilled in many examples. Indeed, with a
change of variables and by the definition of Kh(·), we obtain

1

n

n∑
i=1

E
[
U

(
Xi − x0

h

)
U>

(
Xi − x0

h

)
ρ′′ (σ(Xi)ξi)Kh(X)

]

=

∫
U (x)U> (x)µ(x0 + hx)K(x)

∫
ρ′′ (σ(x0 + hx)z)

1

n

n∑
i=1

gi(z)dzdx.

According to [34, Lemma 1.6], a sufficient condition for Φh > 0 is thus that

µ(x0 + hx)K(x)

∫
ρ′′ (σ(x0 + hx)z)

1

n

n∑
i=1

gi(z)dz > 0 (2.12)
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for all x in some set in the kernel support with positive Lebesgue measure. Recall that µ(x0 +h ·) is
positive almost everywhere in the support of K(·) since µ(·) vanishes only at finitely many points.
The condition Φh > 0 is thus fulfilled if

inf
x∈Vh

∫
ρ′′ (σ(x)z)

1

n

n∑
i=1

gi(z)dz > 0. (2.13)

This condition is satisfied, for example, for all densities gi(·) and bounded σ(·) if the contrast
function is strictly convex. This holds true for ρarc,γ(·) (see (2.3)). The Huber contrast ρH,γ(·) (see
(2.2)), however, is strictly convex on the interval (-γ, γ) only. It holds that ρ′′H,γ(·) = 1l[-γ,γ](·);
therefore, the densities gi(·) have to satisfy the additional constraint

inf
x∈Vh

∫
1l[-γ,γ] (σ(x)z)

1

n

n∑
i=1

gi(z)dz > 0

to ensure Φh > 0 in this case. If we assume, for simplicity, that the noise level is constant σ(·) ≡
σ > 0, the last constraint simplifies to

∫ γ/σ
-γ/σ

1
n

∑n
i=1 gi(z)dz > 0. So even for the Huber contrast

with a fixed γ > 0, the assumption Φh > 0 is weaker than the standard assumption in the literature
of gi(·) being positive and continuous in the origin for all i ∈ {1, 2, . . . , n}.

For the other crucial part of the condition, we first note that for h → 0, the quantity on the
right hand side of (2.8) tends to a positive constant if σ(·) is continuous in x0. Indeed, since ρ′′ is
P-continuous, it holds that

inf
x∈Vh

1

n

n∑
i=1

E [ρ′′ (σ(x)ξi)] −→
1

n

n∑
i=1

E [ρ′′ (σ(x0)ξi)] (2.14)

as h → 0. Similarly as above, the quantity on the right hand side can be lower bounded by a
positive constant for many contrasts and noise densities. We now give the rate for the quantity δh.
It holds that

δh � Φ-1
h

[
E[Kh(X)]bh(F) +

√
EΠhK2

h(X)√
nΠh

ln(n) +
‖K‖∞
nΠh

ln(n)

]
,

which should be (cf. (2.8)) bounded by a constant. Here, “�” indicates the asymptotic dependence
on n. The above display corresponds to a so-call bias-variance decomposition up to a factor ln(n).
We also note that if f∗ is continuous as assumed in the standard literature, the bias term tends to
zero as h → 0. In the literature, one typically chooses some couple of positive constants (α1, α2),
and σ(·) and some bandwidth h = (h1, . . . , hd) such that

n-α1/d (ln(n))
α2 ≤ hj ≤ (ln(n))

-1
, for all j = 1, . . . , d, (2.15)

where we assume that n is sufficiently large such that the above inequalities can hold. For appro-
priate (α1, α2), Condition 1 is then satisfied for n sufficiently large in many examples.

Example 1: If, for example, the design is uniform (µ(·) ≡ 1) and the noise level homoscedastic
(σ(·) ≡ σ > 0), it holds that Φh � const and thus δh � bh(F) + ln(n)/

√
nΠh. Choosing a band-

width h = hn as in (2.15) with α1 = 1 and α2 = 4, Condition (2.8) is satisfied for n sufficiently large.

Example 2: For degenerated designs, however, it is possible that Φh → 0 as h→ 0. For example,
let d = 1, the noise level be homoscedastic (σ(·) ≡ σ > 0), and

µ(·) =
s+ 1

xs+1
0 + (1− x0)s+1

| · −x0|s1l[0,1](·) (2.16)
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with s > -1 and x0 ∈ [0, 1] (see [8]). The density explodes (for s < 0) or vanishes (for s > 0) at x0,
so that one will either have a lot or very little observations in the vicinity of x0. This is reflected
in δh (recall that d = 1 and thus h ∈ (0, 1]):

δh � bh(F) +
ln(n)√
nhs+1

.

So, similarly as above, one may choose a bandwidth like in (2.15) with α1 = 1/(s + 1) and
α2 = 4/(s+ 1).

We finally note that the concrete form of Condition 1 is due to the application of deviation
inequalities for bounded empirical processes. Similarly, we could relax the boundedness condition on
the empirical processes involved to Bernstein conditions (see, e.g. [35]). This allows to incorporate
unbounded contrasts such as the least squares contrast and the factor ‖ρ′‖∞ in Condition 1 should
be replaced by the factor

√
E[ρ′(σ(X)ξ)]2, where ξ would be a sub-Gaussian random variable.

2.2. S-minimax Results

In this section, we deduce some corollaries adapted to simple examples from the above results.

To start, we recall the notion of S-minimaxity. To this end, let f̃(x0) be an estimator of f∗(x0)
and S a set of functions. For any q > 0, we define the maximal risk of f̃ and the S-minimax risk
for x0 and S as

Rn,q
[
f̃ ,S

]
:= sup

f∗∈S
E
∣∣f̃(x0)− f∗(x0)

∣∣q and Rn,q
[
S
]

:= inf
f̄
Rn,q

[
f̄ ,S

]
, (2.17)

respectively. The infimum on the right hand side is taken over all estimators. We can now define
the S-minimax rates of convergence and the (asymptotic) S-minimax estimators:

Definition 3. A sequence φn is an S-minimax rate of convergence, and the estimator f̂ is an
(asymptotic) S-minimax estimator with respect to the set S if

0 < lim inf
n→∞

φ−qn Rn,q
[
S
]
≤ lim sup

n→∞
φ−qn Rn,q

[
f̂ ,S

]
<∞.

We can give some simple examples for one dimensional target functions, that is, d = 1. We
call H1(β, L,M) Hölder space, with parameters β, L,M > 0, the set of bβc-times differentiable
functions f : [0, 1]→ R such that ‖f (j)‖∞ ≤M for all j ∈ {0, 1, . . . , bβc} and satisfied the Hölder
continuity |f (bβc)(x)− f (bβc)(y)| ≤ L|x− y|β−bβc for all x, y ∈ [0, 1]d.

The following corollary can now be easily deduced from Theorem 1:

Corollary 1. Consider the model in Example 1, that is, uniform design (µ(·) ≡ 1) and ho-
moscedastic noise level (σ(·) ≡ σ > 0). Let β, L, and M be positive parameters. Moreover,

let f̂λ be defined as in (2.4) with m = bβc, h � n-1/(2β+1), ρ(·) = ρarc,1(·) as in (2.3), and
K(·) := 1l[-1/2,1/2](·). Then, it holds that

ΠhEPn[λ′(f∗)]2 =
1

n

n∑
i=1

E
[
ρ′arc,1

(
σξi
)]2

,

EPnλ′′(f∗) =
1

n

n∑
i=1

Eρ′′arc,1

(
σξi
)
,

and lim sup
n→∞

nqβ/(2β+1)Rn,q
(
f̂λ,H1(β, L,M)

)
<∞.
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The rate n-β/(2β+1) is a standard S-minimax rate in the context Gaussian noise (see [34, Chapter
2]). Here, however, this rate is achieved for a large class of noise distributions.

Similarly, one can deduce the next corollary:

Corollary 2. Consider the model in Example 2, that is, a degenerate design as in (2.16) with
s > -1 and a homoscedastic noise level (σ(·) ≡ σ > 0). Let β, L, and M be positive parameters.

Moreover, let f̂λ be defined as in (2.4) with m = bβc, h � n-1/(2β+s+1), ρ(·) = ρarc,1(·) as in (2.3),
and K(·) := 1l{-1/2,1/2}(·). Then, it holds that

ΠhEPn[λ′(f∗)]2 =
hs

xs+1
0 + (1− x0)s+1

1

n

n∑
i=1

E
[
ρ′arc,1

(
σξi
)]2

,

EPnλ′′(f∗) =
hs

xs+1
0 + (1− x0)s+1

1

n

n∑
i=1

Eρ′′arc,1

(
σξi
)
,

and lim sup
n→∞

nqβ/(2β+s+1)Rn,q
(
f̂λ,H1(β, L,M)

)
<∞.

Thus, the rate n-β/(2β+s+1) is achieved. This rate is S-minimax in the nonparametric regression
with homoscedastic Gaussian noise (see [8]). Note that we have only considered examples with
homoscedastic noises here. For heteroscedastic noises, the dependence on h can be very involved
for some contrast functions (cf. Equations (2.10) and (2.11)). But, as highlighted by the next
example, this is not always the case.

Corollary 3. Consider the model (2.1) with d=1, a degenerate design as in (2.16) with s > -1,
a heteroscedastic noise level σ(·) ≡ | · −x0|α, 0 ≤ α ≤ s/2, and a noise (ξi)i with finite variance.

Let β, L, and M be positive parameters. Moreover, let f̂λ be defined as in (2.4) with m = bβc,
h � n-1/(2β+s−2α+1), ρ(·) = ρH,ln(n)(·) as in (2.2), and K(·) := 1l{-1/2,1/2}(·). Then, it holds that

ΠhEPn[λ′(f∗)]2 � hs+2α, EPnλ′′(f∗) � hs,

and
lim sup
n→∞

nqβ/(2β+s−2α+1)Rn,q
(
f̂λ,H1(β, L,M)

)
<∞.

This result illustrates the effect of small noise levels on the rate and the possible compensations
to degenerate (unfavorable) designs. In particular, if α = s/2, we get the standard minimax rate
n-β/(2β+1) as in Corollary 1. We assume that α is smaller than s/2, since otherwise the noise level
is very small and the bandwidth chosen is thus as small as possible. We also recall that the noise
level is assumed to be bounded so that we only consider the case α ≥ 0.

3. A D-adaptive Estimator for Fixed Bandwidths

In this section, we discuss the selection of the combined function λ, that is, of the kernel and the
contrast. For this, we introduce an oracle that minimizes the bound in Theorem 1 above and then
provide an estimator that mimics this oracle. This estimator is then D-adaptive, that is, adaptive
with respect to the noise and the design distributions.

