
Seminar Introduction to Nonlinear Analysis

THE SCHRÖDINGER SEMIGROUP

March 9, 2024

Francesco Mussin, David Ziener
ETH Zürich



1 Preliminaries

1.1 Distributions

The notion of distribution first came about in physics, where, for example, it was needed to compute
the derivative on R of the Heaviside function H : R −→ R (defined by H(x) = 1 for x ≥ 0 and 0
otherwise): Clearly such a derivative, which takes the name δ (Dirac delta), should be 0 everywhere,
and for any ε > 0, it should be the case that:

ˆ
[−ε,ε]

δ(x)dx = H(ε) −H(−ε) = 1.

Obviously such a measurable function does not exist, nonetheless this precise property was crucial to
physicists.
So, there was the necessity to have a more reliable notion of function, one that could allow for the
behaviour of the Dirac delta, and that could allow for discussing about derivatives without any worries
regarding regularity (the “derivatives” of the Dirac delta were also needed in physics).
The idea for such a generalization comes from the observation that in functional analysis, functions
and function classes of any kind are often described by how they behave when one integrates them
against smooth and compactly supported functions, so it was somehow natural to think of this new
kind of function (which takes the name of distribution) as a linear functional on the space of smooth
and compactly supported functions (often called test functions for short), with the hope in mind to
generalize the assignment:

φ 7−→
ˆ
f(x)φ(x)dx.

Evidently, hoping to generalize integration against test functions only through linear functionals on
the space of test functions is not enough, so one needs some continuity properties. But what topology
should we put on the space of test functions? Here come the difficulties regarding distributions: the
topology that mathematicians ended up choosing is called the canonical LF topology, and although
it makes the space of test functions a locally convex topological vector space, it’s easier to describe
it through the local base at 0 of open, balanced, and convex sets, instead of describing it through
seminorms.
For our purposes, it will be enough to state what the continuity of linear functionals means and what
the convergence of test functions means. Before moving on, it is common in distribution theory to use
the symbol D(Ω) to denote the vector space of test functions over an open set Ω ⊆ Rd.
Regarding the continuity of the linear functional, we can have a rough idea of what the definition
should be by taking a look at the map

Tf : D(Ω) ∋ φ 7−→
ˆ

Ω
f(x)φ(x)dx ∈ C,

for a given f ∈ L1
loc(Ω). Then, for any compact set K ⊆ Ω we have that, given φ ∈ D(Ω) supported

on K:
|Tφ| ≤

ˆ
Ω

|f(x)||φ(x)|dx ≤ ∥φ∥∞

ˆ
K

|f(x)|dx,

In short, for each compact subset K ⊆ Ω, we have a linear bound on the image of φ through T
provided that supp(φ) ⊆ K. The space of test functions on Ω that is supported on the compact set
K is often denoted with DK(Ω).

Proposition 1. Let Ω ⊆ Rd be open, and let {φn}n ⊆ D(Ω) be a sequence. Then φn converges to
φ ∈ D(Ω) if and only if there is a compact set K ⊆ Ω such that:

• supp(φn) ⊆ K for n large enough.

• For all α ∈ Nd, limn→∞ supx∈K |∂αφn(x) − ∂αφ(x)| = 0.
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Proposition 2. Let Ω ⊆ Rd be open. Then the linear functional T : D(Ω) −→ C is continuous (i.e.
a distribution) if and only if for any compact set K ⊆ Ω, there is CK > 0 and pK ∈ N such that given
φ ∈ D(Ω) with supp(φ) ⊆ K, it holds that:

|Tφ| ≤ CK max
|α|≤pK

∥∂αφ∥∞.

