C^* and W^* dinamical systems

Gaia Torresani, Luca Giudici

December 5, 2023

1 C*-dynamical systems (Gaia Torresani)

[Pag 159-160, [2]] Physical theories consist essentially of two elements, a kinematical structure describing the instantaneous states and observables of the system, and a **dynamical rule** describing the change of these states and observables with time. In the classical mechanics of point particles a state is represented by a point in a differentiable manifold and the observables by functions over the manifold. In the quantum mechanics of systems with a finite number of degrees of freedom the states are given by rays in a Hilbert **space** and the observables by **operators** acting on the space. For particle systems with an **infinite number of degrees of freedom** we intend to identify the states with states over appropriate algebras of fields, or operators. In each of these examples the **dynamical description** of the system is given by a flow, a one-parameter group of automorphisms of the underlying kinematical structure, which represents the motion of the system with time. In classical mechanics one has a group of **diffeomorphisms**, in quantum mechanics a group of unitary operators on the Hilbert space, and for systems with an infinite number of degrees of freedom a group of **automorphisms of** the algebra of observables.

One-parameter semigroups will be used in the study the time evolution of Open Quantum Systems.

The general problem is to study the differential equation

$$\frac{dA_t}{dt} = SA_t.$$

The A corresponds to an observable, or state, of the system and will be represented by an element of some suitable space X. The function $t \mapsto A_t \in X$ describes the motion of A and S is an operator on X, which generates the **infinitesimal change** of A. Formally, the solution of the differential equation is $A_t = U_t A$, where $U_t = \exp t S$ and the problem is to give a meaning to the exponential. Independently of the manner in which this is done one expects U_t to have the property that U_0 is the identity and that $U_t U_s = U_{t+s}$ and so we seek solutions of this nature. There are, however, many **different possible types of continuity** of $t \mapsto U_t$ and this leads to a structural hierarchy. We

examine uniform, strong, and σ weak continuity.

Note: [Page 228 [2]] the concept of a σ weakly continuous group, of an algebra \mathfrak{U} is only defined when \mathfrak{U} : has a predual. But in this case \mathfrak{U} : is automatically a von Neumann algebra by Sakai's theorem. Moreover, one may demonstrate (see Example 3.2.36 in [2]) that a strongly continuous group, of *-automorphisms of a von Neumann algebra \mathfrak{M} is automatically uniformly continuous. Then strongly continuous groups are appropriate to C^* -algebras, σ -weakly continuous to von Neumann algebras, and uniformly continuous groups to both structures.

On this talk we will focus on strongly continuous groups of C^* -algebras. We start by stating some general facts of the theory of strongly continuous one-parameter semigroups.

Definition 1.1. Let $\{A(t)\}_{t\geq 0}$ be a family of bounded linear operators defined on a Banach space \mathcal{B} . We say that $\{A(t)\}_{t\geq 0}$ is a strongly continuous semigroup or C_0 semigroup if

- 1. A(0) = I
- 2. A(t+s) = A(t)A(s) for any $s, t \ge 0$.
- 3. $A(t)\varphi$ is continuous as a function of t on $[0,\infty)$, with respect to the norm of \mathcal{B} , for all $\varphi \in \mathcal{B}$.

Note: A semigroup A(t) is defined only for $t \ge 0$, a group is defined for $t \in \mathbb{R}$.

Remark: The third property is equivalent to the continuity in 0^+ with respect to the norm of \mathcal{B} , that is $||A(t)\varphi - \varphi|| \to 0$ for $t \to 0^+$.

Proof. One direction is obvious. We prove that the continuity in 0^+ implies (3). Let $t, h \ge 0$

$$\|A(t+h)\varphi - A(t)\varphi\| \le \|A(t)\| \|A(h)x - x\| \le Me^{\omega t} \|A(h)x - x\|$$

where we have used property (a) of Proposition 1, (that we will present later). If $h \leq 0$ the proof is analogous.

We are now ready to give the definition of C^* dynamical system.

Recall: A *-morphism between two C^* -algebras \mathfrak{U}_1 and \mathfrak{U}_2 is a mapping $\pi : \mathfrak{U}_1 \to \mathfrak{U}_2$ such that, for $A, B \in \mathfrak{U}_1$ and $\alpha, \beta \in \mathbb{C}$:

- $\pi(\alpha A + \beta B) = \alpha \pi(A) + \beta \pi(B),$
- $\pi(AB) = \pi(A)\pi(B),$
- $\pi(A^*) = \pi(A)^*$.

A *-automorphism of a C^* -algebra \mathfrak{U} is a *-morphism $\pi : \mathfrak{U} \to \mathfrak{U}$, that is bijective.

Definition 1.2. A C*-dynamical system is a pair (\mathfrak{U}, τ^t) where \mathfrak{U} is a C*algebra with a unit and τ^t a strongly continuous group of *-automorphisms of \mathfrak{U} .

Remark: Strong continuity means that $t \mapsto \tau^t(A)$ is continuous with respect to the norm topology of \mathfrak{U} .

Remark: Since $\tau^t((z-A)^{-1}) = (z-\tau^t(A))^{-1}$, a *-automorphism τ^t preserves the spectrum. Furthermore, we recall that it is norm continuous and since it is also invertible, it is isometric, i.e. $\|\tau_t(A)\| = \|A\| \forall A \in \mathfrak{U}$ [Corollary 2.3.4 in [2]].

We investigate some properties of one parameter semigorup and introduce the concept of infinitesimal generator. We will later apply this results to C^* dynamical systems.

