
Structure Estimation, Graphical Modelling
and Causal Inference in High Dimensions:

Linear Mixed-effects Models

”lmmlasso: Estimation for High-dimensional Linear Mixed-Effects Models Using ℓ1-penalization” [5] is a
project of C1 in collaboration with C3, and it builds upon [6] and [2].

1. Introduction

n: number of observations, p: number of variables

n > p n << p

Linear Ordinary Lasso

Regression Least Squares

Linear Mixed- Maximum Likelihood (ML)

Effects Models Restricted lmmlasso
Maximum Likelihood (REML)

Key challenges: high-dimensionality, non-convexity

2. Linear mixed models and ℓ1-penalized estimation

2.1 High-dimensional Model Set-up
Inhomogeneous data (not independent, but grouped observations)
i = 1, . . . , N grouping index
j = 1, . . . , ni observation index
NT =

∑N
i=1 ni ≪ p total number of observations

For each group i:
- yi: ni × 1 vector of responses
- Xi: ni × p fixed-effects design matrix
- Zi: ni × q random-effects design matrix
- bi: q × 1 group-specific vector of random regression coefficients

Common for all groups:
- β: p× 1 vector of fixed regression coefficients

Using the notation from [4], the model can be written as

yi = Xiβ +Zibi + εi i = 1, . . . , N , (1)

assuming that

i) εi ∼ Nni(0, σ
2Ini) and uncorrelated for i = 1, . . . , N ,

ii) bi ∼ Nq(0,Ψ) and uncorrelated for i = 1, . . . , N ,

iii) ε1, . . . , εN , b1, . . . , bN are independent.

Ψ = Ψθ is a covariance matrix where θ is an unconstrained set of parameters (with dimension q∗)
such that Ψθ is positive definite. From model (1) we deduce that y1, . . . ,yN are independent and
yi ∼ Nni(Xiβ,Vi(θ, σ

2)) with Vi(θ, σ
2) = ZiΨθZ

T
i + σ2Ini.

Denote the stacked vectors y = (yT1 , . . . ,y
T
N )T , b = (bT1 , . . . , b

T
N )T , ε = (εT1 , . . . , ε

T
N )T and the stacked

matrices X = (XT
1 , . . . ,X

T
N )T , Z = diag(Z1, . . . ,ZN ) and V = diag(V1, . . . ,VN ). Then model (1) can

be written as
y = Xβ +Zb + ε (2)

and the negative log-likelihood is given by

−ℓ(β,θ, σ2) =
1

2

{

NT log(2π) + log |V | + (y −Xβ)TV −1(y −Xβ)
}

(3)

2.2 ℓ1-penalized maximum likelihood estimator
Since NT ≪ p, consider:

Qλ(β,θ, σ
2) :=

1

2
log |V | +

1

2
(y −Xβ)TV −1(y −Xβ) + λ

p
∑

k=2

|βk| , (4)

β1: unpenalized intercept, λ: nonnegative regularization parameter
Consequently,

φ̂ := (β̂, θ̂, σ̂2) = argmin
β,θ,σ2>0,Ψ>0

Qλ(β,θ, σ
2) , (5)

which is a nonconvex optimization problem!

2.3 Prediction of the random effects
Predict the random-effects coefficients bi by the maximum a posteriori (MAP) principle, which yields

b̂i = [ZT
i Zi + σ̂2Ψ−1

θ̂
]−1ZT

i (yi −Xiβ̂) i = 1, . . . , N . (6)

2.4 Selection of the regularization parameter
Use the Bayesian Information Criterion (BIC) defined by

−2ℓ(β̂, θ̂, σ̂2) + logNT · d̂fλ , (7)

where d̂fλ := |{1 ≤ k ≤ p; β̂k 6= 0}| + dim(θ) is the sum of the number of the nonzero fixed regression
coefficients and the number of variance components.

3. Coordinate Gradient Descent Algorithm

We calculate the estimator (5) by the coordinate gradient descent algorithm proposed in [7], and used in
[3]. The key elements are:

•Coordinatewise optimization. Cycle through the coordinates and minimize the objective function
Qλ(.) with respect to only one coordinate while keeping the other parameters fixed.

•Quadratic approximation. In each step, approximate Qλ(.) by a strictly convex quadratic function.

• Inexact line search. Calculate a descent direction and employ an inexact line search to ensure a
decrease in the objective function.

Define

P (φ) :=

p
∑

k=2

|βk| , g(φ) :=
1

2
log |V | +

1

2
(y −Xβ)TV −1(y −Xβ). (8)

Then (5) can be written as

φ̂ = argmin
φ

Qλ(φ) := g(φ) + λP (φ) (9)

Let ej the jth unit vector.

Algorithm. (Coordinate Gradient Descent)

(0) Let φ0 ∈ R
p+q∗+1 be an initial value.

For ℓ = 0, 1, 2, . . ., let Sℓ be the index cycling through the coordinates {1}, {2},. . . , {p+q∗}, {p+q∗+1}

(1) Approximate the second derivative ∂2

∂(φSℓ)
2
Qλ(φ

ℓ) by hℓ > 0.

(2) Calculate the descent direction

dℓ := argmind∈R

{

g(φℓ) + ∂
∂φSℓ

g(φℓ)d + 1/2d2hℓ + λP (φℓ + deSℓ)
}

.

(3) Choose a stepsize αℓ > 0 and set φℓ+1 = φℓ + αℓdℓeSℓ such there is a decrease in the objective
function.

until convergence.

This algorithm is implemented in the R package lmmlasso, which is available from the first author’s website
(http://stat.ethz.ch/people/schell) and will be made available on http://cran.r-project.org.

4. Application: Riboflavin data

Data description. Data set provided by DSM (Switzerland), see also [1] response: logarithm of the
riboflavin production rate of Bacillus subtilis
p = 4088 covariates measuring the gene expression levels
N = 28 groups with ni ∈ {2, . . . , 6} and NT = 111
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Model. We fit a random-intercept model

yij = xT
ijβ + bi1 + εij i = 1, . . . , N, j = 1, . . . , ni (10)

with bi1 ∼ N (0, τ2) and εij ∼ N (0, σ2).
Result. Compare lmmlasso, cv-Lasso (standard Lasso using 10-fold cross-validation) and Lasso (standard
Lasso using BIC).

lmmLasso cv-Lasso Lasso

σ̂2 0.32 0.38 0.30

τ̂ 2 0.05 - -

|S(β̂)| 22 18 21

Conclusions. We see that the total variability can be split into 13.2% between-subject variability and
86.8% within-subject variability.

5. Current Collaborations

We have three ongoing collaborations:

1) ETH Zurich, Prof. Dr. Sara van de Geer (project C3)

2) ZEW Mannheim, Dr. Stephan Dlugosz, Labour Markets, Human Resources and Social Policy (project
A5)

3) TU Berlin, Machine Learning Group, Prof. Dr. Klaus-Robert Müller, Berlin Brain Computer Interface
(BBCI)

6. Future Work

In the remaining of the first funding period, we are going to generalize the gaussian linear mixed-effects
model to non-gaussian response variables, i.e. the logistic and poisson case. We will focus on theoretical as
well as computational aspects and set up an R package called glmmlasso. This is again joint work with
C3.
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