To this end, we first introduce Λ := Υ × K as the set of possible combined functions λ as in
(2.4) for a given set of contrasts Υ, a given set of kernels K, and a fixed bandwidth h ∈ (0, 1]d.
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For example, one may consider a subset of the set of Huber functions indexed by the scale γ > 0
as set of contrasts Υ := {ρH,γ(·) : γ > 0}. An example for the set of kernels is the set of indicator
functions with different supports as

K := {1lS(u)(·) : u ∈ [-1/2, 1/2]d} for S(u) := [-1/2 + u1, 1/2 + u1]× · · · × [-1/2 + ud, 1/2 + ud].

This contains, in particular, the symmetric indicator kernel 1lS(0)(·). In this section, the bandwidth
h is fixed so that the bias term bh(F) in Theorem 1 is of minor importance; we then introduce the
oracle as the minimizer of the variance (2.9)

λ∗ := arg min
λ∈Λ

V(λ), (3.1)

To mimic the oracle λ∗, we propose the estimator λ̂

λ̂ := arg min
λ∈Λ

V̂(λ), where V̂(λ) :=


√

ΠhPn

[
λ′(f̂λ)

]2
+ ‖ρ′‖∞‖K‖∞ ln2(n)√

nΠh

Pnλ′′(f̂λ)


2

. (3.2)

Note that we estimate the target function f∗ by f̂λ and EPn [λ′ (f∗)]
2

and EPnλ′′ (f∗) by their

empirical versions Pn

[
λ′
(
f̂λ

)]2
and Pnλ

′′
(
f̂λ

)
, respectively. The explicit expressions for the

numerator and the denominator can be obtained using

Pn[λ′(f̂λ)]2 =
1

n

n∑
i=1

K2
h(Xi)

[
ρ′
(
Yi − f̂λ(Xi)

)]2
and Pnλ

′′(f̂λ) =
1

n

n∑
i=1

Kh(Xi)ρ
′′(Yi − f̂λ(Xi)

)
.

We now show that the estimator f̂λ̂ that results from (2.4) and (3.2) performs - up to constants

- as well as the oracle f̂λ∗ . For this, we define HF×Λ(·) as the entropy with bracketing of F × Λ
with respect to the (pseudo)metric√

ΠhEPn [κ(f1, λ1)− κ(f2, λ2)]
2 ∨

√
ΠhEPn [λ′′1(f1)− λ′′2(f2)]

2
(3.3)

for any f1, f2 ∈ F , λ1, λ2 ∈ Λ, where κ(f, λ) := λ′(f)/
(√

ΠhEPn[λ′(f∗)]2 + ‖ρ′‖∞‖K‖∞ ln2(n)√
nΠh

)
.

We compute in the appendix a bound for this entropy for the set of Huber contrasts indexed by
the scale.

Before giving the main result of this section, we give the necessary assumptions.

Condition 2. Let Λ = Υ × K be a set of functions as in (2.4) where Υ is a set of contrasts as
in Definition 2 and K is a set of kernels as in Definition 1, n ∈ {1, 2, . . .}, and h ∈ (0, 1]d. We
say that Condition 2 is satisfied if the smallest eigenvalue Φh (defined in Condition 1) is positive,
nΠh ≥ ln4(n), and, defining for any λ ∈ Λ

δ∗h(λ) :=
2|P|2

Φh

E[Kh(X)]bh(F) +
54‖ρ′‖∞

(√
E[ΠhK2

h(X)] + ‖K‖∞√
nΠh

)
√
nΠh

(
ln(n|P|) +

∫ 1

0
H

1/2
F×Λ(u)du+HF×Λ(1)

)-1
 ,

it holds for all λ ∈ Λ

4(bh(F) + δ∗h(λ)) ≤ inf
x∈Vh

1

n

n∑
i=1

E [ρ′′ (σ(x)ξi)] . (3.4)
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Condition 3. Additionally, we say that Condition 3 is satisfied if, defining

sh(λ) := (1 ∨ 2‖K‖∞) [δ∗h(λ) + bh(F)]+27

(
1 ∨ ‖K‖∞‖ρ′‖2∞

)
√
nΠh

(
ln(n|P|) +

∫ 1

0

H
1/2
F×Λ(u)du+HF×Λ(1)

)
,

it holds for all λ ∈ Λ

sh(λ) ≤ 1

2‖K‖∞
min

{
EPnλ′′(f∗),ΠhEPn [λ′(f∗)]

2
}
. (3.5)

We discuss the above conditions after the following result:

Theorem 2. Let Λ be a set of functions as in (2.4), n ∈ {1, 2, . . .}, and h ∈ (0, 1]d such that
Conditions 2 and 3 are satisfied. Then, for all q ≥ 1,

E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q ≤ Tq (bh(F) +

[
27

∫ 1

0

H
1/2
F×Λ(u)du+

4HF×Λ(1)

ln2(n)
+ 1

] √
V(λ∗)√
nΠh

)q
+

5(2M)q

n2

for a constant Tq (Tq = 2q|P|117q Gamma(q) works, where Gamma(·) is the classical Gamma
function).

Remark 3. Apart from the given assumptions, the estimator f̂λ̂(x0) does not premise knowledge
about the noise level σ(·) and the densities gi(·) and µ(·) but achieves - up to constants - the
optimal variance term V(λ∗) for all such functions. The estimator is thus called D-adaptive optimal
(with respect to the set Λ). For example, for the Huber contrast (2.2) indexed by the scale γ,
Υ := {ρH,γ(·) : γ > 0}, the estimator is D-adaptive minimax (Huber minimax) for the set of
contamination models, see Section A.1 in the arxiv version. Finally, we mention that appropriate
choices of the bandwidth h in the above result lead to S-minimax results.

Discussion of Conditions 2 and 3: Condition 2 limits the possible sets of combined functions
Λ and thus, in particular, the sets of possible contrast functions Υ. It demands that all possible
combined functions λ ∈ Λ fulfill Condition 1, which then leads to consistent estimators (see Propo-
sition 1) and to sets of contrast with finite entropy. Condition 2 demands, in particular, that the
right hand side of (3.4) is positive and, since the right hand side of (3.4) is upper bounded by 1,
that supρ∈Υ ‖ρ′‖∞ does not increase too rapidly with n.
In the following, we illustrate these restrictions with an example. We consider a homoscedastic
model (σ(·) ≡ σ > 0) and Υ equal to a set of Huber contrasts ρH,γ(·) as in (2.2) with scale param-
eter γ ∈ [γ−, γ

+], γ+ ≥ γ− > 0. It holds that supρ∈Υ ‖ρ′H,γ‖∞ = γ+. This implies that γ+ must
not increase too rapidly with n. Moreover, it must hold that

1

n

n∑
i=1

E
[
ρ′′H,γ (σξi)

]
=

∫ γ/σ

-γ/σ

1

n

n∑
i=1

gi(z)dz ≥
∫ γ−/σ

-γ−/σ

1

n

n∑
i=1

gi(z)dz > 0.

For noise densities that are positive and continuous in the origin, this condition is verified for all
γ− > 0. For more involved noise densities (vanished at the origin), however, γ− has to be chosen
sufficiently large.

Condition 3 is similar to Condition 2 since sh(λ) � δ∗h(λ). However, the terms in the minimum
on the right hand side of (3.5), can be small for a certain design and noise level. The second term,
vanishes if σ(·) ≡ 0 since ρ′(0) = 0. Moreover, if the design degenerates (as in (2.16)) with a large

s, EPnλ′′(f∗) and ΠhEPn [λ′(f∗)]
2

then tend to zero faster than sh(λ) as n → ∞(cf. (2.10) and

(2.11)). This is due to the estimation of EPnλ′′(f∗) and ΠhEPn [λ′(f∗)]
2
: if σ(·) ≡ 0 or if the design

degenerates, the above terms are small (cf. (2.9)), and thus, the estimation error of them (which
is related to sh(·)) obstructs their behavior.
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4. A D-adaptive and S-adaptive Estimator

In this section, we introduce an estimator of f∗(x0) that is simultaneously S- and D-adaptive.
For this, we apply the data-driven procedure introduced above to select the contrast and the kernel
and a modification of the data-driven Lepski’s method to select the bandwidth. In the first part,
we consider isotropic, locally polynomial target functions, in the second part anisotropic, locally
constant functions. To simplify the exposition, we present asymptotic results only.

The LPA is designed for functions that can be locally approximated by polynomials. This is,
for example, the case for Hölder classes, which we define (similarly as in [4]) as

Definition 4. Let ~β := (β1, . . . , βd) ∈]0,+∞[d such that bβ1c = . . . = bβdc =: bβc, and let

L,M > 0. The function s : [0, 1]d → [-M,M ] belongs to the anisotropic Hölder Class Hd(~β, L,M)
if for all x, x0 ∈ [0, 1]d

|s(x)− P(s)(x− x0)| ≤ L

d∑
j=1

|xj − x0,j |βj and

∑
p∈Sbβc

sup
x∈[0,1]d

∣∣∣∣ ∂|p|s(x)

∂xp1

1 · · · ∂x
pd
d

∣∣∣∣ ≤ M,

where P(s)(x − x0) is the Taylor polynomial of s of order bβc at x0, and xj and x0,j are the jth
components of x and x0, respectively.

The parameter ~β is usually unknown; thus, it is desirable to have an estimator that is adaptive

with respect to ~β. This motivates the following definition, where Ψ :=
{
ψn(~β)

}
~β∈M

is a given

family of normalizations for a set of parameters M:

Definition 5. The family Ψ is called admissible if there exists an estimator f̂n such that

lim sup
n→∞

sup
~β∈M

ψ−qn (~β)Rn,q
(
f̂n,Hd(~β, L,M)

)
<∞.

The estimator f̂n is then called Ψ-adaptive in the S-minimax sense.

We distinguish two cases in the following: First, we consider the special case of isotropic Hölder
classes, that is, β1 = . . . = βd. These classes only require a common bandwidth for all dimensions
that is chosen with the standard version of Lepski’s method (see [22] and [24]). Afterwards, we allow
for anisotropic Hölder classes. These classes necessitate a separate bandwidth for every dimension
of the domain under consideration. The standard version of Lepski’s Method is not applicable in
this case, because it requires a monotonous bias. We circumvent this problem using a modified
version of Lepski’s method as described in [19] and [23].

4.1. A Fully Adaptive Estimator for Isotropic, Locally Polynomial
Functions

Here, we consider isotropic Hölder classes with β ∈ (0,m+1], wherem is the degree of the estima-

tor f̂λ and may be chosen arbitrarily large. Therefore, only one bandwidth hiso = h1 = . . . = hd > 0
has to be selected. Geometrically, this means that we select a hypercube in Rd with edge length
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hiso as domain of interest (in contrast to the anisotropic case, where we select a hyperrectangle
with edge lengths h1, . . . , hd).

