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Abstract

This summary focuses on section 4.2 of the chapter about modular theory in the published
lecture notes on Open Quantum Systems by S. Attal , C.-A. Pillet, and A. Joye [AJ06].
Central to the chapter is the concept of the modular group, defined by σt(A) = ∆itA∆−it for
A ∈ B(H).
We give a proof of Tomita-Takesaki’s theorem in the case when ∆ is a bounded operator. Then
one shows that

w(Aσt(B)) = w(σt+i(B)A)

for all A,B ∈ M and remarks that the automorphism group satisfying that equation is unique
for a given state w. At the end, one summarizes a proof of an equivalence concerning the group
σt(A) = eitHAe−itH of automorphisms on B(K), when H is a self-adjoint operator on K.

1 Repetition of modular theory

First let us reintroduce the operators that will be important for the understanding of the modular
group. Let (M, w) be a pair of a von Neumann algebra acting on some Hilbertspace and w a normal,
faithful state on the Hilbertspace.
We can consider its Gelfand-Naimark-Segal (G.N.S.) representation which consists of the triple (H,π,Ω),
where H is the Hilbertspace, π the representation of M in B(H) and Ω a unit vector in H such that

(i) π is a morphism from M to B(H)

(ii) w(A) =< Ω, π(A)Ω > ∀A ∈ M

(iii) {π(A)Ω , A ∈ M} is dense in H.

One can then identify each element A ∈ M with its representation π(A) ∈ B(H). This is important in
the definition of the following operators:

S0 := MΩ → MΩ

AΩ → A∗Ω

and

F0 := M’Ω → M’Ω

AΩ → A∗Ω

where M’ is the commutant of M . The operators S and F are the closed extensions of the operators
defined beforehand.
As showed in a previous chapter of the book [AJ06], it holds that S = S−1 and F = S∗.

We now define the modular operator

∆ := FS = S∗S
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that is invertible with inverse ∆−1 := SF = SS∗.

Besides that we define the modular conjugation J such that

S = J(S∗S)1/2

is an anti-isometry from H → H, which means that < Sv, Sw >=< w, v > for all v, w ∈ H.
With the help of the modular conjugation, we get

S = J∆1/2 = ∆−1/2J (1)

F = ∆1/2J = J∆−1/2. (2)

The following properties were also shown in the chapter beforehand:

J = J−1 (3)

∆itJ = J∆it. (4)

2 Tomita-Takesaki’s theorem

For the well-definedness of the modular group that will be introduced later, we show the following
lemma for bounded operators which is then generalized by Tomita-Takesaki’s theorem that holds for
unbounded operators as well. The proof of the theorem can be found here [Tak03] and uses left and
right Hilbertspace algebras.

Lemma 1 Let us assume that ∆ is bounded.

(i) SMS ⊂ M’

(ii) FM’F ⊂ M

(iii) ∆n M∆−n ⊂ M ∀n ∈ N0

(iv) ∆z M∆-z = M ∀z ∈ C

(v) JMJ = M’

Proof 1 (i) We want to show that SAS and B commute for A,B arbitrary in B(H), then SAS lies
in M′ = {B ∈ B(H)|BM = MB}.
Let C ∈ M, then by the definition of S:

SAS(BCΩ) = S(AC∗B∗Ω) = BCA∗Ω = BS(AC∗Ω) = BSAS(CΩ)

So by the the density of {AΩ , A ∈ M} in H, the first inclusion follows.

(ii) follows by a similar argument as i)

(iii) We show ∆M∆−1 ⊂ M and the statement follows by induction over N.

