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Abstract

In the last two decades applied topologists have developed numerous methods for ‘measur-

ing’ and building combinatorial representations of the shape of the data. The most famous

example of the former is persistent homology. This adaptation of classical homology assigns

a barcode, i.e. a collection of intervals with endpoints on the real line, to a finite metric

space.

Unfortunately, barcodes are not well-adapted for use by practitioners in machine learning

tasks. In this dissertation, I identify classes of max-plus polynomials and tropical rational

functions that can be used as coordinates on the space of barcodes. All of these are stable

with respect to standard distance functions (bottleneck distance, Wasserstein distances)

used on the barcode space. I demonstrate how these coordinates can be used by combining

persistent homology with SVM to classify numbers from the MNIST dataset.

In order to identify functions on the barcode space, I find generators for the semirings

of tropical polynomials, max-plus polynomials and tropical rational functions invariant un-

der the action of the symmetric group. The fundamental theorem of ordinary symmetric

polynomials has an equivalent in the tropical and max-plus semirings. There are interesting

differences if we consider the tropical polynomial semiring with nr variables that come in n

blocks of r variables each and are permuted by the symmetric group Sn. As opposed to the

ordinary polynomial case, the semiring of r-symmetric tropical polynomials is not finitely

generated, but the semiring of r-symmetric tropical rational functions is.
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Introduction

Classical topologists developed homology in order to ‘measure’ shape. In simplest terms,

homology counts the occurrences of patterns, such as the number of connected components,

loops and voids. The adaptation of homology to the study of point cloud data sets is called

persistent homology [22, 19, 10].

The idea is that the union of discs with radius r centered around points from the data

set recovers the underlying shape of the point cloud. We do not know a priori how to choose

the radius. Persistent homology computes and keeps track of the changes in the homology

of the Čech complex of a point cloud over a range of radii parameters r. The output is

a barcode, i.e. a collection of intervals. Each interval corresponds to a topological feature

which appears at the value of a parameter given by the left hand endpoint of the interval

and disappears at the value given by the right hand endpoint.

Barcodes have been useful for understanding the topology and geometry of individual

data sets in [9],[11], [2], etc. However, they can also be used in situations where the data

points themselves are equipped with geometric structure. For example, databases of chemi-

cal compounds and of images have this property. In this situation, by assigning barcodes to

the data points, we obtain a database of barcodes. Geometric structures on the collection

of barcodes are important for analyzing the database, using, for example, methods from

machine learning. One such structure is the bottleneck distance [15], which is a metric

imposed on the set of all persistence barcodes, complex vectors [20, 21] and persistence

1



2

landspaces [6] have also been used. One might also attempt to find a coordinate system on

the set of barcodes.

Adcock et al. [1] identified polynomials that can serve this purpose. The disadvantage

of using such coordinates is that they are not stable with respect to the standard distance

functions (bottleneck distance, Wasserstein distance) used on the barcode space. They

interpreted the space of persistence barcodes as embedded in the geometric points of an

affine scheme over R. As a result, some important functions, notably max and min functions,

were not included. This suggested to us that it would be valuable to carry out a parallel

analysis where tropical functions on the barcodes are studied. This is what I attempt to do

in my thesis.

Tropical geometry has been developed over the last two decades to understand a wide

variety of problems. Tropical polynomial problems are interpretable as linear problems,

with inequalities. This makes its methods useful in various kinds of optimization problems.

Tropical geometry can also be used to approximate, in an appropriate sense, ordinary

algebraic geometric problems, and therefore are useful in their solution. In addition, it

solves a number of enumerative geometric problems [26]. Although much work has been

done, there is not yet a complete translation of the methods of algebraic geometry to the

tropical situation. One of the main objects of study in algebraic geometry, invariant theory,

has to our knowledge not been studied in the tropical setting. In my thesis I initiate the

translation of invariant theory by studying some special cases. Although some ideas from

ordinary invariant theory translate, there are interesting differences.

Tropical algebra is based on the study of the tropical semiring (R∪ {∞},⊕,�). In this

semiring

a⊕ b := min (a, b) and a� b := a+ b.

A min-plus monomial expression is any product of variables x1, . . . , xn that represent ele-

ments in the tropical semiring, where repetition is allowed. A tropical monomial expression
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allows taking quotients in addition to products. Max-plus monomial expressions are defined

analogously, this time taking elements from the arctic semiring. Min-plus, max-plus and

tropical polynomial expressions are finite linear combinations of appropriate monomial ex-

pressions (tropical polynomials, the way they are defined by tropical algebraists, are really

Laurent polynomials, because negative exponents are allowed) and they all form semirings.

I define the degree of a polynomial expression following the ordinary polynomial case. I also

define rational tropical expressions as quotients of tropical polynomial expressions. The set

of equivalence classes is a semiring of rational tropical functions.

The passage from expressions to functions is not one-to-one. Because I am primarily

interested in studying functions on the barcode space, I identify expressions that define the

same functions. The quotient we obtain in the case of min-plus expressions is the semiring

of min-plus polynomials. I define the semirings of tropical and max-plus polynomials analo-

gously. Note that this is not the standard ‘polynomial semiring’ construction well known to

algebraists. Of course, whenever we deal with equivalence classes, we might ask ourselves

what the canonical representative of a class could be. I define the ‘minimal representation’

of a polynomial which arises from the graph and show that it exists and is unique. An-

other related question is: ‘Given a polynomial expression, when is a monomial appearing in

the expression redundant?’ I give a sufficient and necessary condition that involves convex

combinations of coefficients appearing in monomials. From here we can define the degree of

a polynomial (because we show that all expressions representing it have the same degree).

I call a tropical polynomial in n variables symmetric if it is invariant under the action of

Sn that permutes the variables. The fundamental theorem of ordinary symmetric polynomi-

als has an equivalent in min-plus, tropical and max-plus semirings. This is also generalized

to rational functions.

Furthermore, I consider the case when the tropical polynomial semiring has nr variables

that come in n blocks of r variables each and are permuted by the symmetric group Sn.

I call a tropical polynomial in nr variables r-symmetric if it is invariant under the action
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of Sn that permutes the blocks. I define elementary r-symmetric polynomials and show

that they separate orbits. As opposed to the ordinary polynomial case, the semiring of

r-symmetric tropical polynomials is not finitely generated, but the elementary r-symmetric

polynomials do generate r-symmetric rational functions.

Once all the algebra is in place, I move to the question of max-plus and tropical rational

functions on the barcode space. Aside from being symmetric, the functions should take

the same value if we adjoin zero length intervals. I first identify appropriate functions on

spaces of barcodes with a fixed number of bars and then assemble them to get functions on

the entire barcode space. Assembling them turns out to be somewhat problematic, because

the additive unit in the tropical semiring is ∞ and in the arctic semiring −∞. To fix this

I represent each interval by a pair (x, d), where x is the left endpoint and d the length

of the interval. The length is always nonnegative and I additionally assume that x ≥ 0.

This allows me to work within ([0,∞),max,+), where 0 is the unit with respect to max.

When assigning simplicial complexes to data sets, the parameter is the radius, which is

nonnegative, so this is not severe a restriction.