A major issue is the choice of the bandwidth. In the following, we assume that the variance
term V(λhiso)/(nhdiso) for (see Definitions (2.4) and (2.9))

λhiso
(f)(x, y) := ρ

(
y − f(x)

)
Khiso

(x) for all x ∈ [0, 1]d, y ∈ R,

is decreasing in the bandwidth so that we can apply Lepski’s method. This imposes an additional
restriction on the design and the noise. After the main result of this section, we give some examples
for designs and noises that fulfill this restriction. Next, we introduce the set of bandwidths Hiso :=
[h−, h

+], where 0 < h− < h+ < 1 are defined as (cf. (2.15))

h− :=
ln6/d(n)

n1/d
and h+ :=

1

ln(n)
. (4.1)

Since the inequality h− < h+ has to be satisfied, n is required to be large enough. We then
introduce the isotropic M-estimator for any hiso ∈ Hiso as

f̂hiso

iso := arg min
f∈F

Pnλ̂hiso(f),

where
λ̂hiso = arg min

λhiso
∈Λ

V̂(λhiso)

and V̂(·) is defined in (2.9). Eventually, we introduce a net Hiso
ε := {hiso ∈ Hiso, ∃m ∈ N :

hiso = h+εm}, ε ∈ (0, 1), such that 1 ≤ |Hiso
ε | ≤ n and then apply Lepski’s method for isotropic

functions (see [22] and [24]) to define the data-driven bandwidth ĥiso:

ĥiso := max

hiso ∈ Hiso
ε :

∣∣∣f̂hiso

iso (x0)− f̂h
′
iso

iso (x0)
∣∣∣ ≤ 15

√
2(B + isoε(n))

√
V̂(λ̂h′iso)

n(h′iso)d
,

for all h′iso ∈ Hiso
ε such that h′iso ≤ hiso

}
, (4.2)

where isoε(n) := 11
√

ln(n|Hiso
ε |) and B := 27

∫ 1

0
H

1/2
F×Λ(u)du+ 4HF×Λ(1)

ln2(n)
.

We now obtain on isotropic Hölder classes Hiso
d (β, L,M) := Hd((β, . . . , β), L,M), for all β, L,M >

0 the following result:

Theorem 3. Let Λ be a set of combined functions as in (2.4) and n ∈ {1, 2, . . .} such that
Conditions 2 and 3 are satisfied for all hiso ∈ Hiso. Then, for any x0 ∈ (0, 1)d, any β ∈ (0,m+ 1],
and any L > 0, there exists a universal positive constant C > 0 such that

Rn,q
[
f̂ ĥiso

iso (x0),Hiso
d (β, L,M)

]
≤ C inf

hiso∈Hiso

{
Ldhβiso + isoε(n)

√
V(λ∗hiso

)

nhdiso

}q
as n→∞.

Remark 4. This oracle inequality like result shows the simultaneous S- and D-adaptation of
the estimator. It generalizes results in [6], which rely on the asymptotic equivalence of the block
median method, in two important aspects: First, it allows for heteroscedastic regression models with
random designs. Second, it does not require that the noise densities are positive at their median
and thus allows for a wider range densities. Finally, we note that Lepski’s method has been used for
locally constant M-estimators in [27] but - to the best of our knowledge - never to locally polynomial
M-estimators as it is done here.
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Remark 5. If only S-adaptation is considered, the conditions on n can be considerably relaxed.

In fact, assuming that V(λ ·) is known, the estimator f̂λh̃iso
of (2.4) can be applied instead of f̂ ĥiso

iso ,

where h̃iso is selected from (4.2) replacing V̂(λ̂h′iso) by V(λh′iso). The Conditions 2 and 3 can then
be replaced by Condition 1.

Remark 6. The variance term is decreasing for settings with indicator kernels and homoscedastic
noise levels (as one can check easily starting from (2.9)); for settings with indicator kernels, Huber
contrasts, σ(·) = 1 + | · −x0|α for a α ∈ [0,≤ 1/2], and d = 1; and for many other settings. On
the contrary, the variance term can be increasing, for example, if the noise level is symmetric in
x0 and convex.

Corollary 4. Consider the model in Example 1 in the previous section with µ(·) ≡ 1 (uniform
design) and σ(·) ≡ 1 (homoscdastic noise level). For any β ∈ (0,m + 1] and any L > 0, it holds
that

lim sup
n→∞

(
n

ln(n)

)qβ/(2β+d)

Rn,q
[
f̂ ĥiso

iso (x0),Hiso
d (β, L,M)

]
<∞.

This corollary can be deduced minimizing the term on the right hand side of the last theorem with
a standard bias/variance trade-off.

Remark 7. The rate (ln(n)/n)
β/(2β+1)

in the above corollary is admissible (cf. Definition 5)
over isotropic Hölder spaces and is asymptotically optimal (see [5] and [22]) up to the logarithm
ln(n), which is the usual price for the adapativity (see Section 5 for more details). Moreover, the
approach used to deduce the above corollary presumes uniform designs and homescedastic noises;
however, more elaborate approaches, perhaps similar to the ones in [9], may lead to comparable
results for degenerate designs.

4.2. A Fully Adaptive Estimator for Anisotropic, Locally Constant
Functions

In this part, we allow for anisotropic Hölder classes and bandwidths. In return, we restrict our-
selves to locally constant functions, that is, m = 0 (and thus |P| = 1) and F = [-M,M ]. Moreover,
we restrict ourselves to uniform designs (µ(·) ≡ 1) and homoscedastic (σ(·) ≡ σ ≥ 0) and identi-
cally distributed noise (gi(·) ≡ g(·) for all i = 1, . . . , n). For this setting, we introduce an S- and
D-adaptive estimator of f∗(x0). The main properties of this estimator are given in Theorem 4.

We introduce an estimator for each bandwidth in the set H := [h−, h
+]d, where h− and h+ are

defined in the previous section. For this, we define the variance term as

V(ρ,K) :=


√∫ [

ρ′(σz)
]2
g(z)dz + ‖ρ′‖∞‖K‖∞ ln2(n)√

nhd−∫
ρ′′(σz)g(z)dz


2

, (4.3)

and the oracle for a set of contrasts Υ and a set of kernels K as

(ρ∗,K∗) := arg min
ρ∈Υ, K∈K

V(ρ,K). (4.4)
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Next, we introduce an estimator of the variance term as

V̂(ρ,K) :=


√

1
n

∑n
i=1

[
ρ′(Yi − f̂λh+ (Xi))

]2
+ ‖ρ′‖∞‖K‖∞ ln2(n)√

nhd−

1
n

∑n
i=1 ρ

′′(Yi − f̂λh+ (Xi))


2

, (4.5)

where f̂λh+ is defined in (2.4) with λ = λh+(f)(x, y) := ρ
(
y − f(x)

)
Kh+(x), and an estimator of

the oracle as
(ρ̂, K̂) := arg min

ρ∈Υ, K∈K
V̂(ρ,K). (4.6)

We stress that the variance term V , the oracle (ρ∗,K∗), and their estimators V̂ and (ρ̂, K̂) are

independent of the bandwidth. We can finally introduce the desired estimator f̂h for all h ∈ H:

f̂h := arg min
f∈F

n-1
∑
i

ρ̂(Yi − f(Xi))K̂h(Xi). (4.7)

The crucial step is now the choice of the bandwidth with a modified version of Lepski’s method
(see [19] and [20]). First, we define for all a, b ∈ R the scalar a∨ b := max(a, b) and for all h, h′ ∈ H
the vector h ∨ h′ := (h1 ∨ h′1, . . . , hd ∨ h′d). We then consider the two families of Locally Constant
Approximation (LCA) estimators (provoked by (4.7)){

f̂h
}
h∈H

and
{
f̂h,h

′
:= f̂h∨h

′
}
h,h′∈H2

.

Note that f̂h,h
′

= f̂h
′,h (commutativity). Similarly as above, we then introduce a net Hε :=

{(h−, . . . , h−)} ∪ {h ∈ H : ∀j = 1, . . . , d ∃mj ∈ N : hj = h+εmj} , ε ∈ (0, 1), such that |Hε| ≤ n

and set aniε(n) := 11
√

ln(n|Hε|). We finally select the bandwidth according to

ĥ := max
�

h ∈ Hε :
∣∣∣f̂h,h′(x0)− f̂h

′
(x0)

∣∣∣ ≤ 16(B + aniε(n))

√
V̂(ρ̂, K̂)

nΠh′

for all h′ ∈ Hε such that h′ � h
}
. (4.8)

The maximum is taken with respect to the order � which we define as h � h′ ⇔
∏d
j=1 hj ≤∏d

j=1 h
′
j . Note, in particular, that the right hand side of (4.8) is decreasing with respect to this

order.

The above choice of the bandwidth leads to the estimator f̂ ĥ with the following properties:

Theorem 4. Let Λ be a set of combined functions as in (2.4) and let n ∈ {1, 2, . . .} such that

Conditions 2 and 3 are satisfied for all h ∈ H. Then, for any x0 ∈ (0, 1)d, any ~β ∈ (0, 1]d, and any
L > 0, there exists a universal constant C such that

Rn,q
[
f̂ ĥ(x0),Hd(~β, L,M)

]
≤ C inf

h∈H

L
d∑
j=1

h
βj
j + aniε(n)

√
V(ρ∗,K∗)

nΠh


q

.

We can also derive the following corollary from Theorem 4 via a bias/variance trade-off:
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Corollary 5. For any ~β ∈ (0, 1]d and any L > 0, it holds that

lim sup
n→∞

(
n

ln(n)

)qβ̄/(2β̄+1)

Rn,q
[
f̂ ĥ(x0),Hd(~β, L,M)

]
<∞,

where β̄ :=
(∑

j 1/βj

)-1
is the harmonic average.

Remark 8. In contrast to the previous part, only locally constant functions are considered here,
which is due to the bias term (cf. Lemma 6). To the best of our knowledge, the presented choice
of the bandwidth is the first application of the anisotropic Lepski’s principle ([23], see also [12, 19,
20]) for the selection of an anisotropic bandwidth for nonlinear M-estimators. We also note that,

comparing the adaptive rate (ln(n)/n)
β̄/(2β̄+1)

with the optimal rate in the white noise model (see
[20]), for example, one finds that this rate is nearly optimal. We finally refer to the remarks after
Theorem 3.