Definition 1.3. The infinitesimal generator of the C_0 semigroup $\{A(t)\}_{t\geq 0}$ on Banach space \mathcal{B} , is the linear operator (S,D) defined by

$$D = \left\{ \varphi \in \mathcal{B} | \lim_{t \to 0^+} \frac{A(t) - I}{t} \varphi \text{ exists in } \mathcal{B} \right\}$$
(1)

$$S\varphi = \lim_{t \to 0^+} \frac{A(t) - I}{t} \varphi, \ \varphi \in D.$$
⁽²⁾

Proposition 1.4 (Theorems 2.2-2.6 in [3] and proposition 6.4 in [1]). Let $\{A(t)\}_{t\geq 0}$ be a C_0 semigroup on Banach space \mathcal{B} of generator A. Then

- a) There exist $\omega \in \mathbb{R}$ and $M \ge 1$ such that $A(t) \le M e^{\omega t}$, for all $t \ge 0$.
- b) For any $t \ge 0, \varphi \in \mathcal{B}$, we have $\lim_{h \to 0^+} 1/t \int_t^{t+h} A(\tau)\varphi d\tau = A(t)\varphi$.
- c) For any $t \ge 0, \varphi \in \mathcal{B}$, we have $\int_0^t A(\tau)\varphi d\tau \in D$ and

$$S\left(\int_{0}^{t} A(\tau)d\tau\right) = A(t)\varphi - \varphi \tag{3}$$

d) For any $t \ge 0$, $A(t) : D \to D$ and if $\varphi \in D, t \mapsto A(t)\varphi$ is in $C^1([0,\infty))$ and

$$\frac{d}{dt}A(t)\varphi = SA(t)\varphi = A(t)S\varphi, \quad t \ge 0$$
(4)

- e) The generator S is closed with dense domain D.
- f) If $\{A_1(t)\}_{t\geq 0}$ and $\{A_2(t)\}_{t\geq 0}$ are two C_0 semigroups with the same generator S, then $A_1(t) \equiv A_2(t)$.

Proof. a) Recall that the Bancah Steinhaus theorem says that if X is a Banach space, Y a normed vector space and B(X, Y) the space of continuous linear operators between X and Y and $F \subset B(X, Y)$ then $(\sup_{T \in F} ||T(x)||_Y \leq \infty, \forall x \in \mathbb{R})$

 $X) \Rightarrow (\sup_{T \in F, \|x\| \leq 1} \|T(x)\|_Y = \sup_{T \in F} \|T\|_{B(X,Y)} \leq \infty)$. By the right continuity at 0 and the Banach Steinhaus theorem we have that there exists $\varepsilon > 0$, $M \ge 1$ such that $\|A(t)\| \leq M$ if $t \in [0, \varepsilon]$. For every $t \ge$ there exists $n \in \mathbb{N}$ and $0 < \delta \leq \varepsilon$ such that $t = \delta + n\varepsilon$, then by property 2 of C_0 semigroups,

$$||A(t)|| = ||A(\delta)A(\varepsilon)^n|| \le M^{n+1} \le MM^{t/\varepsilon} = Me^{\omega t}$$

where $\omega = \ln M / \varepsilon \ge 0$.

b) Follows from continuity of $t \mapsto A(t)\varphi$.

c) For $\varphi \in \mathcal{B}, t \ge 0$ and any $\varepsilon > 0$, by applying the definition of infinitesiaml generator, we have

$$\lim_{\varepsilon \to 0^+} \frac{A(\varepsilon) - I}{\varepsilon} \int_0^t A(\tau) \varphi d\tau = \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_0^t (A(\varepsilon)A(\tau) - A(\tau)) \varphi d\tau$$
$$= \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_0^t (A(\varepsilon + \tau) - A(\tau)) \varphi d\tau = \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_{\varepsilon}^{t+\varepsilon} A(\tau) \varphi d\tau - \frac{1}{\varepsilon} \int_0^t A(\tau) \varphi d\tau$$
$$= \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_t^{t+\varepsilon} A(\tau) \varphi d\tau - \frac{1}{\varepsilon} \int_0^\varepsilon A(\tau)) \varphi d\tau = A(t) \varphi - \varphi$$

where we have used property (2) and (3) of the C_0 semigroup and point (b). d) Let $t \ge 0, \varphi \in D$, we have that:

$$\lim_{\varepsilon \to 0^+} \frac{A(\varepsilon) - I}{\varepsilon} A(t)\varphi = \lim_{\varepsilon \to 0^+} A(t) \frac{A(\varepsilon) - I}{\varepsilon} \varphi = A(t)S\varphi$$

which proves $A(t)\varphi \in D$ and SA(t) = A(t)S. By property (2) of C_0 semigroup and the above consideration, the function $t \mapsto A(t)\varphi$ has a right derivative that is continuous on $[0, \infty)$. This implies continuous differentiability on $[0, \infty)$. e) Let $\varphi \in \mathcal{B}$, let $\varphi_{\varepsilon} = \frac{1}{\varepsilon} \int_0^{\varepsilon} A(\tau)\varphi d\tau$. By point (c) $\varphi_{\varepsilon} \in D$, furthermore $\lim_{\varepsilon \to 0^+} \varphi_{\varepsilon} = \varphi$ by point (b) which proves that D is dense.

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be a sequence in D such that $\varphi_n \to \varphi$ and $S\varphi_n \to \psi$, for some $\varphi, \psi \in \mathcal{B}$. For any $n \in \mathbb{N}$, integrating the expression in (d) implies that

$$A(t)\varphi_n - \varphi_n = \int_0^t A(\tau)S\varphi_n d\tau$$

by letting $n \to \infty$, we get $A(t)\varphi - \varphi = \int_0^t A(\tau)\psi d\tau$, therefore by part (b)

$$\lim_{t\to 0^+} \frac{1}{t} (A(t)\varphi - \varphi) = \psi$$

then $\varphi \in D$, and $\psi = S\varphi$.

1

f) For $\varphi \in D$, t > 0, we define $\psi(\tau) = A_1(t-\tau)A_2(\tau)\varphi$ for $\tau \in [0,T]$. Thanks to (d) we can differentiate and we get:

$$\frac{d}{d\tau}\psi(\tau) = -A_1(t-\tau)SA_2(\tau)\varphi + A_1(t-\tau)SA_2(\tau)\varphi = 0$$

then $\psi(t) = \psi(0)$, which says that $A_1(t)\varphi = A_2(t)\varphi$, then by density of D and due to the fact that $A_1(t), A_2(t)$ are bounded, we have that $A_1(t) \equiv A_2(t)$. \Box

Proposition 1.5. Let $\{A(t)\}_{t\geq 0}$ be a one parameter semigroup of bounded linear operators $S_t \in \mathcal{L}(\mathcal{B})$ of a Banach space \mathcal{B} . The following conditions are equivalent:

- 1. A_t is uniformly continuous i.e., $\lim_{t\to 0} ||A_t I|| = 0$;
- 2. it has a bounded generator S, i.e., $\lim_{t\to 0} ||(A_t I)/t S|| = 0$;
- 3. there is a bounded operator $S \in \mathcal{L}(\mathcal{B})$ such that $A_t = \sum_{n \ge 0} \frac{t^n}{n!} S^n$.

