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1 An algebraic view on probability
At first, we will recap some of the main definitions. Then we will introduce algebraic notions that are
motivated by objects from standard probability theory.

Definition 1.1. Let U be a C-vector space with a bilinear multiplication operation U × U ∋ (u, v) 7→
uv ∈ U that is associative, i.e. ∀u, v, w ∈ U : (uv)w = u(vw). Then we call U an algebra. If it contains
a unity 1, we call U unital.

Definition 1.2. Let U be an algebra endowed with a map U ∋ u 7→ u∗ ∈ U that satisfies:

(i) for all u ∈ U : (u∗)∗ = u (involution).

(ii) for all α, β ∈ C and u, v ∈ U : (αu+ βv)∗ = ᾱu+ β̄v (antilinearity).

(iii) for all u, v ∈ U : (uv)∗ = v∗u∗.

Them we call U an *-algebra.
We further define the cone of positive elements U+ = {u∗u ∈ U | u ∈ U}, which induces a partial order1

on U : u ≤ v ⇐⇒ v − u ∈ U+.

Definition 1.3. Let U be an unital *-algebra, that satisfies:

(i) for all u ∈ U+ there is a λ ∈ R+ : u ≤ λ1.

(ii) if an increasing net (xj)j∈J has an upper bound in U+ it has a least upper bound supj uj ∈ U+.

Then we call U a D∗-algebra.

Until now, we did not consider any topological notions. However, we will now come back to a central
notion of this seminar with the next definition:

Definition 1.4. A normed *-algebra U is called a Banach algebra if it is complete w.r.t. the induced
metric and the norm satisfies ∥u∥ = ∥u∗∥ for all u ∈ U. The induced topology is called the uniform
topology.
We call a Banach algebra U a C∗-algebra if ∥u∗u∥ = ∥u∥2 for all u ∈ U. A subspace S of an unital
C*-algebra is called operator system if it contains the unity and S∗ ⊂ S.
If U ⊂ B(H) is a sub-C*-algebra of the bounded operators on some Hilbert space that satisfies U′′ = U
where U′′ denotes the double commutant, we call U a von Neumann algebra.

1To see that this not a total order, take for example matrices A,B s.t. A−B is indefinite.
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1 AN ALGEBRAIC VIEW ON PROBABILITY

Lemma 1.1 (characterization of von Neumann algebras). Let U ⊆ B(H) be a sub-C*-algebra of the
bounded operators on a Hilbert space, then TFAE:

• U′′ = U.

• U is weakly closed.

• there exist a predual U∗, which is a Banach space.

Proof. was already given on 13.10., see handout.

Definition 1.5. Let U be an unital *-algebra and E : U → C a linear functional on U that is positive:
E(u∗u) ≥ 0 for all u ∈ U and is normalized: E(1) = 1. We call such linear forms a state and a tuple
(U,E) an algebraic probability space. The set of all states is denoted S(U).

Definition 1.6. If B is another *-algebra and U is as above, then we call a map: ϕ : B → U an algebraic
random variable2, if it is a *-morphism (linearity and ∀a, b ∈ B : ϕ(a∗b) = ϕ(a)∗ϕ(b)). We call the
state E ◦ ϕ the image state or the law/distribution of ϕ.

The following example shows, how the standard description of probability theory fits into this frame-
work.
Example 1.1 (standard probability theory). Let (Ω,A, P ) be a probability space and let U = L∞(Ω,A)
be the set of real valued bounded measurable functions. Then U is a D∗-algebra and the expectation
value E : U ∋ X 7→ E(X) :=

∫
Ω
XdP a linear form that makes (U,E) into an algebraic probability space.

