Seminar on Operator Algebras and Quantum Information Theory

Daniele Valerio Dr. Simon Becker

ETH Zürich 27. October 2023

 $\mathbf{2}$

Contents

1 Self-dual cone and standard form

1 Self-dual cone and standard form

First of all, we define

$$\mathcal{P} = \{\overline{AJAJ\Omega \ A \in \mathcal{M}}\}$$

Proposition 1.1.

- 1. $\mathcal{P} = \overline{\Delta^{1/4} \mathcal{M}_+ \Omega} = \overline{\Delta^{1/4} \mathcal{M}'_+ \Omega}$ and thus \mathcal{P} is a convex cone.
- 2. $\Delta^{it} \mathcal{P} = \mathcal{P} \ \forall t$.
- 3. If f is of positive type then $f(\log \Delta)\mathcal{P} \subset \mathcal{P}$.
- 4. If $\xi \in \mathcal{P}$, then $J\xi = \xi$.
- 5. If $A \in M$ then $AJAJ\mathcal{P} \subset \mathcal{P}$

Proof.

1. Let \mathcal{M}_0 be the *-algebra of elements of \mathcal{M} which are entire for the modular group σ . (that is, $t \to \sigma_t(A)$ admits an analytic extension). We shall admit here that \mathcal{M}_0 is σ -weakly dense in \mathcal{M} . For every $A \in \mathcal{M}_0$ we have

$$\Delta^{1/4}AA^*\Omega = \sigma_{-i/4}(A)\sigma_{i/4}(A)^*\Omega$$
$$= \sigma_{-i/4}(A)J\Delta^{1/2}\sigma_{1/4}(A)\Omega$$
$$= \sigma_{i/4}(A)J\sigma_{-i/4}(A)J\Omega$$
$$= BJBJ\Omega$$

where $B = \sigma_{-i/4}(A)$. Then, since $\sigma_{-i/4}(\mathcal{M}_0) = \mathcal{M}_0$ and the fact that \mathcal{M}_0 is dense in \mathcal{M} , we have

$$BJBJ\Omega \in \overline{\Delta^{1/4}\mathcal{M}_{+}\Omega} \subset \Delta^{1/4}\overline{\mathcal{M}_{+}\Omega}$$

for every $B \in \mathcal{M}$. Hence,

$$\mathcal{P} \subset \overline{\Delta^{1/4}\mathcal{M}_{+}\Omega} \subset \overline{\Delta^{1/4}\overline{\mathcal{M}_{+}\Omega}}.$$

On the contrary, \mathcal{M}_0^+ is dense in $\overline{\mathcal{M}_+\Omega}$. Let $\psi \in \overline{\mathcal{M}_+\Omega}$. There there exists a sequence $(A_n) \subset \mathcal{M}_0^+$ s.t. $A_n\Omega \to \psi$. We know thanks to the above relation that $\Delta^{1/4}A_n\Omega \in \mathcal{P}$. However,

$$J\Delta^{1/2}A_n\Omega = A_n\Omega \to \psi = J\Delta^{1/2}\psi$$

and thus

Therefore, $\Delta^{1/4}\psi$ belongs to \mathcal{P} and $\overline{\Delta^{1/4}\overline{M_1\Omega}} \subset \mathcal{P}$. This proves the first equality. Analogously, one can prove the second one.

a

2. Immediate since we have

$$\Delta^{it}\Delta^{1/4}\mathcal{M}_{+}\Omega = \Delta^{1/4}\Delta^{it}\mathcal{M}_{+}\Omega = \Delta^{1/4}\sigma_{t}(\mathcal{M}_{+})\Omega = \Delta^{1/4}\mathcal{M}_{+}\Omega.$$

3. If f is of positive type, then f is the Fourier transform of some positive, finite, Borel measure μ on \mathbb{R} . In particular

$$f(\log \Delta) = \int \Delta^{it} d\mu(t)$$

By 2, one concludes.

- 4. $JAJAJ\Omega = JAJA\Omega = AJAJ\Omega$
- 5. $AJAJBJBJ\Omega = ABJAJJBJ\Omega = ABJABJ\Omega$.

Theorem 1.2.

1. \mathcal{P} is self-dual, i.e. $\mathcal{P} = \mathcal{P}^{\vee}$, where

$$\mathcal{P}^{\vee} = \{ x \in \mathcal{H}; \langle y, x \rangle \ge 0, \forall y \in \mathcal{P} \}$$

2. \mathcal{P} is pointed, that is

$$\mathcal{P} \cap (-\mathcal{P}) = \{0\}$$

- 3. If $J\xi = \xi$, then ξ admits a unique decomposition as $\xi = \xi_1 \xi_2$, with $\xi_i \in \mathcal{P}$ and $\xi_1 \perp \xi_2$.
- 4. The span of \mathcal{P} is the whole of \mathcal{H}

Proof.

1. If $A \in \mathcal{M}$ and $A' \in \mathcal{M}'_+$, then

$$\langle \Delta^{1/4} A \Omega, \ \Delta^{-1/4} A' \Omega \rangle = \langle A \Omega, \ A' \Omega \rangle = \langle \Omega, \ A^{1/2} A' A^{1/2} \Omega \rangle \ge 0.$$

Thus, $\mathcal{P} \subset \mathcal{P}^{\vee}$.

