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The following handout is a summary of subsection 3.1 and 3.2 of Stéphane
Attal’s notes ”Elements of Operator Algebras and Modular Theory”. We closely
follow the original text, and use the same numbering.

3.1 Topologies on B(H)

Let B(H) be the C*-algebra of bounded linear operators over a complex Hilbert
space H. We start by defining a von Neumann algebra.

Definition. A von Neumann algebra (or W*-algebra) is a weakly closed
C*-algebra acting on H that contains the identity I ∈ B(H).

To understand this definition in full detail, we define the different topologies
on B(H).

Definition. The strong topology on B(H) is the locally convex topology de-
fined by the family of semi norms Px(A) = ∥Ax∥ where x ∈ H.

Definition. The weak topology on B(H) is the locally convex topology defined
by the family of semi norms Px,y(A) = |⟨x,Ay⟩| where x, y ∈ H.

The obvious first example of a von Neumann algebra is B(H) itself.

Proposition 3.1. 1. The weak topology is weaker than the strong topology
which is itself weaker than the uniform topology. Once H is infinite di-
mensional then these comparisons are strict.

2. A linear form φ ∈ B∗(H) is strongly continuous ⇔ it is weakly continuous.

3. The strong and the weak closure of any convex subset of B(H) coincide.

Proof. This is just a sketch of the proof.

1. Let H be an infinite dimensional, separable Hilbert space with an ONB
(en)n.
Consider the orthogonal projection Pn : H → span(e1, . . . en). Then we
have that ∀x ∈ H

lim
n→∞

∥P(x)− x∥ = 0
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Therefore we have strong but not uniform convergence to the identity
operator.
Consider the unilateral shift S : H → H, ei 7→ ei+1 and x = (1, 1, . . . ) ∈ H.
Then we have ∀y ∈ H

lim
k→∞

⟨y,Sk(x)⟩ = 0

where one can define Sk inductively. On the other hand we have that
∥Sx∥ = ∥x∥ therefore

lim
k→∞

∥Sk(X)∥ = ∞.

We just found an example that converges w.r.t. the weak topology but
not the strong.

2. See Stéphane Attal’s notes.

3. Assuming 2 and with the geometric form of Hahn-Banach we get the
desired result.

Note that this proposition allows us to define a von Neumann algebra as a
strongly closed C*-algebra instead of weakly closed.

Definition. The σ-weak topology on B(H) is the locally convex topology
defined by the family of semi norms P(xn)n,(yn)n(A) =

∑
n
|⟨xn, Ayn⟩| where

(xn)n, (yn)n ⊂ H and
∑
n
|xn|2 < ∞,

∑
n
|yn|2 < ∞.

To understand the following theorem better, we introduce an alternative
definition of the mathematician Shoichiro Sakai for a von Neumann algebra.
Note that this definition doesn’t rely on an underlying space.

Definition. A von Neumann algebra is a C*-algebra A if it is a dual space
as a Banach space. (∃ a Banach space M s.t. M∗ = A)

Definition. T (H):= The Banach space of the trace class operators of H equipped
with the norm ∥H∥1 = tr(|H|) where |H| =

√
H ∗H.

Theorem 3.2. B(H) is the topological dual of T (H) thanks to the duality
(A, T ) 7→ tr(AT ) A ∈ B(H), T ∈ T (H). Moreover, the ∗-weak topology on
B(H) associated to this duality is the σ-weak topology.

Proof. I’m giving just the idea here, for further details see the references.
For the first part we need to show both inclusions, the more challenging part
hereby is to show that any element ω ∈ T (H) coincides with the linear form
tr(A·). For this we first check the restriction of ω to rank one operators and
find with Riesz theorem that they coincide, we conclude by the density of rank
one operators in T (H).
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For the second part one notices that every trace class operator T can be written
as

T =
∑
n

λn |ξn⟩⟨νn|

where (ξn)n and (µn)n are orthonormal systems and the sequence of complex
numbers (λn)n is absolutely summable. Therefore

tr(AT ) =
∑
n

λn⟨νn, Aξn

and thus the semi norms PT = | tr(AT )| are as in the definition of the σ-weak
topology.

Corollary 3.3. Every σ-weakly continuous linear form on B(H) is of the form
A 7→ tr(AT ).

3.2 Commutant

We start this section with another example of a von Neumann algebra. Let
(X,µ) be a locally compact measure space with σ-finite measure µ. Let H =
L2(X,µ), and consider L∞(X,µ) acting onH by multiplication, i.e. we associate
f ∈ L∞(X,µ) with mf : u ∈ H 7→ f ·u ∈ H. Then, L∞(X,µ) is a von Neumann
algebra. This can be shown with the help of the Bicommutant Theorem, which
we are going to prove in the following section.

Definition. Let M ⊆ B(H) be a subset. We define the commutant of M by

M′ = {B ∈ B(H) | BM = MB, ∀M ∈ M}.

Inductively we also define M(n) = (M(n−1))′ for n ≥ 1, where M(0) = M.

