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Riboflavin Production in Bacillus Subtilis

A data set provided by DSM Nutritional Products

Goal:
improve riboflavin production rate by genetic engineering

Data:
response variable Y ∈ R: riboflavin (log-)production rate
covariates X ∈ Rp: expressions from genes
n = 111 observations and p = 4088 variables

↪→ ”simple” high-dimensional regression problem, but...



Riboflavin Production in Bacillus Subtilis
...we know more about the data...
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n = 111 observations and p = 4088 variables
N = 28 groups with {2, . . . ,6} observations per group

↪→ high-dimensional longitudinal data



Brain Computer Interface (BCI)
General introduction

BCI is muscle-independent communication

measure EEG signals at different locations on the scalp



Brain Computer Interface (BCI)
Data set

Data:

83 subjects
150 trials per subject
response Y ∈ {left, right}

this results in

y ∈ R12′450,X ∈ R12′450×1494

Goal:
variable selection

↪→ grouped data with many covariates



Administrative Data
A data set about employment from the Centre for European Economic
Research (ZEW Mannheim)

Data:
binary response variable Y ∈ {employed, unemployed}

covariates X : income, sex, age group, employment duration,....

quarterly results of (Y ,X ) of many workers over several years

n ≈ 120′000 and p ≈ 30′000

Goal:
variable selection

↪→ longitudinal data with many covariates



General Framework

Data:
↪→ truly high-dimensional grouped data

↪→ grouped data with many covariates

Goals:
1 variable selection
2 parameter estimation
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Context

Parameter estimation:

n > p n� p

Linear Least Squares Lasso
Models [lm] [lars]

Linear Mixed- ML or REML

Effects Models [lmer] ?

n: number of observations
p: number of variables



(Classical) Linear Model

For n independent observations

Yi = xT
i β + εi i = 1, . . . ,n

with εi inpedendent and E[εi ] = 0

if rank(X ) = p, the Least Squares estimator is

β̂ = arg min
β

‖Y − Xβ‖22 = (X T X )−1X T y



The Lasso Estimator

For n� p we should not use the LS estimator. Use the Lasso
(Tibshirani, 1996)

β̂(λ) = arg min
β

{
‖Y − Xβ‖22 + λ‖β‖1

}
λ ≥ 0

or equivalently
β̂(s) = arg min

β,‖β‖1≤s
‖Y − Xβ‖22

with the following properties:
some coefficients β̂j(λ) are exactly zero
convex optimization problem



Linear Mixed-Effects Model
Model equation

Inhomogeneous data:
for i = 1, . . . ,N independent units/groups, j = 1, . . . ,ni observations

Y i = X iβ + Z ibi + εi i = 1, . . . ,N

Y i : ni -dim response vector

X i : ni × p fixed-effects design matrix
Z i : ni × q random-effects design matrix

β : fixed-effects coefficient
bi : random-effects coefficients

εi : ni -dim error vector



Linear Mixed-Effects Model
Model assumptions

εi ∼ Nni (0, σ
2Ini ) and uncorrelated

bi ∼ Nq(0,Ψθ) and uncorrelated
ε1, . . . , εN ,b1, . . . ,bN independent

Ψθ > 0 is parametrized by θ ∈ Rd

parameter estimation:

(β̂, θ̂, σ̂2)ML = arg min
β,θ,σ2>0,Ψ>0

−`ML(β,θ, σ2)



Linear Mixed-Effects Model
Example from Pinheiro and Bates (2000)

Travel time of a specific type of wave through the length of railway rails

6 rails, 3 measurements per rail
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model:
yij = β + bi + εij i = 1, . . . ,6, j = 1, . . . ,3

with bi ∼ N (0, θ2) independent of εij ∼ N (0, σ2)



Recap

Parameter estimation:

n > p n� p

Linear Least Squares Lasso
Models [lm] 4 [lars] 4

Linear Mixed- ML or REML

Effects Models [lmer] 4 !



