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4.3 Invariant States

Definition 1. If τ t is a group of ∗-autmorphisms of the C∗-algebra A, a state
µ on A is callte τ t-invariant if µ ◦ τ t = µ for all t ∈ R. The set of such
invarianct sets is denoted as E(A, τ t) ⊂ E(A) the set of all states on A.

Theorem 1. Let τ t be a group of ∗-autmorphisms of the C∗-algebra A. If there
exist a state ω on A such that the function t 7→ ω(τ t(A)) is continuous for all
A ∈ A then E(A, τ t) is a non-empty, convex and weak-∗-compact subset of A∗.
In particular, this holds if (A, τ t) is a C∗-dynamical system.

Proof. To prove existance we want to construct a net that has a converging
subnet with a τ t-invariant limit.
So for all A ∈ A consider the expresseion:

ωT (A) =
1

T

∫ T

0

ω ◦ τs(A)ds. (1)

By assumption, the function s 7→ ω(τs(A)) is continuous, thus the integral is well
defined and we have ωT ∈ E(A) for all T > 0. Since E(A) is weak-∗-compact,
the net (ωT )T>0 has a weak-∗-convergent subnet. The formula

ωT (τ
t(A)) =

1

T

∫ T

0

ω ◦ τs(τ t(A))ds (2)

=
1

T

∫ T

0

ω ◦ τs+t(A)ds (3)

=
1

T

∫ T+t

t

ω ◦ τs
′
(A)ds′ (4)

= ωT (A)− 1

T

∫ t

0

ω ◦ τs
′
(A)ds′ +

1

T

∫ T+t

T

ω ◦ τs
′
(A)ds′ (5)

is used for an estimate. Using this we can estimate

|ωT (τ
t(A))− ωT (A)| ≤ 2∥A∥ |t|

T
, (6)
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from which it follows that the limit of an convergent subnet of (ωT )T > 0 is
τ t-invariant. Let µ, ω be states in E(A, τ) and λ ∈ (0, 1). Then γ(A) = µ(A) +
λω(A) is a state and also τ t-invariant since

γ(τ t(A)) = µ(τ t(A)) + λω(τ t(A)) = µ(A) + λω(A) = γ(A) (7)

and weak-∗-closedness of the set of invariant state is clear.

Definition 2. If τ t is a group of ∗-autmorphisms of the von Neumann algebra
M we denote by N(M, τ t) ≡ E(M, τ t) ∩ N(M) the set of normal τ t-invariant
states.

Note that for aW ∗-dynamical system the compactness argument used in this
proof breaks down. There is no general existence result for normal invariant
states. In fact

4.4 Quantum Dynamical Systems

Definition 3. If C is a C∗-algebra and τ ta group of ∗-automorphisms of C we
define

E(C, τ t) ≡ {µ ∈ E(C, τ t)|t 7→ µ(A∗τ t(A)) is continuous for all A in C} (8)

If µ ∈ E(C, τ) we say that (C, τ t, µ) is a quantum dynamical system.

Example 1. If (A, τ t) is a C∗-dynamical system then E(A, τ) = E(A, τ) and
(A, τ t, µ) is a quantum dynamical system for any τ t-invariant state µ.

Example 2. If (M, τ t) is a W ∗-dynamical system then N(M, τ) ⊂ E(M, τ)
and (M, τ t, µ) is a quantum dynamical system for any τ t-invariant state µ.

Lemma 1. Let (C, τ t, µ) be a quantum dynamical system and denote the GNS
representation of C associated to µ by (Hµ, πµ,Ωµ). Then there exists a unique
self-adjoint operator Lµ on Hµ such that

1. πµ(τ
t(A)) = eitLµπµe

−itLµ for all A ∈ C and t ∈ R

2. LµΩµ = 0

Proof. For a fixed t ∈ R one easily checks that (Hµ, πµ ◦ τ t,Ωµ) is a GNS
representation of C associated to µ. By unicity of the GNS construction there
exists a unitary operator U t

µ on Hµ such that, for any A ∈ C, one has

U t
µπµ(A)Ωµ = πµ(τ

t(A))Ωµ (9)

and in particular
U t
µΩµ = Ωµ (10)

For s, t ∈ R we have

U t
µU

s
µπµ(A)Ωµ = U t

µπµ(τ
s(A))Ωµ = πµ(τ

t+s(A))Ωµ = U t+s
µ πµ(A)Ωµ, (11)
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and the cyclic property of Ωµ yields that U t
µ si a unitary group on Hµ. Using

an earlier result one can show that U t
µ is also strongly continuous. By Stone

theorem U t
µ = eitLµ for some self-adjoint operator Lµ and property 2 follows

from Equation (9). Finally for A,B ∈ C we get

U t
µπµ(A)πµ(B)Ωµ = πµ(τ

t(A))πµ(τ
t(B))Ωµ = πµ(τ

t(A))U t
µπµ(B)Ωµ, (12)

and property (1) follows from the cyclic property of Ωµ.

