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Riboflavin Production in Bacillus Subtilis

A data set provided by DSM Nutritional Products

Goal:
improve riboflavin production rate by genetic engineering

Data:
response variable Y € R: riboflavin (log-)production rate
covariates X € RP: expressions from genes

n = 111 observations and p = 4088 variables

— "simple” high-dimensional regression problem, but...



Riboflavin Production in Bacillus Subtilis
...we know more about the data...

production rate (log2)

time

n = 111 observations and p = 4088 variables
N = 28 groups with {2, ...,6} observations per group

— high-dimensional longitudinal data



Brain Computer Interface (BClI)

General introduction

@ BCl is muscle-independent communication

@ measure EEG signals at different locations on the scalp



Brain Computer Interface (BClI)

Data set
Data:

@ 83 subjects
@ 150 trials per subject
@ response Y & {left, right}

this results in

y e R12/450 X e R12’450><1494
)

Goal:
variable selection

— grouped data with many covariates



Administrative Data

A data set about employment from the Centre for European Economic
Research (ZEW Mannheim)

Data:
binary response variable Y € {employed, unemployed}

covariates X: income, sex, age group, employment duration,....

quarterly results of (Y, X) of many workers over several years
n =~ 120’000 and p ~ 30000

Goal:
variable selection

— longitudinal data with many covariates



General Framework

Data:
< truly high-dimensional grouped data

< grouped data with many covariates

Goals:
@ variable selection
© parameter estimation
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Context

Parameter estimation:

| n>p | n<p |
Linear Least Squares | Lasso
Models [1m] [1ars]
Linear Mixed- ML or REML
Effects Models [Imer] 7

n: number of observations
p: number of variables



(Classical) Linear Model

For n independent observations

Yi=x]B+e i=1,...,n
with ¢; inpedendent and E[¢;] = 0
if rank(X) = p, the Least Squares estimator is

B =argmin||Y — XB[5 = (X"X)"'XTy
B



The Lasso Estimator

For n < p we should not use the LS estimator. Use the Lasso
(Tibshirani, 1996)

() = argmin {HY— X33 +A||m|1} A>0

or equivalently

A(s) = argmin | Y — XB][3
BlBlli<s
with the following properties:
@ some coefficients Bj()\) are exactly zero

@ convex optimization problem



Linear Mixed-Effects Model

Model equation

Inhomogeneous data:
fori=1,...,Nindependent units/groups, j = 1,..., n; observations

Yi=XB+Zbj+e; i=1,....N

Y, : ni-dim response vector

X, : n; x p fixed-effects design matrix
Z; : n; x q random-effects design matrix

3 : fixed-effects coefficient
b; : random-effects coefficients

g; . nj-dim error vector



Linear Mixed-Effects Model

Model assumptions

@ ¢; ~ Np,(0,52l,) and uncorrelated
@ b; ~ Ng(0, ¥y) and uncorrelated
@ &1,...,en, by,..., by independent

Wy > 0 is parametrized by 6 € R?

parameter estimation:

A

(3,0,6%) .= argmin  —ly(B,86,02)
8,0,0250,9>0



Linear Mixed-Effects Model

Example from Pinheiro and Bates (2000)
Travel time of a specific type of wave through the length of railway rails

6 rails, 3 measurements per rail

100
|

80
I

travel time (nanoseconds)
60
L

40
|

model:
y/j:ﬁ—l-b;—i-&“,'j i=1,...,6, j=1,...,3
with b; ~ N(0, 6?) independent of ;; ~ N (0, 0?)



Recap

Parameter estimation:

| n>p | n<p |
Linear Least Squares Lasso
Models [1m] v [Lars] vV
Linear Mixed- ML or REML

Effects Models

[lmer] v




High-Dimensional
(Gaussian)
Mixed-Effects Models



High-Dimensional Model Set-up

Additionally to a linear mixed-effects model, assume
@ the true 3y is sparse
@ d = dim(0) small

Aim: Estimate 3, 6, o2 and predict by, . ..



