Quantum Dynamical Systems, Sec. 4.3-4.4

Anna Heck, Gabriel Dettling

November 2023

4.3 Invariant States

Definition 1. If τ^t is a group of *-autmorphisms of the C*-algebra \mathfrak{A} , a state μ on \mathfrak{A} is callte τ^t -invariant if $\mu \circ \tau^t = \mu$ for all $t \in \mathbb{R}$. The set of such invarianct sets is denoted as $E(\mathfrak{A}, \tau^t) \subset E(\mathfrak{A})$ the set of all states on \mathfrak{A} .

Theorem 1. Let τ^t be a group of *-autmorphisms of the C*-algebra \mathfrak{A} . If there exist a state ω on \mathfrak{A} such that the function $t \mapsto \omega(\tau^t(A))$ is continuous for all $A \in \mathfrak{A}$ then $E(\mathfrak{A}, \tau^t)$ is a non-empty, convex and weak-*-compact subset of \mathfrak{A}^* . In particular, this holds if (\mathfrak{A}, τ^t) is a C*-dynamical system.

Proof. To prove existance we want to construct a net that has a converging subnet with a τ^t -invariant limit.

So for all $A \in \mathfrak{A}$ consider the expression:

$$\omega_T(A) = \frac{1}{T} \int_0^T \omega \circ \tau^s(A) ds.$$
(1)

By assumption, the function $s \mapsto \omega(\tau^s(A))$ is continuous, thus the integral is well defined and we have $\omega_T \in E(\mathfrak{A})$ for all T > 0. Since $E(\mathfrak{A})$ is weak-*-compact, the net $(\omega_T)_{T>0}$ has a weak-*-convergent subnet. The formula

$$\omega_T(\tau^t(A)) = \frac{1}{T} \int_0^T \omega \circ \tau^s(\tau^t(A)) ds$$
⁽²⁾

$$=\frac{1}{T}\int_{0}^{T}\omega\circ\tau^{s+t}(A)ds\tag{3}$$

$$=\frac{1}{T}\int_{t}^{T+t}\omega\circ\tau^{s'}(A)ds'$$
(4)

$$=\omega_T(A) - \frac{1}{T} \int_0^t \omega \circ \tau^{s'}(A) ds' + \frac{1}{T} \int_T^{T+t} \omega \circ \tau^{s'}(A) ds' \qquad (5)$$

is used for an estimate. Using this we can estimate

$$|\omega_T(\tau^t(A)) - \omega_T(A)| \le 2||A|| \frac{|t|}{T},$$
(6)

from which it follows that the limit of an convergent subnet of $(\omega_T)T > 0$ is τ^t -invariant. Let μ, ω be states in $E(\mathfrak{A}, \tau)$ and $\lambda \in (0, 1)$. Then $\gamma(A) = \mu(A) + \lambda \omega(A)$ is a state and also τ^t -invariant since

$$\gamma(\tau^t(A)) = \mu(\tau^t(A)) + \lambda\omega(\tau^t(A)) = \mu(A) + \lambda\omega(A) = \gamma(A)$$
(7)

and weak-*-closedness of the set of invariant state is clear.

Definition 2. If τ^t is a group of *-autmorphisms of the von Neumann algebra \mathfrak{M} we denote by $N(\mathfrak{M}, \tau^t) \equiv E(\mathfrak{M}, \tau^t) \cap N(\mathfrak{M})$ the set of normal τ^t -invariant states.

Note that for a W^* -dynamical system the compactness argument used in this proof breaks down. There is no general existence result for *normal invariant states*. In fact

4.4 Quantum Dynamical Systems

Definition 3. If \mathfrak{C} is a C^* -algebra and $\tau^t a$ group of *-automorphisms of \mathfrak{C} we define

$$\mathcal{E}(\mathfrak{C},\tau^t) \equiv \{\mu \in E(\mathfrak{C},\tau^t) | t \mapsto \mu(A^*\tau^t(A)) \text{ is continuous for all } A \text{ in } \mathfrak{C}\}$$
(8)

If $\mu \in \mathcal{E}(\mathfrak{C}, \tau)$ we say that $(\mathfrak{C}, \tau^t, \mu)$ is a quantum dynamical system.

Example 1. If (\mathfrak{A}, τ^t) is a C^* -dynamical system then $\mathcal{E}(\mathfrak{A}, \tau) = E(\mathfrak{A}, \tau)$ and $(\mathfrak{A}, \tau^t, \mu)$ is a quantum dynamical system for any τ^t -invariant state μ .

Example 2. If (\mathfrak{M}, τ^t) is a W^* -dynamical system then $N(\mathfrak{M}, \tau) \subset E(\mathfrak{M}, \tau)$ and $(\mathfrak{M}, \tau^t, \mu)$ is a quantum dynamical system for any τ^t -invariant state μ .

