¢;-penalized Linear Mixed-Effects Models for zero-training
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Introduction
e usc large set of BCI data to obtain a subject-independent classifier [1]

e novel statistical approach differentiates within-subject and between-subject variability 3]

e find a unifying model that (inherently) takes care of possible shifts in the input space
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Figure 1: 2 Flowcharts of the ensemble method. The red patches in the top panel illustrate the
inactive nodes of the ensemble after sparsification.

1 Statistical Model
1.1 Model Setup

Let: = 1,..., N be the number of subjects, 7 = 1,...,n; the number of observations per

subject and Ny = Zfi , n; the total number of observations. For each subject we observe an
n;-dimensional response vector y;. Moreover, let X; and Z; be n; X p and n; X ¢ covariate ma-
trices, where X, contains the fixed-effects covariates and Z; the corresponding random-effects
covariates. Denote by b € RP? the p-dimensional fixed-effects vector and by 3,,: = 1,..., N
the g-dimensional random-effects vectors. Then the linear mixed-effects model can be written

as ([2])

where we assume that ) 8; ~ N,(0,7°1,), ii) &; ~ N,,,(0,0%I,) and #ii) that the errors ¢; are
mutually independent of the random effects [;.

1.2 Available Data and Experiments
e 83 BCI datasets (45 EEG channels), each consisting of 150 trials (t = 3s, f = 100H 2)

e preprocess each dataset by 18 predefined temporal filters 1n parallel (see Figure 2)

e calculate a corresponding spatial filter and linear classifier for every band-pass filtered
dataset to obtain a large number of subject-dependent BCI filters/classifiers (see Figure 1)

e process every dataset by this large set of basis functions

e perform a /;-regularized logistic regression LMM (and classic ¢; logistic regression) on each
classifier’s output to obtain an optimal combination of basis functions

e our method 1s validated by leave-one-subject-out cross-validation
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Figure 2: 18 temporal filters, used to generate the data
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Figure 3: selected features in white, inactive features in black. top: L1 logreg , bottom: LMM
logreg, both at 1deal L1 regularization constant

2 Results
Preliminary analysis of the data indicates that a so called random-intercept 1s appropriate for
this data:

yij:a:;-rjb%—ﬁiﬁ—eij ’iZl,...,N, jzl,...,ni (2)
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Figure 4: four figures show loss, averages over 83 subjects for L1-LSR, and LMM-LSR as well
as L1-logistic regression and LMM logistic regression. two top figures are not bias corrected,
while two lower ones are.
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Figure 5: shows that LMM rather chooses features, that had a good ’self prediction’, and needs
less features 1n total

3 Conclusion
e solution 1s sparser, as compared to classical L1

e LMM helps in achieving lower overall error
e chosen features have a lower self-prediction error
e method 1s suitable for finding features, common to multiple subject data
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