4.2 The modular group

Julia Burnello

October 27, 2023

Abstract

This summary focuses on section 4.2 of the chapter about modular theory in the published lecture notes on Open Quantum Systems by S. Attal, C.-A. Pillet, and A. Joye [AJ06]. Central to the chapter is the concept of the modular group, defined by $\sigma_{t}(A)=\Delta^{i t} A \Delta^{-i t}$ for $A \in \mathrm{~B}(\mathrm{H})$. We give a proof of Tomita-Takesaki's theorem in the case when Δ is a bounded operator. Then one shows that $$
w\left(A \sigma_{t}(B)\right)=w\left(\sigma_{t+i}(B) A\right)
$$ for all $A, B \in \mathrm{M}$ and remarks that the automorphism group satisfying that equation is unique for a given state w. At the end, one summarizes a proof of an equivalence concerning the group $\sigma_{t}(A)=e^{i t H} A e^{-i t H}$ of automorphisms on $\mathrm{B}(K)$, when H is a self-adjoint operator on K.

1 Repetition of modular theory

First let us reintroduce the operators that will be important for the understanding of the modular group. Let (M, w) be a pair of a von Neumann algebra acting on some Hilbertspace and w a normal, faithful state on the Hilbertspace.
We can consider its Gelfand-Naimark-Segal (G.N.S.) representation which consists of the triple (H, π, Ω), where H is the Hilbertspace, π the representation of M in $\mathrm{B}(H)$ and Ω a unit vector in H such that
(i) π is a morphism from M to $\mathrm{B}(H)$
(ii) $w(A)=<\Omega, \pi(A) \Omega>\forall A \in \mathrm{M}$
(iii) $\{\pi(A) \Omega, A \in \mathrm{M}\}$ is dense in H.

One can then identify each element $A \in \mathrm{M}$ with its representation $\pi(A) \in \mathrm{B}(H)$. This is important in the definition of the following operators:

$$
\begin{aligned}
S_{0}:=\mathrm{M} \Omega & \rightarrow \mathrm{M} \Omega \\
A \Omega & \rightarrow A^{*} \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
F_{0}:=\mathrm{M}^{\prime} \Omega & \rightarrow \mathrm{M}^{\prime} \Omega \\
A \Omega & \rightarrow A^{*} \Omega
\end{aligned}
$$

where M^{\prime} is the commutant of M . The operators S and F are the closed extensions of the operators defined beforehand.
As showed in a previous chapter of the book [AJ06], it holds that $S=S^{-1}$ and $F=S^{*}$.
We now define the modular operator

$$
\Delta:=F S=S^{*} S
$$

that is invertible with inverse $\Delta^{-1}:=S F=S S^{*}$.

Besides that we define the modular conjugation J such that

$$
S=J\left(S^{*} S\right)^{1 / 2}
$$

is an anti-isometry from $H \rightarrow H$, which means that $\langle S v, S w>=<w, v>$ for all $v, w \in H$.
With the help of the modular conjugation, we get

$$
\begin{gather*}
S=J \Delta^{1 / 2}=\Delta^{-1 / 2} J \tag{1}\\
F=\Delta^{1 / 2} J=J \Delta^{-1 / 2} \tag{2}
\end{gather*}
$$

The following properties were also shown in the chapter beforehand:

$$
\begin{align*}
J & =J^{-1} \tag{3}\\
\Delta^{i t} J & =J \Delta^{i t} \tag{4}
\end{align*}
$$

2 Tomita-Takesaki's theorem

For the well-definedness of the modular group that will be introduced later, we show the following lemma for bounded operators which is then generalized by Tomita-Takesaki's theorem that holds for unbounded operators as well. The proof of the theorem can be found here [Tak03] and uses left and right Hilbertspace algebras.

Lemma 1 Let us assume that Δ is bounded.
(i) $\mathrm{SMS} \subset \mathrm{M}^{\prime}$
(ii) $\mathrm{FM}^{\prime} \mathrm{F} \subset \mathrm{M}$
(iii) $\Delta^{n} \mathrm{M} \Delta^{-n} \subset \mathrm{M} \forall n \in \mathbb{N}_{0}$
(iv) $\Delta^{\mathrm{z}} \mathrm{M} \Delta^{-\mathrm{z}}=\mathrm{M} \forall z \in \mathbb{C}$
(v) $\mathrm{JMJ}=\mathrm{M}^{\prime}$