High-Dimensional
(Gaussian)

Mixed-Effects Models



High-Dimensional Model Set-up

Additionally to a linear mixed-effects model, assume
the true β0 is sparse
d = dim(θ) small

Aim: Estimate β,θ, σ2 and predict b1, . . . ,bN



The LMMLasso Estimator

Objective function:

Qλ(β,θ, σ2) :=
1
2

N∑
i=1

{
log(|V i |) + (Y i − X iβ)T V−1

i (Y i − X iβ)

}
︸ ︷︷ ︸

non-convex loss function ρ

+ λ‖β‖1︸ ︷︷ ︸
convex penalty

:= ρ(·) + λpen(·)

where
V i = Z iΨθZ T

i + σ2Ini i = 1, . . . ,N

LMMLasso estimate:

(β̂, θ̂, σ̂2) = arg min
β,θ,σ2

Qλ(β,θ, σ2)



Questions to Address

1 How to compute the LMMLasso estimator?
2 Numerical convergence of the algorithm?
3 Theoretical properties of the LMMLasso estimator?
4 Prediction of the random effects?
5 How to perform model selection?



Major Challenge

Make the step

convex −→ non-convex

in Computation and Theory!



Computational Algorithm
Ideas

How to calculate

φ̂ := (β̂, θ̂, σ̂2) := arg min
β,θ,σ2

Qλ(β,θ, σ2)?

use a coordinate gradient descent algorithm!

i.e. optimize Qλ w.r.t. one coordinate keeping all other coordinates
fixed

key elements (Tseng and Yun, 2009):
Gauss-Seidel coordinatewise optimization
Quadratic approximation of the loss function
Inexact line search using the Armijo rule



Computational Algorithm
Gauss-Seidel coordinatewise optimization

φT = (βT ,θT , σ2) = (β1, . . . , βp, θ1, . . . , θd , σ
2) ∈ Rp+d+1

. . .

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

. . .

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

. . .

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

= (β1, . . . , βp, θ1, . . . , θd , σ
2)

. . .



Computational Algorithm

loss function ρ(φ), penalty pen(φ), ej unit vector

LMMLasso algorithm

0. φ0 ∈ Rp+d+1 an initial value

For ` = 0,1,2, . . ., let S` cycling through {1}, {2}, . . . , {p + d + 1}

1. Quadratic approximation

a) Calculate the derivative ∇ρ
b) Choose an appropriate hessian h` > 0

2. Inexact line search

a) Calculate the descent direction
b) Choose a stepsize α` > 0 by the Armijo rule and set

φ`+1 = φ` + α`d`eS`

until convergence



Computational Algorithm

The Armijo rule is defined as follows:

Armijo rule
Choose the stepsize α` > 0 in a way such that

Qλ(φ` + α`d`eS`) ≤ Qλ(φ`) + α`ξ`

for ξ` depending on ρ,pen,d`,h`,φ` and some constants.



Numerical Convergence

Theorem
If (φ`)`≥0 is chosen according to the LMMLasso algorithm, then every
cluster point of (φ`)`≥0 is a stationary point of Qλ(φ).

remarks:
convergence can be slow
result depends on the starting value



Theoretical Results
Notation

Set nC = ni fixed for i = 1, . . . ,N

Y i ∈ Y ⊂ RnC , X i ∈ X nC ⊂ RnC×p

define the parameter

φT := (βT ,ηT ) = (βT ,θT ,2 logσ) = (βT ,ηT ) ∈ Rp+d+1

and the parameter space for K > 0

Φ = {(βT ,ηT ); sup
x∈X
|xTβ| ≤ K , ‖η‖∞ ≤ K ,Ψη > 0} ⊂ Rp+d+1

LMMLasso estimator

φ̂ := arg min
φ∈Φ

{
ρ(β,η) + λ‖β‖1

}



Theoretical Results
Notation

{fφ,φ ∈ Φ} Gaussian density, φ0 true parameter vector

excess risk

EX ,Z (φ|φ0) :=

∫
log
( fφ0,X ,Z

fφ,X ,Z

)
fφ0,X ,Z dµ

for fixed X 1, . . . ,X N ,Z 1, . . . ,Z N

average excess risk

E(φ|φ0) :=
1
N

N∑
i=1

EX i ,Z i (φ|φ0)



Consistency
Statement

Theorem
Under some regularity conditions on Z i and assuming that

‖β0,N‖1 = o

(√
N

log4 N log(p ∨ N)

)
λN = C

√
log4 N log(p ∨ N)

N

for some C > 0, any global minimizer φ̂ satisfies

E(φ̂|φ0) = oP(1) (N −→∞)

for nC fixed.



