Operator Algebras and Quantum Information
 Theory, Sec. 3.3 and 4.1

Wettstein Yanik, Therezien Romain

October 2023

1 3.3 Preduals, normal states

Definition 1. Let \mathcal{M} be a von Neumann algebra. Define $\mathcal{M}_{1}=\{M \in \mathcal{M}$: $\|M\| \leq 1\}$
\mathcal{M}_{1} is a weakly compact subset of $\mathcal{B}(\mathcal{H})$ which is weakly compact by BanachAlaoglu. Hence on \mathcal{M}_{1} the weak and σ-weak topology coincide. A proof can be found herehttps://almostsuremath.com/2020/01/04/operator-topologies/

Definition 2. Define M_{*} as the space of all weakly continuous linear forms on \mathcal{M} which are continuous on \mathcal{M}_{1}.

One can show that for all elements $\Psi \in \mathcal{M}_{*}$, the image of \mathcal{M}_{1} is a compact subset in \mathbb{C} which implies the norm continuity of Ψ. Thus $\mathcal{M}_{*} \subset \mathcal{M}^{*}$, the topological dual of \mathcal{M}.

Proposition 1.

1. \mathcal{M}_{*} is a closed subset of \mathcal{M}^{*}
2. \mathcal{M} is the dual of \mathcal{M}_{*}

Proof. Idea: For the first part we show that for any converging sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset$ \mathcal{M}_{*}, for which a limit $f \in \mathcal{M}^{*}$ exists, $f \in \mathcal{M}_{*}$. To show $f \in \mathcal{M}_{*}$ it is sufficient to prove, that f is weakly continuous on \mathcal{M}_{1}. Choose a weakly convergent sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ and show by using the triangle inequality that $\left|f\left(A_{n}\right)-f(A)\right|=0 \quad(n \rightarrow \infty)$
For the second statement remember that any surjective linear isometry on a linear Banach space is an isomorphism.
First we show that the inclusion map

$$
\iota: \mathcal{M} \rightarrow\left(\mathcal{M}_{*}\right)^{*} \quad A \mapsto A=(\omega \mapsto \omega(A))
$$

is a linear isometry. Define the norm of A in the dual space as

$$
\|A\|_{d u}=\sup _{\substack{\|w\|=1 \\ \omega \in \mathcal{M}_{*}}}|\omega(A)|
$$

Note: This is just the natural operator norm.
One shows now that those norms are equal. Hence ι is a linear isometry.
For the surjectivity one choose $\phi \in\left(M_{*}\right)^{*}$ and $\phi^{\prime}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C},(x, y) \mapsto$ $\phi\left(\left.\omega_{x, y}\right|_{\mathcal{M}}\right)$. Where $\omega_{x, y}: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}, A \mapsto\langle y, A x$,$\rangle By the Riesz representation$ theorem $\exists A \in \mathcal{B}(\mathcal{H})$ s.t. $\phi^{\prime}(x, y)=\langle y, A x\rangle \forall x, y \in \mathcal{H}$
Next one shows that $A \in \mathcal{M}^{\prime \prime}=\mathcal{M}$, which implies that $\iota(A)=\phi^{\prime}$ for the A given by Riesz, and that $\iota(A)$ coincides with ϕ on all $\omega \in \mathcal{M}_{*}$ in of the form $\omega=\omega_{x, y}$ for some $x, y \in \mathcal{H}$.
$\forall \omega \in \mathcal{M}_{*}$ we can write $\omega=\operatorname{tr}(\rho \cdot)$. Using this we show

$$
\omega=\sum_{n \in \mathbb{N}} \lambda_{n} \omega_{x_{n}, y_{n}}
$$

Since $\iota(A)$ coincides with ϕ on all $\omega_{x_{n}, y_{n}}$ they are the same.
Two examples where given :

1. $\mathcal{M}=\mathcal{B H} \Rightarrow \mathcal{M}_{*}=\mathcal{T}(\mathcal{H})$
2. $\mathcal{M}=L^{\infty}(X, \mu) \Rightarrow \mathcal{M}_{*}=L^{1}(X, \mu)$

Theorem 1. Sakai Theorem: A C^{*} - Algebra is a von Neumann algebra if and only if it is the dual of some Banach space.

