Spectral Analysis

Puthuparambil Sharon, Okuyama Chihiro

1 Spectral analysis

Let \mathcal{A} be a C^* -algebra with unit I.

Definition 1.1. One calls resolvant set of A the set

$$\rho(A) = \{ \lambda \in \mathbb{C}; \ \lambda I - A \ is \ invertible \}.$$

We put

$$\sigma(A) = \mathbb{C} \backslash \rho(A)$$

and call it the spectrum of A.

If $|\lambda| > ||A||$ then the series

$$\frac{1}{\lambda} \sum_{n} \left(\frac{A}{\lambda}\right)^{n}$$

is normally convergent and its sum is equal to $(\lambda I - A)^{-1}$ (this is the well known Neumann series). This implies that $\sigma(A)$ is included in B(0, ||A||).

Furthermore, if λ_0 belongs to $\rho(A)$ and if $\lambda \in \mathbb{C}$ is such that $|\lambda - \lambda_0| < ||\lambda_0 I - A||$, then the series

$$(\lambda_0 I - A)^{-1} \sum_n \left(\frac{\lambda_0 - \lambda}{\lambda_0 I - A}\right)^n$$

normally converges to $(\lambda I - A)^{-1}$. In particular we have proved that:

- 1. the set $\rho(A)$ is open (the second point makes sure the existence of an open ball around $\lambda_0 \in \rho(A)$, in which $\lambda I A$ is invertible).
- 2. the mapping $\lambda \mapsto (\lambda I A)^{-1}$ is analytic on $\rho(A)$.
- 3. the set $\sigma(A)$ is compact (as it is a closed and bounded set).

Definition 1.2. We define

$$r(A) = \sup\{|\lambda|; \lambda \in \sigma(A)\},\$$

the spectral radius of A.

Theorem 1.3. We have for all $A \in \mathcal{A}$

$$r(A) = \lim_{n} \|A^{n}\|^{1/n} = \inf_{n} \|A^{n}\|^{1/n} \le \|A\|.$$

In particular the above limit always exists and $\sigma(A)$ is never empty.

Corollary 1.4. A C^* -algebra \mathcal{A} with unit and all of which elements, except 0, are invertible is isomorphic to \mathbb{C} .

All the above results made use of the fact that we considered a C^* -algebra with unit. If \mathcal{A} is a C^* -algebra without unit and if $\widetilde{\mathcal{A}}$ is its natural extension with unit, then the notion of spectrum and resolvent set are extended as follows. The spectrum of $A \in \mathcal{A}$ is its spectrum as an element of $\widetilde{\mathcal{A}}$. We extend the notion of resolvent set in the same way.

Definition 1.5. An element A of a C^* -algebra \mathcal{A} is

- normal if $A^*A = AA^*$,
- self-adjoint if $A = A^*$.

If \mathcal{A} contains a unit, then an element $A \in \mathcal{A}$ is

- isometric if $A^*A = I$,
- unitary if $A^*A = AA^* = I$.

Theorem 1.6. Let \mathcal{A} be a C^* -algebra with unit.

- a) If A is normal then r(A) = ||A||.
- b) If A is self-adjoint then $\sigma(A) \subset [-\|A\|, \|A\|]$.
- c) If A is isometric then r(A) = 1.
- d) If A is unitary then $\sigma(A) \subset \{\lambda \in \mathbb{C}; |\lambda| = 1\}.$
- e) For all $A \in \mathcal{A}$ we have $\sigma(A^*) = \overline{\sigma(A)}$ and $\sigma(A^{-1}) = \sigma(A)^{-1}$.
- f) For every polynomial function P we have

$$\sigma(P(A)) = P(\sigma(A)).$$

g) For any two $A, B \in \mathcal{A}$ we have

$$\sigma(AB) \cup \{0\} = \sigma(BA) \cup \{0\}.$$

Theorem 1.7. The norm which makes a *-algebra being a C^* -algebra, when it exists, is unique.

