High-Dimensional Gaussian and Generalized Linear Mixed Models

Jürg Schelldorfer

Seminar für Statistik

December 6, 2011

Riboflavin Production in Bacillus Subtilis

A data set provided by DSM Nutritional Products

Goal:

improve riboflavin production rate by genetic engineering

Data:

response variable $Y \in \mathbb{R}$: riboflavin (log-)production rate covariates $X \in \mathbb{R}^p$: expressions from genes

 $n = 111$ observations and $p = 4088$ variables

 \hookrightarrow "simple" high-dimensional regression problem, but...

Riboflavin Production in Bacillus Subtilis

...we know more about the data...

 $n = 111$ observations and $p = 4088$ variables $N = 28$ groups with $\{2, \ldots, 6\}$ observations per group

 \rightarrow high-dimensional longitudinal data

Brain Computer Interface (BCI)

General introduction

• BCI is muscle-independent communication

measure EEG signals at different locations on the scalp

Brain Computer Interface (BCI)

Data set

Data:

- 83 subjects
- 150 trials per subject
- response *Y* ∈ {left, right}

this results in

$$
\textbf{\textit{y}} \in \mathbb{R}^{12'450}, \textbf{\textit{X}} \in \mathbb{R}^{12'450 \times 1494}
$$

Goal: variable selection

 \hookrightarrow grouped data with many covariates

Administrative Data

A data set about employment from the Centre for European Economic Research (ZEW Mannheim)

Data:

binary response variable $Y \in \{\text{employed}, \text{unemployed}\}\$

covariates *X*: income, sex, age group, employment duration,....

quarterly results of (*Y*, *X*) of many workers over several years

 $n \approx 120'000$ and $p \approx 30'000$

Goal: variable selection

 \rightarrow longitudinal data with many covariates

General Framework

Data:

 \hookrightarrow truly high-dimensional grouped data

 \rightarrow grouped data with many covariates

Goals:

- **1** variable selection
- **²** parameter estimation

Table of Contents

[Motivating Examples](#page-1-0)

[High-Dimensional \(Gaussian\) Mixed-Effects Models](#page-16-0)

[High-Dimensional Generalized Linear Mixed Models](#page-37-0)

[Summary](#page-46-0)

Context

Parameter estimation:

n: number of observations *p*: number of variables

For *n* independent observations

$$
Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i \quad i = 1, \dots, n
$$

with ε_i inpedendent and $\mathbb{E}[\varepsilon_i]=\mathsf{0}$

if $rank(X) = p$, the Least Squares estimator is

$$
\hat{\beta} = \argmin_{\beta} \| \boldsymbol{Y} - \boldsymbol{X}\beta \|_2^2 = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}
$$

The Lasso Estimator

For $n \ll p$ we should not use the LS estimator. Use the Lasso (Tibshirani, 1996)

$$
\hat{\beta}(\lambda) = \argmin_{\beta} \left\{ \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_1 \right\} \quad \lambda \ge 0
$$

or equivalently

$$
\hat{\boldsymbol{\beta}}(\boldsymbol{s}) = \argmin_{\boldsymbol{\beta}, ||\boldsymbol{\beta}||_1 \leq \boldsymbol{s}} \|\boldsymbol{\mathit{Y}} - \boldsymbol{\mathit{X}}\boldsymbol{\beta}\|_2^2
$$

with the following properties:

- some coefficients $\hat{\beta}_j(\lambda)$ are exactly zero
- convex optimization problem

Linear Mixed-Effects Model

Model equation

Inhomogeneous data:

for $i = 1, \ldots, N$ independent units/groups, $j = 1, \ldots, n_i$ observations

$$
\boldsymbol{Y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{\varepsilon}_i \quad i = 1, \ldots, N
$$

Yi : *nⁱ* -dim response vector

 \boldsymbol{X}_i : $n_i \times \boldsymbol{\rho}$ fixed-effects design matrix *Zi* : *nⁱ* × *q* random-effects design matrix

