High-Dimensional Gaussian and Generalized Linear Mixed Models

Jürg Schelldorfer

Seminar für Statistik

December 6, 2011

Riboflavin Production in Bacillus Subtilis

A data set provided by DSM Nutritional Products

Goal:

improve riboflavin production rate by genetic engineering

Data:

response variable $Y \in \mathbb{R}$: riboflavin (log-)production rate covariates $X \in \mathbb{R}^p$: expressions from genes

n = 111 observations and p = 4088 variables

 \hookrightarrow "simple" high-dimensional regression problem, but...

Riboflavin Production in Bacillus Subtilis

...we know more about the data...

n = 111 observations and p = 4088 variables N = 28 groups with $\{2, ..., 6\}$ observations per group

 \hookrightarrow high-dimensional longitudinal data

Brain Computer Interface (BCI)

General introduction

BCI is muscle-independent communication

measure EEG signals at different locations on the scalp

Brain Computer Interface (BCI)

Data set

Data:

- 83 subjects
- 150 trials per subject
- response $Y \in \{\text{left}, \text{right}\}$

this results in

$$\mathbf{y} \in \mathbb{R}^{12'450}, \mathbf{X} \in \mathbb{R}^{12'450 \times 1494}$$

Goal:

variable selection

Administrative Data

A data set about employment from the Centre for European Economic Research (ZEW Mannheim)

Data:

binary response variable $Y \in \{\text{employed}, \text{unemployed}\}\$

covariates X: income, sex, age group, employment duration,....

quarterly results of (Y, X) of many workers over several years

 $n \approx 120'000$ and $p \approx 30'000$

Goal:

variable selection

General Framework

Data:

- $\hookrightarrow \text{grouped data with many covariates}$

Goals:

- variable selection
- parameter estimation

Table of Contents

- Motivating Examples
- Context
- 3 High-Dimensional (Gaussian) Mixed-Effects Models
- 4 High-Dimensional Generalized Linear Mixed Models
- Summary

Context

Parameter estimation:

	n > p	n≪p
Linear Models	Least Squares	Lasso [lars]
Linear Mixed- Effects Models	ML or REML	?

n: number of observations

p: number of variables

(Classical) Linear Model

For *n* independent observations

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i \quad i = 1, \dots, n$$

with ε_i inpedendent and $\mathbb{E}[\varepsilon_i] = 0$

if $rank(\mathbf{X}) = p$, the Least Squares estimator is

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \|_{2}^{2} = (\boldsymbol{X}^{T} \boldsymbol{X})^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$$

The Lasso Estimator

For $n \ll p$ we should not use the LS estimator. Use the Lasso (Tibshirani, 1996)

$$\hat{\boldsymbol{\beta}}(\lambda) = \mathop{\arg\min}_{\boldsymbol{\beta}} \left\{ \| \boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} \|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 \right\} \quad \lambda \geq 0$$

or equivalently

$$\hat{\boldsymbol{\beta}}(s) = \mathop{\arg\min}_{\boldsymbol{\beta}, \|\boldsymbol{\beta}\|_1 < s} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2$$

with the following properties:

- some coefficients $\hat{\beta}_i(\lambda)$ are exactly zero
- convex optimization problem

Linear Mixed-Effects Model

Model equation

Inhomogeneous data:

for i = 1, ..., N independent units/groups, $j = 1, ..., n_i$ observations

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \boldsymbol{\varepsilon}_i \quad i = 1, \dots, N$$

 \mathbf{Y}_i : n_i -dim response vector

 $X_i : n_i \times p$ fixed-effects design matrix

 $\mathbf{Z}_i : n_i \times q$ random-effects design matrix

\(\beta : \text{ fixed-effects coefficient } \)

b_i: random-effects coefficients

 ε_i : n_i -dim error vector

Linear Mixed-Effects Model

Model assumptions

- $\varepsilon_i \sim \mathcal{N}_{n_i}(\mathbf{0}, \sigma^2 \mathbf{I}_{n_i})$ and uncorrelated
- ullet $oldsymbol{b}_i \sim \mathcal{N}_{oldsymbol{a}}(oldsymbol{0}, oldsymbol{\Psi}_{oldsymbol{ heta}})$ and uncorrelated
- $\varepsilon_1, \ldots, \varepsilon_N, \boldsymbol{b}_1, \ldots, \boldsymbol{b}_N$ independent