Consistency
Remarks

linear models: ‖β0‖1 = o
(√

n
log p

)
finite mixture models: ‖β′

0‖1 = o

(√
n

log3 n log(p∨n)

)
key argument: non-central χ2

ν(δ)-distribution

an oracle inequality can be established as well



Prediction of the random effects

maximum a posteriori (MAP) estimate

b̃i = arg max
bi

f (bi |y i ,β,θ, σ
2)

= [Z T
i Z i + σ2Ψ−1

θ ]−1Z T
i (Y i − X iβ)

hence

b̂i = [Z T
i Z i + σ̂2Ψ−1

θ̂
]−1Z T

i (Y i − X i β̂)



Model Selection

Choice of the tuning parameter λ
use a grid of λ-values and select the optimal λ to be

λ∗ = arg min
λk

BIC(λk )

or:
mAIC, cAIC, mBIC, GIC,...

Selection of the random effects structure
assume the random effects structure is known
assume q < n small



Riboflavin Production in Bacillus Subtilis

Gaussian linear mixed model:

yij = xT
ij β + bk1

i zk1
ij + bk2

i zk2
ij + εij i = 1, . . . ,N, j = 1, . . . ,ni

with bk1
i ∼ N (0, θ2

k1
), bk2

i ∼ N (0, θ2
k2

), εij ∼ N (0, σ2) mutually
independent

conclusions:

variability between groups
(σ̂2 = 0.15, θ̂2

k1
= 0.03, θ̂2

k2
= 0.06)

one dominating gene



Summary LMMLasso

Coordinate gradient descent algorithm
Numerical convergence to a stationary point
Consistency of the LMMLasso estimator



High-Dimensional
Generalized
Linear Mixed Models



Generalized Linear Model (GLM)

For n realisations of (Yi ,Xi)

(yi , xT
i ) independent for i = 1, . . . ,n

yi has density from exponential family

exp
{
φ−1

(
yiξi − b(ξi)

)
+ c(yi , φ)

}
µi = E[yi ]

g(µ) = η with η = Xβ

estimate β by
β̂MLE = arg min

β
−`(β)



Generalized Linear Mixed Model (GLMM)
Notation

g = 1, . . . ,N independent units/groups
j = 1, . . . ,ng observations for unit/group g
n =

∑N
g=1 ng total number of observations

y : n-dim response variable
b : q-dim (correlated) random effects

β ∈ Rp fixed-effects parameters
θ ∈ Rd covariance parameters
φ dispersion parameter

X : n × p model matrix for β
Z : n × q model matrix for b
Σθ : q × q covariance matrix, determined by θ



Generalized Linear Mixed Model (GLMM)
Model assumptions

yi |b are independent for i = 1, . . . ,n
yi |b has density from exponential family

exp
{
φ−1

(
yiξi − b(ξi)

)
+ c(yi , φ)

}
with µi = E[yi |b]

g(µ) = η with η = Xβ+Zb
b ∼ Nq(0,Σθ) with Σθ ≥ 0 for θ ∈ Rd

(β̂, θ̂, φ̂)MLE = arg min
β,θ,φ

− log L(β,θ, φ)



High-Dimensional GLMM Set-up

Additionally to a GLMM, assume
the true β0 is sparse
d = dim(θ) small

Aim: Estimate β,θ, φ and predict b

 sparse fixed-effects estimates



The GLMMLasso Estimator

Key Idea 1: Lasso-type penalty

objective function

Qλ(β,θ, φ) := −2 log L(β,θ, φ) + λ‖β‖1 λ ≥ 0

estimate (β, θ, φ) by

(β̂, θ̂, φ̂) := arg min
β,θ,φ

Qλ(β,θ, φ)

 in general, L(β,θ, φ) cannot be computed explicitly



The GLMMLasso Estimator
Key Idea 2: Laplace approximation

Calculate
I =

∫
Rq

eS(b)db

Idea: approximate S(b) by a quadratic function at the mode

b̃ := arg max
b

S(b)



The GLMMLasso estimator

Then
I =

∫
Rq

eS(b)db ≈ (2π)q/2| − S′′(b̃)|−1/2eS(b̃)

with b̃ = arg maxb S(b)

hence
Qλ(β,θ, φ) QLA

λ (β,θ, φ)

GLMMLasso estimator:

ψ̂LA = (β̂LA, θ̂LA, φ̂LA) := arg min
β,θ,φ

QLA
λ (β,θ, φ)

 high-dimensional, non-convex optimization problem



The GLMMLasso Algorithm

Key Idea 3: coordinatewise optimization with inexact line search

GLMMLasso algorithm

0. ψ0 ∈ Rp+d+1 an initial value

Repeat for s = 0,1,2, . . .

