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1 Notation

We will always assume our C∗ algebras to unitary and we will denote them by capital frak
letters, i.e. U,V, . . . Similarly, Hilbert spaces will be denoted by h, g, . . . The space of bounded
operators on a Hilbert space is denoted B(h). Since we will introduce a concept of tensor
product that does not coincide with the algebraic one, we will denote the algebraic tensor
product of two vector spaces as U ⊙ V . In preparing for this seminar, I have mostly used the
sources [2] and [1]. Where not mentioned otherwise, the propositions and theorems come from
[1].

2 Introduction

Before starting our study of completely bounded maps, we need to develop the notion of tensor
product for C∗ algebras. As for Hilbert spaces, the issue is that while the algebraic definition
works without problems, the resulting space does not have (a priori) a C∗algebra structure;
to construct it, we will need to choose the right norm on the algebraic tensor product and
complete it accordingly.

Definition 1 (Tensor product). Let U,V be two C∗ algebras and assume they are realised as
subalgebras of B(h),B(g) respectively. We define the tensor product B(h) ⊗ B(g) := B(h ⊗ g)
(with the associated norm) and the tensor product of U,V as

U⊗min V :=
(
U⊙V

∥·∥B(g⊕h) , ∥ · ∥B(g⊕h)

)
Now that we have the appropriate concept of tensor product, we would like to prove the

standard result concerning tensor products of maps but as we will see, this cannot work for
general linear maps. To define it, we need to focus on completely bounded maps, which we
now introduct

Remark 1. It is easy to see that the above definition can be equivalently stated as:

∥x ∈ U⊙V∥min := sup ∥π(x)∥,

where the supremum runs over the family of morphisms of U ⊙V into some B(f) of the form
π = π1⊗π2 where π1 is a representation of U and π2 one of V. If we instead take the supremum
over all the morphisms (this norm is denoted by ∥x∥max) we obtain a new tensor product of
the two C∗ algebras:

U⊗max V :=
(
U⊙V

∥·∥max
, ∥ · ∥max

)
As in the case of topological vector spaces, there are many other equally worthy definitions of
completed tensor product. As in that case, all such possible norms are (on U ⊙ V), stronger
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than ∥ · ∥min and weaker than ∥ · ∥max. By analogy to the TVS case, the C∗ algebras for which
the min norm and the max norm coincide are called nuclear. For more information, see [2].

Remark 2. One can easily see that Mn(U) = Mn(C)⊗min U.

Definition 2. Let U,V be unitary C∗ algebra. We say that a linear map ϕ : U → V is
completely bounded if

sup
n

∥φ⊗ I∥Mn(U,V) < ∞.

Such supremum, if finite, is denoted by ∥φ∥cb. The operator φ⊗ IMn is denoted by φn.

While the definition might not seem particularly useful at a first glance, the following
proposition shows the usefulness of completely bounded maps inn the study of C∗ algebras:

Proposition 2.1. Let U1,2, V1,2 be C∗ algebras and let φ1,2 : U1,2 → V1,2 be cb maps. Then
there exists a unique linear map ṽarphi from U1⊗minU2 to V1⊗minV2 that extends the algebraic
tensor product of the two maps. The map also satisfies

∥φ1 ⊗ φ2∥cb ≤ ∥φ1∥cb∥φ2∥cb.

Moreover, we have

∥φ∥cb = sup
V

∥φ⊗ Id∥

Proof. We begin proving the last equation. By taking V = Mn, it is clear that RHS≥ LHS.
To prove the other direction, assume V is a subalgebra of B(f) and U of B(h). For simplicity,
assume f = ℓ2 (in general, we have h = ℓ2(k) for some cardinal k but this complicates working
with indices) equipped with the standard basis (ei). Denoting by Pn the standard projection
of ℓ2 on ℓn2 and by abuse of notation also the projection Pnℓ2⊗h → ℓn2 ⊗h it is clear that, given
x ∈ U⊙V, we have

∥x∥min = sup
n

∥Pn(x)∥,

since
⋃

ℓn2 ⊗ h is dense in ℓ2 ⊗ h. Writing explicitly x =
∑m

i=1 hi ⊗ fi, it follows that using
standard identifications we have

tn(i, j) =
∑
k

⟨ei, fkej⟩hk,

an element of Mn(U). The equation is thus proved. To prove the first half of the proposition,
it suffices to notice that φ1 ⊗ φ2 = (φ1 ⊗ IdV2)⊗ (IdU1 ⊗ φ2) and we are done, since

∥φ1 ⊗ φ2∥ ≤ ∥φ1 ⊗ Id∥∥Id⊗ φ2∥ ≤ ∥φ1∥cb∥φ2∥cb

and the same argument can be easily adapted to (φ1 ⊗ φ2)⊗ IdMn . ■

Remark 3. It is clear that every positive map and every linear combination thereof is completely
bounded. Since there is a strong similarity between the definition of cbms and cpms, it is logical
to expect that the converse be true as well. This is indeed the case, as we will see.

