Seminar on Operator Algebras and Quantum Information Theory
 Daniele Valerio
 Dr. Simon Becker

ETH Zürich
27. October 2023

Contents

1 Self-dual cone and standard form 2

1 Self-dual cone and standard form

First of all, we define

$$
\mathcal{P}=\{\overline{A J A J \Omega A \in \mathcal{M}}\}
$$

Proposition 1.1.

1. $\mathcal{P}=\overline{\Delta^{1 / 4} \mathcal{M}_{+} \Omega}=\overline{\Delta^{1 / 4} \mathcal{M}^{\prime} \Omega}$ and thus \mathcal{P} is a convex cone.
2. $\Delta^{i t} \mathcal{P}=\mathcal{P} \forall t$.
3. If f is of positive type then $f(\log \Delta) \mathcal{P} \subset \mathcal{P}$.
4. If $\xi \in \mathcal{P}$, then $J \xi=\xi$.
5. If $A \in M$ then $A J A J \mathcal{P} \subset \mathcal{P}$

Proof.

1. Let \mathcal{M}_{0} be the $*$-algebra of elements of \mathcal{M} which are entire for the modular group σ. (that is, $t \rightarrow \sigma_{t}(A)$ admits an analytic extension). We shall admit here that \mathcal{M}_{0} is σ-weakly dense in \mathcal{M}. For every $A \in \mathcal{M}_{0}$ we have

$$
\begin{aligned}
\Delta^{1 / 4} A A^{*} \Omega & =\sigma_{-i / 4}(A) \sigma_{i / 4}(A)^{*} \Omega \\
& =\sigma_{-i / 4}(A) J \Delta^{1 / 2} \sigma_{1 / 4}(A) \Omega \\
& =\sigma_{i / 4}(A) J \sigma_{-i / 4}(A) J \Omega \\
& =B J B J \Omega
\end{aligned}
$$

where $B=\sigma_{-i / 4}(A)$. Then, since $\sigma_{-i / 4}\left(\mathcal{M}_{0}\right)=\mathcal{M}_{0}$ and the fact that \mathcal{M}_{0} is dense in \mathcal{M}, we have

$$
B J B J \Omega \in \overline{\Delta^{1 / 4} \mathcal{M}_{+} \Omega} \subset \overline{\Delta^{1 / 4} \overline{\mathcal{M}_{+} \Omega}}
$$

for every $B \in \mathcal{M}$. Hence,

$$
\mathcal{P} \subset \overline{\Delta^{1 / 4} \mathcal{M}_{+} \Omega} \subset \overline{\Delta^{1 / 4} \overline{\mathcal{M}_{+} \Omega}} .
$$

On the contrary, \mathcal{M}_{0}^{+}is dense in $\overline{\mathcal{M}_{+} \Omega}$. Let $\psi \in \overline{\mathcal{M}_{+} \Omega}$. Thern there exists a sequence $\left(A_{n}\right) \subset \mathcal{M}_{0}^{+}$s.t. $A_{n} \Omega \rightarrow \psi$. We know thanks to the above relation that $\Delta^{1 / 4} A_{n} \Omega \in \mathcal{P}$. However,

$$
J \Delta^{1 / 2} A_{n} \Omega=A_{n} \Omega \rightarrow \psi=J \Delta^{1 / 2} \psi
$$

and thus
Therefore, $\Delta^{1 / 4} \psi$ belongs to \mathcal{P} and $\frac{a}{\Delta^{1 / 4} \overline{M_{1} \Omega}} \subset \mathcal{P}$. This proves the first equality. Analogously, one can prove the second one.
2. Immediate since we have

$$
\Delta^{i t} \Delta^{1 / 4} \mathcal{M}_{+} \Omega=\Delta^{1 / 4} \Delta^{i t} \mathcal{M}_{+} \Omega=\Delta^{1 / 4} \sigma_{t}\left(\mathcal{M}_{+}\right) \Omega=\Delta^{1 / 4} \mathcal{M}_{+} \Omega
$$

3. If f is of positive type, then f is the Fourier transform of some positive, finite, Borel measure μ on \mathbb{R}. In particular

$$
f(\log \Delta)=\int \Delta^{i t} d \mu(t)
$$

By 2, one concludes.
4. $J A J A J \Omega=J A J A \Omega=A J A J \Omega$
5. $A J A J B J B J \Omega=A B J A J J B J \Omega=A B J A B J \Omega$.