$$\Psi_{oldsymbol{ heta}} > 0$$
 is parametrized by $oldsymbol{ heta} \in \mathbb{R}^d$

parameter estimation:

$$(\hat{\boldsymbol{\beta}},\hat{\boldsymbol{\theta}},\hat{\sigma}^2)_{ML} = \mathop{\text{arg min}}_{\boldsymbol{\beta},\boldsymbol{\theta},\sigma^2>0,\boldsymbol{\Psi}>0} -\ell_{ML}(\boldsymbol{\beta},\boldsymbol{\theta},\sigma^2)$$

Linear Mixed-Effects Model

Example from Pinheiro and Bates (2000)

Travel time of a specific type of wave through the length of railway rails 6 rails, 3 measurements per rail

model:

$$y_{ij} = \beta + b_i + \varepsilon_{ij}$$
 $i = 1, \dots, 6, j = 1, \dots, 3$ with $b_i \sim \mathcal{N}(0, \theta^2)$ independent of $\varepsilon_{ii} \sim \mathcal{N}(0, \sigma^2)$

Recap

Parameter estimation:

	n > p	n≪p
Linear Models	Least Squares [1m] ✔	Lasso [lars]✔
Linear Mixed- Effects Models	ML or REML [lmer] ✔	!

High-Dimensional

Mixed-Effects Models

(Gaussian)

High-Dimensional Model Set-up

Additionally to a linear mixed-effects model, assume

- the true β_0 is sparse
- $d = dim(\theta)$ small

Aim: Estimate β , θ , σ^2 and predict $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_N$

The LMMLasso Estimator

Objective function:

$$Q_{\lambda}(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^2) := \underbrace{\frac{1}{2} \sum_{i=1}^{N} \left\{ \log(|\boldsymbol{V}_i|) + (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta})^T \boldsymbol{V}_i^{-1} (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}) \right\}}_{\text{non-convex loss function } \boldsymbol{\rho}} + \underbrace{\lambda \|\boldsymbol{\beta}\|_1}_{\text{convex penalty}}$$

$$:= \boldsymbol{\rho}(\cdot) + \lambda \boldsymbol{pen}(\cdot)$$

where

$$\boldsymbol{V}_i = \boldsymbol{Z}_i \boldsymbol{\Psi}_{\boldsymbol{\theta}} \boldsymbol{Z}_i^T + \sigma^2 \boldsymbol{I}_{n_i} \quad i = 1, \dots, N$$

LMMLasso estimate:

$$(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}, \hat{\sigma}^2) = \underset{\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^2}{\operatorname{arg min}} Q_{\lambda}(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^2)$$

Questions to Address

- How to compute the LMMLasso estimator?
- Numerical convergence of the algorithm?
- Theoretical properties of the LMMLasso estimator?
- Prediction of the random effects?
- Mow to perform model selection?

Major Challenge

Make the step

convex → non-convex

in Computation and Theory!

How to calculate

$$\hat{\phi} := (\hat{\beta}, \hat{\theta}, \hat{\sigma}^2) := \underset{\beta, \theta, \sigma^2}{\arg \min} Q_{\lambda}(\beta, \theta, \sigma^2)$$
?

use a coordinate gradient descent algorithm!

i.e. optimize Q_{λ} w.r.t. one coordinate keeping all other coordinates fixed

key elements (Tseng and Yun, 2009):

- Gauss-Seidel coordinatewise optimization
- Quadratic approximation of the loss function
- Inexact line search using the Armijo rule

