An algorithm for high-dimensional generalized linear mixed models using ℓ_1 -penalization

Jürg Schelldorfer

joint work with Peter Bühlmann

encouraged by Stephan Dlugosz

FOR916 Workshop on "Mathematical Statistics meets Econometrics"

June 9, 2011

data set of Stephan Dlugosz:

administrative data set about employment:

Binary response variable $Y \in \{\text{employed}, \text{unemployed}\}\$

covariates *X*: income, sex, age group, employment duration,....

quarterly results of (*Y*, *X*) of many workers over several years

- response variable from the exponential family
- **•** continuous covariates
- **•** grouped observations (think of longitudinal data, repeated measures data)

Goal:

Performing variable selection in the setup where AIC, BIC, cAIC, mAIC, ... are computationally infeasible (i.e. $n \approx p, n \ll p$

Table of Contents

[High-dimensional Generalized Linear Mixed Models](#page-10-0)

[Computational Algorithm](#page-14-0)

n: number of observations p: number of variables

Generalized Linear Model (GLM)

For *n* observations (y_i, x_i^T)

- (y_i, x_i^T) are independent for $i = 1, \ldots, n$
- *yⁱ* has a density of the form

$$
\exp\left\{\phi^{-1}\left(y_i\xi_i-b(\xi_i)\right)+c(y_i,\phi)\right\}\text{with }\mu_i=\mathbb{E}[y_i]
$$

•
$$
g(\mu) = \eta
$$
 with $\eta = X\beta$

Then estimate β by

$$
\hat{\beta}_{MLE} = \text{argmin}_{\beta} - \ell(\beta)
$$

For $n \ll p$ we should not use the MLE. Use the Lasso (Tibshirani, 1996)

$$
\hat{\beta}(\lambda) = \text{argmin}_{\beta} - \ell(\beta) + \lambda ||\beta||_1 \quad , \quad \lambda > 0
$$

with the following properties:

- **•** The Lasso does variable selection (i.e. some coefficients are set exactly to zero)
- Convex optimiziation problem, which can be solved efficiently

Generalized Linear Mixed Model (GLMM)

g = 1, ..., *N* independent groups/clusters/subjects $j = 1, ..., n_g$ observations for group/cluster/subject *g* $n=\sum_{g=1}^N n_g$ total number of observations

y : *n*-dim response variable *b* : *q*-dim (correlated) random effects

 $\boldsymbol{\beta} \in \mathbb{R}^p$ fixed-effects parameters $\boldsymbol{\theta} \in \mathbb{R}^L$ covariance parameters ϕ dispersion parameter

- \boldsymbol{X} : *n* × *p* model matrix for $\boldsymbol{\beta}$
- $Z: n \times q$ model matrix for *b*
- Σ_{θ} : *q* × *q* covariance matrix, determined by θ

Generalized Linear Mixed Model (GLMM)

Model Assumptions:

- $y_i | \bm{b}$ are independent for $i = 1, \ldots, n$
- *yi* |*b* has a density of the form

$$
\exp\left\{\phi^{-1}\left(y_i\xi_i-b(\xi_i)\right)+c(y_i,\phi)\right\}\text{ with }\mu_i=\mathbb{E}[y_i|\boldsymbol{b}]
$$

\n- $$
g(\mu) = \eta
$$
 with $\eta = \mathbf{X}\beta + \mathbf{Z}\mathbf{b}$
\n- $\mathbf{b} \sim \mathcal{N}_q(\mathbf{0}, \Sigma_\theta)$ with $\Sigma_\theta \geq 0$ for $\theta \in \mathbb{R}^L$
\n

$$
(\hat{\beta}, \hat{\theta}, \hat{\phi})_{MLE} = \text{argmin}_{\beta, \theta, \phi} - \log L(\beta, \theta, \phi)
$$

Additionally to a GLMM, assume

- $n = \sum_{i=1}^{N} n_g \ll p$
- the true β_0 is sparse
- o I small

Aim: Estimate β, θ, φ and predict *b*

KeyIdea 1: Lasso-type penalty

Estimate the parameters (β, θ, ϕ) by minimizing

$$
Q_{\lambda}(\beta,\theta,\phi) := -2\log L(\beta,\theta,\phi) + \lambda ||\beta||_1,
$$

$$
(\hat{\beta},\hat{\theta},\hat{\phi}) := \text{argmin}_{\beta,\theta,\phi} Q_{\lambda}(\beta,\theta,\phi).
$$

Remark: In general, $L(\beta, \theta, \phi)$ cannot be computed explicitly.