Definition 3. A state on a von Neumann algebra is called normal if it is σ weakly continuous.

Theorem 2. On a von Neumann algebra \mathcal{M} and a state ω the following are equivalent:

1. ω is normal
2. $\exists \rho>0, \rho \in \mathcal{T}(\mathcal{H})$ s.t. $\operatorname{tr}(\rho)=1$ and $\omega(A)=\operatorname{tr}(\rho A) \forall A \in \mathcal{M}$

2 4.1 The modular operators

We have a pair (\mathcal{H}, ω), where M is a von Neumann algebra acting on some Hilbert space and ω a normal faithful state on \mathcal{H}.

Definition 4. ω is faithful on \mathcal{H} if $\forall x \in M, \omega\left(x^{*} x\right)=0 \Longrightarrow x=0$.
We know consider the GNS (Gelfand-Naimard-Segal) representation of (\mathcal{H}, ω).
Definition 5. The GNS (Gelfand-Naimard-Segal) representation of (\mathcal{M}, ω) is the triple $(\mathcal{H}, \Pi, \Omega)$ with:

1. Π is a morphism from \mathcal{H} to $\mathcal{B}(\mathcal{H})$
2. $\omega(A)=<\Omega, \Pi(A) \Omega>$
3. $\Pi(\mathcal{M}) \Omega$ is dense in \mathcal{H}.

Notation: We identify \mathcal{M} and \mathcal{M}^{\prime} with $\Pi(\mathcal{M})$ and $\Pi\left(\mathcal{M}^{\prime}\right)$. This implies that $\omega(A)=<\Omega, A \Omega>$.
Proposition 2. The vector Ω is cyclic and separating for \mathcal{M} and \mathcal{M}^{\prime}
A quick reminder,

- Ω is cyclic for \mathcal{M} if $\Omega, \mathcal{M} \Omega, \mathcal{M}^{2} \Omega, \ldots$ span \mathcal{H}. Or equivalently, that

$$
\mathcal{M} \Omega=\{A \mathcal{M}: A \in \mathcal{M}\} \text { is norm dense in } \mathcal{H}
$$

- Ω is separating for \mathcal{M} if $\forall A \in \mathcal{M}$ such that $A \Omega=0$ then $A=0$

Proof. Let us first prove it for \mathcal{M} :

- Cyclic: As by definition, we have $\mathcal{M} \Omega$ is dense in \mathcal{H} so Ω is cyclic for \mathcal{M}.
- Separating: If $A \in \mathcal{M}$ is such that $A \Omega=0$ then $\omega\left(A^{*} A\right)=<\Omega, A^{*} A \Omega>=$ 0 but as ω is faithful, this implies that $A=0$.

Now we prove that it also holds on \mathcal{M}^{\prime} :

- Separating: If $A^{\prime} \in \mathcal{M}^{\prime}$ and $A^{\prime} \Omega=0$ then, using that A^{\prime} is in the commutant:

$$
A^{\prime} B \Omega=B A^{\prime} \Omega=0 \forall B \in \mathcal{M}
$$

Thus A^{\prime} vanishes on a dense subspace of \mathcal{H} which implies that $A^{\prime}=0$. Thu Ω is separating for \mathcal{M}^{\prime}.

- Cyclic: Let P be the projection on $\mathcal{M} \Omega$. Then $P \in \mathcal{M}^{\prime}$ and $(I-P) \Omega=0$ as $P I \Omega=I \Omega=\Omega$ with $I \in \mathcal{M}$ the identity. Hence $I-P$ as Ω is separating in \mathcal{M} and thus Ω is cyclic for \mathcal{M}^{\prime} because $P=I$ implies that $\mathcal{M}^{\prime} \Omega$ is dense.