5. Discussion

Let us detail on the assumptions and restrictions and highlight some open problems:

1. Instead of assuming that the densities gi(·) are symmetric (cf. [15, 29]), it is sufficient that the
sum

∑
i gi(·) is symmetric. We are, however, not aware of examples where this generalization

is relevant.

2. The variance of the median estimator is 1/(4g2(0)) which implies a strong sensitive to the
noise density at 0. Moreover, the estimation of g(0) (see [6], for example) requires many
observations near f(x0) in practice. On the contrary, Huber contrast with scale γ (allowed
by our approach), the denominator of the variance term (2.9) depends on the mass of the
noise density on the interval [-γ, γ] instead of the mass at 0.

3. To estimate the variance term (2.9), we plug an estimate Yi− f̂λ of the residuals. Condition 2
ensures the consistency of all estimators in Λ. This is considerably restrictive on the initial
family Λ. This problem can be circumvented using a pre-estimator (for example, with the

contrast (2.3)) instead of f̂λ for the estimation of the variance.

4. Lepski’s method is very sensitive to outliers (see [27]). To complement it with the adaptive
robustness of the estimator via the minimization of the variance term can thus be interesting
for many applications.

5. The variance term and its empirical version do not depend on the bias term (see Theorem 1,
Definition (3.2), and Remark 2) and, more generally, not on the specific model. The procedure
presented in this paper may thus be interesting for other models, such as high dimensional
settings (cf. [21]), for example.

6. The quantity 15
√

2(B + isoε(n)) in the threshold term in (4.2) contains the factor ln(n) and
known but large constants. For applications, it should usually be chosen considerably smaller
(see [24]) and can probably be tuned with the propagation method [28], for example.

7. As mentioned in the introduction, Lepski-type procedures are also useful to get S-adaptive
confident bands (see [11] and references therein). This requires deviation inequalities that can
be derived along the presented lines (see Proposition 3) but also a lower bound for the bias
term of the estimator (cf. [11, Condition 3, Section 3.2 and Section 3.5 for Discussion]), which
seems not to be available here, since robust M-estimators - and thus the bias term - do not
have explicit expressions. For our purposes, we circumvent this issue by using the bias term of
the criterions’s derivative as an estimator of the expected criterion’s derivative, see Lemmas 1
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and 2. However, this way, we only obtain an upper bound. We therefore suggest to establish
first S-adaptive confidence bands for the criterion’s derivative viewed as an estimator and
then, using the smoothness of the contrast, confidence bands with respect to a pointwise
semi-norm or sup-norm.

6. Proofs of the Main Results

Let us introduce some additional notation to simplify the exposition. For this, we introduce

Fδ :=
{
f = Pt ∈ F : ‖t− t0‖`1 ≤ δ

}
(6.1)

as a ball in F with radius δ > 0 centered at f0. Furthermore, we denote the column vector of
partial derivatives of the criterion Pnλ(·) (defined in (2.4)) by

D̃λ(Pt) :=

(
-
∂

∂tp
Pnλ(Pt)

)
p∈P

for all t ∈ R|P|, (6.2)

and the “parametric” expectation with respect to the distribution E0 of (X, f0(X) + σ(X)ξ) by

E0
[
D̃λ(·)

]
. (6.3)

Next, for all t ∈ R|P|, we introduce the Jacobian matrix JD of E0
[
D̃λ

]
as

(
JD(Pt)

)
p,q∈P :=

(
∂

∂tq
E0
[
D̃p
λ(Pt)

])
p,q∈P

=

(
∂

∂tq
E0

[
-
∂

∂tp
Pnλ(Pt)

])
p,q∈P

, (6.4)

where D̃p
λ(·) is the p-th component of D̃λ(·). The Jacobian matrix exists according to Definition 2

and Fubini’s Theorem. Furthermore, the sup-norm on R|P| is denoted by ‖ · ‖`∞ , and the vector

of coefficients of the estimated polynomial f̂λ is denoted by t̂λ. Moreover, we set

cλ := EPnλ′′(f∗) (6.5)

and bh := bh(F). We finally define λ′∞ := ‖ρ′‖∞‖K‖∞ and for any z ≥ 0

Bz := 27

∫ 1

0

H
1/2
F×Λ(u)du+

4HF×Λ(1)

ln2(n)
+ 7
√

2z +
2z

ln2(n)
. (6.6)

6.1. Auxilliary Results

The following propositions are basic for the proofs of the main results. The proofs of the propo-
sitions are given in the Appendix.

Proposition 1. Let Λ = Υ×K be a set of functions as in (2.4) where Υ is a set of contrasts as
in Definition 2 and K is a set of kernels as in Definition 1. Let n ∈ {1, 2, . . .} and h ∈ (0, 1]d be

such that Condition 2 is satisfied. Then, P
(⋂

λ∈Λ

{
f̂λ ∈ Fδ∗h(λ)

})
≥ 1−n-2, where δ∗h(·) is defined

in Condition 2.

The following proposition allows us to control the deviations of the process D̃λ(·):



A Fully Adaptive Pointwise M-estimator 19

Proposition 2. For any z ≥ 0, it holds that

P

sup
λ∈Λ

sup
f∈Fδ∗

h
(λ)

‖D̃λ(f)− E
[
D̃λ(f)

]
‖`∞√

ΠhEPn [λ′(f∗)]
2

+ λ′∞
ln2(n)√
nΠh

≥ Bz√
nΠh

 ≤ 2|P| exp(-z),

where Bz is defined in (6.6).

This proposition is directly deduced from Massart’s Inequality (see the arxiv version for details).

Proposition 3. Let Λ be a set of functions as in (2.4), n ∈ {1, 2, . . .}, and h ∈ (0, 1]d be such
that Condition 2 is satisfied. Then, for any z ≥ 0, it holds that

P

({
sup
λ∈Λ

[∣∣f̂λ(x0)− f∗(x0)
∣∣− 2

√
V(λ)Bz√
nΠh

]
≥ 3bh

}
∩
⋂
λ∈Λ

{
f̂λ ∈ Fδ∗h(λ)

})
≤ 2|P| exp(-z).

We note that the constants 2 and 3 can be replaced by o(1).

Proposition 4. Let Λ = Υ×K be a set of functions as in (2.4) where Υ is a set of contrasts as
in Definition 2 and K is a set of kernels as in Definition 1. Let n ∈ {1, 2, . . .} and h ∈ (0, 1]d be
such that Condition 2 is satisfied.

Then, P (∆) ≥ 1− 5/n2, where ∆ :=
⋂
λ∈Λ

{√
V̂(λ) ∈

[√
2

3

√
V(λ),

√
6
√

V(λ)
]}

.

We note that the constants
√

2/3 and
√

6 can be replaced by o(1).

6.2. Proof of Theorem 2

First, we set ∆ :=
⋂
λ∈Λ

{√
V̂(λ) ∈

[√
2

3

√
V(λ),

√
6
√

V(λ)
]}

. Then, we observe that, since

f̂λ̂ ∈ F , supf∈F |f(x0)| ≤M , and |f∗(x0)| ≤M , the risk can be bounded by

E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q = E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q1l∆ + E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q1l∆c

≤ E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q1l∆ + (2M)qP(∆c).

Using Proposition 4, Lemma 3, the last inequality, and simple computations, we obtain

E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q ≤ E
∣∣f̂λ̂(x0)− f∗(x0)

∣∣q1l∆ + 5(2M)q/n2

≤ 2qE

(∣∣f̂λ̂(x0)− f∗(x0)
∣∣− 3bh −

6
√

3 V(λ∗)B0√
nΠh

)q
+

1l∆

+ 2q

(
3bh +

6
√

3 V(λ∗)B0√
nΠh

)q
+ 5(2M)q/n2. (6.7)

Let us now bound the first term on the right hand side of the last inequality. To do so, we note
that on the event ∆ √

V(λ∗) ≥

√
V̂(λ∗)

6
≥

√
V̂(λ̂)

6
≥

√
V(λ̂)

27
. (6.8)
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Using the last inequality and integrating the result of Proposition 3 with ε = 10
√
z + 2z

ln2(n)
, we

get (for more details see the arxiv version)

E

(∣∣f̂λ̂(x0)− f∗(x0)
∣∣− 3bh −

6
√

3 V(λ∗)B0√
nΠh

)q
+

1l∆ ≤ Tq

(
bh +

√
V(λ∗)B0√
nΠh

)q
.

From (6.7) and the last inequality, the theorem can be deduced.

6.3. Proof of Theorem 3

For ease of exposition, we set B0 = B (cf. (6.6)), k := hiso, and k̂ := ĥiso. Then, one may verify
that the oracle bandwidth

k∗ := arg min
k∈Hiso

{
Ldkβ + c(B0 + isoε(n))

√
V(λ∗k)

nkd

}

is well defined, where c is a constant chosen such that both terms are equal at the point k∗. Next,
from Propositions 1 and 4 with h = (k, . . . , k), it follows that

P
(
∃k ∈ Hiso

ε ,∃λk ∈ Λ : f̂kiso /∈ Fδ∗k(λk)

)
≤

∑
k∈Hiso

ε

n-2 ≤ n-1 (6.9)

and ∑
k∈Hiso

ε

P (∆c
k) ≤

∑
k∈Hiso

ε

5

n2
≤ 5n-1, (6.10)

where ∆k := ∆ is defined in Proposition 4. Thus, we may restrict our considerations to the event⋂
k∈Hiso

ε ,λk∈Λ

{
f̂kiso ∈ Fδ∗k(λk)

}
∩∆k, since we are only interested in the asymptotic behavior. We

now introduce k∗ε ∈ Hiso
ε such that k∗ε ≤ k∗ ≤ ε-1k∗ε .