KeyIdea 2: Laplace approximation to approximate the integrand of $L(\beta, \theta, \phi)$ by a quadratic function.

$$
I = \int_{\mathbb{R}^q} e^{-S(\boldsymbol{b})} d\boldsymbol{b} \approx (2\pi)^{q/2} |S''(\tilde{\boldsymbol{b}})|^{-1/2} e^{-S(\tilde{\boldsymbol{b}})}
$$

where $\tilde{\mathbf{b}} = \text{argmin}_{\mathbf{b}} S(\mathbf{b})$ is the mode of $-S(\mathbf{b})$.

Hence

$$
Q_{\lambda}(\boldsymbol{\beta},\boldsymbol{\theta},\phi) \rightsquigarrow \tilde{Q}_{\lambda}^{\mathsf{LA}}(\boldsymbol{\beta},\boldsymbol{\theta},\phi)
$$

The GLMMLasso estimator is defined by

$$
(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}, \hat{\phi}) := \textit{argmin}_{\boldsymbol{\beta}, \boldsymbol{\theta}, \phi} \tilde{Q}_{\lambda}^{\textsf{LA}}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi)
$$

Remark: It is a non-convex optimization problem!

How to calculate

$$
(\hat{\beta}, \hat{\theta}, \hat{\phi}) := \textit{argmin}_{\beta, \theta, \phi} \tilde{Q}_{\lambda}^{LA}(\beta, \theta, \phi)
$$
?

KeyIdea 3: coordinate-wise optimization with inexact line search.

i.e. optimize \tilde{Q}^{LA}_{λ} w.r.t. one coordinate keeping all other coordinates fixed (Tseng and Yun, 2009):

- **Quadratic approximation** of the objective function
- calculate the **gradient**
- **Inexact line search** using the Armijo rule

The GLMMLasso algorithm II

GLMMLasso algorithm

(0) *Choose a starting value* $(\beta^{(0)}, \theta^{(0)}, \phi^{(0)})$.

Repeat for $s = 1, 2, \ldots$

- (1) *(Fixed-effects parameter optimization) For* $k = 1, \ldots, p$
	- a) *(Laplace approximation) Calculate the Laplace approximation* $\tilde{Q}_{\lambda}^{LA}(., ., .)$
	- b) *(Quadratic approximation and inexact line search)*
		- *i*) *Approximate the second derivative by* $h_k^{(s)} > 0$ *.*
		- ii) *Calculate the descent direction* $d_k^{(s)} \in \mathbb{R}$

iii) Choose a step size $\alpha_k^{(\mathbf{s})}>0$ such that there is a decrease in the objective function.

(2) *(Covariance parameter optimization) For l* = 1, . . . , *L*

$$
\theta^{(s)}_l = \text{argmin}_{\theta_l} \tilde{Q}^{LA}_{\lambda}(\cdot, \cdot, \cdot)
$$

(3) *(Dispersion parameter optimization)*

$$
\phi^{(s)} = \text{argmin}_{\phi} \tilde{Q}^{LA}_{\lambda}(\ldots, \ldots)
$$

until convergence.

Tools to speed up

Two ingredients which speed up the algorithm remarkably:

KeyIdea 4a: regard \tilde{b} as fixed for the quadratic approximation w.r.t. β*^k*

• **KeyIdea 4b**: active-set algorithm cycle through the non-zero coefficients $\beta_{\bm{k}}$, and only through all $\bm{\rho}$ coefficients every *D*th iteration

This two ingredients make it feasable to calculate large data sets (i.e. $n = 400$ and $p = 4000$)!

Small additional bias in the parameter estimates, and similar variable selection properties.

This is ongoing work with Stephan Dlugosz on administrative data.

Take-home message

Thank you!

Questions?

- P. Tseng and S. Yun ; A Coordinte Gradient Descent Method for Nonsmooth Separable Minimization ; Mathematical Programming (2009)
- R. Tibshirani ; Regression Shrinkage and Selection via the Lasso ; J. R. Stat. Soc. (1996)
- J. Schelldorfer, P. Bühlmann and S. van de Geer; Estimation for High-Dimensional Linear Mixed-Effects Models Using ℓ_1 -penalization ; The Scandinavian Journal of Statistics (2011)
- D. Bates ; lme4: Mixed-effects modeling with R (to appear)