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Motivation

data set of Stephan Dlugosz:

administrative data set about employment:

Binary response variable Y ∈ {employed, unemployed}

covariates X : income, sex, age group, employment duration,....

quarterly results of (Y ,X ) of many workers over several years



General framework

response variable from the exponential family
continuous covariates
grouped observations (think of longitudinal data, repeated
measures data)

Goal:
Performing variable selection in the setup where AIC, BIC,
cAIC, mAIC, ... are computationally infeasible (i.e.
n ≈ p,n� p)
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Overview

n > p n� p

Generalized Linear MLE Lasso
Models (GLMs) [IRLS] [R:glmnet]

Generalized Linear MLE

Mixed Models (GLMMs) [R:glmer] ?

n: number of observations
p: number of variables



Generalized Linear Model (GLM)

For n observations (yi , xT
i )

(yi , xT
i ) are independent for i = 1, . . . ,n

yi has a density of the form

exp
{
φ−1

(
yiξi − b(ξi)

)
+ c(yi , φ)

}
with µi = E[yi ]

g(µ) = η with η = Xβ

Then estimate β by

β̂MLE = argminβ − `(β)



`1-regularized Generalized Linear Model

For n� p we should not use the MLE. Use the Lasso
(Tibshirani, 1996)

β̂(λ) = argminβ − `(β) + λ‖β‖1 , λ > 0

with the following properties:
The Lasso does variable selection (i.e. some coefficients
are set exactly to zero)
Convex optimiziation problem, which can be solved
efficiently



Generalized Linear Mixed Model (GLMM)

g = 1, ...,N independent groups/clusters/subjects
j = 1, ..,ng observations for group/cluster/subject g
n =

∑N
g=1 ng total number of observations

y : n-dim response variable
b : q-dim (correlated) random effects

β ∈ Rp fixed-effects parameters
θ ∈ RL covariance parameters
φ dispersion parameter

X : n × p model matrix for β
Z : n × q model matrix for b
Σθ : q × q covariance matrix, determined by θ



Generalized Linear Mixed Model (GLMM)

Model Assumptions:
yi |b are independent for i = 1, . . . ,n
yi |b has a density of the form

exp
{
φ−1

(
yiξi − b(ξi)

)
+ c(yi , φ)

}
with µi = E[yi |b]

g(µ) = η with η = Xβ+Zb
b ∼ Nq(0,Σθ) with Σθ ≥ 0 for θ ∈ RL

(β̂, θ̂, φ̂)MLE = argminβ,θ,φ − log L(β,θ, φ)



Recap

n > p n� p

Generalized Linear MLE Lasso
Models (GLMs) [IRLS] 4 [R:glmnet] 4

Generalized Linear MLE

Mixed Models (GLMMs) [R:glmer] 4 !



High-dimensional GLMM Set-up

Additionally to a GLMM, assume
n =

∑N
i=1 ng � p

the true β0 is sparse
L small

Aim: Estimate β,θ, φ and predict b



The GLMMLasso estimator

KeyIdea 1: Lasso-type penalty

Estimate the parameters (β, θ, φ) by minimizing

Qλ(β,θ, φ) := −2 log L(β,θ, φ) + λ‖β‖1,

(β̂, θ̂, φ̂) := argminβ,θ,φQλ(β,θ, φ).

Remark: In general, L(β,θ, φ) cannot be computed explicitly.



Laplace approximation

KeyIdea 2: Laplace approximation to approximate the
integrand of L(β,θ, φ) by a quadratic function.

I =
∫
Rq

e−S(b)db ≈ (2π)q/2|S′′(b̃)|−1/2e−S(b̃)

where b̃ = argminbS(b) is the mode of −S(b).

Hence
Qλ(β,θ, φ) Q̃LA

λ (β,θ, φ)



The GLMMLasso estimator

The GLMMLasso estimator is defined by

(β̂, θ̂, φ̂) := argminβ,θ,φQ̃LA
λ (β,θ, φ)

Remark: It is a non-convex optimization problem!



The GLMMLasso algorithm I

How to calculate

(β̂, θ̂, φ̂) := argminβ,θ,φQ̃LA
λ (β,θ, φ)?

KeyIdea 3: coordinate-wise optimization with inexact line search ,

i.e. optimize Q̃LA
λ w.r.t. one coordinate keeping all other

coordinates fixed (Tseng and Yun, 2009):
Quadratic approximation of the objective function
calculate the gradient
Inexact line search using the Armijo rule



The GLMMLasso algorithm II

GLMMLasso algorithm

(0) Choose a starting value (β(0), θ(0), φ(0)).

Repeat for s = 1, 2, . . .

(1) (Fixed-effects parameter optimization) For k = 1, . . . , p
a) (Laplace approximation)

Calculate the Laplace approximation Q̃LA
λ (., ., .)

b) (Quadratic approximation and inexact line search)

i) Approximate the second derivative by h(s)k > 0.

ii) Calculate the descent direction d(s)
k ∈ R

iii) Choose a step size α(s)
k > 0 such that there is a decrease in the objective function.

(2) (Covariance parameter optimization) For l = 1, . . . , L

θ
(s)
l = argminθl

Q̃LA
λ (., ., .)

(3) (Dispersion parameter optimization)

φ
(s) = argminφQ̃LA

λ (., ., .)

until convergence.



Tools to speed up

Two ingredients which speed up the algorithm remarkably:

KeyIdea 4a: regard b̃ as fixed for the quadratic
approximation w.r.t. βk

KeyIdea 4b: active-set algorithm cycle through the
non-zero coefficients βk , and only through all p coefficients
every Dth iteration

This two ingredients make it feasable to calculate large data
sets (i.e. n = 400 and p = 4000)!



The price to pay

Small additional bias in the parameter estimates, and similar
variable selection properties.



Application in Econometrics

This is ongoing work with Stephan Dlugosz on administrative
data.



Take-home message

n > p n� p

Generalized Linear MLE Lasso
Models (GLMs) [IRLS] [R:glmnet]

Generalized Linear MLE GLMMLasso
Mixed Models (GLMMs) [R:glmer] KeyIdea 1-4



Thank you!

Questions?
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