If these conditions are fulfilled then A_t extends to a uniformly continuous one parameter group satisfying $||A_t|| \leq e^{|t|||S||}$.

Proof. See proposition 3.1.1. in [2]

We now give a characterization of the generator of strongly continuous one parameter groups of *-automorphisms of a C^* -algebra. We begin by introducing the concept of *-derivation.

Definition 1.6. Let \mathfrak{U} be a *- algebra and $\mathfrak{D} \subset \mathfrak{U}$. A linear operator $\delta : \mathfrak{D} \to \mathfrak{U}$ is called a *-derivation if

- a) \mathfrak{D} is a *-subalgebra of \mathfrak{U} .
- b) $\delta(AB) = \delta(A)B + A\delta(B)$ for all $A, B \in \mathfrak{D}$.
- c) $\delta(A^*) = \delta(A)^*$ for all $A \in \mathfrak{D}$.

Observation: The unit $\mathbb{1} \in D(\delta)$ (Corollary 3.2.30 in [2]) then $\delta(\mathbb{1}) = 0$ because $\delta(\mathbb{1}) = \delta(\mathbb{1}^2) = 2\delta(\mathbb{1})$. Derivations arise as infinitesimal generators of strongly continuous groups $\{\tau_t\}_{t\in\mathbb{R}}$ of *-automorphisms of a C^* algebra \mathfrak{U} . The two defining properties originate by differentiation of the relations $\tau_t(A^*) =$ $\tau_t(A)^*$ and $\tau_t(AB) = \tau_t(A)\tau_t(B)$ for $A, B \in \mathfrak{U}$:

$$\lim_{t \to 0} \frac{\tau_t(A^*) - A^*}{t} = \lim_{t \to 0} \frac{\tau_t(A)^* - A^*}{t}$$
$$\Rightarrow \lim_{t \to 0} \frac{\tau_t - I}{t} A^* = \lim_{t \to 0} \left(\frac{\tau_t - I}{t}\right)^* A \Rightarrow \delta(A^*) = \delta(A)^*$$

and

$$\lim_{t \to 0} \frac{\tau_t(AB) - AB}{t} = \lim_{t \to 0} \frac{\tau_t(A)\tau_t(B) - AB}{t}$$
$$\Rightarrow \lim_{t \to 0} \frac{\tau_t - I}{t}AB = \lim_{t \to 0} \frac{\tau_t(A)\tau_t(B) - \tau_t(A)B + \tau_t(A)B - AB}{t}$$
$$\Rightarrow \delta(AB) = \lim_{t \to 0} \frac{\tau_t(A)(\tau_t(B) - B)}{t} + \frac{\tau_t(A)B - AB}{t}$$
$$= \lim_{t \to 0} \tau_t(A)\frac{\tau_t - I}{t}B + \left(\frac{\tau_t - I}{t}A\right)B = A\delta(B) + \delta(A)B.$$

The domain \mathfrak{D} of the infinitesimal generator δ is contained in \mathfrak{U} , hence it is a *-subalgebra of \mathfrak{U} . We have proved that the generator of a dynamical group is a derivation.

We can characterize infinitesiaml generators by exponentiating them in a suitable form. We begin with a result which characterizes the generator S of a semigroup of contractions by properties of its resolvent. The algorithm $e^{tx} = \lim_{n\to\infty} (1 - tx/n)^{-n}$ for the numerical exponential can be extended to an operator relation if the "resolvent" $(I - tS/n)^{-n}$ has suitable properties. The definition of the resolvent of a closed operator S requires two pieces of information. Firstly, one must know that the range of (1 - tS/n) is equal to the whole space in order that $(1 - tS/n)^{-l}$ should be everywhere defined and, secondly, one needs a bound on $||(I - tS/n)^{-n}||$.

The Hille-Yosida theorem characterizes generators by properties of their resolvents.

Theorem 1.7 (Hille Yosida). Let S be an operator on the Banach space \mathcal{B} . The following conditions are equivalent:

- S is the infinitesimal generator of a strongly continuous semigroup of contractions U(t)_{t≥0};
- 2. S is densely defined in \mathcal{B} and closed. For $\alpha \ge 0$

$$|(I - \alpha S)\varphi|| \ge ||\varphi||, \text{ for } \varphi \in D(S)$$
(5)

and for some $\alpha > 0$,

$$Ran(I - \alpha S) = \mathcal{B}.$$
 (6)

If these conditions are satisfied then the semigroup is defined in terms of S by either of the limits

$$U_t \varphi = \lim_{\varepsilon \to 0} \exp\{tS(I - \varepsilon S)^{-1}\}\varphi = \lim_{n \to \infty} (I - tS/n)^{-n}\varphi.$$

where the exponential of the bounded operator is defined by power series expansion, $\varphi \in \mathcal{B}$.

Proof. (1) \Rightarrow (2) If S is the infinitesimal generator of a strongly continuous semigroup then it is closed and its domain D(S) is dense in \mathcal{B} . Let $\lambda > 0$ and $x \in \mathcal{B}$, let

$$R_{\lambda}x = \int_0^\infty e^{-\lambda t} U(t) x dt.$$

by continuity of $t \mapsto U(t)x$ and uniformly boundedness (we are dealing with contractions) the integral exists as an improper Rienmann integral and defines a bounded linear operator R_{λ} that satisfies:

$$||R_{\lambda}x|| \leqslant \int_0^\infty e^{-\lambda t} ||U(t)x|| dt \leqslant \frac{1}{\lambda} ||x||.$$

Let h > 0, then

$$\frac{U(h) - I}{h} R_{\lambda} x = \frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} (U(t+h)x - U(t)x) dt$$
$$= \frac{1}{h} \int_{h}^{\infty} e^{-\lambda(t-h)} U(t) x dt - \frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} U(t) x dt$$
$$= \frac{e^{\lambda h}}{h} \int_{0}^{\infty} e^{-\lambda t} U(t) x dt - \frac{e^{\lambda h}}{h} \int_{0}^{h} e^{-\lambda t} U(t) x dt - \frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} U(t) x dt$$
$$= \frac{e^{\lambda h} - 1}{h} \int_{0}^{\infty} e^{-\lambda t} U(t) x dt - \frac{e^{\lambda h}}{h} \int_{0}^{h} e^{-\lambda t} U(t) x dt$$