Theorem 1.2.

1. \mathcal{P} is self-dual, i.e. $\mathcal{P}=\mathcal{P}^{\vee}$, where

$$
\mathcal{P}^{\vee}=\{x \in \mathcal{H} ;\langle y, x\rangle \geq 0, \forall y \in \mathcal{P}\}
$$

2. \mathcal{P} is pointed, that is

$$
\mathcal{P} \cap(-\mathcal{P})=\{0\}
$$

3. If $J \xi=\xi$, then ξ admits a unique decomposition as $\xi=\xi_{1}-\xi_{2}$, with $\xi_{i} \in \mathcal{P}$ and $\xi_{1} \perp \xi_{2}$.
4. The span of \mathcal{P} is the whole of \mathcal{H}

Proof.

1. If $A \in \mathcal{M}$ and $A^{\prime} \in \mathcal{M}_{+}^{\prime}$, then

$$
\left\langle\Delta^{1 / 4} A \Omega, \Delta^{-1 / 4} A^{\prime} \Omega\right\rangle=\left\langle A \Omega, A^{\prime} \Omega\right\rangle=\left\langle\Omega, A^{1 / 2} A^{\prime} A^{1 / 2} \Omega\right\rangle \geq 0 .
$$

Thus, $\mathcal{P} \subset \mathcal{P}^{\vee}$.
Conversely, if $\xi \in \mathcal{P}^{\vee}$, that is $\langle\xi, \nu\rangle \geq 0 \forall \nu \in \mathcal{P}$, we set

$$
\xi_{n}=f_{n}(\log \Delta) \xi
$$

where $f_{n}(x)=\exp \left(-x^{2} / 2 n^{2}\right)$. Then, ξ_{n} belongs to $\cap_{\alpha \in \mathbb{C}} \operatorname{Dom} \Delta^{\alpha}$ and ξ_{n} converges to ξ. We know that $f_{n}(\log \Delta) \nu$ belongs to \mathcal{P} and thus

$$
\left\langle\Delta^{1 / 4} \xi_{n}, A \Omega\right\rangle=\left\langle\xi_{n}, \Delta^{1 / 4} A \Omega\right\rangle \geq 0 .
$$

Therefore, $\Delta^{1 / 4} \xi_{n}$ belongs to ${\overline{\mathcal{M}_{+} \Omega}}^{\vee}$, which coincides with $\overline{\mathcal{M}^{\prime}{ }_{+} \Omega}$ (admitted). This finally gives that ξ_{n} belongs to $\Delta^{1 / 4} \overline{\mathcal{M}^{\prime}{ }_{+} \Omega} \subset \mathcal{P}$.
2. If $\xi \in \mathcal{P} \cap(-\mathcal{P})=\mathcal{P} \cap\left(-\mathcal{P}^{\vee}\right)$, then $\langle\xi,-\xi\rangle \geq 0$ and $\xi=0$.
3. If $J \xi=\xi$ then, as \mathcal{P} is convex and closed, there exists a unique $\xi_{1} \in \mathcal{P}$ such that

$$
\left\|\xi-\xi_{1}\right\|=\inf \{\|\xi-\nu\| ; \nu \in \mathcal{P}\} .
$$

We set $\xi_{2}=\xi_{1}-\xi$. Let then $\nu \in \mathcal{P}$ and $\lambda>0$. Then $\xi_{1}+\lambda \nu$ belongs to \mathcal{P} and

$$
\left\|\xi-\xi_{1}\right\|^{2} \leq\left\|\xi_{1}-+\lambda \nu \xi\right\|^{2} .
$$