Computational Algorithm

Gauss-Seidel coordinatewise optimization

$$\phi^{T} = (\beta^{T}, \theta^{T}, \sigma^{2}) = (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2}) \in \mathbb{R}^{p+d+1}$$

$$\dots$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$\dots$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$\dots$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

$$= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})$$

Computational Algorithm

loss function $\rho(\phi)$, penalty $pen(\phi)$, e_i unit vector

LMMLasso algorithm

0. $\phi^0 \in \mathbb{R}^{p+d+1}$ an initial value

For
$$\ell = 0, 1, 2, ..., let S^{\ell}$$
 cycling through $\{1\}, \{2\}, ..., \{p+d+1\}$

- 1. Quadratic approximation
 - a) Calculate the derivative $\nabla \rho$
 - b) Choose an appropriate hessian $h^{\ell} > 0$
- 2. Inexact line search
 - a) Calculate the descent direction
 - b) Choose a stepsize $\alpha^{\ell} > 0$ by the Armijo rule and set

$$\phi^{\ell+1} = \phi^{\ell} + \alpha^{\ell} d^{\ell} e_{S^{\ell}}$$

until convergence

Computational Algorithm

The Armijo rule is defined as follows:

Armijo rule

Choose the stepsize $\alpha^{\ell} > 0$ in a way such that

$$\mathbf{Q}_{\lambda}(\phi^{\ell} + \alpha^{\ell} \mathbf{d}^{\ell} \mathbf{e}_{\mathcal{S}^{\ell}}) \leq \mathbf{Q}_{\lambda}(\phi^{\ell}) + \alpha^{\ell} \xi^{\ell}$$

for ξ^{ℓ} depending on ρ , pen, d^{ℓ} , h^{ℓ} , ϕ^{ℓ} and some constants.

Numerical Convergence

Theorem

If $(\phi^{\ell})_{\ell \geq 0}$ is chosen according to the LMMLasso algorithm, then every cluster point of $(\phi^{\ell})_{\ell \geq 0}$ is a stationary point of $Q_{\lambda}(\phi)$.

remarks:

- convergence can be slow
- result depends on the starting value

Theoretical Results

Notation

Set $n_C = n_i$ fixed for i = 1, ..., N

$$\mathbf{Y}_i \in \mathcal{Y} \subset \mathbb{R}^{n_C}, \, \mathbf{X}_i \in \mathcal{X}^{n_C} \subset \mathbb{R}^{n_C \times p}$$

define the parameter

$$\phi^T := (\boldsymbol{\beta}^T, \boldsymbol{\eta}^T) = (\boldsymbol{\beta}^T, \boldsymbol{\theta}^T, 2\log \sigma) = (\boldsymbol{\beta}^T, \boldsymbol{\eta}^T) \in \mathbb{R}^{p+d+1}$$

and the parameter space for K > 0

$$\mathbf{\Phi} = \{(\boldsymbol{\beta}^T, \boldsymbol{\eta}^T); \sup_{\mathbf{x} \in \mathcal{X}} |\mathbf{x}^T \boldsymbol{\beta}| \leq K, \|\boldsymbol{\eta}\|_{\infty} \leq K, \Psi_{\boldsymbol{\eta}} > 0\} \subset \mathbb{R}^{p+d+1}$$

LMMLasso estimator

$$\hat{oldsymbol{\phi}} := rg \min_{oldsymbol{\phi} \in oldsymbol{\Phi}} \left\{ oldsymbol{
ho}(oldsymbol{eta}, oldsymbol{\eta}) + \lambda \|oldsymbol{eta}\|_1
ight\}$$

Theoretical Results

Notation

 $\{f_{m{\phi}}, m{\phi} \in m{\Phi}\}$ Gaussian density, ϕ_0 true parameter vector

excess risk

$$\mathcal{E}_{\pmb{X},\pmb{Z}}(\pmb{\phi}|\pmb{\phi}_0) := \int \log\Big(rac{f_{\pmb{\phi}_0,\pmb{X},\pmb{Z}}}{f_{\pmb{\phi},\pmb{X},\pmb{Z}}}\Big)f_{\pmb{\phi}_0,\pmb{X},\pmb{Z}}\pmb{d}\mu$$

for fixed $\boldsymbol{X}_1, \dots, \boldsymbol{X}_N, \boldsymbol{Z}_1, \dots, \boldsymbol{Z}_N$

average excess risk

$$\overline{\mathcal{E}}(\phi|\phi_0) := \frac{1}{N} \sum_{i=1}^N \mathcal{E}_{\boldsymbol{X}_i, \boldsymbol{Z}_i}(\phi|\phi_0)$$

