Completely Positive Maps

Dominique Garmier

November 9, 2023

We follow ROLANDO REBOLLEDOS' section Complete Positivity and the Markov structor of Open Quantum Systems in Open Quantum Systems II. by ATTAL et al. [2, Chapter 2, p.157 et seq.]

1 Definitions

Definition 1.1 (Completely Positive). Let \mathcal{A} , \mathcal{B} be two *-algebras and $S \subset \mathcal{A}$ an operators system. A linear map $\Phi: S \to \mathcal{B}$ is called completely positive if

$$\sum_{i,j=1}^{n} b_i^* \Phi(a_i^* a_j) b_j \in \mathcal{B}$$
(1)

is positive for all $n \in \mathbb{N}$ and for all $a_i \in S, b_i \in \mathcal{B}$. The space of all such maps is denoted by $CP(S, \mathcal{B})$

From now on we will mostly consider the case of C^* -algebras and $\mathcal{B} \subset \mathcal{B}(H)$ for some Hilbert space H.

Remark 1.1. Notice that the expression 1 is positive if and only if:

$$\sum_{i,j=1}^{n} \langle u, b_i^* \Phi(a_i^* a_j) b_j u \rangle \le 0 \quad \forall u \in H$$

which is equivalent to

$$\sum_{i,j=1}^{n} \langle u_i, \Phi(a_i^* a_j) u_j \rangle \le 0 \quad \forall u_i \in H$$

2 Commutative Case

Theorem 2.1 (Stinespring, Arveson). Let $\Phi : \mathcal{A} \to \mathcal{B}$ be positive for some C^* -algebras \mathcal{A}, \mathcal{B} . Then if (a): \mathcal{A} or (b): \mathcal{B} is commutative we have that Φ is completely positive.

For the proof of this we will first introduce two results

Theorem 2.2 (Gelfands Representation). Let \mathcal{A} be a commutative unital C^* -algebra then $X = \sigma(\mathcal{A})$ is compact T_2 . And we have

$$\mathcal{A} \cong C(X) \cong C_0(X)$$

See: Open Quatum Systems I by ATTAL et al. [1, p. 83].

Theorem 2.3 (Riesz-Markov-Kakutani). Let X be compact T_2 then we have

 $C(X)^* \cong \{\mu : \mu \text{ complex baire measure on } X\}.$

Where the isomorphism is given by:

$$\mu\mapsto \int_X f\mathrm{d}\mu$$

We can now proof (a) and (b) from the Stinespring, Arveson theorem.

Proof (a). We assume that \mathcal{A} is unital and $\mathcal{B} \subset \mathcal{B}(H)$. Thus we get

$$\mathcal{A} \cong C(X)$$

for X compact and T_2 . We identify $a \in \mathcal{A}$ with $a(x) \in C(X)$ Thus for $u, v \in H$ we can write the linear functional:

$$\langle v, \Phi(a)u \rangle = \int_X a(x) \mathrm{d}\mu_{u,v}$$

as an integral with complex bair measure $\mu_{u,v}$. Let now $u_1, \ldots, u_n \in H$ we define:

$$\mathrm{d}\mu := \sum_{i,j=1}^{n} |\mathrm{d}\mu_{u_i,u_j}|, \quad u := \sum_{i=1}^{n} \lambda_i u_i$$

for some $\lambda_i \in \mathbb{C}$. Using Radon-Nykodim we can write:

$$\mathrm{d}\mu_{u,u} = \left(\sum_{i,j=1}^{n} \overline{\lambda_i} \lambda_j h_{u_i,u_j}\right) \mathrm{d}\mu$$

for h_{u_i,u_j} the derivatives of $d\mu_{u_i,u_j}$ with respect to $d\mu$. Since Φ is positive we get that $d\mu_{u,u} \ge 0$. But since $d\mu \ge 0$ by construction we get that

$$\sum_{i,j=1}^{n} \overline{\lambda_i} \lambda_j h_{u_i,u_j} \ge 0 \quad \mu\text{-a.e}$$

Let now $a_1, \ldots, a_n \in \mathcal{A}$ then we get

$$\sum_{i,j=1}^{n} \langle u_i, \Phi(a_i^* a_j) u_j \rangle = \int_X \left(\sum_{i,j=1}^{n} \overline{a_i(x)} a_j(x) h_{u_i, u_j} \right) \mathrm{d}\mu \ge 0$$

Proof (b). As above we identify $B \cong C(X)$ thus by linearity of Φ we get:

$$\sum_{i,j=1}^{n} b_i^* \Phi(a_i^* a_j) b_j = \sum_{i,j=1}^{n} \overline{b_i(x)} \Phi(a_i^* a_j) b_j(x)$$
$$= \Phi\left(\sum_{i,j=1}^{n} \overline{b_i(x)} a_i^* a_j b_j(x) \right)$$
$$= \Phi\left(\left[\sum_{i=1}^{n} b_i(x) a_i \right]^* \left[\sum_{i=1}^{n} b_i(x) a_i \right] \right)$$

which is positive by positivity of Φ .

