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We followRolando Rebolledos’ section Complete Positivity and the Markov
structor of Open Quantum Systems in Open Quantum Systems II. by Attal et
al. [2, Chapter 2, p.157 et seq.]

1 Definitions

Definition 1.1 (Completely Positive). Let A, B be two ∗-algebras and S ⊂ A
an operators system. A linear map Φ : S → B is called completely positive if

n∑
i,j=1

b∗iΦ(a
∗
i aj)bj ∈ B (1)

is positive for all n ∈ N and for all ai ∈ S, bi ∈ B. The space of all such
maps is denoted by CP(S,B)

From now on we will mostly consider the case of C∗-algebras and B ⊂ B(H)
for some Hilbert space H.

Remark 1.1. Notice that the expression 1 is positive if and only if:

n∑
i,j=1

⟨u, b∗iΦ(a∗i aj)bju⟩ ≤ 0 ∀u ∈ H

which is equivalent to

n∑
i,j=1

⟨ui,Φ(a
∗
i aj)uj⟩ ≤ 0 ∀ui ∈ H

2 Commutative Case

Theorem 2.1 (Stinespring, Arveson). Let Φ : A → B be positive for some
C∗-algebras A,B. Then if (a): A or (b): B is commutative we have that Φ is
completely positive.

For the proof of this we will first introduce two results
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Theorem 2.2 (Gelfands Representation). Let A be a commutative unital
C∗-algebra then X = σ(A) is compact T2. And we have

A ∼= C(X) ∼= C0(X)

See: Open Quatum Systems I by Attal et al. [1, p. 83].

Theorem 2.3 (Riesz-Markov-Kakutani). Let X be compact T2 then we have

C(X)∗ ∼= {µ : µ complex baire measure on X}.

Where the isomorphism is given by:

µ 7→
∫
X

fdµ

We can now proof (a) and (b) from the Stinespring, Arveson theorem.

Proof (a). We assume that A is unital and B ⊂ B(H). Thus we get

A ∼= C(X)

for X compact and T2. We identify a ∈ A with a(x) ∈ C(X) Thus for u, v ∈ H
we can write the linear functional:

⟨v,Φ(a)u⟩ =
∫
X

a(x)dµu,v

as an integral with complex bair measure µu,v. Let now u1, . . . , un ∈ H we
define:

dµ :=

n∑
i,j=1

|dµui,uj |, u :=

n∑
i=1

λiui

for some λi ∈ C. Using Radon-Nykodim we can write:

dµu,u =

 n∑
i,j=1

λiλjhui,uj

 dµ

for hui,uj the derivatives of dµui,uj with respect to dµ. Since Φ is positive we
get that dµu,u ≥ 0. But since dµ ≥ 0 by construction we get that

n∑
i,j=1

λiλjhui,uj
≥ 0 µ-a.e

Let now a1, . . . , an ∈ A then we get

n∑
i,j=1

⟨ui,Φ(a
∗
i aj)uj⟩ =

∫
X

 n∑
i,j=1

ai(x)aj(x)hui,uj

 dµ ≥ 0
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Proof (b). As above we identify B ∼= C(X) thus by linearity of Φ we get:

n∑
i,j =1

b∗iΦ(a
∗
i aj)bj =

n∑
i,j=1

bi(x)Φ(a
∗
i aj)bj(x)

= Φ

 n∑
i,j=1

bi(x)a
∗
i ajbj(x)


= Φ

([
n∑

i=1

bi(x)ai

]∗ [ n∑
i=1

bi(x)ai

])
which is positive by positivity of Φ.

3 General Case

Definition 3.1. Let Φ : A → B be any map. We define:

Φn : Mn(A) → Mn(B)
(aij)ij 7→ (Φ(aij))ij

Definition 3.2. A linear map Φ : A → B between ∗-algebras is called n-positive
if Φn is positive.

Proposition 3.1. A linear map Φ : A → B between ∗-algebras is completely
positive if and only if it is n-positive for all n ∈ N

Remark 3.1. Let A = B(H) with P,Q ∈ A+ and A ∈ A then the following
two statements are equivalent.

1.

(
P A
A∗ Q

)
is positive

2. |⟨u,Av⟩|2≤ ⟨u, P, u⟩⟨v,Q, v⟩ ∀u, v ∈ H

Proposition 3.2. Let A,B be two unital C∗-algebras then

1. for a ∈ A : ||a||≤ 1 if and only if the matrix

(
1 a
a∗ 1

)
is positive

2. for b ∈ A+ and a ∈ A we have a∗a ≤ b if and only if

(
1 a
a∗ b

)
is positive

3. let Φ : A → B be 2-positive then Φ is contractive.

4. let Φ as above then for a ∈ A we have Φ(a)∗Φ(a) ≤ Φ(a∗a)

Proof (1) & (2). Notice that 1 is positive. Thus we can apply the result from
the previous remark. This yields inequalities from functional analysis that give
the statements.
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Proof (3): Take a ∈ A such that ||a||= 1 apply Φ2 to the matrix

(
1 a
a∗ 1

)
,

which is positive by (1) so its image is also positive (since Φ is 2-positive). Thus
again using (1) we get that ||ϕ(x)||≤ 1 by linearity we get the statement.

Proof (4): Let a ∈ A consider the calculation(
1 a
0 0

)∗(
1 a
0 0

)
=

(
1 a
a∗ a∗a

)
which is positive by construction so its image under Φ2(

1 Φ(a)
Φ(a)∗ Φ(a∗a)

)
is also positive and so by (2) we have that Φ(a)∗Φ(a) ≤ Φ(a∗a).

Theorem 3.1 (Arveson). Let A be a C∗-algebra, S ⊂ A an operator system
and H a Hilbert space. For a given φ ∈ CP(S,B(H)) there always exists a
Φ ∈ CP(A,B(H)) such that:

Φ|S= φ
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