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Introduction
• use large set of BCI data to obtain a subject-independent classifier [1]

• novel statistical approach differentiates within-subject and between-subject variability [3]

•find a unifying model that (inherently) takes care of possible shifts in the input space

Figure 1: 2 Flowcharts of the ensemble method. The red patches in the top panel illustrate the
inactive nodes of the ensemble after sparsification.

1 Statistical Model
1.1 Model Setup
Let i = 1, . . . , N be the number of subjects, j = 1, . . . , ni the number of observations per
subject and NT =

∑N
i=1 ni the total number of observations. For each subject we observe an

ni-dimensional response vector yi. Moreover, let Xi and Zi be ni× p and ni× q covariate ma-
trices, where Xi contains the fixed-effects covariates and Zi the corresponding random-effects
covariates. Denote by b ∈ Rp the p-dimensional fixed-effects vector and by βi, i = 1, . . . , N
the q-dimensional random-effects vectors. Then the linear mixed-effects model can be written
as ([2])

yi = Xib + Ziβi + εi i = 1, . . . , N , (1)

where we assume that i) βi ∼ Nq(0, τ
2Iq), ii) εi ∼ Nni(0, σ

2Ini) and iii) that the errors εi are
mutually independent of the random effects βi.

1.2 Available Data and Experiments
• 83 BCI datasets (45 EEG channels), each consisting of 150 trials (t = 3s, f = 100Hz)

• preprocess each dataset by 18 predefined temporal filters in parallel (see Figure 2)

• calculate a corresponding spatial filter and linear classifier for every band-pass filtered
dataset to obtain a large number of subject-dependent BCI filters/classifiers (see Figure 1)

• process every dataset by this large set of basis functions

• perform a `1-regularized logistic regression LMM (and classic `1 logistic regression) on each
classifier’s output to obtain an optimal combination of basis functions

• our method is validated by leave-one-subject-out cross-validation
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Figure 2: 18 temporal filters, used to generate the data
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Figure 3: selected features in white, inactive features in black. top: L1 logreg , bottom: LMM
logreg, both at ideal L1 regularization constant

2 Results
Preliminary analysis of the data indicates that a so called random-intercept is appropriate for
this data:

yij = xTijb + βi1 + εij i = 1, . . . , N, j = 1, . . . , ni (2)
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Figure 4: four figures show loss, averages over 83 subjects for L1-LSR, and LMM-LSR as well
as L1-logistic regression and LMM logistic regression. two top figures are not bias corrected,
while two lower ones are.
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Figure 5: shows that LMM rather chooses features, that had a good ’self prediction’, and needs
less features in total

3 Conclusion
• solution is sparser, as compared to classical L1
•LMM helps in achieving lower overall error
• chosen features have a lower self-prediction error
•method is suitable for finding features, common to multiple subject data
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