If the integer pK can be taken independently of K, then that integer is called the order of T . We
denote with D′(Ω) the space of distributions on Ω.
As an example, consider Ω ⊆ Rd open and f ∈ L1

loc(Ω). We defined the linear functional:

Tf : D(Ω) ∋ φ 7−→
ˆ

Ω
f(x)φ(x)dx ∈ C,

and we have seen how it is a distribution of order 0. Important to note is the property that for any
two f, g ∈ L1

loc(Ω), Tf = Tg if and only if f = g (almost everywhere).
Let us now delve into the topic of how we generalize derivatives to distributions. We start by observing
that, for f ∈ Ck(Ω), and any multiindex α ∈ Nd with |α| ≤ k, it holds for any φ ∈ D(Ω) that:

ˆ
Ω
f(x)∂αφ(x)dx = (−1)|α|

ˆ
Ω
∂αf(x)φ(x)dx,

(the above is just an application of integration by parts, helped by the fact that φ is compactly
supported, making the boundary terms disappear). As distributions generalize integration against test
functions, it is natural to come up with the following definition of partial derivative of a distribution.

Definition 1. Given Ω ⊆ Rd open, T ∈ D′(Ω), and a multiindex α ∈ Nd, we define the α-th partial
derivative of T as the (linear) map:

∂αT : D(Ω) ∋ φ 7−→ (−1)|α|T∂αφ ∈ C.

Derivatives of distributions are indeed distributions: This property is immediate once one takes a
look at our definition of distributions. A natural question that one might ask is whether or not for
f ∈ Ck(Ω), and α ∈ Nd with |α| ≤ k it holds that ∂αTf = T∂αf . That indeed is the case, as integration
by parts dictates.
Another construction that distributions allow is multiplication against smooth functions. Indeed,
thinking again at what distribution generalize, if we take f ∈ L1

loc(Ω) and a ∈ C∞(Ω), then given
φ ∈ D(Ω) it holds that:

Tafφ =
ˆ

Ω
a(x)f(x)φ(x)dx =

ˆ
Ω
f(x)a(x)φ(x)dx = Tf (aφ),

so we write down the following definition.

Definition 2. Given Ω ⊆ Rd open, T ∈ D′(Ω), and a ∈ C∞(Ω), we define aT : D(Ω) −→ C as follows:

aT : D(Ω) ∋ φ 7−→ T (aφ) ∈ C

Surely enough, the above defines a distribution on Ω, as the Leibniz product rule shows.
Before moving on, it is important that we set some notation, namely: Duality brackets. From now
on, when dealing with distributions or tempered distributions, we’ll use the notation ⟨T, φ⟩ to mean
Tφ.

1.2 The Schwartz space and the Fourier transform

The Schwartz function space can be defined as the following subset of C∞(Rd):

S(Rd) =
{
f ∈ C∞(Rn) : ∀α, β ∈ Nd, sup

x∈Rd

|xα∂βf(x)| < +∞
}
.
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In other words, S(Rd) is the set of all smooth functions whose derivatives fall to zero at ∞ faster than
any polynomial, indeed it can be easily showed that f ∈ S(Rd) means:

∀α, β ∈ Nd, lim
|x|→+∞

|xα∂βf(x)| = 0.

S(Rd) is clearly a subspace of C∞(Rd), however topologically speaking, it is far more interesting to
consider it with its own family of seminorms. There are many candidates, and they’re all related
to the quantity supx∈Rd |xα∂βf(x)| as α and β range in Nd, for example, one such family could be
{Np : p ∈ N}, where for each p ∈ N Np is defined in the following fashion:

Np : S(Rd) ∋ f 7−→
∑

|α|,|β|≤p

sup
x∈Rd

|xα∂βf(x)| ∈ [0,+∞)

this is easily checked to be a seminorm on S(Rd). Thus, we have a locally convex linear topology on
S(Rd). This gets us a couple of things for free:

Proposition 3. Any sequence {φn}n ⊆ S(Rd) converges to φ ∈ S(Rd) if and only if for every p ∈ N,
Np(φn − φ) → 0 as n → ∞.

Due to the nature of the family of seminorms {Np : p ∈ N}, we have the following characterization of
a continuous linear functional:

Proposition 4. Let T : S(Rd) −→ C be a linear functional, then T is continuous if and only if there
is a p ∈ N and a constant C > 0 such that for all φ ∈ S(Rd), |Tφ| ≤ CNp(φ).

To better explore some of the most basic properties of S(Rd), we set the following definition.