3 **General Case**

Definition 3.1. Let $\Phi : \mathcal{A} \to \mathcal{B}$ be any map. We define:

$$\Phi_n: \mathcal{M}_n(\mathcal{A}) \to \mathcal{M}_n(\mathcal{B})$$
$$(a_{ij})_{ij} \mapsto (\Phi(a_{ij}))_{ij}$$

Definition 3.2. A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ between *-algebras is called *n*-positive if Φ_n is positive.

Proposition 3.1. A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ between *-algebras is completely positive if and only if it is n-positive for all $n \in \mathbb{N}$

Remark 3.1. Let $\mathcal{A} = \mathcal{B}(H)$ with $P, Q \in \mathcal{A}^+$ and $A \in \mathcal{A}$ then the following two statements are equivalent.

- 1. $\begin{pmatrix} P & A \\ A^* & Q \end{pmatrix}$ is positive
- 2. $|\langle u, Av \rangle|^2 \leq \langle u, P, u \rangle \langle v, Q, v \rangle \quad \forall u, v \in H$

Proposition 3.2. Let \mathcal{A}, \mathcal{B} be two unital C^* -algebras then

1. for
$$a \in \mathcal{A}$$
: $||a|| \le 1$ if and only if the matrix $\begin{pmatrix} \mathbb{1} & a \\ a^* & \mathbb{1} \end{pmatrix}$ is positive

2. for
$$b \in \mathcal{A}^+$$
 and $a \in \mathcal{A}$ we have $a^*a \leq b$ if and only if $\begin{pmatrix} \mathbb{1} & a \\ a^* & b \end{pmatrix}$ is positive

,

- 3. let $\Phi : \mathcal{A} \to \mathcal{B}$ be 2-positive then Φ is contractive.
- 4. let Φ as above then for $a \in \mathcal{A}$ we have $\Phi(a)^* \Phi(a) \leq \Phi(a^*a)$

Proof (1) \mathcal{C} (2). Notice that 1 is positive. Thus we can apply the result from the previous remark. This yields inequalities from functional analysis that give the statements. Proof (3): Take $a \in \mathcal{A}$ such that ||a|| = 1 apply Φ_2 to the matrix $\begin{pmatrix} \mathbb{1} & a \\ a^* & \mathbb{1} \end{pmatrix}$, which is positive by (1) so its image is also positive (since Φ is 2-positive). Thus again using (1) we get that $||\phi(x)|| \leq 1$ by linearity we get the statement. \Box

Proof (4): Let $a \in \mathcal{A}$ consider the calculation

$$\begin{pmatrix} \mathbb{1} & a \\ 0 & 0 \end{pmatrix}^* \begin{pmatrix} \mathbb{1} & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \mathbb{1} & a \\ a^* & a^*a \end{pmatrix}$$

which is positive by construction so its image under Φ_2

$$\begin{pmatrix} \mathbb{1} & \Phi(a) \\ \Phi(a)^* & \Phi(a^*a) \end{pmatrix}$$

is also positive and so by (2) we have that $\Phi(a)^* \Phi(a) \leq \Phi(a^*a)$.

Theorem 3.1 (Arveson). Let \mathcal{A} be a C^* -algebra, $S \subset \mathcal{A}$ an operator system and H a Hilbert space. For a given $\varphi \in CP(S, \mathcal{B}(H))$ there always exists a $\Phi \in CP(\mathcal{A}, \mathcal{B}(H))$ such that:

 $\Phi|_S = \varphi$

References

- Stéphane Attal, Alain Joye, and Claude-Alain Pillet, editors. Open Quantum Systems I. Springer Berlin Heidelberg, 2006.
- [2] Stéphane Attal, Alain Joye, and Claude-Alain Pillet, editors. Open Quantum Systems II. Springer Berlin Heidelberg, 2006.