Control of the risk on the event {k∗ε ≤ k̂}. With the triangular inequality and Lemma 3, we
obtain∣∣f̂ k̂iso(x0)− f∗(x0)

∣∣q1lk∗ε≤k̂ ≤ 2q−1
(∣∣f̂ k̂iso(x0)− f̂k

∗
ε

iso(x0)
∣∣q1lk∗ε≤k̂ +

∣∣f̂k∗εiso(x0)− f∗(x0)
∣∣q) . (6.11)

The first term on the right hand side of the last inequality is controlled using the procedure (4.2)
to obtain

E
[∣∣f̂ k̂iso(x0)− f̂k

∗
ε

iso(x0)
∣∣q1lk∗ε≤k̂] ≤ E

15
√

2

√
V̂(λ̂k∗ε )(B0 + isoε(n))√

n(k∗ε )d

q .
On the event

⋂
k∈Hiso

ε
∆k, we get similarly as in (6.8)

E
[∣∣f̂ k̂iso(x0)− f̂k

∗
ε

iso(x0)
∣∣q1lk∗ε≤k̂] ≤

45
√

6

√
V(λ∗k∗ε

)(B0 + isoε(n))√
n(k∗ε )d

q

.
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Recall that, by the definitions of the Hölder classes (Definition 4), we can control the bias for any
β ∈ (0,m+ 1] and any k > 0 by

bk ≤ sup
x∈Vk

|P(f∗)(x− x0)− f∗(x)| ≤ Ldkβ , (6.12)

where P(f∗)(x−x0) is the Taylor Polynomial of f∗ at x0. So we can finally deduce from Theorem 2
with h = (k, . . . , k) and bh = bk a bound for the second term in (6.11) for n sufficiently large:

E
∣∣f̂k∗εiso(x0)− f∗(x0)

∣∣q ≤ C1
Ld(k∗ε )β +

√
V(λ∗k∗ε

)

n(k∗ε )d

q

,

where C1 is a universal constant. Using (6.11) and the above inequalities, we have a control of the

risk on the event {k∗ε ≤ k̂}:

E
[∣∣f̂ k̂iso(x0)− f∗(x0)

∣∣q1lk∗ε≤k̂] ≤ C2
Ld(k∗ε )β + (B0 + isoε(n))

√
V(λ∗k∗ε

)

n(k∗ε )d

q

, (6.13)

where C1 is also a universal constant.

Control of the risk on the event {k∗ε > k̂}. In order to control the risk on the complementary
event, we observe that

E
[∣∣f̂ k̂iso(x0)− f∗(x0)

∣∣q1lk∗ε>k̂] ≤ (2M)qP(k∗ε > k̂). (6.14)

We now show that the probability P(k∗ε > k̂) is small. According to the procedure (4.2), we have

P(k∗ε > k̂) ≤ P

∃k′ ∈ H, k′ < k∗ε :
∣∣∣f̂k∗εiso(x0)− f̂k

′

iso(x0)
∣∣∣ > 15

√
2

√
V̂(λ̂k′)(B0 + isoε(n))√

n(k′)d


≤ 2

∑
k′∈Hiso

ε : k′≤k∗ε

P

∣∣∣f̂k′iso(x0)− f∗(x0)
∣∣∣ > 15√

2

√
V̂(λ̂k′)(B0 + isoε(n))√

n(k′)d

 .

On the event
⋂
k∈Hiso

ε
∆k, we get similarly as in (6.8)

P(k∗ε > k̂) ≤ 2
∑

k′∈Hiso
ε : k′≤k∗ε

P

∣∣∣f̂k′iso(x0)− f∗(x0)
∣∣∣ > 5

√
V(λ̂k′)(B0 + isoε(n))√

n(k′)d

 .

Consequently,

P(k∗ε > k̂) ≤ 2
∑

k′∈Hiso
ε : k′≤k∗ε

P

∣∣∣f̂k′iso(x0)− f∗(x0)
∣∣∣ > 5

√
V(λ̂k′)(B0 + isoε(n))√

n(k′)d

 . (6.15)

By definition, the oracle bandwidth k∗ is the one which gives the best trade-off. Thus, that the
variance is decreasing, we obtain for all k′ ≤ k∗ε ≤ k∗

Ld(k′)β ≤ Ld(k∗ε )β ≤ Ld(k∗)β =

√
V(λ∗k∗)(B0 + isoε(n))√

n(k∗)d

≤

√
V(λ∗k∗ε

)(B0 + isoε(n))√
n(k∗ε )d

≤
√

V(λ∗k′)(B0 + isoε(n))√
n(k′)d

≤

√
V(λ̂k′)(B0 + isoε(n))√

n(k′)d
.
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From (6.12), (6.15), and the last inequality, we get

P(k∗ε > k̂) ≤ 2
∑

k′∈Hiso
ε : k′≤k∗ε

P

∣∣∣f̂k′iso(x0)− f∗(x0)
∣∣∣ > 2

√
V(λ̂k′)(B0 + isoε(n))√

n(k′)d
+ 3bk′


≤ 2

∑
k′∈Hiso

ε : k′≤k∗ε

P

(
sup
λk′∈Λ

[∣∣∣f̂k′iso(x0)− f∗(x0)
∣∣∣− 2

√
V(λk′)(B0 + isoε(n))√

n(k′)d

]
> 3bk′

)
.

Since isoε(n)/ ln2(n) ≤ 1 for n sufficiently large, using the definition of isoε(n), Proposition 3 with
h = (k′, . . . , k′), λ = λk′ , and z such that Bz = (B0 + isoε(n)), we obtain

P(k∗ε > k̂) ≤ 4|P|
∑

k′∈Hiso
ε : k′≤k∗ε

exp

(
− (isoε(n))2

100 + 4 isoε(n)/ ln2(n)

)
≤ 4|P|n-1.

Then, in view of the last inequality, (6.9), (6.10), (6.13), and (6.14), we conclude that

E
∣∣f̂ ĥ(x0)− f∗(x0)

∣∣q ≤ C2
Ld(k∗ε )β + (B0 + isoε(n))

√
V(λ∗k∗ε

)

n(k∗ε )d

q

as n→∞.

By definition of k∗ and k∗ε in the beginning of the proof, the claim is proved.

6.4. Proof of Theorem 4

We set B = B0. One may then verify that the oracle bandwidth

h∗ := arg min
h∈H

L
d∑
j=1

β-1
j (hj)

βj + 2

√
V(ρ∗,K∗)(B0 + aniε(n))

d
√
nΠh


is well defined. Define now the element h∗ε of Hε such that for all j = 1, . . . , d, h∗ε,j ≤ h∗j ≤ ε-1h∗ε,j .
We then note that the estimator f̂h is a constant function and f0 ≡ f∗(x0), since we only consider
locally constant functions (|P| = 1). To stress the importance of the bandwidth, we set for any
h ∈ H, D̃h(·) := D̃λ̃h

(·) = n-1
∑
i ρ̂
′(Yi − ·)K̂h(Xi) and

Dh(·) := E
[
D̃λ̃h

(·)
]

=

∫
K̂h(x)

∫
ρ̂′
(
σz + f∗(x)− ·

)
g(z)dzdx. (6.16)

Here, λ̃h(f)(x, y) := ρ̂(y− f(x))K̂h(x) and (ρ̂, K̂) and D̃λ(·) are defined in (4.6) and (6.2), respec-
tively. Next, for uniform designs and homoscedastic noise levels, the quantity cλh

cλh = cρ :=

∫
ρ′′(σz)g(z)dz, (6.17)

simplifies for any λh and does not depend on h. Moreover, according to Lemma 4, we have for any
h ∈ H, any λ ∈ Λ, and any two constant functions f, f̃ ∈ Fδ∗h(λ)

|f − f̃ | ≤ 4

3
c-1ρ̂ |Dh(f)−Dh(f̃)|. (6.18)
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Furthermore, from Propositions 1 and 4, it follows that

P
(
∃h ∈ Hε,∃λh ∈ Λ : f̂h /∈ Fδ∗h(λh)

)
≤
∑
h∈Hε

n-2 ≤ n-1 (6.19)

and ∑
h∈Hε

P (∆c
h) ≤

∑
h∈Hε

5

n2
≤ 5n-1, (6.20)

where ∆h := ∆ is defined in Proposition 4. Thus, we may restrict our considerations to the

event
⋂
h∈Hε,λh∈Λ

{
f̂h ∈ Fδ∗h(λh)

}
∩∆h, since we are only interested on the asymptotic behavior.

Moreover, we work on the event A := {h∗ε � ĥ} and its complement Ac separately. For this,

we decompose the risk into RA

(
f̂h, f∗

)
:= E

[∣∣f̂h(x0)− f∗(x0)
∣∣q1l{A}] and RAc

(
f̂h, f∗

)
:=

E
[∣∣f̂h(x0)− f∗(x0)

∣∣q1l{Ac}].
Control of the risk on the event A. With the triangular inequality and Lemma 3, we obtain

RA

(
f̂ ĥ, f∗

)
≤ 3q−1

[
RA

(
f̂h
∗
ε ,ĥ, f̂ ĥ

)
+RA

(
f̂ ĥ,h

∗
ε , f̂h

∗
ε

)
+RA

(
f̂h
∗
ε , f∗

)]
. (6.21)

Let us now control the first term on the right hand side of the last inequality. First, we observe
that

RA

(
f̂h
∗
ε ,ĥ, f̂ ĥ

)
≤ E sup

h∈H : h�h∗ε

∣∣f̂h∗ε ,h(x0)− f̂h(x0)
∣∣q. (6.22)

Using (6.18) and taking f = f̂h
∗
ε ,h and f̃ = f̂h, we then have∣∣f̂h∗ε ,h(x0)− f̂h(x0)

∣∣ ≤ 2c-1ρ̂

∣∣∣Dh(f̂h∗ε ,h)−Dh(f̂h)∣∣∣ .
Recall that, by definition, D̃h(f̂h) = 0 for all h ∈ H. We then obtain from the last inequality for
any h ∈ H∣∣f̂h∗ε ,h(x0)− f̂h(x0)

∣∣ ≤ 2c-1ρ̂

(∣∣∣Dh(f̂h∗ε ,h)−Dh∗ε∨h(f̂h∗ε ,h)∣∣∣
+
∣∣∣Dh∗ε∨h(f̂h∗ε ,h)− D̃h∗ε∨h(f̂h∗ε ,h)∣∣∣+

∣∣∣D̃h(f̂h)−Dh(f̂h)∣∣∣) . (6.23)

Denote by λ̂h(f)(x, y) = ρ̂
(
y − f(x)

)
K̂h(x) and δ̃h := δ∗h(λ̂h) ∨ δ∗h∨h∗ε (λ̂h∨h∗ε ), using the last

inequality and (6.22), we have

RA

(
f̂ ĥ,h

∗
ε , f̂ ĥ

)
≤2q−1Ec-qρ̂ sup

h∈Hε
sup
f∈Fδ̃h

2q
∣∣Dh(f)−Dh∗ε∨h(f)

∣∣q
+ 2q2qEc-qρ̂ sup

h∈H : h�h∗ε
sup
f∈Fδ̃h

∣∣∣D̃h(f)−Dh(f)
∣∣∣q .

Using Lemma 5 and Lemma 6 with h′ = h∗ε , there exists a universal positive constant C such that

RA

(
f̂ ĥ,h

∗
ε , f̂ ĥ

)
≤ C

L d∑
j=1

(h∗ε,j)
βj +

√
V(ρ∗,K∗)(B0 + aniε(n))√

nΠh∗ε

q

. (6.24)
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The second term on the right hand side of (6.21) is controlled by the procedure (4.8), which implies

RA

(
f̂ ĥ,h

∗
ε , f̂h

∗
ε

)
≤ E

16

√
V̂(ρ̂, K̂)(B0 + aniε(n))√

nΠh∗ε

q 1lA.

