Operator Algebras and Quantum Information Theory, Sec. 3.3 and 4.1

Wettstein Yanik, Therezien Romain

October 2023

1 3.3 Preduals, normal states

Definition 1. Let \mathcal{M} be a von Neumann algebra. Define $\mathcal{M}_1 = \{M \in \mathcal{M} : ||\mathcal{M}|| \leq 1\}$

 \mathcal{M}_1 is a weakly compact subset of $\mathcal{B}(\mathcal{H})$ which is weakly compact by Banach-Alaoglu. Hence on \mathcal{M}_1 the weak and σ -weak topology coincide. A proof can be found here https://almostsuremath.com/2020/01/04/operator-topologies/.

Definition 2. Define M_* as the space of all weakly continuous linear forms on \mathcal{M} which are continuous on \mathcal{M}_1 .

One can show that for all elements $\Psi \in \mathcal{M}_*$, the image of \mathcal{M}_1 is a compact subset in \mathbb{C} which implies the norm continuity of Ψ . Thus $\mathcal{M}_* \subset \mathcal{M}^*$, the topological dual of \mathcal{M} .

Proposition 1.

- 1. \mathcal{M}_* is a closed subset of \mathcal{M}^*
- 2. \mathcal{M} is the dual of \mathcal{M}_*

Proof. Idea: For the first part we show that for any converging sequence $(f_n)_{n\in\mathbb{N}}\subset \mathcal{M}_*$, for which a limit $f\in\mathcal{M}^*$ exists, $f\in\mathcal{M}_*$. To show $f\in\mathcal{M}_*$ it is sufficient to prove, that f is weakly continuous on \mathcal{M}_1 . Choose a weakly convergent sequence $(A_n)_{n\in\mathbb{N}}$ and show by using the triangle inequality that $|f(A_n) - f(A)| = 0$ $(n \to \infty)$

For the second statement remember that any surjective linear isometry on a linear Banach space is an isomorphism.

First we show that the inclusion map

 $\iota: \mathcal{M} \to (\mathcal{M}_*)^* \quad A \mapsto A = (\omega \mapsto \omega(A))$

is a linear isometry. Define the norm of A in the dual space as

$$||A||_{du} = \sup_{\substack{||w||=1\\\omega \in \mathcal{M}_{*}}} |\omega(A)|$$

Note: This is just the natural operator norm.

One shows now that those norms are equal. Hence ι is a linear isometry.

For the surjectivity one choose $\phi \in (M_*)^*$ and $\phi' : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$, $(x, y) \mapsto \phi(\omega_{x,y}|_{\mathcal{M}})$. Where $\omega_{x,y} : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$, $A \mapsto \langle y, Ax, \rangle$ By the Riesz representation theorem $\exists A \in \mathcal{B}(\mathcal{H})$ s.t. $\phi'(x, y) = \langle y, Ax \rangle \ \forall x, y \in \mathcal{H}$

Next one shows that $A \in \mathcal{M}'' = \mathcal{M}$, which implies that $\iota(A) = \phi'$ for the A given by Riesz, and that $\iota(A)$ coincides with ϕ on all $\omega \in \mathcal{M}_*$ in of the form $\omega = \omega_{x,y}$ for some $x, y \in \mathcal{H}$.

 $\forall \omega \in \mathcal{M}_*$ we can write $\omega = tr(\rho \cdot)$. Using this we show

$$\omega = \sum_{n \in \mathbb{N}} \lambda_n \omega_{x_n, y_n}$$

Since $\iota(A)$ coincides with ϕ on all ω_{x_n,y_n} they are the same.

Two examples where given :

- 1. $\mathcal{M} = \mathcal{BH} \Rightarrow \mathcal{M}_* = \mathcal{T}(\mathcal{H})$
- 2. $\mathcal{M} = L^{\infty}(X,\mu) \Rightarrow \mathcal{M}_* = L^1(X,\mu)$

Theorem 1. Sakai Theorem: A C^* - Algebra is a von Neumann algebra if and only if it is the dual of some Banach space.

Definition 3. A state on a von Neumann algebra is called normal if it is σ -weakly continuous.

Theorem 2. On a von Neumann algebra \mathcal{M} and a state ω the following are equivalent:

1. ω is normal

2.
$$\exists \rho > 0, \ \rho \in \mathcal{T}(\mathcal{H}) \ s.t. \ tr(\rho) = 1 \ and \ \omega(A) = tr(\rho A) \ \forall A \in \mathcal{M}$$

2 4.1 The modular operators

We have a pair (\mathcal{H}, ω) , where M is a von Neumann algebra acting on some Hilbert space and ω a normal faithful state on \mathcal{H} .

Definition 4. ω is faithful on \mathcal{H} if $\forall x \in M$, $\omega(x^*x) = 0 \implies x = 0$.

We know consider the GNS (Gelfand-Naimard-Segal) representation of (\mathcal{H}, ω) .

Definition 5. The GNS (Gelfand-Naimard-Segal) representation of (\mathcal{M}, ω) is the triple $(\mathcal{H}, \Pi, \Omega)$ with:

- 1. Π is a morphism from \mathcal{H} to $\mathcal{B}(\mathcal{H})$
- 2. $\omega(A) = <\Omega, \Pi(A)\Omega >$
- 3. $\Pi(\mathcal{M})\Omega$ is dense in \mathcal{H} .