Definition 3. A function f : Rd −→ C is said to have polynomial growth if there is a positive integer
n such that:

sup
x∈Rd

∣∣∣∣f(x)
⟨x⟩n

∣∣∣∣ < +∞,

where we use the shorthand notation ⟨x⟩ =
√

1 + |x|2 .

With this, we have the following:

Proposition 5. Let φ ∈ S(Rd). Then:

(i) For any α ∈ Nd, ∂αφ ∈ S(Rd).

(ii) For any f : Rd −→ C of polynomial growth, fφ ∈ S(Rd).

The first point is obvious while for the second one is just a verification.
Let us now jump right into the Fourier transform.

Definition 4. Given φ ∈ S(Rd), we define the Fourier transform of f as the map φ̂ = Fφ : Rd −→ C
given by:

φ̂(ξ) =
ˆ
Rd

φ(x)e−ix·ξdx,

for every ξ ∈ Rd.

Notice how for any φ ∈ S(Rd), φ̂ is always a bounded function, more precisely ∥φ̂∥∞ ≤ ∥φ∥L1(Rd).
This simple fact can help us understand better the meaning behind the basic properties of the Fourier
transform.

Proposition 6. Let φ ∈ S(Rd). Then

(i) For any α ∈ Nd, ∂αFφ = F((−i)|α|xαφ).

(ii) For any α ∈ Nd, F(∂αφ) = (−i)|α|ξαF(φ).

(iii) The Fourier transform is continuous. More precisely for any p ∈ N, Np(Fφ) ≤ CpNp+d+1(φ)
for some constant Cp independent of φ.
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(iv) Given ψ ∈ S(Rd), it holds that F(φ ∗ ψ) = F(φ)F(ψ).

Proof. (i). This is just a matter of recursion and applying Lebesgue’s dominated convergence theorem.
(ii). Like the abobve, use recursion and integration by parts.
(iii). This involves using (i) and (ii) to bound the seminorms. We spare the details.
(iv). This is just a verification using Fubini’s theorem.

As it turns out, the Fourier transform on S(Rd) is not just continuous, but invertible with continuous
inverse.

Proposition 7. The Fourier transform F : S(Rd) −→ S(Rd) is an automorphism of S(Rd), with
inverse given by:

F−1φ(x) = 1
(2π)d

ˆ
Rd

eix·ξφ(ξ)dξ

for all φ ∈ S(Rd) and x ∈ Rd. Moreover, for all φ ∈ S(Rd) it holds that FFφ = φ∨, where
φ∨ : Rd ∋ x 7−→ φ(−x) ∈ C.

1.3 Tempered distributions and their Fourier Transform

Unfortunately we can not define the Fourier Transform for distributions, but we can use the same
ideas behind distributions to generalize the Fourier transform to a greater class of functions than L2.
The objects we are referring to are called tempered distributions.
Tempered distributions are just the elements of the dual of S(Rd), or in other words, linear functionals
T : S(Rd) −→ C satisfying |Tφ| ≤ CNp(φ) for some p ∈ N and some constant C > (and for any
φ ∈ S(Rd)).
As with distributions, we can define derivatives of tempered distributions precisely like we did for
elements of D′(Ω), and moreover we can multiply tempered distributions by smooth functions of
polynomial growth (this too is defined the same way as for distributions).
The main inspiration for the notion of Fourier transform of a tempered distribution is the following
property of the Fourier transform on S(Rd) (which is a simple application of Fubini’s theorem):

Proposition 8. Let φ,ψ ∈ S(Rd). Then:
ˆ
Rd

Fφ(ξ)ψ(ξ)dξ =
ˆ
Rd

φ(ξ)Fψ(ξ)dξ.

Thus we make the following definition.

Definition 5. Given T ∈ S(Rd)′, we define its Fourier Transform, FT , or T̂ , by the following:

∀φ ∈ S(Rd), ⟨T̂ , φ⟩ = ⟨T, φ̂⟩

This inded defines a tempered distribution because if, say, |Tφ| ≤ CNp(φ) for any φ ∈ S(Rd), then
|T̂φ| = |T φ̂| ≤ CNp(φ̂) ≤ CNp+d+1(φ).
This definition allows us to recover the usual properties of the Fourier transform.

