Estimation for a high-dimensional Mixed-Effects Model using ℓ_1 -constraints

Jürg Schelldorfer

joint work with Peter Bühlmann

Seminar für Statistik, ETH Zürich

September 25, 2009

Overview

	n > p	n << p
Linear Regression	Ordinary Least Squares	Lasso
Linear Mixed- Effects Models	Maximum Likelihood (ML) Restricted Maximum Likelihood (REML)	?

Introduction

Linear Mixed-Effects Models and ℓ_1 -penalized estimation Theoretical Result: Consistency Numerical Algorithm Simulation Study and Real Data Example

Table of Contents

- Introduction
- 2 Linear Mixed-Effects Models and ℓ_1 -penalized estimation
- Theoretical Result: Consistency
- 4 Numerical Algorithm
- 5 Simulation Study and Real Data Example

(classical) Multiple Linear Regression

For *N* independent observations

$$y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip} + \epsilon_i$$
 $i = 1, ..., N$ $\epsilon_i \sim i.i.d.$

Assuming N > p and the design matrix has full rank, the LS estimator for β is

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Introduction

Linear Mixed-Effects Models and ℓ_1 -penalized estimation Theoretical Result: Consistency Numerical Algorithm Simulation Study and Real Data Example

Lasso estimator

For $N \ll p$ we should not use the LS estimator. We can use the Lasso (Tibshirani, 1996)

$$\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta} \|Y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

or equivalently

$$\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta, \|\beta\|_1 \le s} \|Y - X\beta\|_2^2$$

with the following properties:

- The Lasso does variable selection (i.e. some coefficients are set exactly to zero)
- Convex optimiziation problem, which can be solved efficiently

Linear Mixed-Effects Model

Inhomogeneous data:

For i = 1, ..., N independent units, $j = 1, ..., n_i$ observations

$$y_{ij} = x_{ij}^T b + z_{ij}^T \beta_i + \epsilon_{ij}$$

or in matrix notation

$$Y_i = X_i b + Z_i \beta_i + \epsilon_i$$
 $i = 1, ..., N$

 Y_i : n_i -dim response vector

 $X_i: n_i \times p$ matrix of covariates with fixed effects $b \in \mathbb{R}^p$

 $Z_i: n_i \times q$ matrix of covariates with random effects $\beta_i \in \mathbb{R}^q$

 ϵ_i : n_i -dim vector of errors.

Introduction

Linear Mixed-Effects Models and ℓ_1 -penalized estimation Theoretical Result: Consistency **Numerical Algorithm** Simulation Study and Real Data Example

Linear Mixed-Effects Model

Assumptions:

$$eta_i \sim N_q(0,G) \quad \epsilon_i \sim N_{n_i}(0,\sigma^2 V_i)$$

and both independent within and across units.

The fixed effects b, the random effects β_i and the covariance parameters (in G and V_i) are estimated by using ML or REML.

Introduction

Linear Mixed-Effects Models and ℓ_1 -penalized estimation Theoretical Result: Consistency Numerical Algorithm Simulation Study and Real Data Example

Recap

	$N_{Tot} > p$	$N_{Tot} << p$
Linear Regression	Ordinary Least Squares	Lasso
Linear Mixed- Effects Models	Maximum Likelihood (ML) Restricted Maximum Likelihood (REML)	?

High-dimensional Model Set-up

i = 1, ..., N being N independent groups $j = 1, ..., n_i$ observations per group. $N_{Tot} = \sum_{i=1}^{N} n_i << p$.

$$Y_i = X_i b + Z_i \beta_i + \epsilon_i$$
 $i = 1, ..., N$

and assume

$$\beta_i \sim N_a(0, \tau^2 \mathbf{I}) \quad \epsilon_i \sim N_{n_i}(0, \sigma^2 \mathbf{I})$$

and both being independent within and across groups.

Aim: Estimate $b, \sigma^2, \tau^2, \beta_1, ..., \beta_N$

Theoretical Result: Consistency Numerical Algorithm Simulation Study and Real Data Example

ℓ₁-penalized Maximum Likelihood Estimator

From the likelihood function, estimate the parameters ${\it b}, \sigma^2$ and τ^2 by minimizing

$$Q_{\lambda}(b, \sigma^{2}, \tau^{2}) := \frac{1}{2} \sum_{i=1}^{N} \left\{ \log(|\Lambda_{i}|) + (Y_{i} - X_{i}b)^{T} \Lambda_{i}^{-1} (Y_{i} - X_{i}b) \right\} + \lambda \|b\|_{1}$$
$$:= g(b, \sigma^{2}, \tau^{2}) + \lambda \|b\|_{1}$$

where

$$\Lambda_i = \sigma^2 \mathbf{I} + \tau^2 Z_i Z_i^T \quad i = 1, ..., N$$

$$\hat{b}, \hat{\sigma}^2, \hat{\tau}^2 = argmin_{b, \sigma^2, \tau^2} Q_{\lambda}(b, \sigma^2, \tau^2)$$

Introduction

Linear Mixed-Effects Models and ℓ₁-penalized estimation

Theoretical Result: Consistency

Numerical Algorithm

Simulation Study and Real Data Example

Major Challenge

Make the step

convex ---- nonconvex

in Computation and Theory!