The only max-plus polynomials that satisfy these conditions are linear combinations

of lengths. I prove that these are stable, but the drawback is that there are not enough

of them to separate the barcodes. For this reason I turn my attention to tropical rational

functions. There seems to be little hope of trying to figure out what the relationship between

coefficients should be for a function to stay the same after adjoining a zero length vector.

Therefore I focused primarily on finding functions that would work even if the entire ring

of such functions is hard to describe. I identified a subsemiring of such functions, proved

that they separate points and that they are stable.

In the last part of the thesis I tested my coordinate functions on the MNIST dataset

of handwritten digits and compared the results with those obtained by Adcock et. al. [1].

The results were slightly better, but not by much. It turned out that functions that worked

best are linear combinations of lengths, which fits in with the intuition about barcodes, i.e.
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the longer the length, the greater the importance of a feature.

Overview:

In Chapter 1 I discuss different ways of assigning simplical complexes to point cloud

data and explain how persistent homology works. I rely on papers by Gunnar Carlsson [8,

7], Robert Ghrist [23] and Frédéric Chazal et al. [12].

In Chapter 2 I mention different methods for assigning vectors to barcodes, with an

emphasis on work by Adcock et. al. [1]. I also formally define the barcode space and

different metrics on it [1, 15]. I demostrate with an example that these coordinates are not

stable.

Chapter 3 focuses on the necessary definitions from tropical algebra. Aside from the def-

initions of the tropical and arctic semirings themselves and tropical polynomials, everything

is my work.

In Chapter 4 I introduce symmetric min-plus, tropical and max-plus polynomials and

study their properties. Among other things I prove that the fundamental theorem of ordi-

nary symmetric polynomials has an equivalent in min-plus, tropical and max-plus semirings.

This is also generalized to rational functions.

Chapter 5 continues discussion from Chapter 5, but with r-symmetric min-plus, tropical

and max-plus polynomials. The semiring of r-symmetric tropical polynomials is not finitely

generated, but quite surprisingly the elementary r-symmetric polynomials do generate r-

symmetric rational functions.

Chapter 6 is devoted to functions on the barcode space. We identify appropriate max-

plus polynomials and prove that they are stable. Because they do not separate points, we

take into account tropical rational functions as well. We show that no finite set of such

functions separates barcodes with a fixed number of bars (and therefore the whole barcode

space). I find a countably infinite set of functions that separate the barcodes and are stable.
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Chapter 7 presents the results of using coordinate functions identified in Chapter 6 on

the MNIST dataset.



Chapter 1

Persistent Homology

The rapid development of information technology in the last few decades has produced data

at an unprecedented rate. For example, businesses collect large amounts of information on

current and potential customers, biologists keep track of how predator/prey populations

change over time, medical doctors gather gene expression data from cancer patients, etc.

Even though specialists are interested in answers to concrete questions, like how to di-

vide customers into groups for marketing activities or how to confirm a circular model for

predator-prey populations, often what they are actually trying to understand is the shape

of the data.

Topology is the branch of mathematics which deals with shape. It does that in two dis-

tinct ways–by building compressed combinatorial representations of shapes (triangulation)

and by ‘measuring’ aspects of shape (homotopy groups, homology groups). In simplest

terms, homology counts the occurrences of patterns, such as the number of connected com-

ponents, loops and voids. The adaptation of this technique to the study of point cloud data

is called persistent homology. We always take homology groups with coefficients in a field

k.

The concept emerged independently in the work of Frosini, Ferri, and collaborators in

Bologna [22], Italy, of Robins at Boulder, Colorado [27], and of Edelsbrunner, Letscher and

7



1.1. CLOUDS OF DATA 8

Zomorodian at Duke, North Carolina [19]. Zomorodian and Carlsson then gave this idea a

firm theoretical footing [10].

There are a number of excellent introductory papers written on the topic. To write this

section, I drew inspiration from Topology and Data and Topological Pattern Recognition

for Point Cloud Data by Gunnar Carlsson [8, 7], Barcodes: The persistent topology of data

by Robert Ghrist [23] and the Structure and Stability of Persistence Modules by Frédéric

Chazal et al. [12].

A Software package for computing persistent homology and the accompanying JPlex

Matlab Tutorial are available at http://appliedtopology.github.io/javaplex/ [29].

1.1 Clouds of Data

Large datasets are often given in the form of very long vectors or arrays (for instance, DNA

sequences or pixel arrays) that reside in a space of potentially high dimension. Following

the common usage, we therefore call any finite collection of points in Rn a point cloud.

Consider the example in Figure 1.1. If asked about the shape of this data set, most

people would say that it is a circle or that the dots lie on a circle. For point clouds residing

in a low-dimensional ambient space, there are numerous approaches for inferring features

based on planar projections. But what if a point cloud lies in a very high-dimensional

space? How would we analyze it? A statistician might try to fit a Gaussian, an exponential

or some other standard descriptor to this collection of points. However, this is an example

where most standard methods of data analysis fail.

With continuous objects, like circles, mathematicians have no trouble determining the

presence of loops and higher dimensional voids. Homology is a standard tool. We can

compute homology groups by hand using a variety of techniques (exact sequence of a pair,

Mayer-Vietoris sequence, excision theorem), but direct computation from the definition

is not feasible for general spaces. For this reason we work with spaces equipped with

http://appliedtopology.github.io/javaplex/


1.2. FROM POINT CLOUDS TO SIMPLICIAL COMPLEXES 9
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Figure 1.1: A collection of points sampled from a noisy circle.

particularly nice structures, namely simplicial complexes.

1.2 From Point Clouds to Simplicial Complexes

Formally, an abstract simplicial complex K on a finite set of points V is a family of non-

empty subsets Σ of V such that σ ∈ Σ and τ ⊆ σ implies that τ ∈ Σ. We call V the set

of vertices. A τ ∈ K of size k + 1 is a k-simplex. A 0-simplex is a point or a vertex, a 1-

simplex is an edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron (see Figure 1.2

for examples). Intuitively, a simplicial complex structure on a space is an expression of

Figure 1.2: Examples of simplicial complexes.
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the space as a union of points, intervals, triangles, and higher dimensional analogues glued

together along faces.

Given a topological space X, there are a number of simplicial complexes which can be

constructed from X. One such is the nerve complex, which is extremely useful in homotopy

theory.

Definition 1.1. Let X be a topological space and let U = {Uα}α∈A be any covering of X.

The nerve of U , denoted by N U , is the abstract simplicial complex with vertex set A, and

where a family {α0, . . . , αk} spans a k-simplex if and only if Uα0 ∩ . . . ∩ Uαk 6= ∅.

We use the nerve because of the following theorem, which provides criteria that guar-

antee that N U is homotopy equivalent to the underlying space X [4].

Theorem 1.2. Suppose that X and U are as in Definition 1.1, and suppose that the covering

consists of open sets and is numerable. Suppose further that for all ∅ 6= T ⊆ A, we have

that
⋂
t∈T Ut is either contractible or empty. Then N U is homotopy equivalent to X.