Consistency

Statement

Theorem

Under some regularity conditions on Z_i and assuming that

$$\|oldsymbol{eta}_{0,N}\|_1 = oigg(\sqrt{rac{N}{\log^4 N \log(p \lor N)}}igg) \quad \lambda_N = C\sqrt{rac{\log^4 N \log(p \lor N)}{N}}$$

for some C>0, any global minimizer $\hat{\phi}$ satisfies

$$\overline{\mathcal{E}}(\hat{\phi}|\phi_0) = o_P(1) \quad (N \longrightarrow \infty)$$

for n_C fixed.

Consistency

Remarks

- linear models: $\|\beta_0\|_1 = o\left(\sqrt{\frac{n}{\log p}}\right)$
- finite mixture models: $\|oldsymbol{eta}_0'\|_1 = o\bigg(\sqrt{rac{n}{\log^3 n \log(p ee n)}}\bigg)$
- key argument: non-central $\chi^2_{\nu}(\delta)$ -distribution

an oracle inequality can be established as well

Prediction of the random effects

maximum a posteriori (MAP) estimate

$$egin{aligned} ilde{m{b}}_i &= rg \max_{m{b}_i} f(m{b}_i | m{y}_i, m{eta}, m{ heta}, \sigma^2) \ &= [m{Z}_i^T m{Z}_i + \sigma^2 m{\Psi}_{m{ heta}}^{-1}]^{-1} m{Z}_i^T (m{Y}_i - m{X}_i m{eta}) \end{aligned}$$

hence

$$\hat{\boldsymbol{b}}_i = [\boldsymbol{Z}_i^T \boldsymbol{Z}_i + \hat{\sigma}^2 \boldsymbol{\Psi}_{\hat{\boldsymbol{\theta}}}^{-1}]^{-1} \boldsymbol{Z}_i^T (\boldsymbol{Y}_i - \boldsymbol{X}_i \hat{\boldsymbol{\beta}})$$

Model Selection

Choice of the tuning parameter λ
use a grid of λ-values and select the optimal λ to be

$$\lambda^* = \operatorname*{arg\,min} BIC(\lambda_k)$$

or: mAIC, cAIC, mBIC, GIC,...

 Selection of the random effects structure assume the random effects structure is known assume q < n small

Riboflavin Production in Bacillus Subtilis

Gaussian linear mixed model:

$$y_{ij} = \mathbf{x}_{ij}^{T} \boldsymbol{\beta} + b_{i}^{k_{1}} z_{ij}^{k_{1}} + b_{i}^{k_{2}} z_{ij}^{k_{2}} + \varepsilon_{ij} \quad i = 1, ..., N, \quad j = 1, ..., n_{i}$$

with $b_i^{k_1} \sim \mathcal{N}(0, \theta_{k_1}^2)$, $b_i^{k_2} \sim \mathcal{N}(0, \theta_{k_2}^2)$, $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$ mutually independent

conclusions:

- variability between groups $(\hat{\sigma}^2 = 0.15, \, \hat{\theta}_{k_1}^2 = 0.03, \, \hat{\theta}_{k_2}^2 = 0.06)$
- one dominating gene

Summary LMMLasso

- Coordinate gradient descent algorithm
- Numerical convergence to a stationary point
- Consistency of the LMMLasso estimator

High-Dimensional

Generalized

Linear Mixed Models

Generalized Linear Model (GLM)

For n realisations of (Y_i, X_i)

- (y_i, x_i^T) independent for i = 1, ..., n
- \bullet y_i has density from exponential family

$$\exp\left\{\phi^{-1}\Big(y_i\xi_i-b(\xi_i)\Big)+c(y_i,\phi)\right\}\mu_i=\mathbb{E}[y_i]$$