Proposition 9. Let T ∈ S(Rd)′ be a tempered distribution. Then:

(i) For all α ∈ Nd, F∂αT = (i)|α|ξαFT .

(ii) For all α ∈ Nd, F(xαT ) = (i)|α|∂αFT .

Moreover, if one sets T∨ : φ 7−→ Tφ∨, then F : S(Rd)′ −→ S(Rd)′ is an automorphism with:

F−1T = 1
(2π)d

(FT )∨.
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1.4 The Sobolev space Hs(Rd)

In this section we will define the Sobolev spaces Hs(Rd), which are a generalization to (tempered)
distributions of the usual Sobolev spaces W 2,k(Rd). Their motivation comes from the the following
fact about the latter family of spaces.

Proposition 10. The following norms are equivalent on W 2,k(Rd):

∥f∥W 2,k(Rd) =
∑

|α|≤k

∥∂α
wf∥L2(Rd) and ∥f∥ =

(ˆ
Rd

(1 + |ξ|2)kf̂(ξ)dξ
)1/2

,

where ∂α
wf denotes the weak derivative of order α of f .

Recall that we adopt the notation of the japanese bracket, namely for ξ ∈ Rd:

⟨ξ⟩ :=
√

1 + |ξ|2 .

Definition 6. Given s ∈ R, we define the Sobolev space Hs(Rd) as the space of all tempered distri-
butions u ∈ S(Rd)′ for which there is f ∈ L2(Rd; ⟨ξ⟩2sdξ) representing û : S(Rd) −→ C. Committing
abuse of notation, we’ll denote this (unique) function class with û.

We can define an inner product on this space, namely:

⟨u, v⟩Hs(Rd) :=
ˆ
Rd

⟨ξ⟩2sû(ξ)v̂(ξ)dξ,

and sure enough, this makes Hs(Rd) a Hilbert space.

Proposition 11. (Hs(Rd), ⟨·, ·⟩Hs(Rd)) is a Hilbert space.

As we will later see, this provides a good setting when it comes to weak solutions of our problem of
interest, the free Schrödinger wave equation.

2 Classical Solutions

We now look into the free Schrödinger wave equation in Rd, i.e. the following Cauchy problem:{
i∂tu(t, x) = −∆u(t, x)
u(0, x) = u0(x)

∀(t, x) ∈ R × Rd (1)

for a given initial condition u0.

Proposition 12 (Solution by means of Fourier transform). Let u0 ∈ S(Rd), then the unique solution
u ∈ C1(R,S(Rd)) to (1) is given by

u(t, ·) = F−1(e−it|·|2 û0). (2)

Proof. We start by taking (1), and applying the Fourier transform in Rd (viewing the time variable
as a parameter) on both sides. We get the following:{

i∂tû(t, ξ) = |ξ|2û(t, ξ)
û(0, ξ) = û0(ξ)

∀(t, ξ) ∈ R × Rd (3)

Viewing ξ as a parameter, the above is actually a Cauchy problem for an ordinary differential equation,
with solution given by û(t, ξ) = e−it|ξ|2 û0(ξ), so the statement can be obtained by taking the inverse
Fourier transform.
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The expression in (2) is the central object of study in the next few sections, and we’ll set for every
t ∈ R and u0 ∈ S(Rd), S(t)u0 = F−1(e−it|·|2 û0). We can give a more concrete expression to S(t)u0
with the following lemma.

Lemma 1. Let z ∈ C have positive real part. Then for all ξ ∈ Rd:

F
(
e−z|·|2)(ξ) =

(
π

z

)d/2
e− |ξ|2

4z ,

where we take zd/2 to mean |z|d/2eidθ/2 whenever z = |z|eiθ for θ ∈ [−π/2, π/2].

Proof. This comes from the identity principle of holomorphic functions. Let Ω = {z ∈ C : ℜz > 0},
and for a given ξ ∈ Rd consider the two following functions on Ω:

Ω ∋ z 7−→
ˆ
Rd

e−z|x|2e−ix·ξ ∈ C and Ω ∋ z 7−→
(
π

z

)d/2
e− |ξ|2

4z ∈ C.