On the event
⋂
h∈Hε ∆h,

RA

(
f̂ ĥ,h

∗
ε , f̂h

∗
ε

)
≤

(
16
√

6

√
V(ρ∗,K∗)(B0 + aniε(n))√

nΠh∗ε

)q
. (6.25)

By the definition of the Hölder class (Definition 4) and bh (Definition (2.6)), we can control the

bias for any h ∈ H: bh ≤ supx∈Vh |f
∗(x0)− f∗(x)| ≤ L

∑d
j=1 h

βj
j . Finally, with Theorem 2, we can

bound the third term in (6.21): There exists a universal positive constant C such that

RA

(
f̂h
∗
ε , f∗

)
� C

L d∑
j=1

(h∗ε,j)
βj +

√
V(ρ∗,K∗)B0√

nΠh∗ε

q

.

Using (6.21), (6.24), (6.25), and the last inequality, we have a control of the risk on the event A
such that

RA

(
f̂ ĥ, f∗

)
≤ C

L d∑
j=1

(h∗ε,j)
βj +

√
V(ρ∗,K∗)(B0 + aniε(n))√

nΠh∗ε

q

, (6.26)

as n→∞ and for a universal positive constant C.

Control of the risk on the event Ac. In order to control the risk on the complementary event
Ac, we observe that

RAc
(
f̂ ĥ, f∗

)
≤ (2M)qP(Ac). (6.27)

We now show that the probability P(Ac) is small. According to the construction of the procedure
(4.8), the event Ac implies that there exists a h′ ∈ Hε such that h′ � h∗ε and

∣∣∣f̂h∗ε ,h′(x0)− f̂h
′
(x0)

∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

.

Using (6.18) and taking f = f̂h
∗
ε ,h
′

and f̃ = fh
′
, we have on the event Ac

4

3
c-1ρ̂

∣∣∣Dh′(f̂h∗ε ,h′)−Dh′(f̂h′)∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

,

From the last inequality, we obtain (cf. (6.23))

4

3
c-1ρ̂ sup

f∈Fδ̃
h′

∣∣Dh′(f)−Dh∗ε∨h′(f)
∣∣+

8

3
c-1ρ̂ sup

f∈Fδ̃
h′

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

.

Together with Lemma 6, this yields

5

3
L

d∑
j=1

(h∗ε,j)
βj +

8

3
c-1ρ̂ sup

f∈Fδ̃
h′

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

.
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On the event
⋂
h∈Hε ∆h, we get similarly as in (6.8)

5

3
L

d∑
j=1

(h∗ε,j)
βj +

8

3
c-1ρ̂ sup

f∈Fδ̃
h′

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
2

3

√
V(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

,

this implies

c-1ρ̂ sup
f∈Fδ̃

h′

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
2

8

√
V(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

− 5

8
L

d∑
j=1

(h∗ε,j)
βj .

By definition, the oracle bandwidth h∗ε is the one which gives the best trade-off. Thus by definition
of h∗ε , for all h′ � h∗ε � h∗

L
d∑
j=1

(h∗ε,j)
βj ≤ L

d∑
j=1

(h∗j )
βj =

√
V(ρ∗,K∗)(B0 + aniε(n))√

nΠh∗

≤
√

V(ρ∗,K∗)(B0 + aniε(n))√
nΠh∗ε

≤
√

V(ρ∗,K∗)(B0 + aniε(n))√
nΠh′

≤

√
V(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

.

From the last two inequalities, we obtain on the event Ac

c-1ρ̂ sup
f∈Fδ̃h

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ >

√
V(ρ̂, K̂)(B0 + aniε(n))

√
nΠh′

.

Then, we have a control of the following probability

P(Ac) ≤
∑

h′∈Hε : h′�h∗ε

P

sup
ρ,K

sup
f∈Fδ̃h

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣

cρ
√

V(ρ,K)
>
B0 + aniε(n)√

nΠh′

 .

Using aniε(n)/ ln2(n) ≤ 1 and Propostion 2 with z such that Bz = B0 + aniε(n), we deduce that

P(Ac) ≤
∑

h′∈Hε : h′�h∗ε

exp

(
− (aniε(n))2

100 + 4 aniε(n)/ ln2(n)

)
≤ n-1.

From (6.27) and the last inequality, we obtain on the event Ac: RAc
(
f̂ ĥ, f∗

)
≤ (2M)qn-1. Then,

in view of the last inequality, (6.19), (6.20), and (6.26), we conclude that there exists a universal
positive constant C such that

E
∣∣f̂ ĥ(x0)− f∗(x0)

∣∣q ≤ C
L d∑

j=1

(h∗ε,j)
βj +

√
V(ρ∗,K∗)(B0 + aniε(n))√

nΠh∗ε

q

.

With the definition of h∗ and h∗ε in the beginning of the proof, the theorem can be deduced.
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Appendix

A.1. Proofs of the Auxilliary Results

Proof of Proposition 1. In this proof, we use a special case of a deviation inequality derived
in [25, Corollary 6.9] (see the arxiv version for details). We recall that f̂λ is the solution of the
equation D̃λ(·) = 0, thanks to the continuity of ρ′(·), and we note that the following inclusion
holds:⋃

λ∈Λ

{
f̂λ /∈ Fδ∗h(λ)

}
⊆
⋃
λ∈Λ

 sup
f∈F\Fδ∗

h
(λ)

∥∥D̃λ(f)− E0
[
D̃λ(f)

]∥∥
`1
≥ inf
f∈F\Fδ∗

h
(λ)

∥∥E0
[
D̃λ(f)

]∥∥
`1


⊆

sup
λ∈Λ

 sup
f∈F\Fδ∗

h
(λ)

∥∥D̃λ(f)− E0
[
D̃λ(f)

]∥∥
`1
− inf
f∈F\Fδ∗

h
(λ)

∥∥E0
[
D̃λ(f)

]∥∥
`1

 ≥ 0

 . (A.28)

Next, it holds that∥∥D̃λ(f)−E0
[
D̃λ(f)

]∥∥
`1
≤ |P|

∥∥D̃λ(f)−E
[
D̃λ(f)

]∥∥
`∞

+ |P|
∥∥E[D̃λ(f)

]
−E0

[
D̃λ(f)

]∥∥
`∞
. (A.29)

By the definitions of E
[
D̃p
λ(·)
]

and E0
[
D̃p
λ(·)
]

in (6.3), by change of variables and using that ρ′(·)
is 1-Lipschitz we have for any f ∈ F , and any p ∈ P

sup
f∈F

∥∥E[D̃λ(f)
]
− E0

[
D̃λ(f)

]∥∥
`∞

≤
∫
µ(x)Kh(x)

∫ ∣∣ρ′(σ(x)z + f0(x)− f(x)
)
− ρ′

(
σ(x)z + f∗(x)− f(x)

)∣∣ G(z)dz dx

≤ E[Kh(X)]bh. (A.30)

To control the stochastic term, we can then apply Massart’s Inequality to get (see the arxiv version
for details)

P

 sup
λ∈Λ,f∈F

√
nΠh

∥∥D̃λ(f)− E
[
D̃λ(f)

]∥∥
`∞

‖ρ′‖∞
(√

E[ΠhK2
h(X)] + ‖K‖∞√

nΠh

) ≥ 27

∫ 1

0

H
1/2
F×Λ(u)du+ 4HF (1) + 7

√
2z + 2z


≤ 2|P| exp(-z).

Note that the factor 2 in the last inequality appears because we need to control deviations of
the absolute value of the empirical process. Using (A.29), (A.30), and the last inequality, we then
obtain for all z > 0

P

sup
λ∈Λ

sup
f∈F\Fδ∗

h
(λ)

√
nΠh

(∥∥D̃λ(f)− E0
[
D̃λ(f)

]∥∥
`1
− |P|E[Kh(X)]bh

)
‖ρ′‖∞

(√
E[ΠhK2

h(X)] + ‖K‖∞√
nΠh

)
≥ |P|

(
27

∫ 1

0

H
1/2
F×Λ(u)du+ 4HF (1) + 7

√
2z + 2z

))
≤ 2|P|e-z. (A.31)

Now, let us have a look at inff∈F\Fδ∗
h

(λ)

∥∥E0
[
D̃λ(f)

]∥∥
`1

in (A.28). By the definition of D̃λ(·) and

using that |t0p − tp| ≤ ‖t0 − t‖`1 for all p ∈ P, we have for any f ∈ F\Fδ∗h(λ)∥∥E0
[
D̃λ(f)

]∥∥
`1

=
∑
p∈P

∣∣∣∣∫ (x− x0

h

)p
µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x)− f(x)

)
G(z)dz dx

∣∣∣∣
≥
∣∣∣∣∫ f0(x)− f(x)

‖t0 − t‖`1
µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x)− f(x)

)
G(z)dz dx

∣∣∣∣ ,
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where G(·) = n-1
∑n
i=1 gi(·) and t is such that f = Pt. The last inequality is obtained using

that
∑
p∈P (t0p − tp) ((x− x0)/h)

p
= f(x) − f0(x) and the triangular inequality. Since G(·) is

symmetric, ρ′(·) increasing (because of the convexity of ρ), K(·) is nonnegative, and ρ′(·) is odd
(ρ(·) is symmetric) and positive on (0,∞) (because of ρ′(0) = 0, the convexity of ρ(·) and the strict
convexity around 0), the last equality implies for all f ∈ F\Fδ∗h(λ)∥∥E0

[
D̃λ(f)

]∥∥
`1
≥

∫ ∣∣f0(x)− f(x)
∣∣

‖t0 − t‖`1
µ(x)Kh(x)

∫
ρ′
(
σ(x)z +

∣∣f0(x)− f(x)
∣∣)G(z)dz dx

≥
∫ ∣∣f0(x)− f(x)

∣∣
‖t0 − t‖`1

µ(x)Kh(x)

∫
ρ′

(
σ(x)z + δ∗h(λ)

∣∣f0(x)− f(x)
∣∣

‖t0 − t‖`1

)
G(z)dz dx.

Recall that for any x,
∫
ρ′(σ(x)z)G(z)dz = 0 thanks to the symmetry of ρ(·) and G(·). Since∣∣f0(x)− f(x)

∣∣‖t0 − t‖−1
`1
≤ 1, we obtain with the mean value theorem for all f ∈ F\Fδ∗h(λ)

∥∥E0
[
D̃λ(f)

]∥∥
`1
≥ δ∗h(λ)

∫ ∣∣f0(x)− f(x)
∣∣2

‖t0 − t‖2`1
µ(x)Kh(x) inf

u∈[0,δ∗h(λ)]

∫
ρ′′ (σ(x)z + u) G(z)dz dx

≥ δ∗h(λ) inf
t:‖t‖`1≥δ

∗
h(λ)

∫ ∣∣Pt(x)
∣∣2

‖t‖2`1
µ(x)Kh(x) inf

u∈[0,δ∗h(λ)]

∫
ρ′′ (σ(x)z + u) G(z)dz dx.

