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Motivation

data set of Stephan Dlugosz:

administrative data set about employment:
Binary response variable Y € {employed, unemployed}
covariates X: income, sex, age group, employment duration,....

quarterly results of (Y, X) of many workers over several years



General framework

@ response variable from the exponential family
@ continuous covariates

@ grouped observations (think of longitudinal data, repeated
measures data)

Goal:

Performing variable selection in the setup where AIC, BIC,
cAIC, mAIC, ... are computationally infeasible (i.e.
n=p,n<p)
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Overview

| n>p | n<p |
Generalized Linear MLE Lasso
Models (GLMs) [IRLS] [R:glmnet]
Generalized Linear MLE
Mixed Models (GLMMs) || [R:glmer] ?

n: number of observations
p: number of variables



Generalized Linear Model (GLM)

For n observations (y;, x.”)
@ (y;,x]) are independentfori=1,...,n
@ y; has a density of the form

exp {¢_1 (,Vfﬁi - b(ﬁi)) +c(yi, ¢)}With wi = Elyi]
@ g(p) =nwithn = Xp3
Then estimate 3 by

Buie = argming — ((B)



¢1-regularized Generalized Linear Model

For n < p we should not use the MLE. Use the Lasso
(Tibshirani, 1996)

B(\) = argming — ¢(B) + A|Bl+ . A>0

with the following properties:
@ The Lasso does variable selection (i.e. some coefficients
are set exactly to zero)
@ Convex optimiziation problem, which can be solved
efficiently



Generalized Linear Mixed Model (GLMM)

g =1, ..., N independent groups/clusters/subjects
j=1,..,ng observations for group/cluster/subject g
n= 25:1 ng total number of observations

y : n-dim response variable
b : g-dim (correlated) random effects

B € RP fixed-effects parameters
0 € Rt covariance parameters
¢ dispersion parameter

X : n x p model matrix for 8
Z : n x g model matrix for b
Y : g x g covariance matrix, determined by 6



Generalized Linear Mixed Model (GLMM)

Model Assumptions:
@ yj|b are independentfori=1,...,n
@ y;|b has a density of the form

exp {¢" (i€ — bl&) ) + o(i, 6) | with p; = E[y;|]

@ g(p) =nwithn=XB+2Zb
@ b~ Ny(0, ) with 3p > 0 for € Rt

(/éa éa Qg)MLE = argminﬁ,g,(b - IOg L(ﬂv 0a Qb)



Recap

| n>p | n<p
Generalized Linear MLE Lasso
Models (GLMs) [IRLS] v [R:glmnet] v
Generalized Linear MLE
Mixed Models (GLMMs) || [R:glmer] v/ !




High-dimensional GLMM Set-up

Additionally to a GLMM, assume
o n=3 ng<p
@ the true 3y is sparse
@ L small

Aim: Estimate 3, 8, ¢ and predict b



The GLMMLasso estimator

Keyldea 1: Lasso-type penalty‘

Estimate the parameters (3, 6, ¢) by minimizing
QA(IBa 0, ¢) =-2 |Og L(/87 0, d)) + /\H16”1 )
(8,6, 9) := argming ¢.,Qx(8, 6, ).

Remark: In general, L(3, 8, ¢) cannot be computed explicitly.



Laplace approximation

’ Keyldea 2: Laplace approximation ‘ to approximate the
integrand of L(3, 8, ¢) by a quadratic function.

- / eSOV gb ~ (27)9/2|S" ()|~ /2~ S(B)
R9

where b = argminpS(b) is the mode of —S(b).

Hence .
Q)\(167 97 (ZS) ~ C&A(ﬁ7 07 ¢)



The GLMMLasso estimator

The GLMMLasso estimator is defined by

(8,0, ) := argming ¢ sQ5A(8, 0, ¢)

Remark: It is a non-convex optimization problem!



The GLMMLasso algorithm |

How to calculate

(/éa éa g/f;) = argminﬁ,9,¢é§A(/6’ 97 ¢)?

Keyldea 3: coordinate-wise optimization with inexact line search |,

i.e. optimize QX w.r.t. one coordinate keeping all other
coordinates fixed (Tseng and Yun, 2009):

@ Quadratic approximation of the objective function
@ calculate the gradient
@ Inexact line search using the Armijo rule



The GLMMLasso algorithm |l

GLMMLasso algorithm

(0) Choose a starting value (,8(0), CIOK ¢(°) ).
Repeat fors = 1,2, ...
(1) (Fixed-effects parameter optimization) Fork =1,...,p

a) (Laplace approximation)
Calculate the Laplace approximation C?’;\A(., )
b) (Quadratic approximation and inexact line search)
i) Approximate the second derivative by hf(s) > 0.
i) Calculate the descent direction d}((s) € R
iii) Choose a step size af(s) > 0 such that there is a decrease in the objective function.

(2) (Covariance parameter optimization) For|l =1, ..., L

9;5) = argmingléﬁA(., o)
(3) (Dispersion parameter optimization)

8 = argmin Q4,0

until convergence.




Tools to speed up

Two ingredients which speed up the algorithm remarkably:

Keyldea 4a: regard b as fixed

approximation w.r.t. gy

for the quadratic

@ | Keyldea 4b: active-set algorithm ‘ cycle through the
non-zero coefficients Gy, and only through all p coefficients

every Dth iteration

This two ingredients make it feasable to calculate large data
sets (i.e. n =400 and p = 4000)!



The price to pay

Small additional bias in the parameter estimates, and similar
variable selection properties.



Application in Econometrics

This is ongoing work with Stephan Dlugosz on administrative
data.



Take-home message

| n>p | n<p

Generalized Linear MLE Lasso
Models (GLMs) [IRLS] [R:glmnet]
Generalized Linear MLE GLMMLasso
Mixed Models (GLMMs) || [R:glmer] | Keyldea 1-4




Thank you!

Questions?
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