With this theorem we can confidently approximate unions of certain open sets with

simplicial complexes. What remains is to choose a method for generating ‘good’ coverings.

If X is a metric space, we can take a covering consisting of balls of radius ε: {Bε(x)}x∈X .

The nerve associated to this covering is called the Čech complex and denoted by Č(X, ε).

Theorem 1.3. Let M be a compact Riemannian manifold. Then there is a positive number

e so that Č(M, ε) is homotopy equivalent to M whenever ε ≤ e. Moreover, for every ε ≤ e,

there is a finite subset V ⊆M so that the subcomplex of Č(V, ε) is also homotopy equivalent

to M .

This theorem shows that Čech complex is a topologically faithful simplicial model when

X is a Riemannian manifold as long as the radius of balls we choose for covering is small

enough.
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Given a point cloud, we take a union of balls with radius ε centered at the points of the

point cloud. If the centers lie on a submanifold M of Rn, and the point cloud is sufficiently

dense in M , then this complex is the Čech complex attached to a covering of M by balls. If

we additionally assume that ε is small enough, then by Theorem 1.3 the complex computes

the homology of M correctly. For this reason we use the Čech complex to approximate the

homology ofM . The only drawback is that the Čech complex is hard to compute as it relies

on precise distances between the vertices. Since it also requires the storage of the entire

boundary operator, the construction is computationally expensive.

Vietoris–Rips complex, often shortened to Rips complex, is a computationally less ex-

pensive alternative. Given a metric space X equipped with distance function d, the Rips

complex for X with parameter value ε has a vertex set X and {x0, x1, . . . , xk} spans a

k-simplex if and only if d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k. We denote it by V R(X, ε). The

Rips complex is a special combinatorial simplicial complex known as a flag complex and it

is maximal among all simplicial complexes with the given 1-skeleton. Because the combi-

natorics of the 1-skeleton completely determines the complex, the complex can be stored as

a graph. This is what makes it less expensive than the Čech complex.

Choosing Rips complex over Čech is not without cost. The penalty for this simplicity

is that it is not immediately clear what is encoded in the homotopy type of the complex.

Example in Figure 1.3 shows that the Rips complex does not necessarily give the homology

of the union of balls.

If X is a finite subset of Rn, with the standard metric, then

Č(X, ε) ⊆ V R(X, 2ε) ⊆ Č(X, 2ε).

Intuitively, the Rips complex of X is nested between two Čech complexes for X. For this

reason we can take it to be a fairly good approximation.

For larger datasets, if we include every data point as a vertex, as in the Rips construction,
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Figure 1.3: Observe a metric space X with three pairwise equidistant vertices. The Čech
and Rips complexes of the covering on the left each have three edges. The Čech complex
does not have any 2-simplices since the sets do not have a common intersection. The Rips
complex, however, includes the triangle since all points have pairwise distance less than
twice the radius of the balls. The Rips complex does not give the homology of the union of
balls since H1(Č(X,r))) = k, while H1(V R(X,r))) = 0.

we will again have to deal with too many simplices for efficient computation. The witness

complex and the lazy witness complex address this problem. In both cases we select a

subset of the metric space X, called landmark points, and only these points will be vertices

in the complex we build. We denote the set of landmark points by L.

Let ε > 0. For every x ∈ X let mx be the distance from x to the set L. The strong

witness complex attached to this data is the complex Ws(X,L, ε) whose vertex set is L, and

a collection {l0, . . . , lk} spans a k-simplex if and only if there is such a point x ∈ X, the

witness, that d(x, li) ≤ mx + ε for all i. In analogy to the Rips complex, we also consider a

complex in which the 1-simplices are identical to those ofW s(X,L, ε) but where {l0, . . . , lk}

spans a k-simplex if and only if all the pairs (li, lj) are 1-simplices. This complex we denote

by W s
V R(X,L, ε) and call the lazy witness complex. The adjective lazy refers to the fact

that the lazy witness complex is a flag complex.

We have not exhausted all the possibilities. One can define weak witness complex, lazy

weak witness complex, alpha complexes, etc. [18, 8].
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1.3 Persistence

In the previous section I describe ways of representing a point cloud by a simplicial complex.

In all cases the construction depends on a certain parameter ε. For small ε, the complex is

a discrete set; for large ε, it is a high-dimensional simplex. What is the optimal choice for

ε?

Consider the point cloud data X and Rips complexes as illustrated in Figure 1.4. We

observe Betti numbers in dimensions 0 and 1. When ε is small, there are no loops, so β1 = 0,

while β0 is the cardinality of X. For slightly bigger ε, β1 = 2 and β0 = |X| − 4. As we

increase ε even more, the two loops get filled in and another bigger forms, yielding β1 = 1

and β0 = 1. Finally, for large ε, β1 = 0 and β0 = 1.

Given a variety of complexes attached to different parameters, it seems that it is a

mistake to ask which value of ε is optimal and rather than just counting the loops and

connected components, we need a means of declaring which holes are essential and which

can be safely ignored. In the case of X in our example, we wish to say that the two smaller

loops are due to noise and the bigger one represents of true feature of the point cloud.

However, homology allows no such explanation: a hole is a hole no matter how fragile or

how fine.

Figure 1.4: A sampling X from a circle with noise. If we choose the parameter ε to be
very small, the associated simplicial complex has a set of vertices that consists of points
from X. There are no higher dimensional simplices. As we increase ε two loops appear.
As we increase it more, these loops get filled in by 2-dimensional simplices and a new cycle
appears. For big enough ε the associated Rips complex is a single high dimensional simplex.
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Homology does have an extra property that we have not yet taken into account, namely

functoriality. First observe that we have an inclusion Č(X, ε) ↪→ Č(X, ε′) for every ε ≤ ε′.

In Figure 1.4 the complex in the left includes into the one on the right. The two small

cycles in the complex on the left vanish in the one on the right, since they are filled in by

2-simplices. In the complex on the right we have a larger cycle not present in the complex

on the left. As we increase the parameter, this larger cycle persists for quite a while until

it is finally filled in. We declare the loops in the complex on the left to be noise, because

they do not persist over a significant parameter range. The larger loop on the other hand,

captures a real feature of the data, because it is long-lived.

In the following section, we formalize this observation and present a tool that captures

the desired summary of the behavior of homology under all choices of values for the scale

parameter ε.

1.4 Persistent Homology

Definition 1.4. Let k be a field and P be a partially ordered set. A persistence P-vector

space over k is an indexed family of k-vector spaces {Vr}r∈P and a doubly-indexed family

of linear maps

(LV (r, r′) : Vr → Vr′ | r ≤ r′),

which satisfy the composition law

LV (r′, r′′) ◦ LV (r, r′) = LV (r, r′′)

for all r ≤ r′ ≤ r′′. For all r LV (r, r) is the identity map on Vr.

A linear transformation F of P-persistence vector spaces over k from {Vr} to {Wr} is

such a family of linear transformations fr : Vr →Wr that for all r ≤ r′, the diagrams
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Vr Vr′

Wr Wr′

LV (r, r′)

fr

LW (r, r′)

fr′

commute in the sense that

fr′ ◦ LV (r, r′) = LW (r, r′) ◦ fr.