Proof 1 (i) We want to show that $S A S$ and B commute for A, B arbitrary in $\mathrm{B}(H)$, then $S A S$ lies in $\mathrm{M}^{\prime}=\{B \in \mathrm{~B}(H) \mid B \mathrm{M}=\mathrm{M} B\}$.
Let $C \in \mathrm{M}$, then by the definition of S :

$$
S A S(B C \Omega)=S\left(A C^{*} B^{*} \Omega\right)=B C A^{*} \Omega=B S\left(A C^{*} \Omega\right)=B S A S(C \Omega)
$$

So by the the density of $\{A \Omega, A \in \mathrm{M}\}$ in H, the first inclusion follows.
(ii) follows by a similar argument as i)
(iii) We show $\Delta \mathrm{M} \Delta^{-1} \subset \mathrm{M}$ and the statement follows by induction over \mathbb{N}.

$$
\Delta \mathrm{M} \Delta^{-1}=(F S) \mathrm{M}(S F) \stackrel{i)}{\subset} F \mathrm{M}^{\prime} F \stackrel{i i)}{\subset} \mathrm{M}
$$

(iv) In order to extend the statement from N to the complex plane C, one uses complex analysis argumentation. Carlson's theorem states that if
(a) $f(z)$ is an entire function of exponential type (i.e. such that $|f(z)|<c e^{\tau|z|}$ for $c, \tau \in \mathbb{R}$).
(b) $\exists c<\pi$ such that $|f(i y)|<c e^{c|y|}$ for $y \in \mathbb{R}$
(c) $f(n)=0 \forall n \in \mathbb{N}$ implies $f=0$,
then $f(z)=0$ for all $z \in \mathbb{C}$.
We can apply this theorem to the function

$$
\begin{equation*}
f(z)=\|\Delta\|^{-2 z}<\phi,\left[\Delta^{z} A \Delta^{-z}, A^{\prime}\right] \psi> \tag{5}
\end{equation*}
$$

for any $A \in \mathrm{M}, A^{\prime} \in \mathrm{M}^{\prime}$ and $\phi, \psi \in H$. (Some details left out)
(v)

$$
\begin{array}{ll}
J \mathrm{M} J \stackrel{i v)}{=} J \Delta^{1 / 2} \mathrm{M} \Delta^{-1 / 2} J & =S \mathrm{M} S \stackrel{\mathrm{M}}{ }_{\prime}^{\subset} \\
J \mathrm{M}^{\prime} J \stackrel{i v)}{=} J \Delta^{-1 / 2} \mathrm{M}^{\prime} \Delta^{1 / 2} J & =F \mathrm{M}^{\prime} F \stackrel{i i)}{\subset} \mathrm{M}
\end{array}
$$

As $J=J^{-1}$, the second equation can be rewritten as $\mathrm{M}^{\prime} \subset J \mathrm{M} J$ and $\mathrm{M}^{\prime}=J \mathrm{M} J$ follows.

Theorem 1 (Tomita-Takesaki's theorem) For Δ arbitrary, it holds that

$$
\begin{align*}
\mathrm{JMJ} & =\mathrm{M}^{\prime} \tag{6}\\
\Delta^{i t} \mathrm{M} \Delta^{-i t} & =\mathrm{M} \tag{7}
\end{align*}
$$

3 The modular group

Let us define the following automorphism group of M :

$$
\sigma_{t}(A):=\Delta^{i t} A \Delta^{-i t}, A \in \mathrm{~B}(H)(8)
$$

We will first prove a property of this automorphism group that we will later see is unique to this automorphism group:

Theorem 2 For all $A, B \in \mathrm{M}$

$$
\begin{equation*}
w\left(A \sigma_{t}(B)\right)=w\left(\sigma_{t+i}(B) A\right) \tag{9}
\end{equation*}
$$