Proposition 3.4. Let M ⊆ B(H) be a subset. Then,

1. M′ is weakly closed, and

2. M′ = M(2k+1) and M ⊆ M′′ = M(2+2k) for all k ≥ 1.

Proof. 1. Let (Ai)n∈I ⊆ M′ be a net with Ai → A ∈ B(H) with respect to
the weak operator topology. Let B ∈ M and x, y ∈ H. Then,

⟨(AB −BA)x, y⟩ = ⟨ABx, y⟩ − ⟨BAx, y⟩
= lim

i∈I
(⟨AiBx, y⟩ − ⟨Aix,B

∗y⟩)

= lim
i∈I

(⟨BAix, y⟩ − ⟨BAix, y⟩) = 0.

Since x, y were arbitrary, AB = BA, and the first statement follows.
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2. Let A ∈ M. Then, for all B ∈ M′, we have AB = BA. Thus, A ∈ M′′,
and M ⊆ M′′. The same argument for M′ gives M′ ⊆ M′′′. Note that
M1 ⊆ M2 implies that M′

2 ⊆ M′
1. So M′′′ ⊆ M′ again by the first

argument. Now the statement follows by induction.

Proposition 3.5. Let M be a self-adjoint subset of B(H), i.e. M∗ ∈ M, ∀M ∈
M. Let E ⊆ H be a closed subspace and P be the orthogonal projection onto E.
Then,

M(E) ⊆ E , ∀M ∈ M ⇐⇒ P ∈ M′.

Proof. First, assume that P ∈ M′. Then,

PM(E) = MP (E) = M(E), ∀M ∈ M,

which implies that M(E) ⊆ E for all M ∈ M.
Conversely, assume that E is invariant under M. This is equivalent to MP =
PMP for all M ∈ M. Taking the adjoint gives

PM∗ = PM∗P, ∀M ∈ M,

where we used that P is self-adjoint. Since M is self-adjoint, we get that
MP = PM for all M ∈ M, and P ∈ M′.

Theorem 3.6 (Von Neumann Density Theorem). Let M ⊆ B(H) be a sub-*-
algebra which contains the identity I. Then M is dense in M′′ with respect to
the weak (strong) topology.

Proof. By proposition 3.1, the weak and strong closures of M agree. We show
density with respect to the weak operator topology. Let B ∈ M′′. Let ε >
0, x1, . . . , xn ∈ H, and

V = V (B;x1, . . . , xn; ε) = {A ∈ B(H) | ∥(B −A)xj∥ < ε, 1 ≤ j ≤ n}

a neighborhood around B.
Define the Hilbert space H̃ =

⊕n
j=1 H, and π : B(H) → B(H̃) by π(A) =

⊕n
j=1A. Set x = (x1, . . . , xn) ∈ H̃ and E = π(M)x ⊆ H̃, where π(M)x =

{π(A)x | A ∈ M}. Let P be the orthogonal projection onto E . Let z ∈ E , i.e.
z = limk→∞ π(Ck)x, Ck ∈ M. Then,

π(A)z = π(A)

(
lim
k→∞

π(Ck)x

)
= lim

k→∞
π(ACk)x ∈ E

for all A ∈ M. Hence, P ∈ π(M)′ by proposition 3.5.

Identify B(H̃) with Mn(B(H)), the set of operator valued (n×n)-matrices. We
want to show that π(M)′ = Mn(M′). So, let A ∈ π(M)′ and identify it with
A = (Aij)i,j=1,...,n ∈ Mn(B(H)). Then, for C ∈ M, Aπ(C) = π(C)A, i.e.

n∑
j=1

AijC(zj) = C

 n∑
j=1

Aij(zj)

 ,∀1 ≤ i ≤ n, ∀z = (z1, . . . , zn) ∈ H̃.
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Thus, AijC = CAij , ∀1 ≤ i, j ≤ n, and since C was arbitrary, A ∈ Mn(M′).
For A ∈ Mn(M′), we have Aπ(C) = π(C)A for all C ∈ M such that A ∈ π(M)′.
A similar argument shows that π(M′′) ⊆ Mn(M′)′.
It follows that π(B) ∈ π(M)′′, and in particular, Pπ(B) = π(B)P such that E
is invariant under π(B). Since I ∈ M, we have π(I)x ∈ E , and

π(B)(π(I)x) =

Bx1

...
Bxn

 ∈ E .

Remember that E = Mx. Hence, there exists A ∈ M such that ∥Bxj−Axj∥ < ε
for 1 ≤ j ≤ n, and A ∈ V .

Corollary 3.7 (Bicommutant Theorem). Let M ⊆ B(H) be a sub-*-algebra
with I ∈ M. Then,

M is weakly (strongly) closed ⇐⇒ M = M′′.

Note that the identity I is always an element of M′′ such that we have the
following characterisation for von Neumann algebras: A C*-algebra M ⊆ B(H)
is a von Neumann algebra if and only if M = M′′.
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