• $g(\mu) = \eta$ with $\eta = X\beta$

estimate β by

$$\hat{eta}_{ extit{MLE}} = rg\min_{oldsymbol{eta}} -\ell(oldsymbol{eta})$$

Generalized Linear Mixed Model (GLMM)

Notation

$$g=1,\ldots,N$$
 independent units/groups $j=1,\ldots,n_g$ observations for unit/group g $n=\sum_{g=1}^N n_g$ total number of observations

y : n-dim response variable

b: q-dim (correlated) random effects

$$oldsymbol{eta} \in \mathbb{R}^{oldsymbol{
ho}}$$
 fixed-effects parameters $oldsymbol{ heta} \in \mathbb{R}^{oldsymbol{d}}$ covariance parameters ϕ dispersion parameter

 $\boldsymbol{X}: n \times p$ model matrix for $\boldsymbol{\beta}$ $\boldsymbol{Z}: n \times q$ model matrix for \boldsymbol{b}

 $oldsymbol{\Sigma}_{oldsymbol{ heta}}: q imes q$ covariance matrix, determined by $oldsymbol{ heta}$

Generalized Linear Mixed Model (GLMM)

Model assumptions

- $y_i | \boldsymbol{b}$ are independent for i = 1, ..., n
- $y_i | b$ has density from exponential family

$$\exp\left\{\phi^{-1}\left(y_i\xi_i-b(\xi_i)\right)+c(y_i,\phi)\right\} \text{ with } \boldsymbol{\mu}_i=\mathbb{E}[y_i|\boldsymbol{b}]$$

- $g(\mu) = \eta$ with $\eta = X\beta + Zb$
- $b \sim \mathcal{N}_q(\mathbf{0}, \Sigma_{\theta})$ with $\Sigma_{\theta} \geq 0$ for $\theta \in \mathbb{R}^d$

$$(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}})_{MLE} = \underset{\boldsymbol{\beta}}{\arg\min} - \log L(\boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{\phi})$$

High-Dimensional GLMM Set-up

Additionally to a GLMM, assume

- the true β_0 is sparse
- $d = dim(\theta)$ small

Aim: Estimate β , θ , ϕ and predict **b**

sparse fixed-effects estimates

The GLMMLasso Estimator

Key Idea 1: Lasso-type penalty

objective function

$$Q_{\lambda}(\beta, \theta, \phi) := -2 \log L(\beta, \theta, \phi) + \lambda \|\beta\|_{1} \qquad \lambda \geq 0$$

estimate (β, θ, ϕ) by

$$(\hat{oldsymbol{eta}},\hat{oldsymbol{ heta}},\hat{oldsymbol{\phi}}):=rg\min_{oldsymbol{eta},oldsymbol{ heta},\phi} oldsymbol{Q}_{\lambda}(oldsymbol{eta},oldsymbol{ heta},\phi)$$

lacktriangle in general, $L(oldsymbol{eta},oldsymbol{ heta},\phi)$ cannot be computed explicitly

The GLMMLasso Estimator

Key Idea 2: Laplace approximation

Calculate

$$I = \int_{\mathbb{R}^q} e^{S(oldsymbol{b})} doldsymbol{b}$$

Idea: approximate $S(\boldsymbol{b})$ by a quadratic function at the mode

$$\tilde{\boldsymbol{b}} := \arg \max_{\boldsymbol{b}} S(\boldsymbol{b})$$

The GLMMLasso estimator

Then

$$I = \int_{\mathbb{D}^q} e^{S(oldsymbol{b})} doldsymbol{b} pprox (2\pi)^{q/2} |-S''(ilde{oldsymbol{b}})|^{-1/2} e^{S(ilde{oldsymbol{b}})}$$

with $\tilde{\boldsymbol{b}} = \operatorname{arg\,max}_{\boldsymbol{b}} \mathcal{S}(\boldsymbol{b})$

hence

$$Q_{\lambda}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi) \rightsquigarrow Q_{\lambda}^{LA}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi)$$

GLMMLasso estimator:

$$\hat{\psi}^{\mathit{LA}} = (\hat{\beta}^{\mathit{LA}}, \hat{\theta}^{\mathit{LA}}, \hat{\phi}^{\mathit{LA}}) := \mathop{\arg\min}_{\beta, \theta, \phi} \mathit{Q}_{\lambda}^{\mathit{LA}}(\beta, \theta, \phi)$$

high-dimensional, non-convex optimization problem

The GLMMLasso Algorithm

Key Idea 3: coordinatewise optimization with inexact line search

GLMMLasso algorithm

0. $\psi^0 \in \mathbb{R}^{p+d+1}$ an initial value

Repeat for s = 0, 1, 2, ...