As $h \to 0^+$, the right hand side converges to $\lambda R_{\lambda} x - x$. This implies that for every $x \in \mathcal{B}$ and $\lambda > 0$ $R_{\lambda}x \in D(S)$ and $SR_{\lambda} = \lambda R_{\lambda} - I$, which is the same as $(\lambda I - S)R_{\lambda} = I.$ For $x \in D(S)$ we have

$$R_{\lambda}Sx = \int_{0}^{\infty} e^{-\lambda t} U(t)Sxdt = \int_{0}^{\infty} e^{-\lambda t}SU(t)xdt$$
$$= S\left(\int_{0}^{\infty} e^{-\lambda t}U(t)xdt\right) = SR_{\lambda}x$$

where we used that the infinitesimal generator commutes with the elements of the semigroup and closeness of S. Finally we have that $R_{\lambda}(\lambda I - S)x = x$ for $x \in D(S)$. Thus $R_{\lambda} = (\lambda I - S)^{-1}$ and is therefore well defined for every $\lambda > 0$ and satisfies $\|(\lambda I - S)^{-1}x\| = \|R_{\lambda}x\| \leq \frac{1}{\lambda}\|x\| \Rightarrow \|(\lambda I - S)x\| \geq \lambda\|x\|$. Now if we let $\alpha = 1/\lambda$ we get that $Ran(I - \alpha S) = \mathcal{B}$ because it is invertible and $\|(I - \alpha S)x\| \ge \|x\|.$

(2) \Rightarrow (1) Condition 2 implies that $(I - \varepsilon S)^{-1}$ is bounded strongly continuous $\begin{aligned} &(2) \to (1) \text{ Contribut 2 implies that } (I - \varepsilon S) & \text{ is bounded strongly continuous} \\ &\text{and } \|(I - \varepsilon S)^{-1}\| \leq 1 \text{ (by putting } \varphi = \mathbb{1} \text{ in } (5)) \text{ for } \varepsilon = \alpha_0 \text{ such that } Ran(I - \varepsilon S) \\ & \varepsilon S) = \mathcal{B}. \text{ The series } (I - \alpha S)^{-1} = \frac{\alpha_0}{\alpha} \sum_{n \geq 0} \left(\frac{\alpha - \alpha_0}{\alpha}\right)^n (I - \alpha_0 S)^{-n-1} \text{ establishes} \\ &\text{that } Ran(I - \varepsilon S) = \mathcal{B} \text{ for all } \varepsilon > 0. \end{aligned}$ We define $S_{\varepsilon} = S(I - \varepsilon S)^{-1}$ and notice that $S_{\varepsilon} = -\varepsilon^{-1}(I - (I - \varepsilon S)^{-1})$, then

$$\|\exp\{tS_{\varepsilon}\}\| \leq \exp\{-t\varepsilon^{-1}\} \sum_{n\geq 0} \frac{(t\varepsilon^{-1})^n}{n!} \|(I-\varepsilon S)^{-n}\| \leq 1.$$

for $t \ge 0$. Thus $U_t^{\varepsilon} = \exp\{tS_{\varepsilon}\}$ are uniformly continuous contraction semigroup. Moreover the bounded operators S_{ε} and S_{δ} commute, and for $\varphi \in D(S)$

$$\begin{aligned} \|U_t^{\varepsilon}\varphi - U_t^{\delta}\varphi\| &= \left\|\int_0^1 \frac{d}{ds} e^{t(sS_{\varepsilon} + (1-s)S_{\delta})}\varphi ds\right\| \\ &= \left\|t\int_0^1 e^{tsS_{\varepsilon}} e^{t(1-s)S_{\delta}} (S_{\varepsilon} - S_{\delta})\varphi ds\right\| \leqslant t\|(S_{\varepsilon} - S_{\delta})\varphi\| \end{aligned}$$

for all $t \ge 0$. Note that if $\varphi \in D(S)$ then $\|(I - \varepsilon S)^{-1}\varphi - \varphi\| = \varepsilon \|(I - \varepsilon S)^{-1}S\varphi\| \le \varepsilon$ $\varepsilon \|S\varphi\|$. Then the uniformly bounded family of operators $(I - \varepsilon S)^{-1}$ converges strongly to the identity on the dense set D(S). Then from the relation $(S_{\varepsilon} - S)\varphi = ((I - \varepsilon S)^{-1} - I)S\varphi$ we have that $S_{\varepsilon}\varphi$ converges in norm to $S\varphi$ for all $\varphi \in D(S)$. By previous inequality, we have that $\{U_t^{\varepsilon}\varphi\}_{\varepsilon \ge 0}$ is uniformly norm convergent for t in compacts and for $\varphi \in D(S)$. By uniform boundedness $\|U_t^{\varepsilon}\| \le 1$, we conclude that $\{U_t^{\varepsilon}\}_{\varepsilon \ge 0}$ converges strongly on $\overline{D(S)}$ uniformly for t in compacts. If we denote $U = \{U_t\}_{t\ge 0}$ the strong limit it immediately follows that U is a strongly continuous semigroup of contractions (by triangular inequality). It is left to prove that the infinitesimal generator of $\{U_t\}_{t\ge 0}$ is in fact S. We see that

$$\frac{(U_t^{\varepsilon} - I)x}{t} = \frac{1}{t} \int_0^t U_s^{\varepsilon} S_{\varepsilon} x ds$$

for all $x \in \mathcal{B}$. But if $\varphi \in D(S)$ we obtain the relation

$$\frac{(U_t - I)\varphi}{t} = \frac{1}{t} \int_0^t U_s S\varphi ds$$

by strong limits. Therefore

$$\left\|\frac{(U_t - I)\varphi}{t} - S\varphi\right\| \leq \sup_{0 \leq s \leq t} \left\|(U_s - I)S\varphi\right\|$$

and it follows from the strong continuity of U that its generator S' is an extension of S. But this implies that $(I - \alpha S')^{-1}$ is an extension of $(I - \alpha S)^{-1}$ for all α . However, the latter operator is everywhere defined than we must have that S' = S.

Proposition 1.8. Let \mathfrak{U} be a C^* -algebra with a unit. A densely defined, closed operator δ on \mathfrak{U} generates a strongly continuous group of *-automorphism of \mathfrak{U} if and only if:

- 1. δ is a *-derivation, and
- 2. $Ran(Id + \lambda \delta) = \mathfrak{U}$ for all $\lambda \in \mathbb{R} \setminus \{0\}$, and
- 3. $||A + \lambda \delta(A)|| \ge ||A||$ for all $\lambda \in \mathbb{R}$ and $A \in D(\delta)$.