We then derive, using that 2δ∗h(λ) ≤ infx∈Vh
∫
ρ′′ (σ(x)z) G(z)dz for all λ ∈ Λ (see Condition 2)

and ρ′′(·) is P-continuous,

inf
f∈F\Fδ∗

h
(λ)

∥∥E0
[
D̃λ(f)

]∥∥
`1
≥ δ∗h(λ)

2
inf

t:‖t‖`1≥δ
∗
h(λ)

∫ ∣∣Pt(x)
∣∣2

‖t‖2`1
µ(x)Kh(x)

∫
ρ′′ (σ(x)z) G(z)dz dx.

We then observe that Pt(x) = t>U
(
x−x0

h

)
and thus∫ ∣∣Pt(x)

∣∣2
‖t‖2`1

µ(x)Kh(x)

∫
ρ′′ (σ(x)z) G(z)dzdx

= t>

[∫
U
(
x−x0

h

)
U>

(
x−x0

h

)
‖t‖2`1

µ(x)Kh(x)

∫
ρ′′ (σ(x)z) G(z)dzdx

]
t.

We can thus write by the definition of Φh in Condition 2

t>

[∫
U
(
x−x0

h

)
U>

(
x−x0

h

)
‖t‖2`1

µ(x)Kh(x)

∫
ρ′′ (σ(x)z) G(z)dzdx

]
t ≥
‖t‖2`2
‖t‖2`1

Φh ≥ Φh/|P|.

In summary, we have for any λ ∈ Λ, inff∈F\Fδ∗
h

(λ)

∥∥E0
[
D̃λ(f)

]∥∥
`1
≥ Φhδ

∗
h(λ)

2|P| . By the definition of

δ∗h(λ) in Condition 2 and as nΠh ≥ 1, it holds that

δ∗h(λ) > 2|P|2
‖ρ′‖∞

(√
E[ΠhK2

h(X)] + ‖K‖∞√
nΠh

)
Φh
√
nΠh

(
E∗ + 7

√
4 ln(2|P|n) + 4 ln(2|P|n)

)-1 + 2|P|2E[Kh(X)]
bh
Φh

.

Using Inequalities (A.28) and (A.31) with z = ln(2|P|n), and the last inequality, we obtain

P

(⋃
λ∈Λ

{
f̂λ /∈ Fδ∗h(λ)

})
≤ P

sup
λ∈Λ

sup
f∈F\Fδ∗

h
(λ)

[∥∥D̃λ(f)− E0
[
D̃λ(f)

]∥∥
`1
− Φhδ

∗
h(λ)

2|P|

]
≥ 0

 ≤ 1/n2.
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Proof of Proposition 3. The definitions of f̂λ and f0 (see (2.4) and (2.5), respectively) imply

that
∣∣f̂λ(x0)− f∗(x0)

∣∣ =
∣∣(t̂λ)0,...,0 − t00,...,0∣∣ ≤ ‖t̂λ − t0∥∥`∞ . Using f̂λ ∈ Fδ∗h(λ), Lemma 1, and the

last inequality, we have∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ 4

3
c-1λ ‖E0

[
D̃λ(f̂λ)

]
− E0

[
D̃λ(f0)

]
‖`∞ .

Recall that by definition D̃λ(f̂λ) = 0 and E0
[
D̃λ(f0)

]
= 0. Thus, for all λ ∈ Λ such that f̂λ ∈ Fδ∗h(λ),

the last inequality implies∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ 4

3
c-1λ

(
‖D̃λ(f̂λ)− E

[
D̃λ(f̂λ)

]
‖`∞ + ‖E

[
D̃λ(f̂λ)

]
− E0

[
D̃λ(f̂λ)

]
‖`∞

)
.

From Lemma 2 and the last display, we obtain

∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ 4

3
c-1λ

(
‖D̃λ(f̂λ)− E

[
D̃λ(f̂λ)

]
‖`∞ +

5

4
cλbh

)
≤ 5

3
bh +

4

3
sup
λ∈Λ

sup
f∈Fδ∗

h
(λ)

c-1λ ‖D̃λ(f)− E
[
D̃λ(f)

]
‖`∞ .

This yields ∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ 3bh + 2 sup

λ∈Λ
sup

f∈Fδ∗
h

(λ)

c-1λ ‖D̃λ(f)− E
[
D̃λ(f)

]
‖`∞ .

From the last inequality and the definitions of V(·) and cλ introduced in (2.9) and (6.5), respectively,
we deduce

P

({
sup
λ∈Λ

[∣∣f̂λ(x0)− f∗(x0)
∣∣− 2

√
V(λ)Bz√
nΠh

]
≥ 3bh

}
∩
⋂
λ∈Λ

{
f̂λ ∈ Fδ∗h(λ)

})

≤ P

(
sup
λ∈Λ

sup
f∈Fδ∗

h
(λ)

[
2c-1λ ‖D̃λ(f)− E

[
D̃λ(f)

]
‖`∞ − 2

√
V(λ)Bz√
nΠh

]
≥ 0

)

≤ P

sup
λ∈Λ

sup
f∈Fδ∗

h
(λ)

‖D̃λ(f)− E
[
D̃λ(f)

]
‖`∞

√
Πh

√
EPn [λ′(f∗)]

2
+ λ′∞

ln2(n)√
nΠh

≥ Bz√
nΠh

 .

Using Proposition 2 and the last inequality, we finally obtain

P

({
sup
λ∈Λ

[∣∣f̂λ(x0)− f∗(x0)
∣∣− 2

√
V(λ)Bz√
nΠh

]
≥ 3bh

}
∩
⋂
λ∈Λ

{
f̂λ ∈ Fδ∗h(λ)

})
≤ 2|P|e−z.

Proof of Proposition 4. We first recall by the definition of the estimator (3.2)

√
V̂(λ) =

√
ΠhPn

[
λ′(f̂λ)

]2
+ λ′∞

ln2(n)√
nΠh

Pnλ′′(f̂λ)
,
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where

ΠhPn

[
λ′(f̂λ)

]2
=

n∑
i=1

1

nΠh

[
ρ′(Yi − f̂λ(Xi))

]2
K2

(
Xi − x0

h

)
and

Pnλ
′′(f̂λ) =

n∑
i=1

1

nΠh
ρ′′(Yi − f̂λ(Xi))K

(
Xi − x0

h

)
.

In the following, we assume to be on the event
⋂
λ∈Λ

{
f̂λ ∈ Fδ∗h(λ)

}
, which is true with probability

at least 1−1/n2 according to Proposition 1. Then, using Massart’s Inequality (see the arxiv version

for details) we can control the deviation of the process ΠhPn

[
λ′(f̂λ)

]2
as follows:

P

(
sup
λ∈Λ

sup
f∈Fδ∗

h
(λ)

(λ′∞)-2
∣∣∣ΠhPn [λ′(f)]

2 −ΠhEPn [λ′(f)]
2
∣∣∣ ≥ B2 ln(n)√

nΠh

)
≤ 2/n2, (A.32)

where B· is defined in (6.6). Similarly, using again Massart’s Inequality, we control the deviation

of Pnλ
′′(f̂λ) as follows:

P

(
sup
λ∈Λ

sup
f∈Fδ∗

h
(λ)

‖K‖-1∞ |Pnλ′′(f)− EPnλ′′(f)| ≥
B2 ln(n)√
nΠh

)
≤ 2/n2. (A.33)

Then, for any λ ∈ Λ, by the continuity of ρ′ and ρ′′ almost everywhere, ‖ρ′′‖∞ ≤ 1, and the mean
value theorem, we have for all f ∈ Fδ∗h(λ)

Πh

∣∣∣EPn [λ′(f)]
2 − EPn [λ′(f∗)]

2
∣∣∣ ≤ 1

nΠn

n∑
i=1

E
∣∣ρ′(Yi − f(Xi))

2 − ρ′(Yi − f∗(Xi))
2
∣∣K2

(
Xi − x0

h

)
≤ 2‖K‖2∞(δ∗h(λ) + bh).

Similarly, supf∈Fδ∗
h

(λ)
|EPnλ′′(f)− EPnλ′′(f∗)| ≤ ‖K‖∞(δ∗h(λ) + bh). Note that for any λ ∈ Λ

sn := ‖K‖∞sh(λ) ≥ (1 ∨ 2‖K‖∞) ‖K‖∞ [δ∗h(λ) + bh] +
[
(λ′∞)2 ∨ ‖K‖∞

] B2 ln(n)√
nΠh

,

and we observe (under Condition 3) that sn ≤ 1
2 min

{
EPnλ′′(f∗),ΠhEPn [λ′(f∗)]

2
}
. Using this,

(A.32), and (A.33), we obtain with probability 1− 5/n2 for any λ ∈ Λ

√
V̂(λ) ≤

√
ΠhEPn [λ′(f∗)]

2
+ sn + λ′∞

ln2(n)√
nΠh

EPnλ′′(f∗)− sn
≤
√

6
√

V(λ)

and √
V̂(λ) ≥

√
ΠhEPn [λ′(f∗)]

2 − sn + λ′∞
ln2(n)√
nΠh

EPnλ′′(f∗) + sn
≥
√

2

3

√
V(λ).

(Instead of the given factors in front of
√

V(λ), one could readily obtain factors that tend to one
as n→∞. This is of minior interest here.) This proves the claim.
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A.2. Technical Lemmas

We first give a result for the deterministic criterion E0
[
D̃λ(·)

]
defined in (6.3):

Lemma 1. Let λ be as in (2.4), n ∈ {1, 2, . . .}, and h ∈ (0, 1]d such that Condition 2 is satisfied,
the following holds:

1. E0
[
D̃λ(f0)

]
= 0, and the function E0

[
D̃λ(f)

]
is bijective as function of Fδ∗h(λ) (see Defini-

tion (6.1)) on the corresponding image.

2. For any f, f̃ ∈ Fδ∗h(λ), ‖t − t̃‖`∞ ≤
4

3
c-1λ ‖E0

[
D̃λ(f)

]
− E0

[
D̃λ(f̃)

]
‖`∞ , where Pt = f and

Pt̃ = f̃ .

Next, we consider the bias:

Lemma 2. Let λ be as in (2.4), n ∈ {1, 2, . . .}, and h ∈ (0, 1]d such that Condition 2 is satisfied,
it holds that

sup
f∈Fδ∗

h
(λ)

∥∥E0
[
D̃λ(f)

]
− E

[
D̃λ(f)

]∥∥
`∞
≤ 5

4
cλbh.