For a point cloud X and a homology functor H with coefficients in a field k, the family

{H(Č(X, r))}r∈[0,∞) is an R-persistence vector space. The same holds if we use Rips or

witness constructions.

Our goal is to find invariants whose description is finite in size and that do not depend

on the underlying field of computation. We call such invariants discrete. There is no

classification theorem for R-persistence vector spaces, but there is one for N-persistence

vector spaces, which is based on the Structure Theorem for PID’s.

To any N-persistence vector spaces {Vn} we assign a graded module θ({Vn}) over the

graded polynomial ring k[x], where x is assigned degree 1, as follows:

θ({Vn}) =
⊕
n≥0

Vn,

where the n-th graded part is the vector space Vn. The action of the polynomial generator

x is given by

x · {vn} = {v′n}, where v′n = Lv(n− 1, n)vn−1 and v′0 = 0.

The map θ is a functor from the category of N-persistent vector spaces to the category
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of graded k[x]-modules. In fact it is an equivalence of categories, since an inverse functor

can be given by V∗ → {Vn}, where the morphisms LV (m,n) are given by multiplication by

xn−m.

Theorem 1.5. Let V ∗ denote any finitely generated non-negatively graded k[x]-module.

Then there are integers {i1, . . . , im}, {j1, . . . , jn}, {l1, . . . , ln}, and an isomorphism

V∗ '
m⊕
s=1

xis · k[x]⊕
n⊕
t=1

xjt · (k[x]/(xlt))

The decomposition is unique up to permutation of factors.

There is a restriction in Theorem 1.5. Namely, the k[x]-modules must be finitely gener-

ated. The following proposition shows which N-persistent k-vector spaces correspond under

θ to finitely generated non-negatively generated k[x]-modules.

Proposition 1.6. Let {Vn} be a N-persistent k-vector space. Then θ({Vn}) is a finitely

generated k[x]-module if and only if every vector space Vn is finite dimensional and

LV (n, n+ 1): Vn → Vn+1

is an isomorphism for sufficiently large n. We call such {Vn} a tame N-persistent k-vector

space.

The classification theorem has a natural interpretation. The free portions are in bijective

correspondence with those homology generators which come into existence at parameter is

and which persist for all future parameter values. The torsion elements correspond to those

homology generators which appear at parameter jt and disappear at parameter jt + lt.

This implies that the isomorphism classes of tame persistence vector spaces arising from

point cloud data are in one to one correspondence with finite subsets (with multiplicity) of

intervals. Such sets are represented visually in two ways, one as families of intervals on the
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non-negative real lines, and the other as a collection of points in the half-plane

H = {(x, y) | −∞ < x < y ≤ ∞}.

The first representation is called a barcode, and the second a persistence diagram. We use

both expressions interchangeably.

The methodology we use to study the homology of point clouds is as follows:

• Choose any partial order preserving map f : N→ R.

One way of choosing this map would be as follows. Given any finite point cloud X

there are only finitely many real values that the distance function takes on X. This

implies that there are only finitely many real values at which there are transitions

in the complex no matter which construction we use. Let these transition values be

{t0, t1, . . . , tN}, t0 ≤ t1 ≤ . . . ≤ tN , and define f : N→ R as follows

f(n) = tn for n ≤ N, and f(n) = tN for n ≥ N.

• Construct a family of simplicial complexes {C(X, f(n))} for parameter values in

{f(n)}. We can use any method, Čech, Rips or lazy complex.

• Apply homology functor H with coefficients in a field k. This yields a tame N-

persistence vector space {HC(X, f(n))}. Tameness follows from the finiteness hy-

pothesis on X and the nature of the constructions.

• Compute the barcodes associated to {HC(X, f(n))}.

In interpreting the output, a long interval in the barcode indicates the presence of

an essential homology class, which persists over a long range of parameter values. Short

intervals indicate cycles which are short-lived. They correspond either to noise or inadequate
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sampling. Of course, what is short, depends on a data set, and we do not always want to

ignore short bars. Sometimes the whole multiscale version of the space is of interest.

Example 1.7. Observe once again a point cloud sampled from a noisy circle. Figure 1.5

depicts persistent homology barcodes in dimensions 0 and 1. In the 0-dimensional barcode

a lot of bars persist over small values of the parameter. As we increase the parameter, they

merge and only one remains that persists over a significant range of parameters, implying

that the underlying shape we are sampling from has 1 connected component. Similarly, we

see many cycles present for small values of parameter, but only one that persists over a

considerable range of parameter values.

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2

D
im

 0

0 0.2 0.4 0.6 0.8 1 1.2

D
im

 1

Figure 1.5: A collection of points sampled from a circle.

In some cases the data we get is already a finite simplicial complex K equipped with

a real-valued function f on the vertex set of K. For example, Adcock et al. [3] analyzed

a dataset of liver lesions by building simplicial complexes on each image and then used

grayscale values of pixels as a filter.

We construct a sequence of simplicial subcomplexes Ki of K by including any simplex
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σ ∈ K with the property that for every vertex v ∈ σ, f(v) ≤ i:

Ki = {σ ∈ K | ∀v ∈ σ, f(v) ≤ i}.

Intuitively, f(v) represents the vertex at which v enters the filtration and maxv∈σ f(v)

determines the point at which a simplex σ ∈ K enters the filtration. Now we have the

filtered complex

Kf1 ⊆ Kf2 ⊆ . . . ⊆ Kfm = K,

where f1, denotes the minimum value obtained by f on the vertex se of K, f2 the second

smallest value, etc., and finally, and fm is the maximum value obtained by f . We call this

the sublevelset filtration of (X, f).

To this sequence of simplicial complexes and inclusions between them, we apply the

homology functor H in a field k and obtain a tame persistence vector space for which we

can compute a barcode.



Chapter 2

Coordinatizing the Barcode Space

using Polynomials

In the previous chapter we introduced persistent homology as a tool that identifies structure

in point clouds. The output of this invariant is a collection of intervals rather than a vec-

tor, which makes persistent homology hard to combine with standard methods in machine

learning, which accept vectors as an input.

Many researchers have tried to remedy this by attaching numerical quantities to bar-

codes. For example, di Fabio, Ferri [20] and Landi [21] make use of complex vectors,

Bubenik [6] defines persistence landspaces, etc.

At Stanford Adcock et al. [1] identified an algebra of polynomials on the barcode space

that can be used as coordinates. In this section we formally define the barcode space and the

metrics commonly used and show what the disadvantages of using polynomial coordinates

are. These shortcomings prompt us to search for other types of coordinates on the barcode

space.

20
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2.1 The Barcode Space

Before delving into a discussion about functions, we must formally define what we mean

by a barcode space. We can represent a barcode with exactly n intervals by a vector

(x1, y1, x2, y2, . . . , xn, yn), where xi denotes the left endpoint of the i-th interval and yi

the right endpoint. Since the ordering of the intervals does not matter, we take the orbit

space of the action of the symmetric group on n letters on the product (R× R)n given by

permuting the coordinates. We denote this set by Bn.