 β : fixed-effects coefficient *bi* : random-effects coefficients

ε*i* : *nⁱ* -dim error vector

Linear Mixed-Effects Model

Model assumptions

 $\varepsilon_{i} \sim \mathcal{N}_{\textit{n}_{i}}(\textbf{0}, \sigma^2 \textbf{\textit{I}}_{\textit{n}_{i}})$ and uncorrelated \bullet *b*_{*i*} ∼ $\mathcal{N}_q(\mathbf{0}, \Psi_{\theta})$ and uncorrelated \bullet $\varepsilon_1, \ldots, \varepsilon_N, \mathbf{b}_1, \ldots, \mathbf{b}_N$ independent

 $\Psi_{\theta}>0$ is parametrized by $\theta\in\mathbb{R}^d$

parameter estimation:

$$
(\hat{\beta}, \hat{\theta}, \hat{\sigma}^2)_{ML} = \underset{\beta, \theta, \sigma^2 > 0, \Psi > 0}{\arg \min} -\ell_{ML}(\beta, \theta, \sigma^2)
$$

Linear Mixed-Effects Model

Example from Pinheiro and Bates (2000)

Travel time of a specific type of wave through the length of railway rails

6 rails, 3 measurements per rail

model:

$$
y_{ij} = \beta + b_i + \varepsilon_{ij} \quad i = 1, \ldots, 6, \quad j = 1, \ldots, 3
$$

with $b_i \sim \mathcal{N}(0, \theta^2)$ independent of $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$

Recap

Parameter estimation:

High-Dimensional (Gaussian)

Mixed-Effects Models

Additionally to a linear mixed-effects model, assume

- the true β_0 is sparse
- \bullet *d* = *dim*(θ) small

Aim: Estimate $\boldsymbol{\beta}, \boldsymbol{\theta}, \, \sigma^2$ and predict $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_N$

The LMMLasso Estimator

Objective function:

$$
Q_{\lambda}(\beta,\theta,\sigma^2) := \underbrace{\frac{1}{2}\sum_{i=1}^N\left\{\log(|\boldsymbol{V}_i|) + (\boldsymbol{Y}_i - \boldsymbol{X}_i\beta)^T\boldsymbol{V}_i^{-1}(\boldsymbol{Y}_i - \boldsymbol{X}_i\beta)}_{\text{non-convex loss function }\rho}\right\}}_{\text{convex penalty}} + \underbrace{\lambda \|\beta\|_1}_{\text{convex penalty}}
$$

where

$$
\boldsymbol{V}_i = \boldsymbol{Z}_i \boldsymbol{\Psi}_{\boldsymbol{\theta}} \boldsymbol{Z}_i^T + \sigma^2 \boldsymbol{I}_{n_i} \quad i = 1, \ldots, N
$$

LMMLasso estimate:

$$
(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}, \hat{\sigma}^2) = \argmin_{\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^2} Q_{\lambda}(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^2)
$$

- How to compute the LMMLasso estimator?
- Numerical convergence of the algorithm?
- Theoretical properties of the LMMLasso estimator?
- Prediction of the random effects?
- **•** How to perform model selection?

Major Challenge

Make the step

convex −→ non-convex

in Computation and Theory!

Computational Algorithm

Ideas

How to calculate

$$
\hat{\phi} := (\hat{\beta}, \hat{\theta}, \hat{\sigma}^2) := \argmin_{\beta, \theta, \sigma^2} Q_{\lambda}(\beta, \theta, \sigma^2)?
$$

use a coordinate gradient descent algorithm!

i.e. optimize Q_{λ} w.r.t. one coordinate keeping all other coordinates fixed

key elements (Tseng and Yun, 2009):

- **Gauss-Seidel coordinatewise optimization**
- **Quadratic approximation** of the loss function
- **Inexact line search** using the Armijo rule

Computational Algorithm

Gauss-Seidel coordinatewise optimization

$$
\phi^{T} = (\beta^{T}, \theta^{T}, \sigma^{2}) = (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2}) \in \mathbb{R}^{p+d+1}
$$

\n...\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

\n...\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

\n...\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

\n...\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

\n
$$
= (\beta_{1}, \dots, \beta_{p}, \theta_{1}, \dots, \theta_{d}, \sigma^{2})
$$

. . .