- Fixed-effects parameter optimization

 For k = 1
 - For k = 1, ..., p
 - a) Laplace approximation
 - b) Quadratic approximation and inexact line search
- 2. Covariance parameter optimization
- 3. Dispersion parameter optimization

until convergence

Approximate Algorithm

Step 1. b) Quadratic approximation and inexact line search is computationally expensive, since for the mode

$$\tilde{\pmb{b}} = \tilde{\pmb{b}}(\pmb{\beta}, \pmb{\theta}, \phi)$$

Key Idea 4: Approximate algorithm

regard $\hat{\boldsymbol{b}}$ as fixed for quadratic approximation

- \leadsto remarkably reduction in speed ($\approx 50\%)$
- → slightly biased parameter estimates

Two-stage GLMMLasso Estimator(s)

Motivation

Bias from the Lasso as well as the approximate algorithm

Stage 1: Variable Screening by GLMMLasso imposed by the Lasso (variable selection too restrictive)

Stage 2: Parameter Estimation

Key Idea 5: Refitting by ML

with the selected (non-zero) variables to get accurate parameter estimates

Two-stage GLMMLasso Estimator(s)

ML methods

 \hat{S} the set of selected variables, β_{init} fixed effect from Stage 1

• The GLMMLasso^{LA}-MLE hybrid estimator:

$$\begin{split} \hat{S} &= \hat{S}_{\textit{init}} := \{k : |\hat{\beta}_{\textit{init},k}| \neq 0\} \\ &\qquad (\hat{\beta}^{\textit{LA}}, \hat{\theta}^{\textit{LA}}, \hat{\phi}^{\textit{LA}})_{\textit{hybrid}} := \mathop{\arg\min}_{\beta_{\hat{S}_{\textit{init}}}, \theta, \phi} - 2 \log \textit{L}(\beta_{\hat{S}_{\textit{init}}}, \theta, \phi) \end{split}$$

The thresholded GLMMLasso^{LA} estimator:

$$\begin{split} \hat{S} &= \hat{S}_{\textit{thres}} := \{k: |\hat{\beta}_{\textit{init},k}| > \lambda_{\textit{thres}} \} \\ & (\hat{\beta}^{\textit{LA}}, \hat{\theta}^{\textit{LA}}, \hat{\phi}^{\textit{LA}})_{\textit{thres}} := \underset{\beta_{\hat{S}_{\textit{thres}}}, \theta, \phi}{\text{arg min}} - 2 \log \textit{L}(\beta_{\hat{S}_{\textit{thres}}}, \theta, \phi) \end{split}$$

Summary GLMMLasso

- Approximate the likelihood using the Laplace approximation
- Coordinatewise optimization
- Approximate algorithm to speed up
- Refitting by maximum likelihood methods

Take-Home Message

Part I: some words

- Truly high-dimensional generalized linear mixed models
- Non-convex loss function and convex penalty
- Fast computational algorithms
- Theoretical results for the Gaussian case

Take-Home Message

Part II: "picture"

	n > p	n≪p
Generalized Linear	MLE	Lasso
Models (GLMs)	[glm]	[glmnet]
Generalized Linear	MLE	GLMMLasso
Mixed Models (GLMMs)	[glmer]	[glmmlasso]

Acknowledgments

It has been a great honor to work with

Peter Bühlmann

Sara van de Geer

... and I thank all members of the Seminar für Statistik!

Questions?