From the expression for the Fourier transform of the Gaussian Rd ∋ x 7→ e−|x|2 ∈ C we can easily see
that the two above functions agree on {x ∈ C : x ∈ R, x > 0}, so being those two holomorphic on Ω,
they must coincide on the whole set Ω.

Even though this might not seem that useful (our z is purely imaginary), we can work around this
issue and still end up with the same expression.

Corollary 1 (Solution by means of convolution). Let u0 ∈ S(Rd). Then trivially S(0)u0 = u0, and
for t ∈ R∖ {0}:

S(t)u0 = St ∗ u0,

where St : Rd −→ C is defined by:
St(x) = 1

(4πit)d/2 e
i

|x|2
4t .

Proof. Let Ω be the denoted earlier half plane. Given t ∈ R ∖ {0}, take a sequence {zn}n ⊆ Ω
converging to it. The Dominated Convergence Theorem ensures for any φ ∈ S(Rd):

lim
n→∞

ˆ
Rd

e−zn|x|2φ(x) dx =
ˆ
Rd

e−it|x|2φ(x) dx,

together with:

lim
n→∞

(
π

zn

)d/2 ˆ
Rd

e− |ξ|2
4zn φ(ξ) dξ =

(
π

it

)d/2 ˆ
Rd

e− |ξ|2
4it φ(ξ) dξ,

hence seeing e−it|·|2 and e−zn|·|2 as tempered distributions yields for any φ ∈ S(Rd):

⟨ê−it|·|2 , φ⟩ = ⟨e−it|·|2 , φ̂⟩ = lim
n→∞

⟨e−znt|·|2 , φ̂⟩ = lim
n→∞

⟨ê−zn|·|2 , φ⟩ = lim
n→∞

(
π

zn

)d/2 ˆ
Rd

e− |ξ|2
4zn φ(ξ) dξ

=
(
π

it

)d/2 ˆ
Rd

e− |ξ|2
4it φ(ξ) dξ.

Now that we have established whose the transform of e−it|·|2 , we can write S(t)u0 = F(e−it|·|2 û0) as:

S(t)u0 = F
(

F−1
((

π

it

)d/2
e− |·|2

4it

)
û0

)
= St ∗ u0.

Lemma 2 (Duhamel formula). Let u0 be a function in S(Rd), and f ∈ C(R,S(Rd)). Then the unique
solution u ∈ C1(R,S(Rd)) to the nonhomogeneous problem{

i∂tu(t, x) + ∆u(t, x) = f(t, x)
u(t, x) = u0(x)

∀(t, x) ∈ R × Rd (4)
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is given by:

u(t, ·) = S(t)u0 − i

ˆ t

0
S(t− τ)f(τ, ·) dτ, (5)

for all t ∈ R.

Proof. As in Lemma 12, we take the Fourier Transform on both sides, ending up with:{
i∂tû(t, ξ) − |ξ|2û(t, ξ) = f̂(t, ξ)
û(0, ξ) = û0(ξ),

and again, treating ξ as a parameter, this is a Cauchy problem of the given ODE, with unique global
solution given by:

û(t, ξ) = e−it|ξ|2 û0(ξ) − i

ˆ t

0
e−i|ξ|2(t−τ)f̂(τ, ξ) dτ,

so we end up with (5) by taking the inverse Fourier Transform on both sides.

3 The Schrödinger semi group

The representation formula (2) for the Schrödinger equation allows for a different approach of studying
the equation. Solutions to the equation are fully described by the family (S(t))t∈R. Thus, it makes
sense to study this family and its structural properties, which should in turn help us to derive further
properties of solutions. We have the following observation.

Theorem 1. Let s ∈ R. Define S(t) : Hs(Rd) → Hs(Rd) by

S(t)u0 = F−1(e−it|·|2 û0).

Then (S(t))t∈R is a strongly continuous one-parameter unitary group on Hs called the Schrödinger
semi group. More precisely:

(i) Continuity: t 7→ S(t)u0 ∈ C(R;Hs).