Definition 6. We define the operators (which are anti-linear):

$$
\begin{aligned}
S_{0}: \mathcal{M} \Omega & \rightarrow \mathcal{M} \Omega \\
A \Omega & \rightarrow A^{*} \Omega \\
F_{0}: \mathcal{M}^{\prime} \Omega & \rightarrow \mathcal{M}^{\prime} \Omega \\
B \Omega & \rightarrow B^{*} \Omega
\end{aligned}
$$

Proposition 3. The operator S_{0} and F_{0} are closable and $\overline{S_{0}}=F_{0}^{*}, \overline{F_{0}}=S_{0}^{*}$.
We know put $S=\overline{S_{0}}=F_{0}^{*}$ and $F=\overline{F_{0}}=S_{0}^{*}$.
Theorem 3. We have $S=S^{-1}$.

Proof. Let $z \in D o m S *$. We have:

$$
\begin{aligned}
<S_{0} A \Omega, S^{*} z> & =<A^{*} z, S_{0}^{*} z>\text { because } S^{*}=\left(F_{0}^{*}\right)^{*}=F_{0} \text { and } \overline{F_{0}}=S_{0}^{*} \\
& =<z, S_{0} A^{*} \Omega>\text { as } S_{0} \text { anti-linear, } \\
& =<z, A \Omega>\text { by definition of } S_{0}
\end{aligned}
$$

This means that $S^{*} z$ belongs to $\operatorname{Dom} S_{0}^{*} \in \operatorname{Dom} S^{*}$ because as we have

$$
<S_{0} A \Omega, S^{*} z>=<z, A \Omega>
$$

so we can do $\left.<S_{0}^{*} S^{*} z, A \Omega>\right)$ and $\left(S^{*}\right)^{2} z=z$.
Let $y \in D o m S$ and $z \in D o m S *$, we have $S * z \in D o m S *$ and

$$
\begin{aligned}
<S^{*} z, S y> & =<y,\left(S^{*}\right)^{2} z>\text { by anti-linearity } \\
& =<y, z>\text { as }\left(S^{*}\right)^{2} z=z
\end{aligned}
$$

Thus $S y \in D o m S^{* *}=D o m S$ and

$$
S^{2} y=S * * S y=y \text { as }<y,\left(S^{*}\right)^{2} z>=<y, z>
$$

Thus we have that $S^{2}=I$ on $D o m S$ which implies that $S=S^{-1}$.
Let us define Δ as $\Delta=F S=S^{*} S$.
Theorem 4. There exists an anti-unitary operator J from \mathcal{H} to \mathcal{H} and an (unbouded) invertible, positive operator Δ such that:

$$
\begin{aligned}
& \Delta=F S, \Delta^{-1}=S F, J^{2}=I \\
& S=J \Delta^{1 / 2}=\Delta^{-1 / 2} J \\
& F=J \Delta^{-1 / 2}=\Delta^{1 / 2} J \\
& J \Delta^{i t}=\Delta^{i t} J \\
& J \Omega=\Delta \Omega=\Omega
\end{aligned}
$$

J is actually the polar decomposition of S :

$$
S=J\left(S^{*} S\right)^{1 / 2}
$$

Proof. We will prove only some of the equalities.

$$
\begin{array}{r}
\Delta^{-1}=(F S)^{-1}=S^{-1} F^{-1}=S F \\
S=J \Delta^{1 / 2}=\left(S S^{*}\right)^{1 / 2} J=\Delta^{-1 / 2} J
\end{array}
$$

Let $x \in \operatorname{DomS}$. Then

$$
x=S^{2} x=J \Delta^{1 / 2} \Delta^{-1 / 2} J=J^{2} x
$$

and thus $J^{2}=I$.
Finally, note that $S \Omega=F \Omega=\Omega$ by taking $A=I \in \mathcal{M}$ and thus $\Delta \Omega=F S \Omega=$ Ω and similarly for $J, J \Omega=\Omega$.

Example:
If the state ω was tracial, that is $\omega(A B)=\omega(B A), \forall A, B$, we would have

$$
\begin{aligned}
\left\|S_{0} A \Omega\right\|^{2}=\|A * \Omega\|^{2} & =<A^{*} \Omega, A^{*} \Omega> \\
& =\omega\left(A A^{*}\right) \\
& =\omega(A * A) \\
& =\|A \Omega\|^{2}
\end{aligned}
$$

Thus S_{0} would be an isometry and

$$
\begin{aligned}
S=J & =F \\
\Delta & =I .
\end{aligned}
$$