References

- R. Tibshirani; Regression Shrinkage and Selection via the Lasso;
 J. R. Stat. Soc. (1996)
- P. Tseng and S. Yun; A Coordinte Gradient Descent Method for Nonsmooth Separable Minimization; Mathematical Programming (2009)
- ℓ_1 -Penalization for Mixture Regression Models (with discussion); N. Städler, P. Bühlmann, S. van de Geer; Test; (2010)
- D. Bates; Computational Methods for Mixed Models; Vignette for Ime4 (2011)

Extensions / Future Work

We see the following points as interesting for further research:

- group Lasso penalty
- elastic net penalty
- nonlinear mixed models
- Selection of random effects
- Model Selection Criteria

(Assumption 2)

- (a) Let $(\omega_j^{(i)})_{j=1}^n$ be the eigenvalues of $\mathbf{Z}_i \mathbf{\Psi} \mathbf{Z}_i^T$ for $i=1,\ldots,N$. At least two eigenvalues are different, i.e. for all i $\exists j_1 \neq j_2 \in \{1,\ldots,n\}$ such that $\omega_{j_1}^{(i)} \neq \omega_{j_2}^{(i)}$.
- (b) For i = 1, ..., N, the matrices Ω_i defined by

$$(\Omega_i)_{r,s} = \operatorname{tr}\left(\boldsymbol{V}_i^{-1} \frac{\partial \boldsymbol{V}_i}{\partial \phi_{p+r}} \boldsymbol{V}_i^{-1} \frac{\partial \boldsymbol{V}_i}{\partial \phi_{p+s}}\right) \quad r,s = 1,\ldots,q^* + 1$$

are strictly positive definite.

(Restricted Eigenvalue Condition)

There exists a constant $\kappa \geq 1$, such that for all $\beta \in \mathbb{R}^p$ satisfying $\|\beta_{\mathcal{S}_0^c}\|_1 \leq 6\|\beta_{\mathcal{S}_0}\|_1$ it holds that $\|\beta_{\mathcal{S}_0}\|_2^2 \leq \kappa^2 \beta^T \Sigma_{N,n} \beta$.

Oracle result

Statement

Theorem

Consider the weighted ℓ_1 -penalized estimator. Suppose that for some $\delta > 0$.

$$w_k \begin{cases} \leq 1/\delta & k \in S_0, \\ \geq 1/\delta & k \notin S_0. \end{cases}$$

Under Assumptions 1, 2 and 3, for $\lambda \geq 2T\delta\lambda_0$ and a constant c_0 , we have on the set $\mathcal J$ defined in (A.6),

$$\bar{\mathcal{E}}(\hat{\phi}_{\textit{weight}}|\phi_0) + 2(\lambda/\delta - T\lambda_0) \|\hat{\beta}_{\textit{weight}} - \beta_0\|_1 \leq 9(\lambda/\delta + T\lambda_0)^2 c_0^2 \kappa^2 s_0,$$

Likelihood of GLMMs

For $\xi_i(\mu_i) = \xi_i(\beta, \theta)$, the likelihood function of a GLMM is

$$\begin{split} L(\boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{\phi}) &= \int_{\mathbb{R}^q} \prod_{i=1}^n \left[\exp\left\{ \frac{y_i \xi_i(\boldsymbol{\beta}, \boldsymbol{\theta}) - b(\xi_i(\boldsymbol{\beta}, \boldsymbol{\theta}))}{\boldsymbol{\phi}} + c(y_i, \boldsymbol{\phi}) \right\} \right] \\ &\times \frac{1}{(2\pi)^{q/2}} \exp\left\{ -\frac{1}{2} \|\boldsymbol{u}\|_2^2 \right\} d\boldsymbol{u} \\ &= \frac{1}{(2\pi)^{q/2}} \int_{\mathbb{R}^q} \exp\left\{ \sum_{i=1}^n \left(\frac{y_i \xi_i(\boldsymbol{\beta}, \boldsymbol{\theta}) - b(\xi_i(\boldsymbol{\beta}, \boldsymbol{\theta}))}{\boldsymbol{\phi}} + c(y_i, \boldsymbol{\phi}) \right) \right. \\ &\left. -\frac{1}{2} \|\boldsymbol{u}\|_2^2 \right\} d\boldsymbol{u}. \end{split}$$