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(classical) Multiple Linear Regression

For N independent observations
Yi= 0o+ BiXiy + ... + ,BpX,'p +¢ i=1,...,N ¢ ~i.i.d.

Assuming N > p and the design matrix has full rank, the LS
estimator for G is A
B=(XTX)"'XTy
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Lasso estimator

For N << p we should not use the LS estimator. We can use
the Lasso (Tibshirani, 1996)

B(N) = argming|| Y — X515+ All 6]l

or equivalently

B(N) = argming 5, <sllY — XB|3

with the following properties:

@ The Lasso does variable selection (i.e. some coefficients
are set exactly to zero)

@ Convex optimiziation problem, which can be solved
efficiently
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Linear Mixed-Effects Model

Inhomogeneous data:
Fori=1,..., N independent units, j = 1, .., n; observations

y,'j:Xi]--b—}—Zi}-ﬂ,'—Fe,'j
or in matrix notation
Yi=Xib+Zipi+e¢ i=1,.,N

Y; : n;-dim response vector

X; . nj x p matrix of covariates with fixed effects b € RP

Z; : n; x g matrix of covariates with random effects 3; € R9
€; : nj-dim vector of errors.
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Linear Mixed-Effects Model

Assumptions:
ﬁf ~ Nq(07 G) €j ~ Nn,-(0702 VI)

and both independent within and across units.

The fixed effects b, the random effects 3; and the covariance
parameters (in G and V,) are estimated by using ML or REML.
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Recap
H NTot > p ‘ NTot <<p ‘
Linear Ordinary Lasso
Regression Least Squares

Linear Mixed- Maximum Likelihood (ML)

Effects Models Restricted ?
Maximum Likelihood (REML)
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High-dimensional Model Set-up

i=1,...,N being N independent groups
j=1,..,nj observations per group.
Nppt = SoN , nj << p.

Yi = Xib+ Zifj + € i=1,.,N

and assume
Bi ~ Ng(0,721) €j ~ Np,(0,021)
and both being independent within and across groups.

Aim: Estimate b, 02,72, 31, .., Bn
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¢1-penalized Maximum Likelihood Estimator

From the likelihood function, estimate the parameters b, o2 and
72 by minimizing

N
1
Qu(b,0% 7%) =5 { log(IAl) + (Yi = Xib) TAT (Vi — be)} + Allbll4
i=1

g(b,0®,7%) + Allbll3

where
Ai=c?l+72Z2ZT i=1,..,N

b,5%,#2 = argminy, ,2 .»Qx\(b, 0%, 7°)

Seminar fiir Statistik, ETH Zirich High-dimensional Mixed-Effects Models using ¢-constraints



Introduction

Linear Mixed-Effects Models and ¢{-penalized estimation
Theoretical Result: Consistency

Numerical Algorithm

Simulation Study and Real Data Example

Major Challenge

Make the step

in Computation and Theory!
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Estimation of the random effects

Employ the maximum a posteriori (MAP) estimate. Let
Yi|Bi ~ hydp and 5 ~ hodp, then

B,- = argmaxﬁi{ log h1(Y;i|Gi) + /Oghz(ﬁ/)}
T o? 15T
= [Z, Z/+ zquq]_ Z/ I

with
ri:= (Yi — Xib)

which corresponds to a Ridge Regression with Agjgge = i—i
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Model Selection

@ Choice of the tuning parameter \
Choose a A-sequence )\ < ... < Ak and select the optimal
A to be
X* = argminyBIC()\)

or:
mAIC, cAIC, GIC,... many other suggestions
@ Selection of the random effects
We assume that the variables having a random effect are
known.
How to find them, still an open problem...
We assume that g << p.
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Notation

Leti=1,..,N as before and set n = n; fixed.
YeYCR", XeX"CR™P
Define the parameter

07 .= (b",n") = (b",2logc,2log )
and the parameter space

©={(b",n7);sup|x"b| < K, ||Inllsc <K} C RP*2  for some K > 0
xeX

Let {fy, 6 € ©} be the density with respect to the new
parametrization.
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Notation

Define the so-called excess risk

£(0l00) = [ 1og [%] ,d

and for fixed Xj, ..., Xy, Z1, ..., Zy We define the average excess
risk

E(6160) = Nze( (X, Z)I60(X;. Z))