To ignore intervals of length 0, we define an equivalence relation on
∐
nBn, which we

denote by ∼. It is generated by equivalences of the form

((x1, y1), (x2, y2), . . . , (xn, yn)) ∼ ((x1, y1), (x2, y2), . . . , (xn−1, yn−1)),

whenever xn = yn. The barcode set B is the quotient

∐
n

Bn/∼.

2.2 Metrics on the Barcode Space

To define distance between two barcodes, we need to specify the distance between any pair

of intervals, as well as the distance between any interval and the set of zero length intervals

∆ = {(x, x) | −∞ < x <∞}. Set

d∞((x1, y1), (x2, y2)) = max(|x1 − x2|, |y1 − y2|).

The distance between an interval and the set ∆ is

d∞((x, y),∆) = y − x
2 .
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Let B1 = {Iα}α∈A and B2 = {Jβ}β∈B be barcodes. For finite sets A and B, and any

bijection θ from a subset A′ ⊆ A to B′ ⊆ B, the penalty of θ, P∞(θ), is

P∞(θ) = max(max
a∈A′

(d∞(Ia, Jθ(a))), max
a∈A\A′

d∞(Ia,∆), max
b∈B\B′

d∞(Ib,∆)).

The bottleneck distance [15] is

d∞(B1,B2) = min
θ
P∞(θ),

where the minimum is over all possible bijections from subsets of A to subsets of B.

There are other metrics also commonly used for barcode spaces. Setting the penalty for

θ as above to

Pp(θ) =
∑
a∈A′

(d∞(Ia, Jθ(a))p +
∑

a∈A\A′
d∞(Ia,∆)p +

∑
b∈B\B′

d∞(Ib,∆)p,

yields the pth-Wasserstein distance (p ≥ 1) between B1, B2:

dp(B1,B2) = (min
θ
Pp(θ))

1
p .

Example 2.1. Consider two barcodes in dimensions 0 and 1 depicted in Figure 2.1. First

0 1 2 3 4 5 6 7 8

D
im

 0

0 1 2 3 4 5 6 7 8

D
im

 1

0 2 4 6 8 10 12

D
im

 0

0 2 4 6 8 10 12

D
im

 1

Figure 2.1: Barcode B1 in dimensions 0 and 1 on the left and barcode B2 on the right.
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we observe what happens in dimension 0. Barcode B1 contains two bars, while B2 only

one. We align the longest bars and match [1, 2] of length one with a bar whose length is 0.

The penalty for this partial bijection is 1
2 . If we do not align the infinite bars, the penalty

increases. So the Bottleneck distance in dimension 0 between the B1 and B2 is 1
2 . In

dimension 1 B1 and B2 the optimal bijection aligns the two infinite length bars and the

remaining two with the penalty of 3.

We are interested in finding ‘stable’ functions on the barcode space, ie. functions Lips-

chitz with respect to distances on the barcode space.

2.3 Functions on the Barcode Space

We can assemble all Bn into a directed system

B1 B2 B3 B4 . . .
i1 i2 i3 i4

where the maps in : Bn → Bn+1 are given by

in(((x1, y1), (x2, y2), . . . , (xn, yn))) = (((x1, y1), (x2, y2), . . . , (xn, yn), (0, 0))).

The direct limit of this system is B∞. There is a natural isomorphism B∞ → B. We

first observe functions on all of B∞ and then keep the ones that respect the quotient B.

Each function F on B∞ can be identified with an infinite vector (f1, f2, f3, . . .) of functions

fn : Bn → R satisfying the compatibility condition

fn+1 ◦ in = fn.

The set of all such vectors of functions forms a semiring R under coordinatewise addition

and multiplication. We are interested in a subsemiring of R, R′, for which intervals of
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length zero are considered equal, i.e. where

F (((x1, y1), . . . , (xn−1, yn−1), (x, x))) = F (((x1, y1), . . . , (xn−1, yn−1), (x′, x′)))

for all x, x′ ∈ R and a function F on B∞. The reason for this is that small perturbations to

the input data to the persistence algorithms are reflected in small perturbations in lengths

of intervals and appearance of short intervals. We do not wish the values of coordinate

functions evaluated on these barcodes to be far away.

The set of these functions is too large to deal with effectively, so Aaron Adcock et al. [1]

focus on a subset of polynomials.

2.4 Polynomial Coordinates

To identify polynomials on the barcode space, we need some facts about multisymmetric

polynomials that appear in Dalbec’s Multisymmetric functions [17] . Let

Λn,r = R[x1,1, x1,2, . . . , xn,r]Sn

denote the ring of Sn invariants, where the symmetric group permutes blocks of r-numbers

each. Let

imn : R[x1,1, x1,2, . . . , xn,r]→ R[x1,1, x1,2, . . . , xm,r],m ≤ n

be such that xi,j = 0 if i > m and 1 ≤ j ≤ r. The map imn is Sm-equivariant. Here Sm ⊆ Sn

is the subgroup of permutations of the first m elements of the set {1, . . . , n}. We have the

composites

Λn,r = R[x1,1, x1,2, . . . , xn,r]Sn ↪→ R[x1,1, x1,2, . . . , xn,r]Sm
imn−→ R[x1,1, x1,2, . . . , xm,r]Sm = Λm,r
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which we denote by ρn,m, and therefore the inverse system

. . .
ρn+1,n−−−−→ Λn,r

ρn,n−1−−−−→ Λn−1,r
ρn−1,n−2−−−−→ . . .

ρ2,1−−−−→ Λ1,r.

The graded inverse limit Λr is known as the ring of r-multisymmetric functions. Its grading

is induced by the grading on R[x1,1, x1,2, . . . , xn,r].

To easier describe Λn,r, we take a look at a few sets of generators. Given a monomial

m in R[x1,1, x1,2, . . . , xn,r], we may construct its symmetrization Sym m by summing over

its orbit under the group action. It turns out that as an algebra Λn,r is generated by

the symmetrizations of monomials involving {x1,1, x1,2, . . . , x1,r}. They are given by the

formulas

pa = ma =
∑
i

xa1
i,1 · · ·x

ar
i,r,

where (a1, . . . , ar) ∈ Nr and are called the multisymmetric power sums. While there are

relations among the power sums in finitely many variables, they freely generate the inverse

limit Λr, making it a polynomial algebra.

In the case of barcodes r equals 2. We write xi,1 = xi + yi and xi,2 = xi − yi, where xi

denotes the left endpoint of the i-th interval and yi the right endpoint. The subalgebra D

of polynomials on barcodes can be described as follows [1] .

Theorem 2.2. As a subalgebra of Λ2, D is freely generated by the set of elements of the

form pa,b where b ≥ 1.

2.5 Lack of Stability

For coordinate functions to be useful in applications, stability is the key property. There

are stability theorems for barcodes arising from filtered complexes [13, 14] and we wish to

have similar theorems for the coordinate functions that we are using. This would guarantee

that if two barcodes B1 and B2 are close in the bottleneck distance, the coordinates F (B1)
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and F (B2) are close, ie.

|F (B1)− F (B2)| ≤ Cd∞(B1,B2)

for some constant C.

