Classical Systems, Chapter 3

3.1 Basics of Ergodic Theory

Definition 0.1 A dynamical system (X, φ_t, μ) is *mixing* if for any μ -absolutely continuous measure ρ and all abservable $f \in L^{\infty}(X, d\mu)$ it holds:

$$\lim_{t\to\infty}\rho_t(f)=\mu(f).$$

Proposition 0.2 *Mixing implies ergodicity.*

Proof Let *A* be an invariant set modulo μ , such that $\mu(A) > 0$. Then $\rho(f) = \mu(f_{\chi_A})/\mu(A)$ defines a μ -absolutely continuous invariant measure with $\rho(A) = 1$. If μ is mixing, then

$$1 = \rho(A) = \rho_t(A) = \lim_{t \to \infty} \rho_t(A) = \mu(A).$$

With Theorem 3.6 from the book, we can conclude that μ is ergodic.

Note that the reverse statement (ergodicity implies mixing) is not true.

3.2 Classical Koopmanism

Definition 0.3 The **Koopman space** of the dynamical system (X, φ_t, μ) is the Hilbert space $\mathcal{H} = L^2(X, d\mu)$. On this space, the **Koopman operators** U^t are defined by

$$U^t f \equiv f \circ \varphi_t.$$

In the following we assume that the Koopman space is separable.

Lemma 0.4 (Koopman Lemma) If \mathcal{H} is separable, then U^t is a strongly continuous group of unitary operators on \mathcal{H} .

Proof It has already been shown in the book that U^t is a group of isometries on \mathcal{H} . Since $U^t U^{-t} = I$, we have $ran(U^t) = \mathcal{H}$ and therefore U^t is unitary. Since the map $t \mapsto (f, U^t g)$ is measurable and \mathcal{H} is separable, it follows from theorem 0.6 that $t \mapsto U^t$ is strongly continuous.

Definition 0.5 *There exists a self-adjoint operator* L *on* H*, such that* $U^t = e^{-itL}$ *. We call* L *the Liouvillean of the system.*

Theorem 0.6 (Mean ergodic Theorem) Let $U^t = e^{-itA}$ be a strongly continuous group of unitaries on a Hilbert space \mathcal{H} , P the orthogonal projection on Ker(A). Then we have for all $f \in \mathcal{H}$

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T U^t f\,dt = Pf.$$

Proof Since U^t is continuous, $\langle f \rangle_T = \frac{1}{T} \int_0^T U^t f \, dt$ is well defined by the Riemann integral. For all $f \in ran(A)$ and some $g \in D(A)$, we have:

$$U^t f = U^t A g = i \delta_t U^t g.$$

Putting this into the integral, we get

$$\lim_{T\to\infty} \langle f \rangle_T = \lim_{T\to\infty} \frac{1}{T} \int_0^T i \delta_t U^t g \, dt = \lim_{T\to\infty} \frac{i}{T} (U^T - I)g = 0.$$

With $\|\langle u \rangle_T - \langle v \rangle_T\| \le \|u - v\|$ the above result holds for all $f \in \overline{ran(A)} = Ker(A)^{\perp}$. Note that $f \in Ker(A)$ implies $\langle f \rangle_T = f$. Therefore

$$\lim_{T \to \infty} \langle f \rangle_T = \lim_{T \to \infty} \langle Pf \rangle_T + \lim_{T \to \infty} \langle (I - P)f \rangle_T = Pf.$$

Theorem 0.7 (Koopman Ergodicity Criterion) A dynamical system is ergodic *if and only if 0 is a simple eigenvalue of its Liouvillean L.*

Proof \Rightarrow : Let $f \in Ker(L)$. Then f is an invariant function in $L^1(X, d\mu)$ and by Theorem 3.6, we know that if μ is ergodic, then $f = \mu(f)$. And therefore the dimension of Ker(L) is 1.

 \leq : Assume now that *Ker*(*L*) is one-dimensional and let *A* be an invariant set modulo *µ*. So $\chi_A \in \mathcal{H}$ is invariant and therefore $\chi_A \in Ker(L)$. Since $\chi_A = \mu(A)$, it follows that $\mu(A) \in \{0,1\}$ and with Theorem 3.6 we can conclude that *µ* is ergodic. □

Theorem 0.8 (Koopman Mixing Criterion) A dynamical system is mixing if and only if

$$w - \lim_{t \to \infty} U^t = (1, \cdot)1. \tag{0.1}$$

Proof \Rightarrow : Set $\mathcal{H}_{1+} \coloneqq \{g \in \mathcal{H} | g \ge 0, \mu(g) = 1\}$. Any $g \in \mathcal{H}_{1+}$ is the Randon-Nikodym derivative of some μ -absolutely continuous probability ρ , so we get for all $f \in L^{\infty}(X, d\mu)$

$$(g, U^t f) = \rho_t(f) \xrightarrow{t \to \infty} \mu(f) = (g, 1)(1, f).$$

$$(0.2)$$

Because every $g \in \mathcal{H}$ is a finite linear combination of elements in \mathcal{H}_{1+} , this holds for all $g \in \mathcal{H}$. Since the left and the right hand side of equation 0.2 are \mathcal{H} -continuous in f and uniformly in t and with the fact that L^{∞} is dense in \mathcal{H} , equation 0.1 follows.

 \leq : Suppose that *ρ* is a *µ*−absolutely continuous probability and *g* its Randon-Nikodym derivative. Assume that *g* ∈ *H*. With equation 0.1 we get

$$\lim_{t\to\infty}\rho_t(f)=\mu(f)$$

for all $f \in L^{\infty}$. $\rho_t(f)$ is L^1 -continuous in g and uniformly in t. So with the fact that \mathcal{H} is dense in L^1 , it follows that the system is mixing.