The LMMLasso Estimator

Obijective function:

N
Qx(3,0,0°) := Z{Iog |Vi]) + Y'—X/ﬁ)TV/_1(Yi_Xi/6)}+ AllBIl1
— ~——

convex penalty

non-convex loss function p
= p() + Apen(")
where
Vi=ZwoZ] +5°, i=1,...,N
LMMLasso estimate:

(8,6,5°%) = argmin Q\(8, 6, ¢°)
B,0,02



Questions to Address

@ How to compute the LMMLasso estimator?

© Numerical convergence of the algorithm?

© Theoretical properties of the LMMLasso estimator?
© Prediction of the random effects?

©@ How to perform model selection?



Major Challenge

Make the step

in Computation and Theory!



Computational Algorithm

Ideas

How to calculate

A

¢ = (B,0,5%) := argmin Q\(8, 0, 02)?
3,0,02

use a coordinate gradient descent algorithm!

i.e. optimize Q) w.r.t. one coordinate keeping all other coordinates
fixed

key elements (Tseng and Yun, 2009):
@ Gauss-Seidel coordinatewise optimization
@ Quadratic approximation of the loss function
@ Inexact line search using the Armijo rule



Computational Algorithm

Gauss-Seidel coordinatewise optimization

¢T:(;@T,OT,o'z):(/317...,@0’01’_“79d’0.2)ERp+d+1

:(51,...,“3,0,01,...,Qd,O'z)
:(517"'”8,()7917"'706%0—2)

:(517"‘75,03017"'760"0-2)
:(517"‘76{37017"'70(1’02)
=Bty Bp, 01, .. ,04,0%)

:(517"‘75,03015"'796150-2)
:(617'”76[37017”'70d702)



Computational Algorithm

loss function p(¢), penalty pen(¢), e; unit vector

LMMLasso algorithm
0. ¢° € RPHI*T an initial value

For¢=0,1,2,..., let S* cycling through {1},{2},...,{p+d + 1}
1. Quadratic approximation

a) Calculate the derivative V p
b) Choose an appropriate hessian h* > 0

2. Inexact line search

a) Calculate the descent direction
b) Choose a stepsize o* > 0 by the Armijo rule and set

o1 = ¢! + oldles

until convergence




Computational Algorithm

The Armijo rule is defined as follows:
Armijo rule
Choose the stepsize o > 0 in a way such that
QA((be + O/déesz) < Q>\(¢Z) ol O/{Z

for ¢¢ depending on p, pen, d*, h*, ' and some constants.




Numerical Convergence

Theorem

If (¢*)e>0 is chosen according to the LMMLasso algorithm, then every
cluster point of (¢)s>o is a stationary point of Qx(¢).

remarks:
@ convergence can be slow
@ result depends on the starting value



Theoretical Results

Notation
Set nc = n;fixedfori=1,...,N
Y e YCR e X;e Xc C RNcxP
define the parameter
¢":=(8",n")=(B7.67,2logo) = (B7,n") € RP+I*
and the parameter space for K > 0

® = {(5T,77T);Sup ’XTﬁl <K, |nllw < K, ¥, >0} C RPHA+1
xXeX

LMMLasso estimator

A

é = argmin {p(8,m) + || }

PP



Theoretical Results

Notation

{fs, ¢ € ®} Gaussian density, ¢ true parameter vector

excess risk

Ex,z(dldo) : /'09 ¢° )f¢0xsz
fOffiXGdX1,...,XN,Z1,...,ZN

average excess risk

E(Blo) - st z/(¢|0)



Consistency
Statement

Theorem
Under some regularity conditions on Z; and assuming that

1Bolls = o N o C\/Iog4 Niog(p v N)
’ log* Nlog(p Vv N) N

for some C > 0, any global minimizer ¢ satisfies

E(Plgo) = 0p(1) (N — o)

for n¢ fixed.




