October 8, 2023

Seminar Operator Algebra

2.3 Representations

We note that *-Algebra morphisms are indeed positive, since $\Pi(A^*A) = \Pi(A)^* \Pi(A)$.

Theorem 2.10

Let \mathcal{A}, \mathcal{B} be a C^* -Algebra morphism. Then:

- 1. Π is continuous.
- 2. $ran(\Pi) \subset \mathcal{B}$ is a sub C^* -Algebra.

proof

- 1. In the first part we first show the statement for selfadjoint operators. Then, using the trick $||A^*A|| = ||A||^2$ twice, the result for general $A \in \mathcal{A}$ follows.
- 2. For the second part we assume WLOG $ker(\Pi) = \{0\}$. Else we can look at the quotient C^* -Algebra where we divide through the kernel of Π . Since Π is now injective, there exists an inverse map Π^{-1} from $ran(\Pi)$ to $\mathcal{P}\rangle$. This map is also a C^* -Algebra morphism, requiring $||A|| = ||\Pi(A)||$ (using (a) on Π^{-1}). But this type of inequality is typical in Functional Analysis and immediately implies that $ran(\Pi)$ is closed and thus complete. The other properties all hold trivially or transfer easily. Thus, we can conclude that $ran(\Pi)$ is a sub C^* -Algebra.

Def A representation of a C^* -Algebra \mathcal{A} is a pair of (H, Π) with Hilbertspace H and C^* -Algebra morphism $\Pi : \mathcal{A} \longrightarrow \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the set of all bounded linear operators on the Hilbert space H. A representation is faithful, if $ker(\Pi) = \{0\}$.

Proposition 2.11

Let (H,Π) be a representation of a C^* -Algebra \mathcal{A} . Then TFAE:

- 1. Π is faithful.
- 2. $\|\Pi(A)\| = \|A\|$
- 3. $A > 0 \Longrightarrow \Pi(A) > 0$

proof

The argument from (i) to (ii) is Theorem 2.10. One then can prove directly (ii) implies (iii). Finally, to show (iii) implies (i) one argues by contradiction.

Def A linear form w on a C^* -Algebra \mathcal{A} is called *positive* if $w(A^*A) \ge 0$ for all $A \in \mathcal{A}$.

Rmk This gives us a Cauchy-Schwartz like inequality: $|w(B^*A)| \leq |w(B^*B)| \cdot |w(A^*A)|$

Proposition 2.12

Let w be a Linear form on (\mathcal{A}, I) , i.e. a C^* -Algebra with unit. Then TFAE:

- 1. w is positive.
- 2. w is continuous.

Def A linear form w on a C^* -Algebra \mathcal{A} is called a *state* if ||w|| = 1.

Theorem 2.13 [Existence of states]

Let $A \in \mathcal{A}$. Then there exists a state w on \mathcal{A} such that $w(A^*A) = ||A||^2$.

proof Let $\mathcal{B} := \{ \alpha \cdot I + \beta \cdot A^* A \mid \alpha, \beta \in \mathbb{C} \}$. We set

 $f(\alpha \cdot I + \beta \cdot A^*A) := \alpha + \beta \cdot ||A||^2$

Using that A^*A is selfadjoint, we find the following bound:

$$|f(\alpha \cdot I + \beta \cdot A^*A)| \le ||\alpha \cdot I + \beta \cdot A^*A||$$
, i.e. $||f|| \le 1$

But setting $\alpha = 1, \beta = 0$ gives us f(I) = 1 which implies $||f|| \ge 1$, thus ||f|| = 1.

So far f defines a state on the C^* -Algebra \mathcal{B} . Using the Hahn-Banach Theorem, we can extend the linear form f to a linear form w on the C^* -Algebra \mathcal{A} with w(B) = f(B) for all $B \in \mathcal{B}$. As a consequence of the Hahn-Banach Theorem, we also get ||w|| = 1, thus w is a state on \mathcal{A} . Indeed by construction it holds that:

$$w(A^*A) = f(A^*A) = ||A||^2$$