Notation: We identify \mathcal{M} and \mathcal{M}' with $\Pi(\mathcal{M})$ and $\Pi(\mathcal{M}')$. This implies that $\omega(A) = <\Omega, A\Omega >.$

Proposition 2. The vector Ω is cyclic and separating for \mathcal{M} and \mathcal{M}'

A quick reminder,

• Ω is cyclic for \mathcal{M} if Ω , $\mathcal{M}\Omega$, $\mathcal{M}^2\Omega$, ... span \mathcal{H} . Or equivalently, that

 $\mathcal{M}\Omega = \{A\mathcal{M} : A \in \mathcal{M}\}$ is norm dense in \mathcal{H}

• Ω is separating for \mathcal{M} if $\forall A \in \mathcal{M}$ such that $A\Omega = 0$ then A = 0

Proof. Let us first prove it for \mathcal{M} :

- Cyclic: As by definition, we have $\mathcal{M}\Omega$ is dense in \mathcal{H} so Ω is cyclic for \mathcal{M} .
- Separating: If $A \in \mathcal{M}$ is such that $A\Omega = 0$ then $\omega(A^*A) = \langle \Omega, A^*A\Omega \rangle = 0$ but as ω is faithful, this implies that A = 0.

Now we prove that it also holds on \mathcal{M}' :

• Separating: If $A' \in \mathcal{M}'$ and $A'\Omega = 0$ then, using that A' is in the commutant:

$$A'B\Omega = BA'\Omega = 0 \forall B \in \mathcal{M}$$

Thus A' vanishes on a dense subspace of \mathcal{H} which implies that A' = 0. Thu Ω is separating for \mathcal{M}' .

• Cyclic: Let P be the projection on $\mathcal{M}\Omega$. Then $P \in \mathcal{M}'$ and $(I - P)\Omega = 0$ as $PI\Omega = I\Omega = \Omega$ with $I \in \mathcal{M}$ the identity. Hence I - P as Ω is separating in \mathcal{M} and thus Ω is cyclic for \mathcal{M}' because P = I implies that $\mathcal{M}'\Omega$ is dense.

Definition 6. We define the operators (which are anti-linear):

$$S_0 : \mathcal{M}\Omega \to \mathcal{M}\Omega$$

 $A\Omega \to A^*\Omega$
 $F_0 : \mathcal{M}'\Omega \to \mathcal{M}'\Omega$
 $B\Omega \to B^*\Omega$

Proposition 3. The operator S_0 and F_0 are closable and $\overline{S_0} = F_0^*$, $\overline{F_0} = S_0^*$. We know put $S = \overline{S_0} = F_0^*$ and $F = \overline{F_0} = S_0^*$. **Theorem 3.** We have $S = S^{-1}$.

Proof. Let $z \in DomS^*$. We have:

$$\langle S_0 A\Omega, S^* z \rangle = \langle A^* z, S_0^* z \rangle$$
 because $S^* = (F_0^*)^* = F_0$ and $F_0 = S_0^*$,
 $= \langle z, S_0 A^* \Omega \rangle$ as S_0 anti-linear,
 $= \langle z, A\Omega \rangle$ by definition of S_0 .

This means that S^*z belongs to $DomS_0^* \in DomS^*$ because as we have

$$\langle S_0 A\Omega, S^* z \rangle = \langle z, A\Omega \rangle$$

so we can do $\langle S_0^*S^*z, A\Omega \rangle$ and $(S^*)^2z = z$. Let $y \in DomS$ and $z \in DomS^*$, we have $S * z \in DomS^*$ and

$$\langle S^*z, Sy \rangle = \langle y, (S^*)^2 z \rangle$$
 by anti-linearity
= $\langle y, z \rangle$ as $(S^*)^2 z = z$.

Thus $Sy \in DomS^{**} = DomS$ and

$$S^2y = S * *Sy = yas < y, (S^*)^2z > = < y, z >$$

Thus we have that $S^2 = I$ on DomS which implies that $S = S^{-1}$.

Let us define Δ as $\Delta = FS = S^*S$.

Theorem 4. There exists an anti-unitary operator J from \mathcal{H} to \mathcal{H} and an (unbounded) invertible, positive operator Δ such that:

$$\Delta = FS, \Delta^{-1} = SF, J^2 = I$$
$$S = J\Delta^{1/2} = \Delta^{-1/2}J$$
$$F = J\Delta^{-1/2} = \Delta^{1/2}J$$
$$J\Delta^{it} = \Delta^{it}J$$
$$J\Omega = \Delta\Omega = \Omega$$

J is actually the polar decomposition of S:

$$S = J(S^*S)^{1/2}$$

Proof. We will prove only some of the equalities.

$$\Delta^{-1} = (FS)^{-1} = S^{-1}F^{-1} = SF.$$

$$S = J\Delta^{1/2} = (SS^*)^{1/2}J = \Delta^{-1/2}J.$$

Let $x \in DomS$. Then

$$x = S^2 x = J \Delta^{1/2} \Delta^{-1/2} J = J^2 x.$$

and thus $J^2 = I$.

Finally, note that $S\Omega = F\Omega = \Omega$ by taking $A = I \in \mathcal{M}$ and thus $\Delta\Omega = FS\Omega = \Omega$ and similarly for $J, J\Omega = \Omega$.

Example:

If the state ω was tracial, that is $\omega(AB) = \omega(BA), \forall A, B$, we would have

$$\begin{split} ||S_0 A \Omega||^2 &= ||A * \Omega||^2 = \langle A^* \Omega, A^* \Omega \rangle \\ &= \omega (A A^*) \\ &= \omega (A * A) \\ &= ||A \Omega||^2 \end{split}$$

Thus S_0 would be an isometry and

$$S = J = F$$
$$\Delta = I.$$