Consistency

Remarks

@ linear models: ||Boll1 = O(@)

. . . ’ _ n
@ finite mixture models: || 3,1 = o( Iogsnlog(p\/n)>

@ key argument: non-central y2(4)-distribution

an oracle inequality can be established as well



Prediction of the random effects

maximum a posteriori (MAP) estimate
b; = argmax (by|y;, 8., %)
=[2]Z;+o2%,"17'Z] (Y, - X;8)
hence

bi =127z + 62w, Z] (¥, - X;B)



Model Selection

@ Choice of the tuning parameter \
use a grid of A-values and select the optimal A to be

A* =argmin BIC(\)
Ak
or:
mAIC, cAIC, mBIC, GIC,...

@ Selection of the random effects structure
assume the random effects structure is known
assume g < nsmall



Riboflavin Production in Bacillus Subtilis

Gaussian linear mixed model:
T ki _k ko _k . ,
y,-j:x,-j,8+b,1z,.j‘+b,22ij2+a,-j i=1,....N, j=1,....n;

with b ~ N(0,62 ), b2 ~ N(0,62), e ~ N(0, o) mutually
independent

conclusions:

@ variability between groups
(62 = 0.15, 0,%1 =0.03, 9%2 = 0.06)
@ one dominating gene



Summary LMMLasso

@ Coordinate gradient descent algorithm
@ Numerical convergence to a stationary point
@ Consistency of the LMMLasso estimator



High-Dimensional
Generalized
Linear Mixed Models



Generalized Linear Model (GLM)

For n realisations of (Y}, X))
@ (yi,x)independentfori=1,...,n
@ y; has density from exponential family

exp {¢71 (}/iéi - b(fi)) + c(yi, ¢>)} pi = Ely]

® g(p) =nwithn = X3

estimate 3 by A
BumLE = argﬂmin —4(B)



Generalized Linear Mixed Model (GLMM)

Notation

g=1,...,Nindependent units/groups
j=1,...,ng observations for unit/group g
n= 29’21 ng total number of observations

y : n-dim response variable
b : g-dim (correlated) random effects

B € RP fixed-effects parameters
6 € RY covariance parameters
¢ dispersion parameter

X : n x p model matrix for 8
Z : n x g model matrix for b
3¢ : g x g covariance matrix, determined by 6



Generalized Linear Mixed Model (GLMM)

Model assumptions

@ yj|b are independentfori=1,...,n
@ y;|b has density from exponential family

exp {¢_1 (ylfi - b(&i)) + (¥, ¢)} with p; = E[y;|b]
o g(u) = nwithn = X3+ Zb

@ b~ Ny(0,3y) with g > 0 for € RY

(3,8, d)me = argmin —log L(3, 6, ¢)
B,0,¢



High-Dimensional GLMM Set-up

Additionally to a GLMM, assume
@ the true 3y is sparse
@ d = dim(0) small

Aim: Estimate 3, 8, ¢ and predict b

@ gsparse fixed-effects estimates



The GLMMLasso Estimator

] Key Idea 1: Lasso-type penalty‘

objective function

Q\(B,0,0) = —2log L(B,6,¢) + AlBll1  A=0

estimate (3, 6, ¢) by

(3,0, %) = argmin Q\(8, 0, ¢)
B,0,¢

@ in general, L(3, 6, ¢) cannot be computed explicitly



The GLMMLasso Estimator

] Key Idea 2: Laplace approximation ‘

Calculate
| = / eS®)db
R9

Idea: approximate S(b) by a quadratic function at the mode
b := argmax S(b)
b



The GLMMLasso estimator

Then )
| = / eS(b)db ~ (277)‘7/2| . S//(B)|—1/288(b)
Ra

with b = arg max,, S(b)

hence

Q)\(/Bv 07 (b) ~ QﬁA([‘% 07 ¢)
GLMMLasso estimator:

HHA = (B, 014, 5H4) .= argmin QHA(3, 6. )
£.0.6

@ high-dimensional, non-convex optimization problem



The GLMMLasso Algorithm

’ Key Idea 3: coordinatewise optimization with inexact line search

GLMMLasso algorithm

0. ¥° € RPI*1 an jnitial value
Repeat fors =0,1,2,...