This unfortunately does not happen for pa,b identified in Theorem 2.2. Consider a

sequence of barcodes given by Bn = {(1, 2), (3, 4), . . . , (2n+ 1, 2n+ 2)} for n ≥ 0. The first

few barcodes of the sequence are depicted in Figure 2.2. The botttleneck distance between

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

B0 B1 B2

Figure 2.2: Barcodes B0, B1 and B2.

Bn and B0 is

d∞(B0,Bn) = 1
2 .

for all n ≥ 1. We evaluate pa,b for b ≥ 1 on Bn

pa,b(Bn) =
n∑
i=0

(4i+ 3)a · 1b =
n∑
i=0

(4i+ 3)a

and compute

|pa,b(Bn)− pa,b(B0)| =
n∑
i=1

(4i+ 3)a.

As n tends to infinity, |pa,b(Bn)−pa,b(B0)| tends to infinity and therefore cannot be bounded

by a constant.

We can also come up with sequences of barcodes that prove that not all pa,b are stable

with respect to the p-th Wasserstein distance.
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For Bn = {(1, 2), ( 1
a+b√2

, 2
a+b√2

), . . . , ( 1
a+b√n ,

2
a+b√n)},

dp(B1,Bn)p =
n∑
i=2

( 1
2 a+b√i

)p = 1
2p

n∑
i=2

1
a+b√ip

and

|pa,b(Bn)− pa,b(B0)| =
n∑
i=2

( 3
a+b√i

)a · ( 1
a+b√i

)b = 3a
n∑
i=2

1
i
.

If p > a+ b, dp(B1,Bn) converges, whereas |pa,b(Bn)− pa,b(B0)| is divergent.

For Bn = {(1, 2), ( 2(2(a+b))2

p2√
22(a+b)

, 2(2(a+b))2 +1
p2√

22(a+b)
), . . . , ( n(2(a+b))2

p2√
n2(a+b)

, n
(2(a+b))2 +1
p2√
n2(a+b)

)},

dp(B1,Bn)p =
n∑
i=2

( 1
2 p2√

i2(a+b)
)p = 1

2p
n∑
i=2

1
p
√
i2(a+b)

and

|pa,b(Bn)− pa,b(B0)| =
n∑
i=2

(2i(2(a+b))2 + 1
p2√
i2(a+b)

)a · ( 1
p2√
i2(a+b)

))b =
n∑
i=2

(2i(2(a+b))2 + 1)a
p2√
i(2(a+b))2

.

If p < 2(a + b), dp(B1,Bn) converges, whereas |pa,b(Bn) − pa,b(B0)| is divergent by the

divergence test.

This example shows what the problem with the polynomial coordinates is. Namely, if

a > 0, then the coordinate of a potentially short bar (xi, yi) might be big because the bar

appeared late in the filtration and not because it is particularly long.

In the next few chapters we aim to identify stable coordinates. Since max appears in the

bottleneck and Wasserstein distances, we came to the idea that ‘polynomials semirings’ over

max-plus and min-plus (tropical) semirings might be better suited. We start by establishing

results in the tropical setting analogous to ones proved by Dalbec in the case of ordinary

polynomials.



Chapter 3

Tropical and Max-Plus Arithmetics

Tropical algebra is based on the study of the tropical semiring (R ∪ {∞},⊕,�). In this

semiring, addition and multiplication are defined as follows:

a⊕ b := min (a, b) and a� b := a+ b.

Both are commutative and associative. The times operator � takes precedence when plus

⊕ and times � occur in the same expression. The distributive law holds:

a� (b⊕ c) = a� b⊕ a� c.

Moreover, Freshman’s Dream holds for all powers of n in tropical arithmetic:

(a⊕ b)n = an ⊕ bn. (3.1)

Expression b−1 is the inverse of b with respect to � and equals −b in ordinary arithmetic.

We also work with the max-plus semiring (R ∪ {−∞},�,�), where multiplication of

two elements is defined as before, but adding means taking their maximum instead of the

28
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minimum:

a� b := max (a, b) and a� b := a+ b.

Its operations are associative, commutative and distributive as in tropical algebra.

3.1 Min-Plus and Tropical Polynomial Expressions

Let x1, x2, . . . , xn be variables representing elements in the tropical semiring. A min-plus

monomial expression is any product of these variables, where repetition is allowed. A

tropical monomial expression allows taking quotients in addition to products. By commu-

tativity, we can sort the product and write monomial expressions with the variables raised

to exponents.

A min-plus polynomial expression is a finite linear combination of min-plus monomial

expressions:

p(x1, x2, . . . , xn) = a1 � x
a1

1
1 x

a1
2

2 . . . xa
1
n
n ⊕ a2 � x

a2
1

1 x
a2

2
2 . . . xa

2
n
n ⊕ . . .⊕ am � x

am1
1 x

am2
2 . . . xa

m
n
n ,

Here the coefficients a1, a2, . . . am are real numbers and the exponents aij for 1 ≤ j ≤ n and

1 ≤ i ≤ m are nonnegative integers. Similarly, a tropical polynomial expression is a finite

linear combination of tropical monomial expressions:

p(x1, x2, . . . , xn) = a1 � x
a1

1
1 x

a1
2

2 . . . xa
1
n
n ⊕ a2 � x

a2
1

1 x
a2

2
2 . . . xa

2
n
n ⊕ . . .⊕ am � x

am1
1 x

am2
2 . . . xa

m
n
n ,

where the coefficients a1, a2, . . . am are real numbers and the exponents aij for 1 ≤ j ≤ n

and 1 ≤ i ≤ m are integers. Tropical expressions are called tropical polynomials in other

sources (see Tropical Mathematics [28] or Introduction to Tropical Geometry [25]).
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The total degree of an expression p(x1, x2, . . . , xn) is

deg p = max
1≤i≤m

(ai1 + ai2 + . . .+ ain).

Each tropical polynomial expression represents a concave piece-wise linear function from

(R ∪ {∞})n to R ∪∞. Tropical polynomial expressions whose image is contained in R are

R-tropical polynomial expressions.

Example 3.1. Let n = 3. A tropical monomial expression

x2 � x1 � x3 � x2 � x2 � x1 = x2
1 � x3

2 � x3 = x2
1x

3
2x3

represents the linear function

(x1, x2, x3) 7→ x2 + x1 + x3 + x2 + x2 + x1 = 2x1 + 3x2 + x3.

The passage from tropical polynomial expressions to functions is not one-to-one. For

example,

x2
1 ⊕ x2

2 = x2
1 ⊕ x2

2 ⊕ x1x2.

We say that the monomial c0 � xc1
1 � x

c2
2 � . . .� xcnn in

p(x1, x2, . . . , xn) =
k⊕
i=1

ai0 � x
ai1
1 � x

ai2
2 � . . .� x

ain
n ⊕ c0 � xc1

1 � x
c2
2 � . . .� x

cn
n

is redundant if for all (x1, x2, . . . , xn) ∈ Rn

c0 + c1x1 + c2x2 + . . .+ cnxn ≥ min
1≤i≤k

(ai0 + ai1x1 + . . .+ ainxn).
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3.2 Redundancy in Tropical Polynomial Expressions

In this section we identify the conditions a monomial in a tropical polynomial expression

must satisfy in order to be redundant.

