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3.1 Basics of Ergodic Theory

Definition 0.1 A dynamical system (X, φt, µ) is mixing if for any µ−absolutely
continuous measure ρ and all abservable f ∈ L∞(X, dµ) it holds:

lim
t→∞

ρt( f ) = µ( f ).

Proposition 0.2 Mixing implies ergodicity.

Proof Let A be an invariant set modulo µ, such that µ(A) > 0. Then
ρ( f ) = µ( fχA)/µ(A) defines a µ−absolutely continuous invariant measure
with ρ(A) = 1. If µ is mixing, then

1 = ρ(A) = ρt(A) = lim
t→∞

ρt(A) = µ(A).

With Theorem 3.6 from the book, we can conclude that µ is ergodic. □

Note that the reverse statement (ergodicity implies mixing) is not true.

3.2 Classical Koopmanism

Definition 0.3 The Koopman space of the dynamical system (X, φt, µ) is the
Hilbert space H = L2(X, dµ). On this space, the Koopman operators Ut are
defined by

Ut f ≡ f ◦ φt.

In the following we assume that the Koopman space is separable.

Lemma 0.4 (Koopman Lemma) If H is separable, then Ut is a strongly continu-
ous group of unitary operators on H.

Proof It has already been shown in the book that Ut is a group of isometries
on H. Since UtU−t = I, we have ran(Ut) = H and therefore Ut is unitary.
Since the map t 7→ ( f , Utg) is measurable and H is separable, it follows from
theorem 0.6 that t 7→ Ut is strongly continuous. □

Definition 0.5 There exists a self-adjoint operator L on H, such that Ut = e−itL.
We call L the Liouvillean of the system.

Theorem 0.6 (Mean ergodic Theorem) Let Ut = e−itA be a strongly continu-
ous group of unitaries on a Hilbert space H, P the orthogonal projection on Ker(A).
Then we have for all f ∈ H

lim
T→∞

1
T

∫ T

0
Ut f dt = P f .
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Proof Since Ut is continuous, ⟨ f ⟩T = 1
T

∫ T
0 Ut f dt is well defined by the

Riemann integral. For all f ∈ ran(A) and some g ∈ D(A), we have:

Ut f = Ut Ag = iδtUtg.

Putting this into the integral, we get

lim
T→∞

⟨ f ⟩T = lim
T→∞

1
T

∫ T

0
iδtUtg dt = lim

T→∞

i
T
(UT − I)g = 0.

With ∥⟨u⟩T − ⟨v⟩T∥ ≤ ∥u − v∥ the above result holds for all f ∈ ran(A) =
Ker(A)⊥. Note that f ∈ Ker(A) implies ⟨ f ⟩T = f . Therefore

lim
T→∞

⟨ f ⟩T = lim
T→∞

⟨P f ⟩T + lim
T→∞

⟨(I − P) f ⟩T = P f . □

Theorem 0.7 (Koopman Ergodicity Criterion) A dynamical system is ergodic
if and only if 0 is a simple eigenvalue of its Liouvillean L.

Proof ⇒: Let f ∈ Ker(L). Then f is an invariant function in L1(X, dµ) and
by Theorem 3.6, we know that if µ is ergodic, then f = µ( f ). And therefore
the dimension of Ker(L) is 1.
⇐: Assume now that Ker(L) is one-dimensional and let A be an invariant
set modulo µ. So χA ∈ H is invariant and therefore χA ∈ Ker(L). Since
χA = µ(A), it follows that µ(A) ∈ {0, 1} and with Theorem 3.6 we can
conclude that µ is ergodic. □

Theorem 0.8 (Koopman Mixing Criterion) A dynamical system is mixing if
and only if

w − limt→∞Ut = (1, ·)1. (0.1)

Proof ⇒: Set H1+ := {g ∈ H|g ≥ 0, µ(g) = 1}. Any g ∈ H1+ is the Randon-
Nikodym derivative of some µ−absolutely continuous probability ρ, so we
get for all f ∈ L∞(X, dµ)

(g, Ut f ) = ρt( f ) t→∞−−→ µ( f ) = (g, 1)(1, f ). (0.2)

Because every g ∈ H is a finite linear combination of elements in H1+, this
holds for all g ∈ H. Since the left and the right hand side of equation 0.2 are
H-continuous in f and uniformly in t and with the fact that L∞ is dense in
H, equation 0.1 follows.
⇐: Suppose that ρ is a µ−absolutely continuous probability and g its Randon-
Nikodym derivative. Assume that g ∈ H. With equation 0.1 we get

lim
t→∞

ρt( f ) = µ( f )

for all f ∈ L∞. ρt( f ) is L1−continuous in g and uniformly in t. So with the
fact that H is dense in L1, it follows that the system is mixing. □
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