1. Fixed-effects parameter optimization
For k = 1, . . . ,p

a) Laplace approximation
b) Quadratic approximation and inexact line search

2. Covariance parameter optimization

3. Dispersion parameter optimization

until convergence



Approximate Algorithm

 Step 1. b) Quadratic approximation and inexact line search is
computationally expensive, since for the mode

b̃ = b̃(β,θ, φ)

Key Idea 4: Approximate algorithm

regard b̃ as fixed for quadratic approximation
 remarkably reduction in speed (≈ 50%)
 slightly biased parameter estimates



Two-stage GLMMLasso Estimator(s)
Motivation

 Bias from the Lasso as well as the approximate algorithm

Stage 1: Variable Screening by GLMMLasso
imposed by the Lasso (variable selection too restrictive)

Stage 2: Parameter Estimation
Key Idea 5: Refitting by ML

with the selected (non-zero) variables to get accurate parameter
estimates



Two-stage GLMMLasso Estimator(s)
ML methods

Ŝ the set of selected variables, βinit fixed effect from Stage 1

1 The GLMMLassoLA-MLE hybrid estimator:

Ŝ = Ŝinit := {k : |β̂init ,k | 6= 0}

(β̂LA, θ̂LA, φ̂LA)hybrid := arg min
βŜinit

,θ,φ
−2 log L(βŜinit

,θ, φ)

2 The thresholded GLMMLassoLA estimator:

Ŝ = Ŝthres := {k : |β̂init ,k | > λthres}

(β̂LA, θ̂LA, φ̂LA)thres := arg min
βŜthres

,θ,φ
−2 log L(βŜthres

,θ, φ)



Summary GLMMLasso

Approximate the likelihood using the Laplace approximation
Coordinatewise optimization
Approximate algorithm to speed up
Refitting by maximum likelihood methods



Take-Home Message
Part I: some words

Truly high-dimensional generalized linear mixed models
Non-convex loss function and convex penalty
Fast computational algorithms
Theoretical results for the Gaussian case



Take-Home Message
Part II: “picture”

n > p n� p

Generalized Linear MLE Lasso
Models (GLMs) [glm] [glmnet]

Generalized Linear MLE GLMMLasso
Mixed Models (GLMMs) [glmer] [glmmlasso]
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Peter Bühlmann Sara van de Geer

... and I thank all members of the Seminar für Statistik!



Questions?
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Extensions / Future Work

We see the following points as interesting for further research:
group Lasso penalty
elastic net penalty
nonlinear mixed models
Selection of random effects
Model Selection Criteria



Oracle result
Conditions

(Assumption 2)

(a) Let
(
ω
(i)
j

)n
j=1 be the eigenvalues of Z iΨZ T

i for i = 1, . . . ,N. At
least two eigenvalues are different, i.e. for all i
∃j1 6= j2 ∈ {1, . . . ,n} such that ω(i)

j1
6= ω

(i)
j2

.
(b) For i = 1, . . . ,N, the matrices Ωi defined by

(Ωi)r ,s = tr
(

V−1
i

∂V i

∂φp+r
V−1

i
∂V i

∂φp+s

)
r , s = 1, . . . ,q∗ + 1

are strictly positive definite.

(Restricted Eigenvalue Condition)
There exists a constant κ ≥ 1, such that for all β ∈ Rp satisfying
‖βSc

0
‖1 ≤ 6‖βS0‖1 it holds that ‖βS0‖

2
2 ≤ κ2βT ΣN,nβ.



Oracle result
Statement

Theorem
Consider the weighted `1-penalized estimator. Suppose that for some
δ > 0,

wk

{
≤ 1/δ k ∈ S0,

≥ 1/δ k /∈ S0.

Under Assumptions 1, 2 and 3, for λ ≥ 2T δλ0 and a constant c0, we
have on the set J defined in (A.6),

Ē(φ̂weight |φ0) + 2(λ/δ − Tλ0)‖β̂weight − β0‖1 ≤ 9(λ/δ + Tλ0)2c2
0κ

2s0,



Likelihood of GLMMs

For ξi(µi) = ξi(β,θ), the likelihood function of a GLMM is

L(β,θ, φ) =

∫
Rq

n∏
i=1

[
exp

{
yiξi(β,θ)− b(ξi(β,θ))

φ
+ c(yi , φ)

}]

× 1
(2π)q/2 exp

{
− 1

2
‖u‖22

}
du

=
1

(2π)q/2

∫
Rq

exp

{
n∑

i=1

(yiξi(β,θ)− b(ξi(β,θ))

φ
+ c(yi , φ)

)
− 1

2
‖u‖22

}
du.
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