Example 1. While one might be tempted, given the above remark, to believe that most results
true for completely positive maps generalize to completely bounded ones, we urge caution in
doing so and present a cautionary counterexample to a natural conjecture:

Proposition 2.2. There exists a bounded morphism φ : U → V between two unital C∗ algebras,
with V commutative, that is not completely bounded.
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See [2] for details. Consider the space ℓn∞ (i.e. Rn with the maximum norm), equipped with
pointwise multiplication. There exists N(n) such that, on MN(Rn), we can construct a spin
system, i.e. a family of matrices {Ui} satisfying

1. UjUi = −UiUj whenever i ̸= j,

2. Uj is unitary and self adjoint for all j.

One can then prove that the map φ : ℓn∞ → MN(Rn) defined as

φ(ei) = Uj
1√
2n

is not completely bounded. ■

However, if the codomain is commutative, the result is true:

Proposition 2.3. Let φ : U → V be a linear map and assume V to be commutative. Then
∥φ∥ = ∥φ∥cb.

Proof. Without loss of generality, we can assume that V = C0(X) for some locally compact X.
It is then easy to see that Mn(V) = C0(X,Mn(C)), hence

∥φ⊗ I(aij)∥Mn(V) =
∥∥(φ(ai,j)(x))∥∥∞

= sup
x

sup
ξ,η∈Cn:∥ξ∥,∥η∥≤1

|⟨φ(ai,j)(x)ξ, ν⟩|

= sup
x

sup
ξ,η∈Cn:∥ξ∥,∥η∥≤1

|φ(ηtaζ)(x)|

≤ ∥φ∥∥(ai,j)∥.

Since the other inequality is trivial, it follows that ∥φ∥ = ∥φn∥ and we are done. ■

Moreover, the result is true even if the codomain is finite dimensional:

Proposition 2.4 ([2]). Let φ : U → V be a linear map and assume V is finite-dimensional of
dimension n. Then there exists a constant C such that ∥φ∥cb ≤ C(n)∥φ∥.

Remark 4. The problem of finding an explicit expression for the best value of C(n) is still open.
One easy bound is C(n) ≤ n, which can be proven as follows: since the space is n-dimensional
it admits an Auerbach basis, i.e. n pairs (xi, yi) with xi ∈ V and yi ∈ V∗ such that yi(xj) = δji ,
we can decompose IdV as

Id =
∑

yi(·)xi.

Since each of the maps yi(·)xi has values in the commutative C∗ algebra C and has unit norm.
it follows that ∥Id∥cb ≤ n. Similarly, given φ a general linear map, we have

φ =
∑

yi(·)φ(xi)

and hence C(n) ≤ n.
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3 Decomposition of cb maps

As mentioned before, one of the cornerstone results in the theory of cb maps is the decom-
position as a linear combination of positive maps. This will be the main goal of this section.
To prove the result, we take an indirect road: we will first prove an extension of Stinepring’s
representation theorem to cb maps, from which the promised decomposition will follow.

Theorem 3.1 (Stinespringer decomposition for cb maps, (Wittstock, Haagerup, and Paulsen)).
Let φ be a completely bounded map from U to B(h). Then there exist a representation (π, t) of
U and bounded operators V1,2 : h → t such that

∥V1∥∥V2∥ = ∥φ∥cb
φ = V ∗

1 πV2.

Moreover, if φ is a completely bounded contraction (i.e. ∥φ∥cb ≤ 1) we can choose V1,2 to be
isometries.

The main ingredients for this proof (and for many generalizations of statements for cp maps
to cb maps) are: a uniqueness result for the stinespringer representation and a lemma (due to
Paulsen), that is the bread and butter of extending results from cp to cb maps.

Recall that, given a completely bounded map φ : U → B(h), the Stinespring factorization
theorem implies the existence of a representation (π, t) of U and a map V : h → t such that
φ = V ∗πV . The couple (π, V ) is called a Stinespring representation of φ.