If now X ∈ U is a standard random variable, we can define ϕX : L∞(R) ∋ f 7→ f ◦X ∈ U, an algebraic
random variable. Notice that EϕX

(f) = E(f ◦ X) induces a measure on R given by the distribution
function of X, which is the image state of ϕX . ⊣

Definition 1.7. Let (U,E) be an algebraic probability space.
The state E is called normal, if for all increasing nets (xj)j∈J in U+ with a least upper bound x = supj xj

it holds that E(x) = supj E(xj). We denote the set of normal states on U as Sn(U).3

A pure state is a normal state E s.t. if φ is a positive linear functional on U that is majorized by E, it
follows that φ = λE for some λ ∈ [0, 1].
We call non pure states mixed.
Idempotent elements p ∈ U (i.e. p = p2) will be called algebraic events.

Example 1.2. Let us see how to interpret those definitions in a standard probability framework. Therefore
we continue example 1.1. By the dominated convergence theorem, we have that the expectation value is
a normal state on L∞(Ω,A). If P is e.g. a Dirac measure we have that E is pure. The events are exactly
those functions with values in {0, 1}, i.e. (measurable) characteristic functions. Notice that we have a
natural isomorphism between A and {1A | A ∈ A}, thus we have that we have a natural isomorphism
between algebraic events and events as a standard notion in probability theory. ⊣
Proposition 1.1. Let U be an unital C*-algebra and E a state. Then E is pure if and only if it is an
extremal point of the convex set Sn(U).

Proof. First let E be a pure state and assume it is a convex combination E = λE1 + (1 − λ)E2 with
E1,E2 ∈ Sn(U), but then E1,E2 ≤ E, so by purity the combination has to be trivial.

2"algebraic" is left out in the reference, however, for the sake of clarity it makes sense to distinguish between standard
RVs and algebraic RVs, it is also consistent with the term algebraic probability space.

3This definition is probably motivated by the dominated convergence theorem.
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2 COMPLETELY POSITIVE MAPS

On the other hand if E is extremal, suppose there was a non trivial linear functional φ < E that was not
of the form λE for some λ ∈ [0, 1]. Then we can write

E = φ(1) (
1

φ(1)
φ)︸ ︷︷ ︸

=:E1

+(1− φ(1)) (
1

1− φ(1)
)(E − φ)︸ ︷︷ ︸

=:E2

.

showing that E is not an extremal point in SnU. ⊣

Example 1.3 (a non commutative algebraic probability space). Let U = Cn×n be the complex square
matrices and ρ ∈ Cn×n be of unit trace. Define E(A) = tr(ρA) Then (U,E) is a non commutative
algebraic probability space.
Now let U ∈ U be an unitary matrix, then the map ϕU : U ∋ A → U∗AU ∈ U defines an algebraic
random variable.
The events P are exactly the matrices, that represent projections s.t. P 2 = P ⊣
Example 1.4. Let (Ω,B(Ω), P ) be a connected compact probability space. Set U = C(Ω,C), then
(U,E) is an algebraic probability space. Notice that all events are trivial characteristic functions on Ω are
constant by connectedness and continuity. ⊣

2 Completely positive maps

2.1 transition kernels

Definition 2.1. Let (Ω1,A1) and (Ω2,A2) be measurable spaces. We call a map κ : Ω2 ×A1 → [0,∞]
a transition kernel from Ω2 to Ω1, if

(i) ω2 7→ κ(ω2, A1) is A2 measurable ∀A1 ∈ A1.

(ii) Pω2 : A1 7→ κ(ω2, A1) is a probability measure on (Ω1,A1).4

Example 2.1 (product measures). 5 Let (X,A, µ) and (Y,B, ν) are two σ-finite measure spaces and let
(X × Y,A⊗ B) be the product measurable space. Then

κ : X × (A⊗ B) → [0,∞], (x,Q) 7→ ν({y ∈ Y | (x, y) ∈ Q}).

defines a (not necessarily Markov) from X to X × Y . ⊣
Example 2.2 (conditional probability). 6 If X1 is a random variable with values in (Ω1,A1, P ) and
F ⊆ A1 be a sub-σ-algebra. Then the conditional distribution of X1 given F is a transition kernel:

κX1,F (ω2, A1) = P [{X1 ∈ A1} | F ] := E[1A1(X2) | F ].