That is $\left\|\xi_{2}\right\|^{2} \leq\left\|\xi_{2}+\lambda \nu\right\|^{2}$, or else $\lambda^{2}\|\nu\|^{2}+2 \lambda \mathcal{R}\left\langle\xi_{2}, \nu\right\rangle \geq 0$. This implies that $\mathcal{R}\left\langle\xi_{2}, \nu\right\rangle>$ 0 . But as $J \xi_{2}=\xi_{2}$ and $J \nu=\nu$, then

$$
\left\langle\xi_{2}, \nu\right\rangle=\left\langle J \xi_{2}, J \nu\right\rangle=\overline{\left\langle\xi_{2}, \nu\right\rangle} .
$$

That is $\left\langle\xi_{2}, \nu\right\rangle>0$ and $\xi_{2} \in \mathcal{P}^{\vee}=\mathcal{P}$.
4.) If ξ is orthogonal to the linear span of \mathcal{P} then ξ belongs to $\mathcal{P}^{\vee}=P$. Therefore $\langle\xi, \xi\rangle=0$ and $\xi=0$.

Theorem 1.3 (Universality).

1. If $\xi \in \mathcal{P}$ then ξ is cyclic for \mathcal{M} if and only if it separating for \mathcal{M}.
2. If $\xi \in \mathcal{P}$ then ξ is cyclic for \mathcal{M} then $J_{\xi}, \mathcal{P}_{\xi}$ associated to (\mathcal{M}, ξ) satisfy

$$
J_{\xi}=J \quad \text { and } \quad \mathcal{P}_{\xi}=\mathcal{P} .
$$

Proof.

1. If ξ is cyclic for \mathcal{M} then $J \xi$ is cyclic for $\mathcal{M}^{\prime}=J \mathcal{M} J$ and thus $\xi=J \xi$ is separating for \mathcal{M}. And conversely.
2. Define as before (the closed version of)

$$
\begin{aligned}
& S_{\xi}: A \xi \longmapsto A^{*} \xi \\
& F_{\xi}: A^{\prime} \xi \longmapsto A^{\prime *} \xi .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
J F_{\xi} J A \xi & =J F_{\xi} J A J \xi \\
& =J(J A J)^{*} \xi \\
& =A^{*} \xi \\
& =S_{\xi} A \xi .
\end{aligned}
$$

This proves that $S \xi \subset J F_{\xi} J$. By a symmetric argument $F_{\xi} \subset J S_{\xi} J$ and thus

$$
J S_{\xi}=F_{\xi} J
$$

Note that

$$
\left(J S_{\xi}\right)^{*}=S_{\xi}^{*} J=F_{\xi} J=J S_{\xi} .
$$

This means that $J S_{\xi}$ is self-adjoint. Let us prove that it is positive.
We have

$$
S_{\xi}=J_{\xi} \Delta_{\xi}^{1 / 2}=J\left(J S_{\xi}\right) .
$$

By uniqueness of the polar decomposition we must have $J=J_{\xi}$. Finally, we have that \mathcal{P}_{ξ} is generated by the $A J_{\xi} A J_{\xi} \xi=A J A J_{\xi}$. But as ξ belongs to \mathcal{P} we have that $A J A J \xi$ belongs to \mathcal{P} and thus $\mathcal{P} \xi \subset \mathcal{P}$. Finally,

$$
\mathcal{P}=\mathcal{P}^{\vee} \subset \mathcal{P}_{\xi}^{\vee}=\mathcal{P}_{\xi} \quad \text { and } \quad \mathcal{P}=\mathcal{P}_{\xi} .
$$

Theorem 1.4.

1. For every $\omega \in \mathcal{M}_{*+}$, there exists a unique $\xi \in \mathcal{P}$ such that

$$
\omega=\omega_{\xi}
$$

2. The mapping $\xi \longmapsto \omega_{\xi}$ is an homeomorphism and

$$
\|\xi-\nu\|^{2} \leq\left\|\omega_{\xi}-\omega_{\nu}\right\|^{2} \leq\|\xi-\nu\|\|\xi+\nu\| .
$$