Computational Algorithm

loss function $\rho(\phi)$, penalty $pen(\phi)$, e_i unit vector

LMMLasso algorithm

0. $\phi^0 \in \mathbb{R}^{p+d+1}$ *an initial value*

For $\ell = 0, 1, 2, \ldots$, let S^{ℓ} cycling through $\{1\}, \{2\}, \ldots, \{p+d+1\}$

- 1. *Quadratic approximation*
	- a) *Calculate the derivative* ∇ρ
	- **b)** *Choose an appropriate hessian* $h^{\ell} > 0$
- 2. *Inexact line search*
	- a) *Calculate the descent direction*
	- b) Choose a stepsize $\alpha^\ell > 0$ by the Armijo rule and set

$$
\phi^{\ell+1} = \phi^\ell + \alpha^\ell \textit{\textbf{d}}^\ell \textit{\textbf{e}}_{\mathcal{S}^\ell}
$$

until convergence

The Armijo rule is defined as follows:

Armijo rule

Choose the stepsize $\alpha^{\ell} > 0$ *in a way such that*

$$
\textit{Q}_{\lambda}(\phi^{\ell}+\alpha^{\ell}\textit{d}^{\ell}\textit{e}_{\mathcal{S}^{\ell}})\leq \textit{Q}_{\lambda}(\phi^{\ell})+\alpha^{\ell}\xi^{\ell}
$$

for ξ^{ℓ} depending on ρ , pen, d^{ℓ} , h^{ℓ} , ϕ^{ℓ} and some constants.

Theorem

If $(\phi^{\ell})_{\ell \geq 0}$ *is chosen according to the LMMLasso algorithm, then every cluster point of* $(\phi^\ell)_{\ell \geq 0}$ *is a stationary point of* $Q_\lambda(\phi)$ *.*

remarks:

- convergence can be slow
- result depends on the starting value

Theoretical Results

Notation

Set $n_c = n_i$ fixed for $i = 1, \ldots, N$ $Y_i \in \mathcal{Y} \subset \mathbb{R}^{n_c}, X_i \in \mathcal{X}^{n_c} \subset \mathbb{R}^{n_c \times p_c}$

define the parameter

$$
\boldsymbol{\phi}^{\mathcal{T}}:=(\boldsymbol{\beta}^{\mathcal{T}},\boldsymbol{\eta}^{\mathcal{T}})=(\boldsymbol{\beta}^{\mathcal{T}},\boldsymbol{\theta}^{\mathcal{T}},2\log \sigma)=(\boldsymbol{\beta}^{\mathcal{T}},\boldsymbol{\eta}^{\mathcal{T}})\in\mathbb{R}^{p+d+1}
$$

and the parameter space for $K > 0$

$$
\Phi = \{(\boldsymbol{\beta}^T, \boldsymbol{\eta}^T); \sup_{\mathsf{x} \in \mathcal{X}} |\mathsf{x}^T\boldsymbol{\beta}| \leq K, \|\boldsymbol{\eta}\|_{\infty} \leq K, \Psi_{\boldsymbol{\eta}} > 0\} \subset \mathbb{R}^{p+d+1}
$$

LMMLasso estimator

$$
\hat{\phi} := \argmin_{\phi \in \boldsymbol{\Phi}} \left\{ \rho(\boldsymbol{\beta}, \boldsymbol{\eta}) + \lambda \|\boldsymbol{\beta}\|_1 \right\}
$$