Proposition 3.1 (Minimal Stinespring representations). Let (π, V ) be a Stinespring represen-
tation of a completely positive map φ : U → B(h) and call the representation be minimal if
{π(x)V u} is dense in t. Then two minimal representations (π1, V1), (π2, V2) are necessarily
unitarily equivalent, i.e. there exists a unitary operator U : t1 → t2 such that

UV1 = V2

Uπ1U
∗ = π2

Proof. We begin by constructing U on A = {π1(x)V1u}. If we want U to satisfy the above
conditions, it follows that we must define it as

U
(∑

π1(xi)V1ui

)
=

∑
π2(xi)V2ui.

Then it suffices to prove that U is indeed an isometry and onto, from which we will extend it
by continuity to all t1. The surjectivity of U follows from the density of {π2(x)V2u} in t2, while
the isometricity from simple calculations- ■

Lemma 3.2 (Paulsen, see [2] chapter 1). Let φ : U → V be a morphism. Then φ is a completely
bounded contraction if and only if the map

Φ

(
λ1 a
b∗ µ1

)
:=

(
λ1 φ(a)

φ(b)∗ µ1

)
from the operator system

S :=

{(
λ1 a
b∗ µ1

)
: µ, λ ∈ C, a, b ∈ U

}
to V is a unital cp map.
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For the proof of the lemma, which is rather long and involves somewhat lengthy computa-
tions, we refer the reader to chapter 1 of [2].

Proof. Without loss of generality, let us assume φ is cbc (since it suffices to divide it by a scalar
to get this additional hypothesis). Define Φ as in the lemma. By the Arveson extension theorem,
Φ can be extended toM2(U) ⊃ S and let (π̃, t, V ) the minimal stinespringer representation (with
associated operator). Since Φ is a contraction, we can assume V to be an isometry and π̃ unital.
We can additionally find a decomposition of t as t = t⊕ t such that

π̃

(
a b
c d

)
=

(
π(a) π(b)
π(c) π(d)

)
with π : U → B(t) a unital morphism. Identifying h ≃ h⊕ h, we can see V as an isometry from
h⊕ h to t⊕ t satisfying(

a φ(b)
φ(c)∗ µd

)
= Φ

(
a b
c∗ d

)
= V ∗

(
π(a) π(b)
π(c) π(d)

)
.

It is now a matter of straightforward calculations to verify that the maps V1, V2 defined through

V1,2 ◦ p1,2 = q1,2 ◦ V,

where p1,2 denote the projections associated to the aforementioned decomposition of h and
similarly q1,2 for t satisfy, together with π, the conclusion of the theorem. ■

We obtain, as a direct corollary of the theorem, the promised decomposition of cb maps:

Corollary 3.2.1. Let φ : U → B(h) be a completely bounded map. Then there exist 4 completely
positive maps φ1,2,3,4 such that

φ = (φ1 − φ2) + i(φ3 − φ4).

Moreover, we have

∥φi∥ ≤ ∥φ∥
∥φ1 + φ2∥ ≤ ∥φ|
∥φ3 + φ4∥ ≤ ∥φ|

Proof. We assume, without loss of generality, that ∥φ∥cb = 1, which allows us to assume V1, V2

to be isometries. The result is proved in the same spirit as the polarization formula:

φ1 :=
1

4
(V1 + V2)

∗π(V1 + V2)

φ2 :=
1

4
(V1 − V2)

∗π(V1 − V2)

φ3 :=
1

4
(V1 + iV2)

∗π(V1 + iV2)

φ3 :=
1

4
(V1 − iV2)

∗π(V1 − iV2).

It is then clear from the definition that ∥φi∥ ≤ 1
4
2 · 2 = 1, so it remains only to prove that

∥φ1 + φ2∥ ≤ ∥φ∥ (since the proof of the similar inequality for (3, 4) is virtually identical): by
construction, we have

φ1 + φ2 =
1

2
(V ∗

1 πV1 + V ∗
2 πV2) ,

which implies

∥φ1 + φ2∥ ≤ 1

2

√
∥V1∥2 + ∥V2∥2 = 1.

■
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The theorem has many other applications; we briefly mention two of them: first, it directly
implies the GNS factorization1: it suffices to take φ = f and V = C in the theorem (where f
is completely bounded since C is commutative). The second result we mention is the following
characterization of Schur Multipliers (due to Grothendieck):

Theorem 3.3 (see [2]). The following are equivalent:

• There exists a completely bounded map u : φ : B(ℓ2) → B(ℓ2) such that u(eij) = f(i, j)eij
2,

• There exist a Hilbert space h and two bounded functions x, y : N → h

• The Schur multiplier u : B(ℓ2) → B(ℓ2) that sends (aij) to (f(i, j)aij) is bounded.

References
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