Seminar Operator Algebra

Thomas Frauchiger

10.11.2023

Let \mathfrak{U} and \mathfrak{B} denote C*-algebras. The first 5 lemmas are used for the proof of some properties of completely bounded maps. If not mentioned otherwise, the statements are from the chapter by Rolando Rebolledo, Section 3 or 4, from the Book 2 in this seminar. Otherwise they are from the book by Takesaki (https://link.springer.com/book/10.1007/978-1-4612-6188-9) or from the script of Paul Skoufranis

(https://pskoufra.info.yorku.ca/files/2016/07/Completely-Positive-Maps.pdf).

Lemma 0.1 (Lemma 2.16 in Skoufranis)

Let $\Phi : \mathfrak{U} \to \mathfrak{B}$ be a positive map, then $\Phi(x^*) = \Phi(x)^* \forall x \in \mathfrak{U}$

Lemma 0.2 $M_n(\mathfrak{U})$ denotes the set of all $n \times n$ matrices with entries in \mathfrak{U} with the involution $[a_{i,j}]^* = [(a_{j,i})^*]$. Then there is a norm $||(\cdot)||$ such that $M_n(\mathfrak{U})$ is a C^* -algebra.

Lemma 0.3 (Lemma 3.1 and 3.2 from Chapter 4 Takesaki) The following are equivalent: Let $[a_{i,j}] \in M_n(\mathfrak{U})$

- 1) $[a_{i,i}] \in M_n(\mathfrak{U})$ is positive
- 2) $[a_{i,j}] = \sum c_k$ where $(c_k)_{i,j} = [(b_i^{(k)})^* b_i^{(k)}]$ for $b_i^{(k)} \in \mathfrak{U}$ (\sum is a finite sum)
- 3) $\forall b_1, ..., b_n \in \mathfrak{U}$ the sum $\sum_{i,j} b_i^* a_{i,j} b_j$ is positive in \mathfrak{U}

Lemma 0.4 There is a bijective *-morphism from $M_2(M_n(\mathfrak{U}))$ to $M_{2n}(\mathfrak{U})$, namly $\Phi(\begin{pmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \\ \lceil C \rceil \end{bmatrix})) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

Lemma 0.5 (*Proposition 2.6 from Chapter by Rolando Rebolledo, Book 2 of this Seminar and Lemma 3.17 in Skoufranis*)

1) $\binom{p}{a^*}{a^*} = M_2(\mathfrak{U})$ positive, then $||a|| \leq ||p||$

2) Let \mathfrak{U} be a C*-algebra with unit. Then $\begin{pmatrix} 1 & a \\ a^* & 1 \end{pmatrix} \in M_2(\mathfrak{U})$ positive if and only if $||a|| \leq 1$

Definition 0.6 $\Phi : \mathfrak{U} \to \mathfrak{B}$ linear. Then Φ is called completely bounded if $||\Phi||_{cb} \coloneqq \sup\{||\Phi_n||_{op} : n \in \mathbb{N}\} < \infty$. (Recall the definition of Φ_n from the previous talk).

Proposition 0.7 Let \mathfrak{U} be a C*-algebra with unit. $\Phi : \mathfrak{U} \to \mathfrak{B}$ a completely positive map. Then Φ is completely bounded and $||\Phi||_{op} = ||\Phi(1)||$.

Proof $||\Phi(1)|| \leq ||\Phi||_{op} \leq ||\Phi||_{cb}$ holds because ||1|| = 1 and Φ_n for n = 1 is Φ . We only need to prove $||\Phi||_{cb} \leq ||\Phi(1)||$. Let n be fix and consider $A \in M_n(\mathfrak{U})$ with ||A|| = 1. $\binom{1_n A}{A^* 1_n}$ is positive in $M_2(M_n(\mathfrak{U}))$ by one of the previous lemmas because ||A|| is 1. Hence the same matrix, but now considered to be in $M_{2n}(\mathfrak{U})$, is positive. Φ_{2n} is a positive map because Φ is completely positive and hence $\Phi_{2n}(\binom{1_n A}{A^* 1_n}) = \binom{\Phi_n(1_n) \Phi_n(A)}{\Phi_n(A^*) \Phi_n(1_n)} = \binom{\Phi_n(1_n) \Phi_n(A)}{\Phi_n(A^* \Phi_n(1_n))}$ is positive in $M_{2n}(\mathfrak{U})$, and hence it is positive if considered to be in $M_2(M_n(\mathfrak{U}))$. This implies that $||\Phi_n(A)|| \leq ||\Phi_n(1_n)|| \leq ||\Phi(1)||$ Where the last inequality is due to a relation of the norm on \mathfrak{B} and the norm on $M_n(\mathfrak{B})$ which was not proved in this talk. Hence the operator norm of Φ_n is less or equal than $||\Phi(1)||$ for all n, which proves the proposition.

Theorem 0.8 Let Φ be a bounded linear map from \mathfrak{U} to \mathfrak{B} where the latter is commutative. Then Φ is completely bounded and $||\Phi||_{op} = ||\Phi||_{cb}$.

Theorem 0.9 Let \mathfrak{U} and \mathfrak{B} be C*-algebra with unit such that $\mathfrak{B} \subset B(\mathfrak{h})$ for \mathfrak{h} a separable Hilbertspace. Φ linear map from \mathfrak{U} to \mathfrak{B} . The the following are equivalent

1) Φ is completely positive

2) There exists a representation of \mathfrak{U} , denoted by (Π, \mathfrak{t}) , where Π is a *-morphism from \mathfrak{U} to \mathfrak{t} , \mathfrak{t} Hilbertspace. Moreover there exists a bounded linear map $V : \mathfrak{h} \to \mathfrak{t}$ such that for all x in \mathfrak{U} we have that

$$\Phi(x) = V^* \circ \Pi(x) \circ V$$

Where $V^* : \mathfrak{t} \to \mathfrak{h}$ satisfies $\langle x, Vy \rangle_{\mathfrak{t}} = \langle V^*x, y \rangle_{\mathfrak{h}}$