Lemma 1. Let $(\mathfrak{C}, \tau^t, \mu)$ be a quantum dynamical system and denote the GNS representation of \mathfrak{C} associated to μ by $(\mathcal{H}_{\mu}, \pi_{\mu}, \Omega_{\mu})$. Then there exists a unique self-adjoint operator L_{μ} on \mathcal{H}_{μ} such that

1.
$$\pi_{\mu}(\tau^{t}(A)) = e^{itL_{\mu}}\pi_{\mu}e^{-itL_{\mu}}$$
 for all $A \in \mathfrak{C}$ and $t \in \mathbb{R}$

2. $L_{\mu}\Omega_{\mu} = 0$

Proof. For a fixed $t \in \mathbb{R}$ one easily checks that $(\mathcal{H}_{\mu}, \pi_{\mu} \circ \tau^{t}, \Omega_{\mu})$ is a GNS representation of \mathfrak{C} associated to μ . By unicity of the GNS construction there exists a unitary operator U_{μ}^{t} on \mathcal{H}_{μ} such that, for any $A \in \mathfrak{C}$, one has

$$U^t_\mu \pi_\mu(A)\Omega_\mu = \pi_\mu(\tau^t(A))\Omega_\mu \tag{9}$$

and in particular

$$U^t_\mu \Omega_\mu = \Omega_\mu \tag{10}$$

For $s,t\in\mathbb{R}$ we have

$$U^{t}_{\mu}U^{s}_{\mu}\pi_{\mu}(A)\Omega_{\mu} = U^{t}_{\mu}\pi_{\mu}(\tau^{s}(A))\Omega_{\mu} = \pi_{\mu}(\tau^{t+s}(A))\Omega_{\mu} = U^{t+s}_{\mu}\pi_{\mu}(A)\Omega_{\mu}, \quad (11)$$

and the cyclic property of Ω_{μ} yields that U_{μ}^{t} si a unitary group on \mathcal{H}_{μ} . Using an earlier result one can show that U_{μ}^{t} is also strongly continuous. By Stone theorem $U_{\mu}^{t} = e^{itL_{\mu}}$ for some self-adjoint operator L_{μ} and property 2 follows from Equation (9). Finally for $A, B \in \mathfrak{C}$ we get

$$U^{t}_{\mu}\pi_{\mu}(A)\pi_{\mu}(B)\Omega_{\mu} = \pi_{\mu}(\tau^{t}(A))\pi_{\mu}(\tau^{t}(B))\Omega_{\mu} = \pi_{\mu}(\tau^{t}(A))U^{t}_{\mu}\pi_{\mu}(B)\Omega_{\mu}, \quad (12)$$

and property (1) follows from the cyclic property of Ω_{μ} .

Definition 4. Given a quantum dynamical system $(\mathfrak{C}, \tau^t, \mu)$, we denote by

- $(\mathcal{H}_{\mu}, \pi_{\mu}, \Omega_{\mu})$ its GNS-representation
- $\mathfrak{C}_{\mu} = \pi_{\mu}(\mathfrak{C})''$ the enveloping von Neumann Algebra
- $(\pi_{\mu}, \mathfrak{C}_{\mu}, \mathcal{H}_{\mu}, L_{\mu}, \Omega_{\mu})$ its Normal Form (which exists by the Lemma 1).

Definition 5. Two quantum dynamical systems $(\mathfrak{C}, \tau^t, \mu)$ and $(\mathfrak{D}, \sigma^t, \nu)$ are isomorphic if there exists a *-isomorphism $\phi : \mathfrak{C} \to \mathfrak{D}$ such that $\phi \circ \tau^t = \sigma^t \circ \phi$ for all $t \in \mathbb{R}$ and $\mu = \nu \circ \phi$.

Definition 6. Let ω, μ be states on \mathfrak{C} . μ is called ω -normal if $\mu = \tilde{\mu} \circ \pi_{\omega}$ for some $\mu \in N(\mathfrak{C}_{\omega})$. The set of ω -normal states on \mathfrak{C} is denoted by $N(\mathfrak{C}, \omega)$.

Theorem 2. (Simplified Version of Thm. 2.30 in the Book) Let ω, μ be states on \mathfrak{C} . Then $\mu \in N(\mathfrak{C}, \omega)$ if and only if there exists a σ -weakly continuous \ast morphism $\pi_{\mu|\omega} : \mathfrak{C}_{\omega} \to \mathfrak{C}_{\mu}$ such that $\pi_{\mu} = \pi_{\mu|\omega} \circ \pi_{\omega}$. If this is the case, then there exists a subalgebra $z_{\mu|\omega}\mathfrak{C}_{\omega} \subseteq \mathfrak{C}_{\omega}$ such that the restriction of $\pi_{\mu|\omega}$ to $z_{\mu|\omega}\mathfrak{C}_{\omega}$ is a \ast -isomorphism.

Proof. We only show the first part. Assume such a *-morphism exists. Write $\hat{\mu}(A) = \langle \Omega_{\mu}, A\Omega_{\mu} \rangle$ for the extension of μ to \mathfrak{C}_{μ} . We get

$$\mu = \hat{\mu} \circ \pi_{\mu} = \hat{\mu} \circ \pi_{\mu|\omega} \circ \pi_{\omega}$$

Since $\tilde{\mu} := \hat{\mu} \circ \pi_{\mu|\omega}$ defines a normal state on \mathfrak{C}_{ω} we can conclude that $\mu \in N(\mathfrak{C}, \omega)$ is ω -normal.