A special case of this is when F = σ(X2), where X2 is some random variable, then

κX2,σ(X1)(ω2, A1) = P [{X1 ∈ A1} | X2 = ω2].

Both of these are transition kernels from Ω2 to Ω1.
If we now consider (X1, X2) as tuple of random variables that takes values in Ω1 × Ω2 and Q is the
probability distribution of X2 then Pω2

is the conditional probability of X1 given X2 = ω2. ⊣
4(ii) is usually less strict, where we only demand A2 7→ κ(ω1, A2) to be a measure, if it is also a probability measure

∀ω1 ∈ Ω1 one usually calls κ Markov kernel.
5for details see chapter 7 in Salamon [3]
6for details see chapter 8 in Klenke [4]
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Example 2.3 (first encounter with complete positivity). Now consider the two C*-algebras: U = L∞(Ω1,A1)
and B = L∞(Ω2,A2) with the usual operations. Then a transition kernel κ induces a linear map

Φκ : U → B, (Φκ(u))(ω2) =

∫
Ω1

u(ω1)dPω2
.

This map is positive, as it maps positive functions/elements to positive functions/elements. It is also
completely positive (CP): for all ui ∈ U, bi ∈ B, i = 1, ..., n we have that

n∑
i,j=1

b∗iΦκ(u
∗
i uj)bj ∈ B.

is positive as for any ω2 ∈ Ω2.7.

Now suppose that (Ω2,A2, Q) is a probability space and define Ω = Ω2 ×Ω1. Let A = A2 ⊗A1 be
the product σ-algebra. Define the function E by:

E[b⊗ u] =

∫
Ω2

(Φκ(u))(ω2)b(ω2)dQ =

∫
Ω2

∫
Ω1

u(ω1)dPω2
b(ω2)dQ.

Notice that E[1Ω2
⊗ 1Ω1

] = 1 therefore this map induces8 a probability measure P on A and a state by
extending linearly.

At last consider U = L∞(Ω1,A1) and B = L2(Ω2,A2, Q) with the usual inner product. Take their
algebraic tensor product B⊗ U and define for b⊗ u, c⊗ v ∈ B⊗ U:

⟨b⊗ u, c⊗ v⟩h = ⟨b,Φκ(u
∗v)c⟩L2(Ω2,A2) =

∫
Ω2

b∗(ω2)(Φκ(u
∗v))(ω2)c(ω2)dQ.

By extending this linearly it becomes an inner product9. By modding out the kernel and taking the
completion, one gets the Hilbert space h and the following equation

E[b⊗ u] = ⟨1Ω2 ⊗ 1Ω1 , b⊗ u⟩h = ⟨1Ω2 ⊗ 1Ω1 , (b⊗ u)(1Ω2 ⊗ 1Ω1)⟩h.

which is reminiscent of the Gelfand-Naimark-Segal representation 10.
⊣

7Use the embedding L∞(Ω1,A1, Pω2 ) ↪→ L2(Ω1,A1, Pω2 ) for finite measure spaces, we get
(
∑n

i,j=1 b
∗
iΦκ(u∗

i uj)bj)(ω2) = ∥
∑n

i=1 bi(ω2)ui∥2L2(Ω1,A1,Pω2 )
.

8First use characteristic functions to get a premeasure on boxes, then use Caratheodory’s extension theorem.
9Note that the commutativity of the underlying algebras guarantees symmetry, positive definiteness follows from CP.

10see [1] chapter by Stephane Attal
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3 Table
The following table gives an overview of how to include standard notions from probability into algebraic
notions in operator theory. The notation should be clear from the previous discussion.

notion standard algebraic inclusion

probability space (Ω,A, P ) (U,E) U = L∞(Ω,A),
E(X) =

∫
Ω
XdP

event A ∈ A p = p2 ∈ U p = 1A

random variable X : Ω → C ϕ : B → U B = L∞(C),
ϕ(f) = X∗f

transition kernel κ : Ω2 ×A1 → [0, 1] Φ : U → B CP Φκ see example 2.3

Table 1: From standard notions to algebraic notions
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