∆M∆−1 = (FS)M(SF )
i)
⊂ F M’F

ii)
⊂ M
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(iv) In order to extend the statement from N to the complex plane C, one uses complex analysis
argumentation. Carlson’s theorem states that if

(a) f(z) is an entire function of exponential type (i.e. such that |f(z)| < ceτ |z| for c, τ ∈ R).
(b) ∃c < π such that |f(iy)| < cec|y| for y ∈ R
(c) f(n) = 0∀n ∈ N implies f = 0,

then f(z) = 0 for all z ∈ C.
We can apply this theorem to the function

f(z) = ||∆||−2z < ϕ, [∆zA∆−z, A′]ψ > (5)

for any A ∈ M, A′ ∈ M’ and ϕ, ψ ∈ H. (Some details left out)

(v)

JM J
iv)
=J∆1/2 M∆−1/2J = SMS

i)
⊂ M’

JM’ J
iv)
=J∆−1/2 M’∆1/2J = F M’F

ii)
⊂ M

As J = J−1, the second equation can be rewritten as M’ ⊂ JM J and M’ = JM J follows.

Theorem 1 (Tomita-Takesaki’s theorem) For ∆ arbitrary, it holds that

JMJ = M’ (6)

∆it M∆−it = M (7)

3 The modular group

Let us define the following automorphism group of M :

σt(A) := ∆itA∆−it , A ∈ B(H)(8)
We will first prove a property of this automorphism group that we will later see is unique to this
automorphism group:

Theorem 2 For all A,B ∈ M
w(Aσt(B)) = w(σt+i(B)A) (9)

Proof 2

w(Aσt(B)) =< Ω, A∆itB∆itΩ >

=< ∆−itA∗Ω, BΩ >

=< ∆−it−1∆1/2A∗Ω,∆1/2BΩ >

=< J∆1/2BΩ, J2∆−it+1J∆1/2A∗Ω >

=< SBΩ,∆−it+1SA∗Ω >

=< B∗Ω,∆−i(t+i)AΩ >

=< ∆−i(t+i)Ω, B∆−i(t+i)AΩ >

= w(σt+i(B)A)

where we used that J is an anti-isometry, that J2 = Id and that ∆Ω = Ω.
We also used that ∆−it∆1 = ∆itSF = ∆−itJ∆1/2∆1/2J = J∆it+1J , where we exploited the fact that
J and ∆it commute.
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Next we will just state a uniqueness statement concerning σt. A proof is found in the book[AJ06].

Theorem 3 σt is the only automorphism group to satisfy 9 on M for a given w.

So the property w(Aσt(B)) = w(σt+i(B)A) for all A,B ∈ M uniquely defines the modular group.

Finally we will define another automorphism group by

σt(A) := eitHAe−itH (10)

for H self-adjoint on K.

Theorem 4 Let w be a state such that w(A) = tr(ρA) on B(K) with ρ being a positive trace-class
operator with tr(ρ) = 1, for example a normal state.
Then it holds that for all A,B ∈ B(K) and t, β ∈ R:

w(Aσt(B)) = w(σt−βi
(B)A) (11)

if and only if

ρ =
1

Z
e−βH (12)

where Z = tr(e−βH).

Proof 3 Lets assume that ρ = 1
Z e

−βH , then by straightforward calculation using the cyclic permutation
property of the trace, it follows

w(Aσt(B)) = tr(ρAeitHBeitH)

=
1

Z
tr(e−βHAeitHBeitH)

=
1

Z
tr(Ae−βHe(it+β)HBe−(it+β)H)

=
1

Z
tr(e−βHσt−βi

(B)A)

= w(σt−βi
(B)A).

For showing the other implication, one sees that by setting t to 0 that

w(AB) = w(Aσ0(B)) = w(σ−βi(B)A) = tr(ρeβHBe−βHA) = tr(AρeβHBe−βH)

holds for all A ∈ B(K) as well as

w(AB) = tr(ρAB) = tr(ABρ).

As A is chosen arbitrarily, we get that

Bρ = ρeβHBe−βH

B(ρeβH) = (ρeβH)B

which again holds for all B ∈ B(K).
So it follows that for some α ∈ R

ρeβH = αId

As tr(ρ) = 1, we get that α = 1
tr(e−βH)

and the statement follows.
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