Next, we do some simple algebra.

Lemma 3. For any x, y ∈ [0,∞), it holds that xq ≤ 2q[x − y]q+ + 2qyq. Moreover, for any

l, q ∈ {1, 2, . . .} and x1, . . . , xl ≥ 0, it holds, that
(∑l

i=1 xi

)q
≤ lq−1

(∑l
i=1 x

q
i

)
.

The proof consists of simple algebra and is available in the arxiv version.
The following lemma allows us to get our hands on the estimator V̂(·).

Lemma 4. Let Dh(·) : [-M,M ]→ R and cρ̂ be as defined in the proof of Theorem 4 and assume

f∗ ∈ Hd(~β, L,M) and n sufficiently large such that Condition 2 is satisfied for all h ∈ H. Then,
for any h ∈ H and t, t̃ ∈ [f∗(x0)− δ∗h(λ), f∗(x0) + δ∗h(λ)], it holds that |t− t̃| ≤ 4

3c
-1
ρ̂ |Dh(t)−Dh(t̃)|.

The proof of the lemma is similar to the one of Lemma 1 (see the arxiv version for details).
Next, we controll the distance of D̃h(f) to Dh(f) for appropirate bandwidth h and functions f :

Lemma 5. For n sufficiently large n sufficiently large such that Conditions 2 and 3 are satisfied
for all h ∈ H. It holds that

Ec-qρ̂ sup
h∈H : h�h∗ε

sup
f∈Fδ̃h

∣∣∣D̃h(f)−Dh(f)
∣∣∣q � 2q

(√
6 V(ρ∗,K∗)(B0 + aniε(n))√

nΠh∗ε

)q
,

where δ̃h, h∗ε , D̃, and D are defined in the proof of Theorem 4, Gamma(q) is the classical Gamma
function, V(ρ∗,K∗) is defined in (4.3) and (4.4), aniε(n) is defined in Section (4.2).

The proof is an application of Proposition 2 (see the arxiv version for details).
Eventually, we look at the distance to Dh′∨h(f) to Dh(f) for appropirate bandwidths h and h′

and functions f :



A Fully Adaptive Pointwise M-estimator 31

Lemma 6. For any f∗ ∈ Hd(~β, L,M) such that ~β ∈ (0, 1]d, and n sufficiently large such that
Condition 2 is satisfied for all h ∈ H, it holds that for any h, h′ ∈ H

sup
f∈Fδ̃h

∣∣Dh′∨h(f)−Dh(f)
∣∣ ≤ 5

4
cρ̂L

d∑
j=1

(h′j)
βj ,

where Dh and cρ̂ are defined in (6.16) and (6.17) in the proof of Theorem 4.

A.3. Proofs of the Technical Lemmas

Proof of Lemma 1. Let us proof the first claim. For this, we note that the components of
E0
[
D̃λ(f)

]
are given by

E0
[
D̃p
λ(f)

]
=

∫ (
x− x0

h

)p
µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x)− f(x)

) 1

n

n∑
i=1

gi(z)dz dx.

Since ρ(·) and
∑
i gi(·) are symmetric, it holds that

∫
ρ′(z)

∑
i gi(z)dz = 0 and E0

[
D̃p
λ(f0)

]
= 0.

We now show that E0
[
D̃p
λ(·)
]

is injective on the image of Fδ∗h(λ) exploiting further the symmetry

of ρ(·) and
∑
i gi(·). Consider f, f̃ ∈ Fδ∗h(λ) such that E0

[
D̃λ(f)

]
= E0

[
D̃λ(f̃)

]
. We have to show

that f = f̃ . For this, we first note that∑
p∈P

(tp − t̃p)
(
E0
[
D̃p
λ(Pt)

]
− E0

[
D̃p
λ(Pt̃)

])
= 0,

where t and t̃ are such that Pt = f and Pt̃ = f̃ . To simplify the presentation, we introduce the
notation u(·) := (f−f0)(·), ũ(·) := (f̃−f0)(·), and G(·) := n-1

∑n
i=1 gi(·). Since G(·) is symmetric,

K(·) is nonnegative, and ρ′(·) is odd and positive on (0,∞), the last display implies∫
Kh(x)µ(x)

[
u(x)− ũ(x)

] ∫ [
ρ′
(
σ(x)z − u(x)

)
− ρ′

(
σ(x)z − ũ(x)

)]
G(z) dz dx = 0

⇔
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣ ∫ ∣∣ρ′(σ(x)z − u(x)

)
− ρ′

(
σ(x)z − ũ(x)

)∣∣ G(z) dz dx = 0.

As f, f̃ ∈ Fδ∗h(λ), it holds that supx∈Vh |u(x)| ∨ |ũ(x)| ≤ δ∗h(λ). Moreover, using the mean value
theorem, the P-continuity of ρ′′ and Condition 2, we obtain∫

Kh(x)µ(x)
∣∣u(x)− ũ(x)

∣∣ ∫ ∣∣ρ′(σ(x)z − u(x)
)
− ρ′

(
σ(x)z − ũ(x)

)∣∣ G(z) dz dx

≥
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2 inf
s:|s|≤δ∗h(λ)

∫
ρ′′
(
σ(x)z − s) G(z)dzdx

≥
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2 inf
s:|s|≤δ∗h(λ)

∫
ρ′′
(
σ(x)z − s) G(z)dzdx

≥
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2 [∫ ρ′′

(
σ(x)z) G(z)dz − δ∗h(λ)

]
dx

≥ 1

2

∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2 ∫ ρ′′

(
σ(x)z) G(z)dzdx.

The last display, Condition 2, and the nonnegativity of K(·) over its support yield that there exists
an nonempty open set V such that supx∈V

∣∣u(x) − ũ(x)
∣∣ = 0. As u and ũ are polynomials with

finite degree, we finally obtain that f = f̃ , and the first claim is proved.
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Let us now turn to the second claim. We set D(·) := E0
[
D̃λ(·)

]
and note that D(·) is differen-

tiable and injective on Fδ∗h(λ) (the latter according to the first claim). We can consequently find an
inverse of the function D(·) on the image of D(·) on Fδ∗h(λ). We then obtain, denoting the matrix

`∞-norm by ||| · |||∞ and the inverse of D(·) by D-1(·), for all f ∈ Fδ∗h(λ)

|||JD−1(f)|||∞ = |||J−1
D (f)|||∞ = |||JD(f)|||−1

∞ ≤ [JD(f)]
−1
0,0 =

[
EPnλ′′(f)

]−1 ≤ 4

3
c−1
λ .

The constant cλ is defined in (6.5) and the last inequality is obtained by the P-continuity of ρ′′(·)
and Condition 2. The mean value theorem and the last inequality then imply for any f, f̃ ∈ Fδ∗h(λ)

and the associated coefficients t and t̃

‖t− t̃‖`∞ =
∥∥∥D−1 ◦D(f)−D−1 ◦D(f̃)

∥∥∥
`∞
≤ 4

3
c−1
λ

∥∥∥D(f)−D(f̃)
∥∥∥
`∞
.

This proves the second claim.

Proof of Lemma 2. By the definitions of E
[
D̃p
λ(·)
]

and E0
[
D̃p
λ(·)
]

in (6.3), we have for any
f ∈ Fδ∗h(λ), any λ ∈ Λ , and any p ∈ P∣∣E0

[
D̃p
λ(f)

]
− E

[
D̃p
λ(f)

]∣∣
≤
∫
µ(x)Kh(x)

∫ ∣∣ρ′(σ(x)z + f0(x)− f(x)
)
− ρ′

(
σ(x)z + f∗(x)− f(x)

)∣∣ G(z)dz dx. (A.34)

It additionally holds for all f ∈ Fδ∗h(λ) that supx∈Vh |f
0(x) − f(x)| ≤ δ∗h(λ). Together with the

definition of f0 in (2.5), this implies for any f ∈ Fδ∗h(λ)

sup
x∈Vh

|f∗(x)− f(x)| ≤ sup
x∈Vh

|f∗(x)− f0(x)|+ sup
x∈Vh

|f0(x)− f(x)| ≤ bh + δ∗h(λ).

This implies, due to the mean value theorem, that there is a ux ∈ R : |ux| ≤ bh + δ∗h(λ) such that∣∣ρ′(σ(x)z + f0(x)− f(x)
)
− ρ′

(
σ(x)z + f∗(x)− f(x)

)∣∣ ≤ |f∗(x)− f0(x)|ρ′′
(
σ(x)z + ux

)
.

Using Condition 2, (A.34), the last inequality, and the definitions bh, and cλ defined in (2.6) and
(6.5) respectively, we obtain for any λ ∈ Λ

sup
f∈Fδ∗

h
(λ)

∥∥E0
[
D̃λ(f)

]
− E

[
D̃λ(f)

]∥∥
`∞

≤
∫
µ(x)Kh(x)|f∗(x)− f0(x)|

∫ [
ρ′′
(
σ(x)z

)
+ bh + δ∗h(λ)

]
G(z)dz dx ≤ 5

4
cλbh.

Proof of Lemma 6. Recall that we consider the uniform design and the homoscedastic noise
level. By the definition of Dh and with a change of variables, we have

sup
f∈Fδ̃h

∣∣Dh′∨h(f)−Dh(f)
∣∣ = sup

f∈Fδ̃h

∣∣∣∣∫ K̂(x)

∫
ρ̂′
(
σz + f∗(x0 + h ∨ h′x)− f(x0)

)
g(z)dz dx

−
∫
K̂(x)

∫
ρ̂′
(
σz + f∗(x0 + hx)− f(x0)

)
g(z)dz dx

∣∣∣∣ .
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Using f ∈ Hd(~β, L,M), the P-continuity of ρ′′(·), the last equality, and the mean value theorem,
we obtain:

sup
f∈Fδ̃h

∣∣Dh′∨h(f)−Dh(f)
∣∣ ≤ sup

|s|≤δ̃h+bh

∫
ρ̂′′(σz + s)g(z)dz

∫
K̂(x)

∣∣f∗(x0 + h ∨ h′x)− f∗(x0 + hx)
∣∣dx

≤
(∫

ρ̂′′(σz)g(z)dz + δ̃h + bh

)
L

d∑
j=1

|hj ∨ hj ′ − hj |βj .

With Condition 2 and definition of δ̃h in Proof of Theorem 4, this yields

sup
f∈Fδ̃h

∣∣Dh′∨h(f)−Dh(f)
∣∣ ≤ 5

4
cρ̂L

d∑
j=1

(h′j)
βj .
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