Spectral Analysis

Puthuparambil Sharon, Okuyama Chihiro

1 Spectral analysis

Let \mathcal{A} be a C^{*}-algebra with unit I.
Definition 1.1. One calls resolvant set of A the set

$$
\rho(A)=\{\lambda \in \mathbb{C} ; \lambda I-A \text { is invertible }\} .
$$

We put

$$
\sigma(A)=\mathbb{C} \backslash \rho(A)
$$

and call it the spectrum of A.
If $|\lambda|>\|A\|$ then the series

$$
\frac{1}{\lambda} \sum_{n}\left(\frac{A}{\lambda}\right)^{n}
$$

is normally convergent and its sum is equal to $(\lambda I-A)^{-1}$ (this is the well known Neumann series). This implies that $\sigma(A)$ is included in $B(0,\|A\|)$.

Furthermore, if λ_{0} belongs to $\rho(A)$ and if $\lambda \in \mathbb{C}$ is such that $\left|\lambda-\lambda_{0}\right|<\left\|\lambda_{0} I-A\right\|$, then the series

$$
\left(\lambda_{0} I-A\right)^{-1} \sum_{n}\left(\frac{\lambda_{0}-\lambda}{\lambda_{0} I-A}\right)^{n}
$$

normally converges to $(\lambda I-A)^{-1}$. In particular we have proved that:

1. the set $\rho(A)$ is open (the second point makes sure the existence of an open ball around $\lambda_{0} \in \rho(A)$, in which $\lambda I-A$ is invertible).
2. the mapping $\lambda \mapsto(\lambda I-A)^{-1}$ is analytic on $\rho(A)$.
3. the set $\sigma(A)$ is compact (as it is a closed and bounded set).

Definition 1.2. We define

$$
r(A)=\sup \{|\lambda| ; \lambda \in \sigma(A)\}
$$

the spectral radius of A.
Theorem 1.3. We have for all $A \in \mathcal{A}$

$$
r(A)=\lim _{n}\left\|A^{n}\right\|^{1 / n}=\inf _{n}\left\|A^{n}\right\|^{1 / n} \leq\|A\|
$$

In particular the above limit always exists and $\sigma(A)$ is never empty.

Corollary 1.4. A C^{*}-algebra \mathcal{A} with unit and all of which elements, except 0 , are invertible is isomorphic to \mathbb{C}.

All the above results made use of the fact that we considered a C^{*}-algebra with unit. If \mathcal{A} is a C^{*}-algebra without unit and if $\widetilde{\mathcal{A}}$ is its natural exetension with unit, then the notion of spectrum and resolvent set are extended as follows. The spectrum of $A \in \mathcal{A}$ is its spectrum as an element of $\widetilde{\mathcal{A}}$. We extend the notion of resolvent set in the same way.

Definition 1.5. An element A of a C^{*}-algebra \mathcal{A} is

- normal if $A^{*} A=A A^{*}$,
- self-adjoint if $A=A^{*}$.

If \mathcal{A} contains a unit, then an element $A \in \mathcal{A}$ is

- isometric if $A^{*} A=I$,
- unitary if $A^{*} A=A A^{*}=I$.

Theorem 1.6. Let \mathcal{A} be a C^{*}-algebra with unit.
a) If A is normal then $r(A)=\|A\|$.
b) If A is self-adjoint then $\sigma(A) \subset[-\|A\|,\|A\|]$.
c) If A is isometric then $r(A)=1$.
d) If A is unitary then $\sigma(A) \subset\{\lambda \in \mathbb{C} ;|\lambda|=1\}$.
e) For all $A \in \mathcal{A}$ we have $\sigma\left(A^{*}\right)=\overline{\sigma(A)}$ and $\sigma\left(A^{-1}\right)=\sigma(A)^{-1}$.
f) For every polynomial function P we have

$$
\sigma(P(A))=P(\sigma(A))
$$

g) For any two $A, B \in \mathcal{A}$ we have

$$
\sigma(A B) \cup\{0\}=\sigma(B A) \cup\{0\}
$$

Theorem 1.7. The norm which makes a^{*}-algebra being a C^{*}-algebra, when it exists, is unique.

