October 8, 2023

Seminar Operator Algebra

2.3 Representations

We note that *-Algebra morphisms are indeed positive, since $\Pi\left(A^{*} A\right)=\Pi(A)^{*} \Pi(A)$.

Theorem 2.10

Let \mathcal{A}, \mathcal{B} be a $C^{*}-$ Algebra morphism. Then:

1. Π is continuous.
2. $\operatorname{ran}(\Pi) \subset \mathcal{B}$ is a sub $C^{*}-$ Algebra.

proof

1. In the first part we first show the statement for selfadjoint operators. Then, using the trick $\left\|A^{*} A\right\|=\|A\|^{2}$ twice, the result for general $A \in \mathcal{A}$ follows.
2. For the second part we assume WLOG $\operatorname{ker}(\Pi)=\{0\}$. Else we can look at the quotient C^{*} - Algebra where we divide through the kernel of Π. Since Π is now injective, there exists an inverse map Π^{-1} from $\operatorname{ran}(\Pi)$ to $\left.\mathcal{P}\right\rangle$. This map is also a C^{*}-Algebra morphism, requiring $\|A\|=\|\Pi(A)\|$ (using (a) on Π^{-1}). But this type of inequality is typical in Functional Analysis and immediately implies that $\operatorname{ran}(\Pi)$ is closed and thus complete. The other properties all hold trivially or transfer easily. Thus, we can conclude that $\operatorname{ran}(\Pi)$ is a sub C^{*}-Algebra.

Def A representation of a C^{*} - Algebra \mathcal{A} is a pair of (H, Π) with Hilbertspace H and C^{*} - Algebra morphism $\Pi: \mathcal{A} \longrightarrow \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the set of all bounded linear operators on the Hilbert space H. A representation is faithful, if $\operatorname{ker}(\Pi)=\{0\}$.

Proposition 2.11

Let (H, Π) be a representation of a C^{*}-Algebra \mathcal{A}. Then TFAE:

1. Π is faithful.
2. $\|\Pi(A)\|=\|A\|$
3. $A>0 \Longrightarrow \Pi(A)>0$

proof

The argument from (i) to (ii) is Theorem 2.10. One then can prove directly (ii) implies (iii). Finally, to show (iii) implies (i) one argues by contradiction.

Def A linear form w on a $C^{*}-$ Algebra \mathcal{A} is called positive if $w\left(A^{*} A\right) \geq 0$ for all $A \in \mathcal{A}$.
$\mathbf{R m k}$ This gives us a Cauchy-Schwartz like inequality: $\left|w\left(B^{*} A\right)\right| \leq\left|w\left(B^{*} B\right)\right| \cdot\left|w\left(A^{*} A\right)\right|$

Proposition 2.12

Let w be a Linear form on (\mathcal{A}, I), i.e. a C^{*} - Algebra with unit. Then TFAE:

1. w is positive.
2. w is continuous.

Def A linear form w on a C^{*} - Algebra \mathcal{A} is called a state if $\|w\|=1$.

Theorem 2.13 [Existence of states]
Let $A \in \mathcal{A}$. Then there exists a state w on \mathcal{A} such that $w\left(A^{*} A\right)=\|A\|^{2}$.
proof
Let $\mathcal{B}:=\left\{\alpha \cdot I+\beta \cdot A^{*} A \mid \alpha, \beta \in \mathbb{C}\right\}$. We set

$$
f\left(\alpha \cdot I+\beta \cdot A^{*} A\right):=\alpha+\beta \cdot\|A\|^{2}
$$

Using that $A^{*} A$ is selfadjoint, we find the following bound:

$$
\left|f\left(\alpha \cdot I+\beta \cdot A^{*} A\right)\right| \leq\left\|\alpha \cdot I+\beta \cdot A^{*} A\right\| \text {, i.e. }\|f\| \leq 1
$$

But setting $\alpha=1, \beta=0$ gives us $f(I)=1$ which implies $\|f\| \geq 1$, thus $\|f\|=1$.
So far f defines a state on the C^{*}-Algebra \mathcal{B}. Using the Hahn-Banach Theorem, we can extend the linear form f to a linear form w on the C^{*} - Algebra \mathcal{A} with $w(B)=f(B)$ for all $B \in \mathcal{B}$. As a consequence of the Hahn-Banach Theorem, we also get $\|w\|=1$, thus w is a state on \mathcal{A}. Indeed by construction it holds that:

$$
w\left(A^{*} A\right)=f\left(A^{*} A\right)=\|A\|^{2}
$$