Theoretical Results

Notation

 ${f_{\phi}, \phi \in \Phi}$ Gaussian density, ϕ_0 true parameter vector

excess risk

$$
\mathcal{E}_{\boldsymbol{X},\boldsymbol{Z}}(\phi|\phi_0):=\int\log\Big(\frac{f_{\phi_0,\boldsymbol{X},\boldsymbol{Z}}}{f_{\phi,\boldsymbol{X},\boldsymbol{Z}}}\Big)f_{\phi_0,\boldsymbol{X},\boldsymbol{Z}}d\mu
$$

for fixed $X_1, \ldots, X_N, Z_1, \ldots, Z_N$

average excess risk

$$
\overline{\mathcal{E}}(\phi|\phi_0):=\frac{1}{N}\sum_{i=1}^N\mathcal{E}_{\bm{X}_i,\bm{Z}_i}(\phi|\phi_0)
$$

Statement

Theorem

Under some regularity conditions on Zⁱ and assuming that

$$
\|\beta_{0,N}\|_1 = o\bigg(\sqrt{\frac{N}{\log^4 N\log(\rho \vee N)}}\bigg) \quad \lambda_N = C\sqrt{\frac{\log^4 N\log(\rho \vee N)}{N}}
$$

for some C > 0 , any global minimizer $\hat{\phi}$ satisfies

$$
\overline{\mathcal{E}}(\hat{\phi}|\phi_0)=o_P(1)\quad (N\longrightarrow\infty)
$$

for n_c *fixed.*

Consistency

Remarks

\n- linear models:
$$
\|\beta_0\|_1 = o\left(\sqrt{\frac{n}{\log p}}\right)
$$
\n- finite mixture models: $\|\beta'_0\|_1 = o\left(\sqrt{\frac{n}{\log^3 n \log(p \vee n)}}\right)$
\n

key argument: non-central $\chi^2_\nu(\delta)$ -distribution

an oracle inequality can be established as well

maximum a posteriori (MAP) estimate

$$
\tilde{\boldsymbol{b}}_i = \arg \max_{\boldsymbol{b}_i} f(\boldsymbol{b}_i | \boldsymbol{y}_i, \beta, \theta, \sigma^2) \n= [\boldsymbol{Z}_i^T \boldsymbol{Z}_i + \sigma^2 \boldsymbol{\Psi}_{\theta}^{-1}]^{-1} \boldsymbol{Z}_i^T (\boldsymbol{Y}_i - \boldsymbol{X}_i \beta)
$$

hence

$$
\hat{\boldsymbol{b}}_i = [\boldsymbol{Z}_i^T \boldsymbol{Z}_i + \hat{\sigma}^2 \boldsymbol{\Psi}_{\hat{\theta}}^{-1}]^{-1} \boldsymbol{Z}_i^T (\boldsymbol{Y}_i - \boldsymbol{X}_i \hat{\boldsymbol{\beta}})
$$

Choice of the tuning parameter λ

use a grid of λ -values and select the optimal λ to be

```
\lambda^* = \arg \min BIC(\lambda_k)λk
```
or: mAIC, cAIC, mBIC, GIC,...

Selection of the random effects structure assume the random effects structure is known assume *q* < *n* small

Riboflavin Production in Bacillus Subtilis

Gaussian linear mixed model:

$$
y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + b_i^{k_1} z_{ij}^{k_1} + b_i^{k_2} z_{ij}^{k_2} + \varepsilon_{ij} \quad i = 1, \dots, N, \quad j = 1, \dots, n_i
$$

with $b_i^{k_1} \sim \mathcal{N}(0, \theta_{k_1}^2), b_i^{k_2} \sim \mathcal{N}(0, \theta_{k_2}^2), \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$ mutually independent

conclusions:

- variability between groups $(\hat{\sigma}^2 = 0.15,\, \hat{\theta}_{k_1}^2 = 0.03,\, \hat{\theta}_{k_2}^2 = 0.06)$
- one dominating gene
- Coordinate gradient descent algorithm
- Numerical convergence to a stationary point
- Consistency of the LMMLasso estimator

High-Dimensional **Generalized** Linear Mixed Models

Generalized Linear Model (GLM)

For *n* realisations of (Y_i, X_i)