Proof. \Rightarrow Assume that δ is the generator of a strongly continuous one parameter group τ_t of *-automorphisms of \mathfrak{U} . We already proved that δ is a *-derivation. Since τ_t are isometries we can apply Hille-Yosida theorem to $\pm \delta$ and conditions 2) and 3) are implied.

 \leftarrow Now assume that (1), (2), (3) hold and we prove that δ generates a strongly continuous group of *-automorphisms of \mathfrak{U} . The group generated by δ is a strongly continuous one-parameter group τ_t of isometries by Hille-Yosida. We know that (1) implies that $\mathbb{1} \in D(\delta)$ and $\delta(\mathbb{1}) = 0$, then $\tau_t(\mathbb{1}) = \mathbb{1}$, τ_t is an *-automorphism (by Corollary 3.2.12 in [2]). If the C*-algebra acts on a Hilbert space \mathcal{H} then a dynamical group τ_t can be constructed (see Example 3.2.14) from a group of unitary operators U_t on \mathcal{H} :

$$\tau_t(A) = U_t A U_t^*.$$

Such *-automorphisms are called spatial.

Theorem 1.9 (Stone's theorem). Let $\{U_t\}_{t\in\mathbb{R}}$ a strongly continuous unitary one parameter group. Then there exists a unique (not necessarily bounded) operator $A: D(A) \subset \mathcal{H} \to \mathcal{H}$ that is self adjoint on D(A) and such that

$$U_t = e^{itA} \quad \forall t \in \mathbb{R}.$$

Example: (Finite quantum system).

Consider the quantum system with a finite number of degrees of freedom determined by the Hilbert space \mathcal{H} and by the self-adjoint operator H. On the C^* -algebra $\mathfrak{U} = \mathfrak{B}(\mathcal{H})$ the dynamics is given by

$$\tau_t(A) = e^{itH} A e^{-itH}.$$
(7)

The group τ_t is strongly continuous if and only if H is bounded. In fact, let H be bounded, then there exists $M \ge ||H||$, we have that

$$\|e^{itH}\| = \left\|\sum_{n \ge 0} \frac{(itH)^n}{n!}\right\| \le \sum_{n \ge 0} \left\|\frac{(itH)^n}{n!}\right\| \le e^{tM}$$

and analogously with the minus. Then for every $A \in \mathcal{H}$,

$$\begin{aligned} \|\tau_t(A) - IA\| &= \|e^{itH}Ae^{-itH} - A\| = \|e^{itH}Ae^{-itH} - e^{itH}A + e^{itH}A - A\| \\ &\leq \|e^{itH}\|\|Ae^{-itH} - A\| + \|e^{itH}A - A\| \\ &\leq e^{tM}\|Ae^{-itH} - A\| + \|e^{itH}A - A\| \end{aligned}$$

by taking the limit $t \to 0$ we have that $||e^{itH}A - A||, ||Ae^{-itH} - A|| \to 0$ and then we have proven strong continuity.

Conversely, assume that H is unbounded (which means that its spectrum is unbounded). Denote with E_H the spectral family of H (a spectral family is a family $\{E_{\lambda}\}$ of orthogonal projectors onto the space generated by the eigenvectors corresponding to eigenvalues that are less or equal than λ). Let $\varepsilon > 0$, $\delta > 0$; we can choose a real number a and a sequence $\{a_n\}_{n \ge 0} \subset \mathbb{R}$ such that the intervals $I_n = [a_n, a_n + a]$ are disjoint and $E_H(I_n)\mathcal{H}$ is non empty, and

$$\sup_{n} |e^{i(a_{n}-a_{n+1})t} - 1| \ge 2 - \delta, \quad |e^{ita} - 1| \le 1/2$$

for all $|t| \leq \varepsilon$. Now choose unit vectors $\psi_n \in E_H(I_n)\mathcal{H}$ and define V by

$$V\psi = \sum_{n \ge 0} \psi_n(\psi_{n+1}, \psi).$$

One has ||V|| = 1 and

$$(e^{i(a_n - a_{n+1})t} - 1)\psi_n$$

= $(\tau_t(V) - V)\psi_{n+1} - (e^{itH} - e^{ia_nt})\psi_n(\psi_{n+1}, e^{-itH}\psi_{n+1})$
 $-e^{ia_nt}\psi_n(\psi_{n+1}, (e^{-itH} - e^{-a_{n+1}t})\psi_{n+1})$

and hence

$$2 \leq \|\tau_t(V) - V\| + 1 + \delta$$

for all $|t| \leq \varepsilon$, which is a contradiction. Then *H* must be bounded. In general, an everywhere defined derivation of a C^* -dynamical system is bounded [Corollary 3.2.23 in [2]].

A consequence of this is that if τ_t is strongly continuous it is also uniformly continuous and its generator is the bounded *-derivation $\delta(A) = i[H, A]$ ([,] is the commutator).

2 W*-dynamical systems (Luca Giudici)

This part about W^* -dynamical systems follows [1].

Definition 2.1 (W*-dynamical system). Let \mathcal{H} be a Hilbert space and $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ a von Neumann algebra. A σ -weakly continuous group of *-automorphism of \mathcal{M} is a group homomorphism

$$\tau: t \in \mathbb{R} \mapsto \tau^t \in \operatorname{Aut}(\mathcal{M})$$

such that for any $A \in \mathcal{M}$ the map

$$t \in \mathbb{R} \mapsto \tau^t(A) \in \mathcal{M}$$

is continuous w.r.t. the σ -weak topology on \mathcal{M} . This is equivalent to the map

$$t \in \mathbb{R} \mapsto \operatorname{tr}(\tau^t(A)T) \in \mathbb{R}$$

being continuous for any trace class operator $T \in \mathcal{T}(\mathcal{H})$. We call (\mathcal{M}, τ^t) a W^* -dynamical system.

There is a similar proposition characterising σ -weakly continuous groups of *-automorphisms of a von Neumann algebra in terms of a *-derivations as for strongly continuous groups of *-automorphisms of a C^* -algebra, for which the proof is analogous.