The following theorem [5] will come handy in proving the statements of this type:

Theorem 3.2 (Strong Separating Hyperplane Theorem). Let K and C be disjoint nonempty

convex subsets of Rn. Suppose K is compact and C is closed. Then there exists a nonzero

hyperplane that strongly separates K and C.

For a finite set A, Conv(A) denotes the convex hull of the elements from A.

Proposition 3.3 (Redundancy, special example). Let

p(x1, x2, . . . , xn) =
k⊕
i=1

x
ai1
1 � x

ai2
2 � . . .� x

ain
n ⊕ x

c1
1 � x

c2
2 � . . .� x

cn
n

Then the monomial xc1
1 �x

c2
2 � . . .�xcnn is redundant if and only if (c1, . . . , cn) is contained

in the convex hull of points {(a1
1, . . . , a

1
n), . . . , (ak1, . . . , akn)}.

Proof. (⇐) Since (c1, c2, . . . , cn) is contained in the convex hull of points

{(a1
1, . . . , a

1
n), . . . , (ak1, . . . , akn)},

such real numbers t1, t2, . . . , tk exist that ti ≥ 0, t1 + t2 + . . .+ tk = 1 and

(c1, c2, . . . , cn) =
k∑
i=1

ti(ai1, . . . , ain).
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Let x1, x2, . . . , xn be fixed real numbers. Then

xc1
1 � x

c2
2 � . . .� xcnn = c1x1 + c2x2 + . . .+ cnxn

= (
k∑
i=1

tia
i
1)x1 + (

k∑
i=1

tia
i
2)x2 + . . .+ (

k∑
i=1

tia
i
n)xn

= t1
n∑
j=1

a1
jxj + t2

n∑
j=1

a2
jxj + . . .+ tk

n∑
j=1

akjxj

≥ min
i=1,...,n

n∑
j=1

aijxj

=
⊕k
i=1 x

ai1
1 � x

ai2
2 � . . .� x

ain
n

This proves that xc1
1 � x

c2
2 � . . .� xcnn is redundant.

(⇒) We prove this part by contradiction. Suppose (c1, . . . , cn) is not contained in the

convex hull C of points {(a1
1, . . . , a

1
n), . . . , (ak1, . . . , akn)}. Since C ⊂ Rn and (c1, . . . , cn) are

both convex, compact subsets of Rn, there exists a nonzero hyperplane H that separates

them. Let ~t be a point in H. Hyperplane H−~t goes through the origin and separates C−~t

from ~c− ~t, where ~c = (c1, . . . , cn). Let ~n = (x1, . . . , xn) be the unit normal vector to H − ~t

that points in the direction of the half space, which contains C − ~t. Then

((ai1, . . . , ain)− ~t) · ~n > 0

for all i, and

(~c− ~t) · ~n < 0.

It follows from here that

c1x1 + . . . cnxn < ai1x1 + . . . ainxn

for all i. Consequently xc1
1 � x

c2
2 � . . .� xcnn cannot be a redundant monomial.

In Proposition 3.3 we observed a minimum of linear functions, whose graphs go through

the origin and found a condition that makes a linear function of that type redundant. Now
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we prove a similar statement concerning general linear functions.

Proposition 3.4 (Redundancy, general case). Let

p(x1, x2, . . . , xn) =
k⊕
i=1

ai0 � x
ai1
1 � x

ai2
2 � . . .� x

ain
n ⊕ c0 � xc1

1 � x
c2
2 � . . .� x

cn
n

Then the monomial c0 � xc1
1 � x

c2
2 � . . . � xcnn is redundant if and only if (c0, c1, . . . , cn) is

contained in

C =
∞⋃

M=1
Conv(

k⋃
i=1
{(ai0, ai1, . . . , ain)} ∪

k⋃
i=1
{(ai0 +M,ai1, . . . , a

i
n)}).

Proof. (⇐) For (c0, c1, c2, . . . , cn) contained in C such real numbers t0, t1, . . . , tk, t′0, t′1, . . . , t′k
exist that ti, t′i ≥ 0,

t0 + t1 + . . .+ tk + t′0 + t′1 + . . .+ t′k = 1

and

(c0, c1, c2, . . . , cn) =
k∑
i=0

ti(ai0, ai1, . . . , ain) +
k∑
i=0

t′i(ai0 +M,ai1, . . . , a
i
n).

Let x0 = 1 and let x1, x2, . . . , xn be fixed real numbers. Then

c0 � xc1
1 � x

c2
2 � . . .� xcnn = c0 + c1x1 + c2x2 + . . .+ cnxn

= M
k∑
i=0

t′i +
n∑
j=0

k∑
i=0

(ti + t′i)aijxj

= M
k∑
i=0

t′i +
k∑
i=0

(ti + t′i)(
n∑
j=0

aijxj)

≥
k∑
i=0

(ti + t′i)(
n∑
j=0

aijxj)

≥ min
i=0,...,n

n∑
j=1

aijxj

=
⊕k

i=0 a
i
0 � x

ai1
1 � x

ai2
2 � . . .� x

ain
n

This proves that c0 � xc1
1 � x

c2
2 � . . .� xcnn is redundant.

(⇒) We prove this part by contradiction. Suppose {(c0, c1, . . . , cn)} is not contained in
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C. The set C ⊂ Rn is convex since it is a union of nested convex sets. It is also closed.

Since {(c0, c1, . . . , cn)} is convex and compact, there exists a nonzero hyperplane H that

separates them. Let ~t be a point in H. Hyperplane H − ~t goes through the origin and

separates C − ~t from ~c − ~t, where ~c = (c0, c1, . . . , cn). Let ~n = (x0, x1, . . . , xn) be the unit

normal vector to H −~t that points in the direction of the half space, which contains C −~t.

Then

((ai0 +M,ai1, . . . , a
i
n)− ~t) · ~n > 0

for all i, any positive integer M , and

(~c− ~t) · ~n < 0.

It follows from here that

c0x0 + c1x1 + . . . cnxn < x0M + ai0x0 + ai1x1 + . . . ainxn. (3.2)

If x0 = 0, we are done. Let 0 < x0 ≤ 1 and choose M = 0. If we divide the above equation

by x0, we get

c0 + c1(x1
x0

) + . . . cn(xn
x0

) < ai0 + ai1(x1
x0

) + . . . ain(xn
x0

)

for all i. This proves c0 � xc1
1 � x

c2
2 � . . .� xcnn cannot be a redundant monomial.

Finally, suppose −1 ≤ x0 < 0. We rearrange terms in Equation 3.2:

c0 + c1x1 + . . . cnxn < c0(1− x0) + (x0M + ai0x0 − ai0) + ai0 + ai1x1 + . . . ainxn.

We observe that

c0(1− x0) + (Mx0 + ai0x0 − ai0) ≤ 2c0 +Mx0 + ai0 + 1
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By choosing M sufficiently big, we can make the right hand side negative, which implies

c0 + c1x1 + . . . cnxn < ai0 + ai1x1 + . . . ainxn.