- (y_i, x_i^T) independent for $i = 1, \ldots, n$
- y_i has density from exponential family

$$
\exp\left\{\phi^{-1}\left(\mathbf{y}_i\xi_i-\mathbf{b}(\xi_i)\right)+\mathbf{c}(\mathbf{y}_i,\phi)\right\}\boldsymbol{\mu}_i=\mathbb{E}[\mathbf{y}_i]
$$

•
$$
g(\mu) = \eta
$$
 with $\eta = \mathbf{X}\beta$

estimate β by

$$
\hat{\beta}_{\textit{MLE}} = \argmin_{\beta} - \ell(\beta)
$$

Generalized Linear Mixed Model (GLMM)

Notation

g = 1, . . . , *N* independent units/groups $j = 1, \ldots, n_q$ observations for unit/group g $n=\sum_{g=1}^{N} n_{g}$ total number of observations

- *y* : *n*-dim response variable
- *b* : *q*-dim (correlated) random effects
- $\boldsymbol{\beta} \in \mathbb{R}^{\bar{p}}$ fixed-effects parameters $\boldsymbol{\theta} \in \mathbb{R}^{d}$ covariance parameters ϕ dispersion parameter
- $X: n \times p$ model matrix for β
- $Z: n \times q$ model matrix for *b*
- Σ_{θ} : *q* × *q* covariance matrix, determined by θ

Generalized Linear Mixed Model (GLMM)

Model assumptions

 $y_i | \bm{b}$ are independent for $i = 1, \ldots, n$

 $y_i|\boldsymbol{b}$ has density from exponential family

$$
\exp\left\{\phi^{-1}\left(y_i\xi_i-b(\xi_i)\right)+c(y_i,\phi)\right\}\text{ with }\mu_i=\mathbb{E}[y_i|\boldsymbol{b}]
$$

\n- $$
g(\mu) = \eta
$$
 with $\eta = \mathbf{X}\beta + \mathbf{Z}\mathbf{b}$
\n- $\mathbf{b} \sim \mathcal{N}_q(\mathbf{0}, \Sigma_\theta)$ with $\Sigma_\theta \geq 0$ for $\theta \in \mathbb{R}^d$
\n

$$
(\hat{\beta}, \hat{\theta}, \hat{\phi})_{MLE} = \underset{\beta, \theta, \phi}{\arg \min} - \log L(\beta, \theta, \phi)
$$

High-Dimensional GLMM Set-up

Additionally to a GLMM, assume

- the true β_0 is sparse
- $d = dim(\theta)$ small

Aim: Estimate β, θ, φ and predict *b*

r, sparse fixed-effects estimates

The GLMMLasso Estimator

Key Idea 1: Lasso-type penalty

objective function

$$
\textit{Q}_{\lambda}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi) := -2\log\textit{L}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi) + \lambda\|\boldsymbol{\beta}\|_1 \qquad \lambda \geq 0
$$

estimate (β, θ, ϕ) by

$$
(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}, \hat{\phi}) := \argmin_{\boldsymbol{\beta}, \boldsymbol{\theta}, \phi} Q_{\lambda}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi)
$$

\bullet in general, $L(\beta, \theta, \phi)$ cannot be computed explicitly

The GLMMLasso Estimator

Key Idea 2: Laplace approximation

Calculate

$$
I = \int_{\mathbb{R}^q} e^{S(\boldsymbol{b})} d\boldsymbol{b}
$$

Idea: approximate *S*(*b*) by a quadratic function at the mode

$$
\tilde{\boldsymbol{b}} := \argmax_{\boldsymbol{b}} S(\boldsymbol{b})
$$

The GLMMLasso estimator

Then

$$
I = \int_{\mathbb{R}^q} e^{S(\boldsymbol{b})} d\boldsymbol{b} \approx (2\pi)^{q/2} |-S''(\tilde{\boldsymbol{b}})|^{-1/2} e^{S(\tilde{\boldsymbol{b}})}
$$

with $\tilde{\mathbf{b}} = \arg \max_{\mathbf{b}} S(\mathbf{b})$

hence

$$
Q_{\lambda}(\boldsymbol{\beta},\boldsymbol{\theta},\phi) \rightsquigarrow Q_{\lambda}^{LA}(\boldsymbol{\beta},\boldsymbol{\theta},\phi)
$$