Proposition 2.2. Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra and $\delta : D(\delta) \to \mathcal{M}$ be a σ -weakly densely define closed linear operator. Then $\tau^t = e^{t\delta}$, $t \in \mathbb{R}$, defines a σ -weakly continuous group *-automorphisms of \mathcal{M} if and onyl if the the following three statements hold

- (i) δ is *-derivation and $1 \in D(\delta)$.
- (*ii*) $R(id + \lambda \delta) = \mathcal{M} \text{ for all } \lambda \in \mathbb{R} \setminus \{0\}.$
- (iii) $||A + \lambda \delta(A)|| \ge ||A||$ for all $\lambda \in \mathbb{R}$ and $A \in D(\delta)$.

Let's turn our attention to a first simple example.

Example 2.3 (Heisenberg equation). Consider the von Neumann algebra $\mathcal{M} = \mathcal{B}(\mathcal{H})$ and consider the evolution of a observable $A \in \mathcal{B}(\mathcal{H})$ under the Heisenberg equation

$$\begin{cases} \partial_t A_t = i [H, A_t], & H = H^* : \mathcal{H} \to \mathcal{H} \text{ linear (possibly unbounded)} \\ A_0 = A. \end{cases}$$

with the solution $A_t = e^{itH}Ae^{-itH}$. Define

$$\tau^t(A) = e^{itH} A e^{-itH}, \ A \in \mathcal{M}$$

We now claim that τ^t is a σ -weakly continuous group of *-automorphisms of \mathcal{M} . We check:

• τ^t is *-automorphism: Fix $A, B \in \mathcal{M}$ and $\lambda \in \mathbb{C}$ then we have

$$- \tau^t (A + \lambda B) = e^{itH} (A + \lambda B) e^{-itH} = e^{itH} A e^{-itH} + \lambda e^{itH} B e^{-itH} = \tau^t (A) + \lambda \tau^t (B).$$

$$- \tau^t (AB) = e^{itH} A B e^{-itH} = e^{itH} A e^{-itH} e^{itH} B e^{-itH} = \tau^t (A) \tau^t (B).$$

- Since $(e^{itH})^* = e^{-itH^*} = e^{-itH}$ as H is self adjoint, we find:

$$\tau^{t}(A^{*}) = e^{itH}A^{*}e^{-itH} = (e^{-itH})^{*}A^{*}(e^{itH})^{*} = (e^{itH}Ae^{-itH})^{*} = \tau^{t}(A)^{*}$$

- Note that $\tau^{-t}\tau^t(A) = \tau^t\tau^{-t}(A) = A$. So τ^t is a *-automorphism.
- $t \mapsto \tau^t$ is a group homomorphism: Clearly we have $\tau^0(A) = A$ and so $\tau^0 = \text{id.}$ Moreover we can check that

$$\tau^{t+s}(A) = e^{i(t+s)H} A e^{-i(t+s)H} = e^{itH} e^{isH} A e^{-isH} e^{-itH} = e^{itH} \tau^s(A) e^{-itH} = \tau^t \tau^s(A) e^{-itH} = \tau^s(A) e^{-itH} =$$

Thus $\tau^{t+s} = \tau^t \tau^s$. So $t \mapsto \tau^t$ is a group homomorphism.

• Note that for unit vectors $\Phi, \Psi \in \mathcal{H}$ we have by Cauchy-Schwarz inequality

$$\begin{split} |\langle \Phi, \tau^t(A)\Psi\rangle| &= |\langle \Phi, e^{itH}Ae^{-itH}\Psi\rangle| \\ &= |\langle e^{-itH}\Phi, Ae^{-itH}\Psi\rangle| \\ &\leqslant \|e^{-itH}\Phi\|\|Ae^{-itH}\Psi\| \\ &\leqslant \|e^{-itH}\|\|\Phi\|\|A\|\|e^{-itH}\|\|\Psi\| \\ &\leqslant \|A\|. \end{split}$$

This shows that $t \mapsto \langle \Phi, \tau^t(A)\Psi \rangle$ is uniformly bounded by ||A|| and therefor is a continuous map. Let $T \in \mathcal{T}(\mathcal{H})$ be a trace class operator. We can write $T = \sum_n \lambda_n \langle \Phi_n, \cdot \rangle \Psi_n$ for some unit vectors $\Phi_n, \Psi_n \in \mathcal{H}$ and $\sum_n |\lambda_n| < \infty$. Then by the above the map

$$t \mapsto \operatorname{tr}(\tau^t(A)T) = \sum_n \lambda_n \langle \Phi_n, \tau^t(A)\Psi_n \rangle$$

is continuous, as it is the limt of a uniform convergent sequence of continuous functions.

2.1 Interlude to spectral theory of bounded derivations

We will follow the exposition presented in [2]. For τ^t a σ -weakly continuous group of *-automorphisms of a von Neumann algebra, we define for any $f \in L^1(\mathbb{R})$

$$\tau(f) = \int_{\mathbb{R}} dt f(t) \tau^t.$$

It can be checked that

$$\tau(f * g) = \tau(f)\tau(g).$$

Definition 2.4 (Spectrum of one-parameter families). Let \mathcal{M} be a von Neumann algebra and τ^t a σ -weakly continuous group of *-automorphisms of \mathcal{M} such that $\|\tau^t\| \leq M$ for all $t \in \mathbb{R}$.

• For any subset $\mathcal{Y} \subset \mathcal{M}$ we define

$$\mathcal{J}_{\mathcal{V}}^{\tau} = \left\{ f \in L^1(\mathbb{R}) | \tau(f) A = 0 \ \forall A \in \mathcal{Y} \right\}.$$

This is a *-ideal in $L^1(\mathbb{R})$.

• The spectrum of \mathcal{Y} is given by

$$\sigma_{\tau}(\mathcal{Y}) = \{k \in \mathbb{R} | f(k) = 0 \ \forall f \in \mathcal{J}_{\mathcal{Y}}^{\tau} \},\$$

where \hat{f} is the Fourier transform of f.

• The spectrum of τ is given by

$$\sigma(\tau) = \sigma_{\tau}(\mathcal{M})$$

and the spectral subspace to a subset $E \subseteq \mathbb{R}$ is defined by

$$\mathcal{M}^{\tau}(E) = \overline{\{A \in \mathcal{M} | \sigma_{\tau}(A) \subset E\}}.$$

We now consider some elementary properties of the spectrum of a element.