Proposition 1.8. The set of invertible elements of a C^{*}-algebra \mathcal{A} with unit is open and the mapping $A \mapsto A^{-1}$ is continuous on this set.

Proof. If A is invertible and if B is such that $\|B-A\|<\left\|A^{-1}\right\|^{-1}$ then $B=A\left(I-A^{-1}(A-B)\right)$ is invertible for

$$
r\left(A^{-1}(A-B)\right) \leq\left\|A^{-1}(A-B)\right\|<1
$$

and thus $I-A^{-1}(A-B)$ is invertible. The open character is proved. Let us now show the continuity. If $\|B-A\|<1 / 2\left\|A^{-1}\right\|^{-1}$ then

$$
\begin{aligned}
\left\|B^{-1}-A^{-1}\right\| & =\left\|\sum_{n=0}^{\infty}\left(A^{-1}(A-B)\right)^{n} A^{-1}-A^{-1}\right\| \\
& \leq \sum_{n=1}^{\infty}\left\|A^{-1}(A-B)\right\|^{n}\left\|A^{-1}\right\| \\
& \leq \frac{\left\|A^{-1}\right\|^{2}\|A-B\|}{1-\left\|A^{-1}(A-B)\right\|} \\
& \leq 2\left\|A^{-1}\right\|^{2}\|A-B\|
\end{aligned}
$$

This proves the continuity.
In the following, we denote by $\mathbb{1}$ the constant function equal to 1 on \mathbb{C} and by id_{E} the function $\lambda \mapsto \lambda$ on $E \subset \mathbb{C}$.

A $*$-algebra morphism is a linear mapping $\Pi: \mathcal{A} \rightarrow \mathcal{B}$, between two $*$ algebras \mathcal{A} and \mathcal{B}, such that $\Pi\left(A^{*} B\right)=\Pi(A)^{*} \Pi(B)$ for all $A, B \in \mathcal{A}$. A C^{*}-algebra morphism is *-algebra morphism Π between two C^{*}-algebras \mathcal{A} and \mathcal{B}, such that $\|\Pi(A)\|_{\mathcal{B}}=\|A\|_{\mathcal{A}}$, for all $A \in \mathcal{A}$.

Theorem 1.9 (Functional calculus). Let \mathcal{A} be a C^{*}-algebra with unit. Let A be a selfadjoint element in \mathcal{A}. Let $C(\sigma(A))$ be the C^{*}-algebra of continuous functions on $\sigma(A)$. Then there is a unique morphism of C^{*}-algebra

$$
\begin{aligned}
C(\sigma(A)) & \longrightarrow \mathcal{A} \\
f & \longmapsto f(A)
\end{aligned}
$$

which sends the function $\mathbb{1}$ on I and the function $i d_{\sigma(A)}$ on A.
Furthermore we have

$$
\sigma(f(A))=f(\sigma(A))
$$

for all $f \in C(\sigma(A))$.
An element A of a C^{*}-algebra \mathcal{A} is positive if it is self-adjoint and its spectrum is included in \mathbb{R}^{+}.
Theorem 1.10. Let A be an element of \mathcal{A}. The following assertions are equivalent.

1. A is positive.
2. (if \mathcal{A} contains a unit) A is self-adjoint and $\|t I-A\| \leq t$ for some $t \geq\|A\|$. $\|A\|$.
3. (if \mathcal{A} contains a unit) A is self-adjoint and $\|t I-A\| \leq t$ for all $t \geq$
4. $A=B^{*} B$ for a $B \in \mathcal{A}$.
5. $A=C^{2}$ for a self-adjoint $C \in \mathcal{A}$.

This notion of positivity defines an order on elements of \mathcal{A}, by saying that $U \geq V$ in \mathcal{A} if $U-V$ is a positive element of \mathcal{A}.

Proposition 1.11. Let U, V be self-adjoint elements of \mathcal{A} such that $U \geq V \geq 0$. Then

1. $W^{*} U W \geq W^{*} V W \geq 0$ for all $W \in \mathcal{A}$;
2. $(V+\lambda I)^{-1} \geq(U+\lambda I)^{-1}$ for all $\lambda \geq 0$.