(ii) Unitarity: ||S(t)u0||Hs = ||u0||Hs.

(iii) Group Property: For t, r ∈ R, S(t)S(r) = S(t+ r) and S(0) = Id.

(iv) Adjoint: S(t)∗ = S(−t).

Proof. The proof of the properties (ii) − (iv) are direct consequences of the definition. (i) is an
application of the Lebesgue dominated convergence Theorem.

Strongly continuous one-parameter unitary groups (U(t))t∈R are characterized by Stone’s Theorem.
This states that these objects are generated by a unique self-adjoint operator A : D(A) ⊂ H → H in
the sense that

U(t) = eitA,

where this equality is understood in the sense of an unbounded Borel functional calculus.

A further property of the Schrödinger semi group is the pointwise decay.

Proposition 13 (Pointwise decay). Let t ∈ R \ {0} and p ∈ [2,∞]. Then S(t) ∈ L(Lq;Lp) and

||S(t)u0||Lq ≤ 1
|4πt|

d
2 ( 1

q
− 1

p
)
||u0||Lp ,

where q is the Hölder conjugate of p.
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Proof. Note that
S(t) ∈ L(L1;L∞)

from Young’s inequality for convolutions. Moreover,

S(t) ∈ L(L2;L2),

by L2 isometry. Therefore, we can apply the Riesz-Thorin interpolation Theorem to derive the bound-
edness in L(Lq;Lp). The explicit estimate follows from the explicit form of the convolution.

4 Weak Solutions
For now we are able to evaluate the semi group for very general functions in Hs but it is not clear in
which sense the corresponding function

u(t) = S(t)u0

solves the Schrödinger equation. For this function to be a solution, we have to broaden our notion of
solutions. The key is that we can only take derivatives in the sense of distributions.

Definition 7. A distribution u ∈ C(R; S ′) is a weak solution of the nonhomogeneous problem (4) if
for all φ ∈ C1(R; S(Rd)), it holds

ˆ t

0
⟨u(r),∆φ(r) − i∂rφ(r)⟩dr = −i⟨u0, φ(0)⟩ + i⟨u(t), φ(t)⟩ +

ˆ t

0
⟨f(r), φ(r)⟩dr,

where we understand ⟨·, ·⟩ as dual pairing.

The next proposition states that the semi group actually produces weak solutions to the Schrödinger
equation, just in the way we saw it for smooth data.

Proposition 14. Let u0 ∈ S ′. Then the distribution

u(t) = S(t)u0

is a weak solution to (1).

The proof is a direct calculation using the definition of the Fourier transform for distributions, so we
do not present it here.

Instead, we ask ourselves if it is possible to also extend the Duhamel formula to the weak setting.
Clearly, we have to assume some regularity of the data for the formula to make sense, but it turns out
that the assumptions are more general compared to the smooth setting.

Proposition 15. Let u0 ∈ L2 and f ∈ L1
loc(R;L2). Then the nonhomogeneous Schrödinger equation

(4) has a unique weak solution u ∈ C(R;L2) given by

u(t) = S(t)u0 − i

ˆ t

0
S(t− t′)f(t′)dt′. (6)

Moreover,

||u(t)||2L2 = ||u0||2L2 + 2ℑ
ˆ t

0

ˆ
Rd

f(τ, x)u(τ, x)dxdτ. (7)

Proof. We only give a sketch.

Uniqueness: If we assume u ∈ C(R;L2) solves the equation with f ≡ 0 and u0 ≡ 0, we obtain
by convolution a sequence of smooth solutions with the same data. Then using uniqueness for the
equation in the strong form and the convergence of this sequence the claim follows.
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Existence: This follows from the previous proposition and a calculation involving again standard
properties of the Fourier transform.

Mass Equality: First, we assume that u0 ∈ S(Rd) and f ∈ C(R; S(Rd)). Then equality (7) follows by
testing the weak formulation against u, where u ∈ C1(R; S(Rd)) is given by (6). For less regular data
as stated above, we construct approximating sequences for the data to get a sequence of solutions.
This sequence turns out to be a Cauchy sequence from Duhamel’s formula. Taking the limit proves
the claim.
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