GLMMLasso estimator:

$$
\hat{\psi}^{\mathsf{LA}} = (\hat{\beta}^{\mathsf{LA}}, \hat{\theta}^{\mathsf{LA}}, \hat{\phi}^{\mathsf{LA}}) := \argmin_{\beta, \theta, \phi} Q_{\lambda}^{\mathsf{LA}}(\beta, \theta, \phi)
$$

 $\overline{ }$ high-dimensional, non-convex optimization problem

The GLMMLasso Algorithm

Key Idea 3: coordinatewise optimization with inexact line search

GLMMLasso algorithm

0. $\psi^0 \in \mathbb{R}^{p+d+1}$ *an initial value*

Repeat *for* $s = 0, 1, 2, ...$

- 1. *Fixed-effects parameter optimization For* $k = 1, \ldots, p$
	- a) *Laplace approximation*
	- b) *Quadratic approximation and inexact line search*
- 2. *Covariance parameter optimization*
- 3. *Dispersion parameter optimization*

until *convergence*

 \bullet Step 1. b) Quadratic approximation and inexact line search is computationally expensive, since for the mode

$$
\boldsymbol{\tilde{b}} = \boldsymbol{\tilde{b}}(\boldsymbol{\beta}, \boldsymbol{\theta}, \phi)
$$

Key Idea 4: Approximate algorithm

regard $\hat{\boldsymbol{b}}$ as fixed for quadratic approximation \rightarrow remarkably reduction in speed (\approx 50%) \rightsquigarrow slightly biased parameter estimates

Two-stage GLMMLasso Estimator(s)

Motivation

Bias from the Lasso as well as the approximate algorithm

Stage 1: Variable Screening by GLMMLasso imposed by the Lasso (variable selection too restrictive)

Stage 2: Parameter Estimation

Key Idea 5: Refitting by ML

with the selected (non-zero) variables to get accurate parameter estimates

Two-stage GLMMLasso Estimator(s)

ML methods

 \hat{S} the set of selected variables, β_{init} fixed effect from Stage 1

1 The GLMMLasso^{LA}-MLE hybrid estimator:

$$
\hat{S}=\hat{S}_{\textit{init}}:=\{k:|\hat{\beta}_{\textit{init},k}|\neq 0\}
$$

$$
(\hat{\beta}^{LA},\hat{\theta}^{LA},\hat{\phi}^{LA})_{hybrid}:=\argmin_{\boldsymbol{\beta}_{\hat{S}_{init}},\boldsymbol{\theta},\phi} - 2\log L(\boldsymbol{\beta}_{\hat{S}_{init}},\boldsymbol{\theta},\phi)
$$

2 The thresholded GLMMLasso^{LA} estimator:

$$
\hat{S} = \hat{S}_{thres} := \{k : |\hat{\beta}_{init,k}| > \lambda_{thres}\}
$$

$$
(\hat{\beta}^{LA}, \hat{\theta}^{LA}, \hat{\phi}^{LA})_{thres} := \underset{\beta_{\hat{S}_{thres}}, \theta, \phi}{\arg \min} -2 \log L(\beta_{\hat{S}_{thres}}, \theta, \phi)
$$

- Approximate the likelihood using the Laplace approximation
- Coordinatewise optimization
- Approximate algorithm to speed up
- Refitting by maximum likelihood methods

Take-Home Message

Part I: some words

- Truly high-dimensional generalized linear mixed models
- Non-convex loss function and convex penalty
- Fast computational algorithms
- **• Theoretical results for the Gaussian case**

Take-Home Message

Part II: "picture"

Acknowledgments

It has been a great honor to work with

Peter Bühlmann Sara van de Geer

... and I thank all members of the Seminar für Statistik!

Questions?