Conversely, if $\xi \in \mathcal{P}^{\vee}$, that is $\langle \xi, \nu \rangle \ge 0 \forall \nu \in \mathcal{P}$, we set

$$\xi_n = f_n(log\Delta)\xi$$

where $f_n(x) = \exp(-x^2/2n^2)$. Then, ξ_n belongs to $\cap_{\alpha \in \mathbb{C}} \text{Dom}\Delta^{\alpha}$ and ξ_n converges to ξ . We know that $f_n(\log \Delta)\nu$ belongs to \mathcal{P} and thus

$$\langle \Delta^{1/4} \xi_n, A\Omega \rangle = \langle \xi_n, \Delta^{1/4} A\Omega \rangle \ge 0.$$

Therefore, $\Delta^{1/4}\xi_n$ belongs to $\overline{\mathcal{M}_+\Omega}^{\vee}$, which coincides with $\overline{\mathcal{M}'_+\Omega}$ (admitted). This finally gives that ξ_n belongs to $\Delta^{1/4}\overline{\mathcal{M}'_+\Omega} \subset \mathcal{P}$.

- 2. If $\xi \in \mathcal{P} \cap (-\mathcal{P}) = \mathcal{P} \cap (-\mathcal{P}^{\vee})$, then $\langle \xi, -\xi \rangle \ge 0$ and $\xi = 0$.
- 3. If $J\xi = \xi$ then, as \mathcal{P} is convex and closed, there exists a unique $\xi_1 \in \mathcal{P}$ such that

 $\|\xi - \xi_1\| = \inf\{\|\xi - \nu\|; \nu \in \mathcal{P}\}.$

We set $\xi_2 = \xi_1 - \xi$. Let then $\nu \in \mathcal{P}$ and $\lambda > 0$. Then $\xi_1 + \lambda \nu$ belongs to \mathcal{P} and

$$\|\xi - \xi_1\|^2 \le \|\xi_1 - \lambda \nu \xi\|^2.$$

That is $\|\xi_2\|^2 \leq \|\xi_2 + \lambda\nu\|^2$, or else $\lambda^2 \|\nu\|^2 + 2\lambda \mathcal{R}\langle\xi_2,\nu\rangle \geq 0$. This implies that $\mathcal{R}\langle\xi_2,\nu\rangle > 0$. But as $J\xi_2 = \xi_2$ and $J\nu = \nu$, then

$$\langle \xi_2, \nu \rangle = \langle J \xi_2, J \nu \rangle = \langle \xi_2, \nu \rangle.$$

That is $\langle \xi_2, \nu \rangle > 0$ and $\xi_2 \in \mathcal{P}^{\vee} = \mathcal{P}$.

4.) If ξ is orthogonal to the linear span of \mathcal{P} then ξ belongs to $\mathcal{P}^{\vee} = P$. Therefore $\langle \xi, \xi \rangle = 0$ and $\xi = 0$.

Theorem 1.3 (Universality).

- 1. If $\xi \in \mathcal{P}$ then ξ is cyclic for \mathcal{M} if and only if it is separating for \mathcal{M} .
- 2. If $\xi \in \mathcal{P}$ then ξ is cyclic for \mathcal{M} then $J_{\xi}, \mathcal{P}_{\xi}$ associated to (\mathcal{M}, ξ) satisfy

$$J_{\xi} = J$$
 and $\mathcal{P}_{\xi} = \mathcal{P}$.

Proof.

- 1. If ξ is cyclic for \mathcal{M} then $J\xi$ is cyclic for $\mathcal{M}' = J\mathcal{M}J$ and thus $\xi = J\xi$ is separating for \mathcal{M} . And conversely.
- 2. Define as before (the closed version of)

$$S_{\xi} : A\xi \longmapsto A^{*}\xi$$
$$F_{\xi} : A'\xi \longmapsto A'^{*}\xi.$$

Then, we have

$$JF_{\xi}JA\xi = JF_{\xi}JAJ\xi$$
$$= J(JAJ)^{*}\xi$$
$$= A^{*}\xi$$
$$= S_{\xi}A\xi.$$

This proves that $S\xi \subset JF_{\xi}J$. By a symmetric argument $F_{\xi} \subset JS_{\xi}J$ and thus

$$JS_{\mathcal{E}} = F_{\mathcal{E}}J.$$

Note that

$$(JS_{\xi})^* = S_{\xi}^*J = F_{\xi}J = JS_{\xi}.$$

This means that JS_{ξ} is self-adjoint. Let us prove that it is positive. We have

$$S_{\xi} = J_{\xi} \Delta_{\xi}^{1/2} = J(JS_{\xi}).$$

By uniqueness of the polar decomposition we must have $J = J_{\xi}$. Finally, we have that \mathcal{P}_{ξ} is generated by the $AJ_{\xi}AJ_{\xi}\xi = AJAJ_{\xi}$. But as ξ belongs to \mathcal{P} we have that $AJAJ\xi$ belongs to \mathcal{P} and thus $\mathcal{P}\xi \subset \mathcal{P}$. Finally,

$$\mathcal{P} = \mathcal{P}^{\vee} \subset \mathcal{P}_{\xi}^{\vee} = \mathcal{P}_{\xi} \quad \text{and} \quad \mathcal{P} = \mathcal{P}_{\xi}.$$

Theorem 1.4.

1. For every $\omega \in \mathcal{M}_{*+}$, there exists a unique $\xi \in \mathcal{P}$ such that

 $\omega = \omega_{\xi}$

2. The mapping $\xi \mapsto \omega_{\xi}$ is an homeomorphism and

$$\|\xi - \nu\|^2 \le \|\omega_{\xi} - \omega_{\nu}\|^2 \le \|\xi - \nu\| \|\xi + \nu\|.$$