Lemma 2.5. Let τ^t be a uniformly bounded σ -weakly continuous group of *automorphisms of \mathcal{M} . Then for all $A, B \in \mathcal{M}$, $f \in L^1(\mathbb{R})$ it holds that:

- (i) $\sigma_{\tau}(\tau^t A) = \sigma_{\tau}(A)$ for all $t \in \mathbb{R}$.
- (*ii*) $\sigma_{\tau}(\alpha A + B) \subset \sigma_{\tau}(A) \cup \sigma_{\tau}(B).$
- (*iii*) $\sigma_{\tau}(\tau(f)A) \subseteq \operatorname{supp}(\hat{f}) \cap \sigma_{\tau}(A).$
- (iv) If $f_1, f_2 \in L^1(\mathbb{R})$ and $\hat{f}_1 = \hat{f}_2$ in a neighbourhood of $\sigma_\tau(A)$, then

$$\tau(f_1)A = \tau(f_2)A.$$

Proof. (i) We have for $f_t(s) = f(s-t)$

$$\tau(f)\tau^{t}A = \int dsf(s)\tau^{s}\tau^{t}A$$
$$= \int dsf(s)\tau^{s+t}A$$
$$= \int dsf_{t}(s)\tau^{s}A$$
$$= \tau(f_{t})A.$$

Now, the Fourier transform of f_t is given by $\hat{f}_t(k) = e^{-kt}\hat{f}(k)$. Hence we find:

$$\begin{aligned} k \in \sigma_{\tau}(\tau^{t}A) &\iff \forall f \in L^{1}(\mathbb{R}) \text{ with } \tau(f)\tau^{t}A = 0: \ \hat{f}(k) = 0 \\ &\iff \forall f \in L^{1}(\mathbb{R}) \text{ with } \tau(f_{t})A = 0: \ \hat{f}_{t}(k) = 0 \\ &\iff k \in \sigma_{\tau}(A). \end{aligned}$$

- (ii) By linearity of the Fourier transform and linearity of τ we find $\sigma_{\tau}(\alpha A) = \sigma_{\tau}(A)$. So assume $\alpha = 1$. If now $k \notin \sigma_{\tau}(A) \cup \sigma_{\tau}(B)$, we find $f, g \in L^{1}(\mathbb{R})$ with $\tau(f)A = 0$ and $\tau(g)B = 0$ such that $\hat{f}(k) = \hat{g}(k) = 1$. Now for f * g we have that $\tau(f * g)(A + B) = 0$ and thus by the convolution theorem¹ that $(f * g)^{\wedge}(k) = \hat{f}(k)\hat{g}(k) = 1$. Hence, $k \notin \sigma_{\tau}(A + B)$.
- (iii) If $\tau(g)A = 0$ we have $\tau(g)\tau(f)A = \tau(f)\tau(g)A = 0$ and hence $\sigma_{\tau}(\tau(f)A) \subseteq \sigma_{\tau}(A)$. On the other hand, if \hat{g} vanishes on $\operatorname{supp}(\hat{f})$ the f * g = 0, thus we have $\tau(g)\tau(f)A = \tau(f * g)A = 0$. Hence, $\sigma_{\tau}(\tau(f)A) \subseteq \operatorname{supp}(\hat{f})$.
- (iv) Set $g = f_1 f_2$. We must show $\tau(g)A = 0$. Since g vanishes on a neighbourhood of $\sigma_{\tau}(A)$ we have by (iii) that

$$\sigma_{\tau}(\tau(g)A) \subseteq \operatorname{supp}(\hat{g}) \cap \sigma_{\tau}(A) = \emptyset.$$

Hence, $\tau(g)A = 0$.

Now let us turn to some properties of the spectral subspaces.

¹We have by the convolution theorem that $(f * g)^{\wedge} = \hat{f}\hat{g}$.

Lemma 2.6. Let τ^t be a uniformly bounded σ -weakly continuous group of *-automorphisms of \mathcal{M} . Then for all $E \subset \mathbb{R}$ it holds that

- (i) $\mathcal{M}_0^{\tau}(E) \subseteq \mathcal{M}^{\tau}(E)$ where $\mathcal{M}_0^{\tau}(E)$ is the σ -weakly closed linear span of elements of the form $\tau(f)A$ with $\operatorname{supp}(\hat{f}) \subseteq E$.
- (ii) $\tau^t \mathcal{M}_0^\tau(E) = \mathcal{M}_0^\tau(E)$ and $\tau^t \mathcal{M}^\tau(E) = \mathcal{M}^\tau(E)$.
- (iii) If E is closed, then

$$\mathcal{M}^{\tau}(E) = \{ A \in \mathcal{M} | \sigma_{\tau}(A \subseteq E) \}.$$

(iv) If E is open, then

$$\mathcal{M}^{\tau}(E) = \mathcal{M}^{\tau}_{0}(E) = \bigvee \{ \mathcal{M}^{\tau}(K) | K \subseteq E \text{ compact} \},\$$

where \bigvee denotes the σ -closed linear span.

(v) If E is closed and N ranges over the open neighbourhoods of $0 \in \mathbb{R}$ then

$$\mathcal{M}^{\tau}(E) = \bigcap_{N} \mathcal{M}_{0}^{\tau}(E+N).$$

The next proposition characterises the spectrum of σ -weakly continuous group of *-automorphisms in terms of the spectrum of its generator δ , i.e.

$$\sigma(\delta) = \mathbb{C} \backslash \rho(\delta),$$

where $\rho(\delta) = \{\lambda \in \mathbb{C} | \lambda \mathrm{id} - \delta \mathrm{ is invertible.} \}$

Proposition 2.7. Let τ^t be a σ -weakly continuous uniformly bounded group of *-automorphism in a von Neumann algebra \mathcal{M} with generator δ , i.e. $\tau^t = e^{t\delta}$. Then TFAE:

- (i) $k_0 \in \sigma(\tau)$.
- (ii) For any neighbourhood $E \ni k_0$ it holds that $\mathcal{M}_0^{\tau}(E) \neq \{0\}$.
- (iii) For all $\varepsilon > 0$ and all compacts sets $K \subseteq \mathbb{R}$ there is a compact neighbourhood $E \ni k_0$ such that $\mathcal{M}^{\tau}(E) \neq \{0\}$ and

$$\|\tau^t A - e^{-k_0 t} A\| \leq \varepsilon \|A\|$$

for all $A \in \mathcal{M}^{\tau}(E)$ and $t \in K$.