Definition 4. Given a quantum dynamical system (C, τ t, µ), we denote by

• (Hµ, πµ,Ωµ) its GNS-representation

• Cµ = πµ(C)
′′ the enveloping von Neumann Algebra

• (πµ,Cµ,Hµ, Lµ,Ωµ) its Normal Form (which exists by the Lemma 1).

Definition 5. Two quantum dynamical systems (C, τ t, µ) and (D, σt, ν) are
isomorphic if there exists a ∗-isomorphism ϕ : C → D such that ϕ ◦ τ t = σt ◦ ϕ
for all t ∈ R and µ = ν ◦ ϕ.

Definition 6. Let ω, µ be states on C. µ is called ω-normal if µ = µ̃ ◦ πω for
some µ ∈ N(Cω). The set of ω-normal states on C is denoted by N(C, ω).

Theorem 2. (Simplified Version of Thm. 2.30 in the Book) Let ω, µ be states
on C. Then µ ∈ N(C, ω) if and only if there exists a σ-weakly continuous ∗-
morphism πµ|ω : Cω → Cµ such that πµ = πµ|ω ◦ πω. If this is the case, then
there exists a subalgebra zµ|ωCω ⊆ Cω such that the restriction of πµ|ω to zµ|ωCω

is a ∗-isomorphism.

Proof. We only show the first part. Assume such a ∗-morphism exists. Write
µ̂(A) = ⟨Ωµ, AΩµ⟩ for the extension of µ to Cµ. We get

µ = µ̂ ◦ πµ = µ̂ ◦ πµ|ω ◦ πω

Since µ̃ := µ̂◦πµ|ω defines a normal state on Cω we can conclude that µ ∈ N(C, ω)
is ω-normal.

For the other direction, assume we have µ = µ̃ ◦ πω for some µ ∈ N(Cω).
Let (K,Φ,Ψ) be the GNS-representation of Cω corresponding to µ̃. Then
(K,Φ ◦ πω,Ψ) is a GNS-representation of C corresponding to µ. Indeed, we
have

µ(A) = µ̃(πω(A)) = ⟨Ψ,Φ(πω(A))Ψ⟩
for all A ∈ C which, by density of πω(C) in Cω proves µ(A) = ⟨Ψ,Φ(A)Ψ⟩ for all
A ∈ Cω. Furthermore, K = Φ(Cω)Ψ = Φ ◦ πω(C)Ψ also since πω(C) is dense in
Cω. By the uniqueness of the GNS-representation, there exists a unitary map
U : K → Hµ such that

πµ(A) = UΦ(πω(A))U∗

for all A ∈ C. Thus, for X ∈ Cω we can simply define

πµ|ω(X) := UΦ(X)U∗

and we get πµ = πµ|ω ◦ πω.
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Lemma 2. Let ω ∈ E(C, τ t) and µ ∈ N(C, ω) ∩ E(C, τ t). Then we have
µ ∈ E(C, τ t) and, the map πµ|ω from Thm 2 is an isomorphism between the
quantum dynamical systems (zµ|ωCω, τ̂

t
ω, µ̃) and (Cµ, τ̂

t
µ, µ̂), where µ̂ and µ̃ are

defined the same way as in the previous proof and τ̂ tµ is defined as

τ̂ tµ(A) := eitLµAe−itLµ

for A ∈ Cµ. τ̂ tω is defined analogously.

Proof. Notice that for all A ∈ C we have

µ(A∗τ t(A)) = µ̃(πω(A)∗πω(τ
t(A))) = µ̃(πω(A)∗eitLωπω(A)e−itLω )

which is continuous in t since µ̃ is normal.
We still need to show that µ̂ ◦ πµ|ω = µ̃ and that τ̂ tµ ◦ πµ|ω = πµ|ω ◦ τ̂ tω. By

density, it suffices to show that these equalities holds on πω(C). We have

µ̂ ◦ πµ|ω ◦ πω(A) = µ̂(πµ(A)) = µ(A) = µ̃ ◦ πω(A)

where we have used (in this order) Thm 2, a property of the GNS representation
and the definition of µ̃. For the other equation, Thm 2 implies

τ̂ tµ ◦ πµ|ω(πω(A)) = τ̂ tµ ◦ πµ(A)

and the first property from Thm 1 gives

τ̂ tµ ◦ πµ(A) = πµ ◦ τ t(A)

Applying these two facts again, we get

πµ ◦ τ t(A) = πµ|ω ◦ πω ◦ τ t(A) = πµ|ω ◦ τ̂ tω ◦ πω(A)

References
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