1. Fixed-effects parameter optimization
Fork=1,....p

a) Laplace approximation
b) Quadratic approximation and inexact line search

2. Covariance parameter optimization
3. Dispersion parameter optimization

until convergence




Approximate Algorithm

@ Step 1. b) Quadratic approximation and inexact line search is
computationally expensive, since for the mode

b=b(3,0,9)

Key Idea 4: Approximate algorithm ‘

regard b as fixed for quadratic approximation
~+ remarkably reduction in speed (~ 50%)
~ slightly biased parameter estimates



Two-stage GLMMLasso Estimator(s)

Motivation

@ Bias from the Lasso as well as the approximate algorithm

Stage 1: Variable Screening by GLMMLasso
imposed by the Lasso (variable selection too restrictive)

Stage 2: Parameter Estimation
Key Idea 5: Refitting by ML|

with the selected (non-zero) variables to get accurate parameter
estimates




Two-stage GLMMLasso Estimator(s)
ML methods

S the set of selected variables, 3 fixed effect from Stage 1

@ The GLMMLasso™-MLE hybrid estimator:
S = S := {k : |Binitx| # 0}

(B, 6%, 6" bybri = arg ”;ig —2log L(Bg, 6, ¢)
S. ) b

© The thresholded GLMMLasso 4 estimator:
S= Sthres =1{k: |Binit,k’ > Athres |

(BLA, éLAa QgLA)thres = arg m@”l —2log L(ﬁgthres7 0,9)

Sthres



Summary GLMMLasso

@ Approximate the likelihood using the Laplace approximation
@ Coordinatewise optimization

@ Approximate algorithm to speed up

@ Refitting by maximum likelihood methods



Take-Home Message

Part |: some words

@ Truly high-dimensional generalized linear mixed models
@ Non-convex loss function and convex penalty

@ Fast computational algorithms

@ Theoretical results for the Gaussian case



Take-Home Message

Part Il: “picture”

| n>p | n<p
Generalized Linear MLE Lasso
Models (GLMs) [g1m] [glmnet]
Generalized Linear MLE GLMMLasso
Mixed Models (GLMMSs) || [glmer] | [glmmlasso]
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Extensions / Future Work

We see the following points as interesting for further research:
@ group Lasso penalty
@ elastic net penalty
@ nonlinear mixed models
@ Selection of random effects
@ Model Selection Criteria



Oracle result

Conditions

(Assumption 2)

(a) Let (w/(i));?:1 be the eigenvalues of Z,¥Z] fori=1,... N. At
least two eigenvalues are different, i.e. for all i
1 # J2 € {1,...,n} such that w” # &,

(b) Fori=1,..., N, the matrices ; defined by

oV, oV,
Q)ps=tr (V1 —Lvy1 ’) r.s=1,...,q" +1
(e ( " Ooper ' Odprs 7

are strictly positive definite.

(Restricted Eigenvalue Condition)
There exists a constant x > 1, such that for all 3 € RP satisfying

Bscll1 < 6]|Bs, |1 it holds that ||Bs, |12 < k287N, »8
0



Oracle result

Statement

Theorem

Consider the weighted (1 -penalized estimator. Suppose that for some
6 >0,

<1/6 ke Sy,
Wk
>1/6 k¢ Sp.

Under Assumptions 1, 2 and 3, for A\ > 2Té\g and a constant ¢y, we
have on the set J defined in (A.6),

g(éweight’d’O) + 2()‘/5 - T)‘O)Hléweight - :60”1 < 9()‘/5 + T)\O)ZCSH2307




Likelihood of GLMMs

For &i(ui) = &i(3, 0), the likelihood function of a GLMM is

wp.o.0- [ 11 [exp {yiéi(ﬁﬁ)—b(&(ﬁ,@)) + ety ¢)H

RY 3 ¢
« ;exp{ _ 1||uH2}aru
(2r)a/2 22

n

1 yi€i(B,8) — b(&i(B,0))
—W/Rqexp{z< 5 +C(y/‘7¢))

i=1
1 2
- Sllul3 bdu.
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