(iv) There is a sequence of elements $A_{\alpha} \in \mathcal{M}$ such that $||A_{\alpha}|| = 1$ and uniformly for t in compacts

$$\lim_{\alpha \to \infty} \|\tau^t A_\alpha - e^{-k_0 t} A_\alpha\| = 0$$

(v) For all $f \in L^1(\mathbb{R})$ it holds that $|\hat{f}(k_0)| \leq ||\tau(f)||$.

(vi) $-ik_0 \in \sigma(\delta)$, i.e. $\sigma(\delta) = -i\sigma(\tau)$.

Recall that a operator $U \in \mathcal{B}(\mathcal{H})$ is **unitary** if $U^*U = UU^* = \mathrm{id}$. Recall again Stone's theorem.

Theorem 2.8 (Stone). Let $t \mapsto U_t \in \mathcal{B}(\mathcal{H})$ be a strongly continuous group of unitary operators. Then exists a unique (possibly unbounded) operator $H : D(H) \to \mathcal{H}$, which is self-adjoint on D(H) and such that

$$\forall t \ge 0 : U_t = e^{itH}.$$

The domain of H is given by

$$D(H) = \left\{ \Psi \in \mathcal{H} \middle| \lim_{t \to 0} \frac{-i(U_t(\Psi) - \Psi)}{t} \text{ exists.} \right\}.$$

We can reformulate this in terms of the projection-valued measure P associated to the self-adjoint operator H by the spectral theorem, i.e.

$$H = \int_{\mathbb{R}} k dP(k)$$

Recall that for a measurable-function $g: \mathbb{R} \to \mathbb{C}$ we can write

$$g(A) = \int_{\mathbb{R}} g(k) dP(k).$$

And so by Stone's theorem we have the strongly continuous group of unitary operators $t \mapsto U_t \in \mathcal{B}(\mathcal{H})$ given by

$$U_t = \int_{\mathbb{R}} e^{itk} dP(k)$$

The next proposition gives a result on the spectrum of so-called spatial groups of *-automorphisms.

Proposition 2.9. Let $t \mapsto U_t \in \mathcal{B}(\mathcal{H})$ be a strongly continuous group of unitary operators and $\tau^t(A) = U_t A U_t^*$ the σ -weakly continuous group of *-automorphism generated by U. Let

$$U_t = \int_{\mathbb{R}} e^{itk} dP(k),$$

be the spectral decomposition of U. Then TFAE for any $A \in \mathcal{B}(\mathcal{H})$ and $k \in \mathbb{R}$

- (i) $\sigma_{\tau}(A) \subseteq [k, \infty)$
- (ii) $AP([k,\infty))\mathcal{H} \subset P([k+j,\infty))\mathcal{H}$ for any $j \in \mathbb{R}$.

In particular, we find for von Neumann algebra \mathcal{M} and all $t \in \mathbb{R}$.

$$\mathcal{M}^{\tau}([t,\infty))\mathcal{H} = \mathcal{M}^{\tau}([t,\infty))P([0,\infty))\mathcal{H} \subseteq P([t,\infty))\mathcal{H}.$$

Theorem 2.10 (Borchers-Arveson). Let τ^t be a σ -weakly continuous group of *-automorphisms of a von Neumann algebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$. The following conditions are equivalent:

- (i) There is a strongly continuous group of unitary operators $U_t \in \mathcal{B}(\mathcal{H})$ with nonnegative spectrum (that is in Stone's theorem H is positive) such that $\tau^t(A) = U_t A U_t^*$.
- (ii) There is a strongly continuous group of unitary operators $U_t \in \mathcal{M}$ with nonnegative spectrum (that is in Stone's theorem H is positive) such that $\tau^t(A) = U_t A U_t^*$.

(*iii*) $\bigcap_{t \in \mathbb{R}} \mathcal{M}^{\tau}([t, \infty))\mathcal{H} = \{0\}.$

Proof. • $(ii) \implies (i)$ is clear.

• For $(i) \implies (iii)$ we leverage that if P is the projection-valued measure associated to U then $P([t, \infty)) = 1$ for all $t \leq 0$ and so clearly

$$\bigcap_{t\in\mathbb{R}} P([t,\infty))\mathcal{H} = \{0\}.$$

By the proposition above we have that

$$\mathcal{M}^{\tau}([t,\infty))\mathcal{H} = \mathcal{M}^{\tau}([t,\infty))P([0,\infty))\mathcal{H} \subseteq P([t,\infty))\mathcal{H}$$

and so (iii) follows.

• For $(iii) \implies (ii)$ The idea is to set $Q_t = \bigcap_{s < t} \mathcal{M}^{\tau}([s, \infty))\mathcal{H}$ and show that there is a unique projection-valued measure P on \mathbb{R} such that $P([t, \infty)) = Q_t$ for all t and then define

$$U_t = \int e^{-itk} dP(k).$$

This then gives us the searched for unitary group.

The intersting corllary to this theorem will give a characterisation of bounded derivations of a von Neumann algebra in terms of a "Hamiltonian".

Corollary 2.11. Let δ be an everywhere defined bounded derivation of a von Neumann algebra \mathcal{M} . Then exists $H = H^* \in \mathcal{M}$ with $||\mathcal{H}|| \leq \frac{||\delta||}{2}$ and such that $\delta(A) = i[H, A]$.

I will give the idea of the proof.

Proof. We define

$$\tau^t(A) = e^{t\delta}(A) = \sum_{t \ge 0} \frac{t^n}{n!} \delta^n(A).$$

This is then a continuous group of *-automorphisms. The next step is to show that $\mathcal{M}^{\tau}([t, \infty)) = \{0\}$ for all $t \ge \|\delta\|$. So by the Borchers-Arveson theorem the result follows that we have a strongly continuous unitary group U_t in \mathcal{M} such that

$$\tau^t(A) = U_t A U_t^*$$

By Stone's theorem there is a self-adjoint operator H such that

$$U_t = e^{itH}$$

and hence, by differentiating with respect to t we get the result.

References

- [1] Stéphane Attal, Alain Joye, and Claude-Alain Pillet. Open Quantum Systems I: The Hamiltonian Approach. Springer, 2006.
- [2] Ola Bratteli and Derek William Robinson. Operator algebras and quantum statistical mechanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of States. Springer Science & Business Media, 2012.
- [3] Amnon Pazy. Semigroups of linear operators and applications to partial differential equations. Vol. 44. Springer Science & Business Media, 2012.