Rewrite our penalized estimator:
N
0x = argmingeo{ — > logh(Y;, X;, Z) + Al|blls |
i=1
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Consistency

Theorem
Under some reqularity conditions and assuming that

_ N A [log®N
IIbll1 =0 Tog°N A=C N for some C > 0

Then for §,, holds

E(Brl60) 50 (N — )

An oracle inequality can be established as well.
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Algorithm

Set P(#) := ||b|1. Solving
argmingQ\(6) = argming{g(e) + /\P(H)}

is challenging.
Coordinate Gradient Descent from Tseng and Yun (2007).
Key elements:

@ Coordinatewise optimization

@ Quadratic approximation of the objective function

@ Inexact line search using the Armijo rule
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Algorithm

Coordinate Gradient Descent Algorithm

0. Letf° € RP*2 pe an initial value.

Fork =1,2,... let 7% be the set cycling through the coordinates
{1a"'7p7p+ 1,p+2}

1. Choose an appropriate hessian H* > 0
2. gk .= argmind{g(ok) £ Vg(09)d + 1/2d2HK + AP(6k + dejk)}

3. Choose a stepsize o > 0 by the Armijo rule and set

ok+1 = 0K + ok dke,
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Algorithm

The Armijo rule is defined as follows:

Armijo Rule

Choose o, > 0 and let o* be the largest element of {a£ ,3'}j—0.1.2..
satisfying
QM0 + oK) < Q\(6F) + ako

where

AK = Vg(0F)d* + y(d*)2H* + AP(0 + d¥ey,) — AP(0¥)
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Convergence Results

Numerical Convergence

If (0K) k>0 is chosen according to the Coordinate Gradient
Descent Algorithm, then every cluster point of {6%} o is a
stationary point of Q(0).

Remarks:

@ Due to the nonconvex form of Q,(#), the convergence can
be slow

@ The result depends on the starting value
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Small Simulation Study

Random-intercept model
Yi=(bo+B)+xb+e i=1,.N j=1..n;

with N =30, nj=n=26, p=500(p > Nrpt) and c =7 =1 and
b=(1,2,3,1,0,...0).

We simulated the covariates k = 1, .., p by x¥) ~ N,(0, ) with
Y= pli=il and p = 0.2, so the signal-to-noise ratio is 18.8.

In each run we have chosen the optimal model using BIC over a grid
)\min < ... < )\max.
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Small Simulation Study

Results:
quantity true value median mean sd
|Al|: 4 5 25.13 (97.44)
TP : 4 4 4 (0)
o 1 1.05 1.01  (0.22)
T 1 094 094 (0.15)
bo: 1 0.98 0.98 (0.2)
b 2 178 179  (0.1)
bo: 3 286 2.84 (0.1
bs: 1 0.79 0.79 (0.1)
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Riboflavin Production in Bacillus Subtilis

A data set provided by DSM (Switzerland).

The response variable Y € R: Riboflavin production rate
covariates X € RP: expressions from genes

N =28, Npp,y =111, n; € {2, ...,6}, p = 4088
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Analysis of the Riboflavin Data Set

We fit a random-intercept model

Vi=(bo+B)+x/bt+e i=1,.N, j=1,.n

We get:

c=069 7=023
Al =9

B1,...,0n € [-0.33,0.2]
Comment:

@ A very sparse model is chosen (|.A;zss0| = 18,
‘AadaptiveLasso’ = 12)

@ 6 out of 9 variables are also selected by the Lasso (the
remaining three have a small absolute value)
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Analysis of the Riboflavin Data Set

Compare the predictive performance to the Lasso.

Choose a subset for which n; = 4, i.e. each unit has
measurements at four time points.

Carry out a leave-one-time-point-out Cross-Validation.
Use AIC for choosing the optimal \-parameter.

The prediction error was reduced by about 12%.
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Conclusions

@ "convex — nonconvex Lasso”

@ We suggested an algorithm using ¢1-constraints in order to
estimate the parameters of a simple Mixed-Effects Model.

@ Under regularity conditions, the ¢1-penalized estimator is
consistent

@ The numerical algorithm converges to a stationary point.
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