For the other direction, assume we have $\mu = \tilde{\mu} \circ \pi_{\omega}$ for some $\mu \in N(\mathfrak{C}_{\omega})$. Let $(\mathcal{K}, \Phi, \Psi)$ be the GNS-representation of \mathfrak{C}_{ω} corresponding to $\tilde{\mu}$. Then $(\mathcal{K}, \Phi \circ \pi_{\omega}, \Psi)$ is a GNS-representation of \mathfrak{C} corresponding to μ . Indeed, we have

$$\mu(A) = \tilde{\mu}(\pi_{\omega}(A)) = \langle \Psi, \Phi(\pi_{\omega}(A))\Psi \rangle$$

for all $A \in \mathfrak{C}$ which, by density of $\pi_{\omega}(\mathfrak{C})$ in \mathfrak{C}_{ω} proves $\mu(A) = \langle \Psi, \Phi(A)\Psi \rangle$ for all $A \in \mathfrak{C}_{\omega}$. Furthermore, $\mathcal{K} = \overline{\Phi(\mathfrak{C}_{\omega})\Psi} = \overline{\Phi \circ \pi_{\omega}(\mathfrak{C})\Psi}$ also since $\pi_{\omega}(\mathfrak{C})$ is dense in \mathfrak{C}_{ω} . By the uniqueness of the GNS-representation, there exists a unitary map $U: \mathcal{K} \to \mathcal{H}_{\mu}$ such that

$$\pi_{\mu}(A) = U\Phi(\pi_{\omega}(A))U^*$$

for all $A \in \mathfrak{C}$. Thus, for $X \in \mathfrak{C}_{\omega}$ we can simply define

$$\pi_{\mu|\omega}(X) := U\Phi(X)U^*$$

and we get $\pi_{\mu} = \pi_{\mu|\omega} \circ \pi_{\omega}$.

Lemma 2. Let $\omega \in \mathcal{E}(\mathfrak{C}, \tau^t)$ and $\mu \in N(\mathfrak{C}, \omega) \cap E(\mathfrak{C}, \tau^t)$. Then we have $\mu \in \mathcal{E}(\mathfrak{C}, \tau^t)$ and, the map $\pi_{\mu|\omega}$ from Thm 2 is an isomorphism between the quantum dynamical systems $(z_{\mu|\omega}\mathfrak{C}_{\omega}, \hat{\tau}^t_{\omega}, \tilde{\mu})$ and $(\mathfrak{C}_{\mu}, \hat{\tau}^t_{\mu}, \hat{\mu})$, where $\hat{\mu}$ and $\tilde{\mu}$ are defined the same way as in the previous proof and $\hat{\tau}^t_{\mu}$ is defined as

$$\hat{\tau}^t_\mu(A) := e^{itL_\mu} A e^{-itL_\mu}$$

for $A \in \mathfrak{C}_{\mu}$. $\hat{\tau}^t_{\omega}$ is defined analogously.

Proof. Notice that for all $A \in \mathfrak{C}$ we have

$$\mu(A^*\tau^t(A)) = \tilde{\mu}(\pi_\omega(A)^*\pi_\omega(\tau^t(A))) = \tilde{\mu}(\pi_\omega(A)^*e^{itL_\omega}\pi_\omega(A)e^{-itL_\omega})$$

which is continuous in t since $\tilde{\mu}$ is normal.

We still need to show that $\hat{\mu} \circ \pi_{\mu|\omega} = \tilde{\mu}$ and that $\hat{\tau}^t_{\mu} \circ \pi_{\mu|\omega} = \pi_{\mu|\omega} \circ \hat{\tau}^t_{\omega}$. By density, it suffices to show that these equalities holds on $\pi_{\omega}(\mathfrak{C})$. We have

$$\hat{\mu} \circ \pi_{\mu|\omega} \circ \pi_{\omega}(A) = \hat{\mu}(\pi_{\mu}(A)) = \mu(A) = \tilde{\mu} \circ \pi_{\omega}(A)$$

where we have used (in this order) Thm 2, a property of the GNS representation and the definition of $\tilde{\mu}$. For the other equation, Thm 2 implies

$$\hat{\tau}^t_{\mu} \circ \pi_{\mu|\omega}(\pi_{\omega}(A)) = \hat{\tau}^t_{\mu} \circ \pi_{\mu}(A)$$

and the first property from Thm 1 gives

$$\hat{\tau}^t_\mu \circ \pi_\mu(A) = \pi_\mu \circ \tau^t(A)$$

Applying these two facts again, we get

$$\pi_{\mu} \circ \tau^{t}(A) = \pi_{\mu|\omega} \circ \pi_{\omega} \circ \tau^{t}(A) = \pi_{\mu|\omega} \circ \hat{\tau}_{\omega}^{t} \circ \pi_{\omega}(A)$$

References

 Stéphane Attal, Alain Joye and Claude-Alain Pillet. Open Quantum Systems I - The Hamiltonian Approach Springer, 2006.