- R. Tibshirani ; Regression Shrinkage and Selection via the Lasso ; J. R. Stat. Soc. (1996)
- P. Tseng and S. Yun ; A Coordinte Gradient Descent Method for Nonsmooth Separable Minimization ; Mathematical Programming (2009)
- \bullet ℓ_1 -Penalization for Mixture Regression Models (with discussion); N. Städler, P. Bühlmann, S. van de Geer : Test : (2010)
- D. Bates ; Computational Methods for Mixed Models ; Vignette for lme4 (2011)

We see the following points as interesting for further research:

- **o** group Lasso penalty
- **e** elastic net penalty
- **o** nonlinear mixed models
- **•** Selection of random effects
- **Model Selection Criteria**

Oracle result

Conditions

(Assumption 2)

(a) Let $(\omega_i^{(i)})$ $\left(\begin{smallmatrix} (i)\ j\end{smallmatrix}\right)_{j=1}^n$ be the eigenvalues of $\boldsymbol{Z}_i\boldsymbol{\Psi}\boldsymbol{Z}_i^T$ for $i=1,\ldots,N.$ At least two eigenvalues are different, i.e. for all *i* $\exists j_1\neq j_2\in\{1,\ldots,n\}$ such that $\omega^{(i)}_{j_1}$ $j_1^{(i)} \neq \omega_{j_2}^{(i)}$ (*1)*
*j*₂ (b) For $i = 1, \ldots, N$, the matrices Ω_i defined by

$$
(\Omega_i)_{r,s} = \text{tr}\left(\mathbf{V}_i^{-1} \frac{\partial \mathbf{V}_i}{\partial \phi_{p+r}} \mathbf{V}_i^{-1} \frac{\partial \mathbf{V}_i}{\partial \phi_{p+s}}\right) \quad r, s = 1, \ldots, q^* + 1
$$

are strictly positive definite.

(Restricted Eigenvalue Condition)

There exists a constant $\kappa \geq 1$, such that for all $\beta \in \mathbb{R}^p$ satisfying $\|\beta_{\mathcal{S}_0^c}\|_1 \leq 6 \|\beta_{\mathcal{S}_0}\|_1$ it holds that $\|\beta_{\mathcal{S}_0}\|_2^2 \leq \kappa^2 \beta^{\sf \tiny T} \Sigma_{\mathcal{N},n} \beta.$

Statement

Theorem

Consider the weighted ℓ_1 -penalized estimator. Suppose that for some $\delta > 0$.

$$
w_k \begin{cases} \leq 1/\delta & k \in S_0, \\ \geq 1/\delta & k \notin S_0. \end{cases}
$$

Under Assumptions 1, 2 and 3, for $\lambda \geq 2T\delta\lambda_0$ *and a constant c*₀*, we have on the set* J *defined in (A.6),*

$$
\bar{\mathcal{E}}(\hat{\phi}_{weight}|\phi_0)+2(\lambda/\delta-\mathcal{T}\lambda_0)\|\hat{\beta}_{weight}-\beta_0\|_1\leq 9(\lambda/\delta+\mathcal{T}\lambda_0)^2c_0^2\kappa^2s_0,
$$

Likelihood of GLMMs

For $\xi_i(\mu_i) = \xi_i(\beta, \theta)$, the likelihood function of a GLMM is

$$
L(\beta, \theta, \phi) = \int_{\mathbb{R}^q} \prod_{i=1}^n \left[exp \left\{ \frac{y_i \xi_i(\beta, \theta) - b(\xi_i(\beta, \theta))}{\phi} + c(y_i, \phi) \right\} \right]
$$

$$
\times \frac{1}{(2\pi)^{q/2}} exp \left\{ -\frac{1}{2} ||u||_2^2 \right\} du
$$

$$
= \frac{1}{(2\pi)^{q/2}} \int_{\mathbb{R}^q} exp \left\{ \sum_{i=1}^n \left(\frac{y_i \xi_i(\beta, \theta) - b(\xi_i(\beta, \theta))}{\phi} + c(y_i, \phi) \right) - \frac{1}{2} ||u||_2^2 \right\} du.
$$