Estimation of the random effects

Employ the maximum a posteriori (MAP) estimate. Let $Y_i|\beta_i \sim h_1 d\mu$ and $\beta_i \sim h_2 d\mu$, then

$$\hat{\beta}_{i} = \operatorname{argmax}_{\beta_{i}} \left\{ \log h_{1}(Y_{i}|\beta_{i}) + \operatorname{log}h_{2}(\beta_{i}) \right\}$$
$$= \left[Z_{i}^{T} Z_{i} + \frac{\sigma^{2}}{\tau^{2}} \mathbf{I}_{q \times q} \right]^{-1} Z_{i}^{T} r_{i}$$

with

$$r_i := (Y_i - X_i b)$$

which corresponds to a Ridge Regression with $\lambda_{Ridge} = \frac{\sigma^2}{\tau^2}$.

Theoretical Result: Consistency Numerical Algorithm Simulation Study and Real Data Example

Model Selection

• Choice of the tuning parameter λ

Choose a λ -sequence $\lambda_1 < ... < \lambda_K$ and select the optimal λ to be

$$\lambda^* = \operatorname{argmin}_{\lambda} BIC(\lambda)$$

or:

mAIC, cAIC, GIC,... many other suggestions

Selection of the random effects

We assume that the variables having a random effect are known.

How to find them, still an open problem...

We assume that $q \ll p$.

Numerical Algorithm Simulation Study and Real Data Example

Notation

Let i = 1, ..., N as before and set $n = n_i$ fixed.

$$Y \in \mathcal{Y} \subset \mathbb{R}^n$$
, $X \in \mathcal{X}^n \subset \mathbb{R}^{n \times p}$

Define the parameter

$$\theta^T := (\boldsymbol{b}^T, \boldsymbol{\eta}^T) = (\boldsymbol{b}^T, 2\log \sigma, 2\log \tau)$$

and the parameter space

$$\Theta = \{(\boldsymbol{b}^T, \boldsymbol{\eta}^T); \sup_{\boldsymbol{x} \in \mathcal{X}} |\boldsymbol{x}^T \boldsymbol{b}| \leq K, \|\boldsymbol{\eta}\|_{\infty} \leq K\} \subset \mathbb{R}^{p+2} \quad \text{for some } K > 0$$

Let $\{f_{\theta}, \theta \in \Theta\}$ be the density with respect to the new parametrization.

Theoretical Result: Consistency
Numerical Algorithm
Simulation Study and Real Data Example

Notation

Define the so-called excess risk

$$\mathcal{E}(heta| heta_0) := \int \log \left[rac{f_{ heta_0}}{f_{ heta}}
ight] f_{ heta_0} d\mu$$

and for fixed $X_1,...,X_N,Z_1,...,Z_N$ we define the average excess risk

$$\overline{\mathcal{E}}(\theta|\theta_0) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}(\theta(X_i, Z_i)|\theta_0(X_i, Z_i))$$

Rewrite our penalized estimator:

$$\hat{ heta}_{\lambda} := argmin_{ heta \in \Theta} \Big\{ - \sum_{i=1}^{N} logf_{ heta}(Y_i, X_i, Z_i) + \lambda \|b\|_1 \Big\}$$

Theoretical Result: Consistency Numerical Algorithm

Simulation Study and Real Data Example

Consistency

Theorem

Under some regularity conditions and assuming that

$$\|b\|_1 = o\left(\sqrt{\frac{N}{log^5N}}\right) \quad \lambda = C\sqrt{\frac{log^5N}{N}} \quad \textit{for some } C > 0$$

Then for $\hat{\theta}_{\lambda}$ holds

$$\overline{\mathcal{E}}(\hat{\theta}_{\lambda}|\theta_0) \stackrel{P}{\longrightarrow} 0 \quad (N \longrightarrow \infty)$$

An oracle inequality can be established as well.

Algorithm

Set
$$P(heta):=\|b\|_1$$
. Solving $argmin_{ heta}Q_{\lambda}(heta)=argmin_{ heta}igg\{g(heta)+\lambda P(heta)igg\}$

is challenging.

Coordinate Gradient Descent from Tseng and Yun (2007). Key elements:

- Coordinatewise optimization
- Quadratic approximation of the objective function
- Inexact line search using the Armijo rule

Algorithm

Coordinate Gradient Descent Algorithm

0. Let $\theta^0 \in \mathbb{R}^{p+2}$ be an initial value.

For k = 1, 2, ... let \mathcal{J}^k be the set cycling through the coordinates $\{1, ..., p, p+1, p+2\}$

- 1. Choose an appropriate hessian $H^k > 0$
- $2. \ \ d^k := \textit{argmin}_d \Big\{ g(\theta^k) + \nabla g(\theta^k) d + 1/2 d^2 H^k + \lambda P(\theta^k + de_{\mathcal{J}_k}) \Big\}$
- 3. Choose a stepsize $\alpha^k > 0$ by the Armijo rule and set

$$\theta^{k+1} = \theta^k + \alpha^k \mathbf{d}^k \mathbf{e}_{\mathcal{J}_k}$$

Algorithm

The Armijo rule is defined as follows:

Armijo Rule

Choose $\alpha_{init}^k > 0$ and let α^k be the largest element of $\{\alpha_{init}^k \beta^j\}_{j=0,1,2,...}$ satisfying

$$Q_{\lambda}(\theta^{k} + \alpha^{k} d^{k}) \leq Q_{\lambda}(\theta^{k}) + \alpha^{k} \sigma \triangle^{k}$$

where

$$\triangle^k := \nabla g(\theta^k) d^k + \gamma (d^k)^2 H^k + \lambda P(\theta^k + d^k e_{J_k}) - \lambda P(\theta^k)$$

Convergence Results

Numerical Convergence

If $(\theta^k)_{k\geq 0}$ is chosen according to the Coordinate Gradient Descent Algorithm, then every cluster point of $\{\theta^k\}_{k\geq 0}$ is a stationary point of $Q_{\lambda}(\theta)$.

Remarks:

- Due to the nonconvex form of $Q_{\lambda}(\theta)$, the convergence can be slow
- The result depends on the starting value

Theoretical Result: Consistency Numerical Algorithm

Simulation Study and Real Data Example

Small Simulation Study

Random-intercept model

$$y_{ij} = (b_0 + \beta_i) + x_{ij}^T b + \epsilon_{ij}$$
 $i = 1, ..., N, j = 1, ..., n_i$

with
$$N = 30$$
, $n_i = n = 6$, $p = 500(p > N_{Tot})$ and $\sigma = \tau = 1$ and $b = (1, 2, 3, 1, 0, ...0)$.

We simulated the covariates k=1,...,p by $x^{(k)} \sim N_n(0,\Sigma)$ with $\Sigma_{ij} = \rho^{|i-j|}$ and $\rho=0.2$, so the signal-to-noise ratio is 18.8.

In each run we have chosen the optimal model using BIC over a grid $\lambda_{min} < ... < \lambda_{max}$.

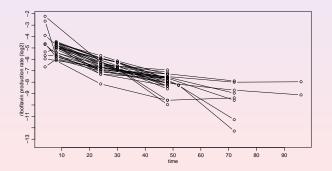
Small Simulation Study

Results:

quantity	true value	median	mean	sd	
$ \mathcal{A} $:	4	5	25.13	(97.44)	
TP:	4	4	4	(0)	
σ :	1	1.05	1.01	(0.22)	
au:	1	0.94	0.94	(0.15)	
b_0 :	1	0.98	0.98	(0.2)	
<i>b</i> ₁ :	2	1.78	1.79	(0.1)	
<i>b</i> ₂ :	3	2.86	2.84	(0.1)	
b_3 :	1	0.79	0.79	(0.1)	

Riboflavin Production in Bacillus Subtilis

A data set provided by DSM (Switzerland). The response variable $Y \in \mathbb{R}$: Riboflavin production rate covariates $X \in \mathbb{R}^p$: expressions from genes N = 28, $N_{Tot} = 111$, $n_i \in \{2, ..., 6\}$, p = 4088



Analysis of the Riboflavin Data Set

We fit a random-intercept model

$$y_{ij} = (b_0 + \beta_i) + x_{ii}^T b + \epsilon_{ij}$$
 $i = 1, ..., N, j = 1, ..., n_i$

We get:
$$\sigma = 0.69 \quad \tau = 0.23$$
 $|\mathcal{A}| = 9$ $\beta_1, ..., \beta_N \in [-0.33, 0.2]$ Comment:

- A very sparse model is chosen ($|A_{Lasso}| = 18$, $|A_{adaptiveLasso}| = 12$)
- 6 out of 9 variables are also selected by the Lasso (the remaining three have a small absolute value)

Analysis of the Riboflavin Data Set

Compare the predictive performance to the Lasso.

Choose a subset for which $n_i = 4$, i.e. each unit has measurements at four time points.

Carry out a leave-one-time-point-out Cross-Validation.

Use AIC for choosing the optimal λ -parameter.

The prediction error was reduced by about 12%.

Conclusions

- "convex → nonconvex Lasso"
- We suggested an algorithm using ℓ_1 -constraints in order to estimate the parameters of a simple Mixed-Effects Model.
- Under regularity conditions, the ℓ_1 -penalized estimator is consistent
- The numerical algorithm converges to a stationary point.

Thanks

• to my supervisor Peter Bühlmann

the audience

References

- P. Tseng and S. Yun; A Coordinte Gradient Descent Method for Nonsmooth Separable Minimization; Mathematical Programming; (2007)
- Regression Shrinkage and Selection via the Lasso; R. Tibshirani; J. R. Stat. Soc.; (1996)
- \(\ell_1\)-Penalization for Mixture Regression Models; N. St\(\text{St}\) deler,
 P. B\(\text{Bihlmann}, S. \) van de Geer; to appear; (2009)