Proposition 1.8. The set of invertible elements of a C^* -algebra \mathcal{A} with unit is open and the mapping $A \mapsto A^{-1}$ is continuous on this set.

Proof. If A is invertible and if B is such that $||B-A|| < ||A^{-1}||^{-1}$ then $B = A(I - A^{-1}(A - B))$ is invertible for

$$r(A^{-1}(A-B)) \le ||A^{-1}(A-B)|| < 1$$

and thus $I - A^{-1}(A - B)$ is invertible. The open character is proved. Let us now show the continuity. If $||B - A|| < 1/2 ||A^{-1}||^{-1}$ then

$$\begin{split} \left\| B^{-1} - A^{-1} \right\| &= \left\| \sum_{n=0}^{\infty} \left(A^{-1} (A - B) \right)^n A^{-1} - A^{-1} \right\| \\ &\leq \sum_{n=1}^{\infty} \left\| A^{-1} (A - B) \right\|^n \left\| A^{-1} \right\| \\ &\leq \frac{\left\| A^{-1} \right\|^2 \left\| A - B \right\|}{1 - \left\| A^{-1} (A - B) \right\|} \\ &\leq 2 \left\| A^{-1} \right\|^2 \left\| A - B \right\| \end{split}$$

This proves the continuity.

In the following, we denote by 1 the constant function equal to 1 on \mathbb{C} and by id_E the function $\lambda \mapsto \lambda$ on $E \subset \mathbb{C}$.

A *-algebra morphism is a linear mapping $\Pi : \mathcal{A} \to \mathcal{B}$, between two * algebras \mathcal{A} and \mathcal{B} , such that $\Pi(A^*B) = \Pi(A)^*\Pi(B)$ for all $A, B \in \mathcal{A}$. A C*-algebra morphism is *-algebra morphism Π between two C*-algebras \mathcal{A} and \mathcal{B} , such that $\|\Pi(A)\|_{\mathcal{B}} = \|A\|_{\mathcal{A}}$, for all $A \in \mathcal{A}$.

Theorem 1.9 (Functional calculus). Let \mathcal{A} be a C^* -algebra with unit. Let A be a selfadjoint element in \mathcal{A} . Let $C(\sigma(A))$ be the C^* -algebra of continuous functions on $\sigma(A)$. Then there is a unique morphism of C^* -algebra

$$C(\sigma(A)) \longrightarrow \mathcal{A}$$
$$f \longmapsto f(A)$$

which sends the function 1 on I and the function $id_{\sigma(A)}$ on A. Furthermore we have

$$\sigma(f(A)) = f(\sigma(A))$$

for all $f \in C(\sigma(A))$.

An element A of a C^* -algebra \mathcal{A} is positive if it is self-adjoint and its spectrum is included in \mathbb{R}^+ .

Theorem 1.10. Let A be an element of A. The following assertions are equivalent.

- 1. A is positive.
- 2. (if A contains a unit) A is self-adjoint and $||tI A|| \le t$ for some $t \ge ||A||$. ||A||.
- 3. (if A contains a unit) A is self-adjoint and $||tI A|| \le t$ for all $t \ge t$
- 4. $A = B^*B$ for $a B \in \mathcal{A}$.
- 5. $A = C^2$ for a self-adjoint $C \in \mathcal{A}$.

This notion of positivity defines an order on elements of \mathcal{A} , by saying that $U \ge V$ in \mathcal{A} if U - V is a positive element of \mathcal{A} .

Proposition 1.11. Let U, V be self-adjoint elements of A such that $U \ge V \ge 0$. Then

- 1. $W^*UW \ge W^*VW \ge 0$ for all $W \in \mathcal{A}$;
- 2. $(V + \lambda I)^{-1} \ge (U + \lambda I)^{-1}$ for all $\lambda \ge 0$.