Proof 2

$$
\begin{aligned}
w\left(A \sigma_{t}(B)\right) & =<\Omega, A \Delta^{i t} B \Delta^{i t} \Omega> \\
& =<\Delta^{-i t} A^{*} \Omega, B \Omega> \\
& =<\Delta^{-i t-1} \Delta^{1 / 2} A^{*} \Omega, \Delta^{1 / 2} B \Omega> \\
& =<J \Delta^{1 / 2} B \Omega, J^{2} \Delta^{-i t+1} J \Delta^{1 / 2} A^{*} \Omega> \\
& =<S B \Omega, \Delta^{-i t+1} S A^{*} \Omega> \\
& =<B^{*} \Omega, \Delta^{-i(t+i)} A \Omega> \\
& =<\Delta^{-i(t+i)} \Omega, B \Delta^{-i(t+i)} A \Omega> \\
& =w\left(\sigma_{t+i}(B) A\right)
\end{aligned}
$$

where we used that J is an anti-isometry, that $J^{2}=I d$ and that $\Delta \Omega=\Omega$.
We also used that $\Delta^{-i t} \Delta^{1}=\Delta^{i t} S F=\Delta^{-i t} J \Delta^{1 / 2} \Delta^{1 / 2} J=J \Delta^{i t+1} J$, where we exploited the fact that J and $\Delta^{i t}$ commute.

Next we will just state a uniqueness statement concerning σ_{t}. A proof is found in the book[AJ06].
Theorem $3 \sigma_{t}$ is the only automorphism group to satisfy 9 on M for a given w.
So the property $w\left(A \sigma_{t}(B)\right)=w\left(\sigma_{t+i}(B) A\right)$ for all $A, B \in \mathrm{M}$ uniquely defines the modular group.

Finally we will define another automorphism group by

$$
\begin{equation*}
\sigma_{t}(A):=e^{i t H} A e^{-i t H} \tag{10}
\end{equation*}
$$

for H self-adjoint on K.

Theorem 4 Let w be a state such that $w(A)=\operatorname{tr}(\rho A)$ on $\mathrm{B}(K)$ with ρ being a positive trace-class operator with $\operatorname{tr}(\rho)=1$, for example a normal state.
Then it holds that for all $A, B \in \mathrm{~B}(K)$ and $t, \beta \in \mathbb{R}$:

$$
\begin{equation*}
w\left(A \sigma_{t}(B)\right)=w\left(\sigma_{t-\beta_{i}}(B) A\right) \tag{11}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\rho=\frac{1}{Z} e^{-\beta H} \tag{12}
\end{equation*}
$$

where $Z=\operatorname{tr}\left(e^{-\beta H}\right)$.
Proof 3 Lets assume that $\rho=\frac{1}{Z} e^{-\beta H}$, then by straightforward calculation using the cyclic permutation property of the trace, it follows

$$
\begin{aligned}
w\left(A \sigma_{t}(B)\right) & =\operatorname{tr}\left(\rho A e^{i t H} B e^{i t H}\right) \\
& =\frac{1}{Z} \operatorname{tr}\left(e^{-\beta H} A e^{i t H} B e^{i t H}\right) \\
& =\frac{1}{Z} \operatorname{tr}\left(A e^{-\beta H} e^{(i t+\beta) H} B e^{-(i t+\beta) H}\right) \\
& =\frac{1}{Z} \operatorname{tr}\left(e^{-\beta H} \sigma_{t-\beta_{i}}(B) A\right) \\
& =w\left(\sigma_{t-\beta_{i}}(B) A\right)
\end{aligned}
$$

For showing the other implication, one sees that by setting to that

$$
w(A B)=w\left(A \sigma_{0}(B)\right)=w\left(\sigma_{-\beta i}(B) A\right)=\operatorname{tr}\left(\rho e^{\beta H} B e^{-\beta H} A\right)=\operatorname{tr}\left(A \rho e^{\beta H} B e^{-\beta H}\right)
$$

holds for all $A \in \mathrm{~B}(K)$ as well as

$$
w(A B)=\operatorname{tr}(\rho A B)=\operatorname{tr}(A B \rho)
$$

As A is chosen arbitrarily, we get that

$$
\begin{gathered}
B \rho=\rho e^{\beta H} B e^{-\beta H} \\
B\left(\rho e^{\beta H}\right)=\left(\rho e^{\beta H}\right) B
\end{gathered}
$$

which again holds for all $B \in \mathrm{~B}(K)$.
So it follows that for some $\alpha \in \mathbb{R}$

$$
\rho e^{\beta H}=\alpha I d
$$

As $\operatorname{tr}(\rho)=1$, we get that $\alpha=\frac{1}{\operatorname{tr}\left(e^{-\beta H}\right)}$ and the statement follows.

References

[AJ06] C.-A. Pillet Attal, S. and Alain Joye. Open quantum systems- the hamiltonian approach. Springer, page 86 to 99, 2006.
[Tak03] Masamichi Takesaki. Theory of operator algebras ii. Encyclopaedia of Mathematical Sciences, 125, 2003.