This finishes the proof.

Let us take a look at one example.

Example 3.5. Let p(x) = min{1 +x, 2x, c0 + c1x}. Expression c0 + c1x is redundant if and

only if (c0, c1) ∈ C, where C is depicted in Figure 3.1a) From the Figure 3.1a) we see that

(1, 1)

(0, 2)

C

2x x+ 1

min{2x, x+ 1}

1
2
x+ 1

2

3
2
x+ 2

a) b)

Figure 3.1: a) Region C. b) Graphs of linear functions and redundancy.

setting c0 = 2, c1 = 3
2 makes expression c0 + c1x redundant in p(x). That is not the case if

c0 = 1
2 , c1 = 1

2 .

3.3 Min-Plus and Tropical Polynomials

Let p and q be tropical polynomial expressions. If

p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn)

for all (x1, x2, . . . , xn) ∈ (R ∪∞)n, then p and q are functionally equivalent.

Functional equivalence ∼ is an equivalence relation on the set of all tropical polynomial

expressions.
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Definition 3.6. Tropical polynomials are the semiring of equivalence classes of tropical

polynomial expressions with respect to ∼. In the case of n variables we denote it by

Trop[x1, x2, . . . , xn]. Min-plus polynomials are the semiring of equivalence classes of min-

plus polynomial expressions with respect to ∼. In the case of n variables we denote it by

MinPlus[x1, x2, . . . , xn].

Remark 3.7. Note that our tropical polynomial semiring is not obtained using the stan-

dard ‘polynomial semiring’ construction. That construction yields the semiring of tropical

polynomial expressions.

Tropical polynomial expressions in the same equivalence class determine the same graph

in Rn+1 and are piece-wise linear, concave functions. This means that each tropical polyno-

mial p determines a graph. Associated with each piece-wise linear function is a finite family

Q = {Q1, . . . , Qm} of maximal closed domains (a closed domain is a closure of a nonempty

open set) such that Rn =
⋃
Q and p is linear on every domain in Q. We call the linear

function gi on Rn which coincides with p on Qi ∈ Q a component of p. Domains being

maximal means that p does not agree with gi on a set strictly containing Qi. We call Qi

the domain component of p.

The minimal representation of a tropical polynomial p is such a tropical expression

a1 � x
a1

1
1 x

a1
2

2 . . . xa
1
n
n ⊕ a2 � x

a2
1

1 x
a2

2
2 . . . xa

2
n
n ⊕ . . .⊕ am � x

am1
1 x

im2
2 . . . xa

m
n
n

functionally equivalent to p that contains no redundant monomials.

Theorem 3.8. Every tropical polynomial has a unique minimal representation. The subset,

where the minimum in the minimal representation is attained at exactly one index, is open

and dense in the domain of the polynomial.

Proof. Let p be any tropical polynomial, Q = {Q1, . . . , Qm} the set of domain components

and let g1, . . . , gm be the components of p.
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We claim that min
i∈N≤m

gi is the minimal representation of p.

Let (x1, . . . , xn) ∈ Rn. Since Rn is a union of Q, i exists such that (x1, . . . , xn) ∈ Qi.

By construction p(x1, . . . , xn) = gi(x1, . . . , xn) ≥ min
j∈N≤m

gj(x1, . . . , xn). We must show that

gi(x1, . . . , xn) ≤ gj(x1, . . . , xn)

for all j. Take (y1, . . . , yn) ∈ Q̊j . Since (y1, . . . , yn) lies in the interior of Qj we can choose

such t1, t2 ∈ (0, 1) with t1 + t2 = 1, that t1(x1, . . . , xn) + t2(y1, . . . , yn) ∈ Qj . Since p is

concave

t1p(x1, . . . , xn) + t2p(y1, . . . , yn) ≤ p(t1(x1, . . . , xn) + t2(y1, . . . , yn)).

We can transform both sides of the equations as follows

t1gi(x1, . . . , xn) + t2gj(y1, . . . , yn) ≤ gj(t1(x1, . . . , xn) + t2(y1, . . . , yn)).

Since gj is linear

gj(t1(x1, . . . , xn) + t2(y1, . . . , yn)) = t1gj(x1, . . . , xn) + t2gj(y1, . . . , yn).

So

t1gi(x1, . . . , xn) + t2gj(y1, . . . , yn) ≤ t1gj(x1, . . . , xn) + t2gj(y1, . . . , yn)

implying

gi(x1, . . . , xn) ≤ gj(x1, . . . , xn)

since t1 > 0. This proves that p(x1, . . . , xn) = min
j∈N≤m

gj(x1, . . . , xn).
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Before proving that this representation is minimal, we prove that

Q̊i = {(x1, . . . , xn) ∈ Rn | ∀j 6= i, gi(x1, . . . , xn) < gj(x1, . . . , xn)}.

We denote {(x1, . . . , xn) ∈ Rn | ∀j 6= i, gi(x1, . . . , xn) < gj(x1, . . . , xn)} by Di. Clearly,

Di ⊆ Qi. To show that Di ⊆ Q̊i, it suffices to show that Di is open. Let Gi : Rn → Rm−1

be such that Gi = (g1 − gi, . . . , gi−1 − gi, gi+1 − gi, . . . , gn − gi). Gi is continuous and

Di = G−1
i ((0,∞)m−1) and therefore open.

Let (x1, . . . , xn) ∈ Q̊i and j 6= i. Suppose that gi(x1, . . . , xn) = gj(x1, . . . , xn). Since

closed domains are maximal this implies that (x1, . . . , xn) ∈ Qj . This would imply that Q̊i

intersects Q̊j and that on this intersection gi and gj match since they both equal p. Since

they are both linear, gi = gj , a contradiction.

We are now in position to prove that the subset, where the minimum in the minimal

representation is attained at exactly one index, i.e.
⋃
j∈N≤m Q̊i, is open and dense in the

domain of the polynomial. It is open since it is a union of open sets. It is dense since

⋃
j∈N≤m

Q̊i =
⋃

j∈N≤m

Q̊i =
⋃

j∈N≤m

Qi = Rn.

To see that min
j∈N≤m

gi(x1, . . . , xn) is a minimal representation, take (x1, . . . , xn) ∈ Q̊i.

Since Q̊i = Di, gi(x1, . . . , xn) < gj(x1, . . . , xn) for all j 6= i. This proves that the represen-

tation is minimal.

Suppose we have two minimal representations min
j∈N≤m1

gi and min
j∈N≤m2

hj . It suffices to

show that every gi equals some hj . Then the statement will follow by symmetry. The set

Di is nonempty and open. On this set gi equals min
j∈N≤m2

hj . Since gi is linear and different

hj appearing in min
j∈N≤m2

hj represent different linear functions, j exists such that gi = hj on

this nonempty open set and therefore for all (x1, . . . , xn) ∈ Rn.

Before defining the degree of a tropical polynomial, we prove the following proposition.
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Proposition 3.9. Let p be a tropical polynomial expression and p′ the minimal represen-

tation of p. Then

deg p := deg p′.

Proof. It is always true that deg p ≥ deg p′. We must show that deg p ≤ deg p′. Let

p(x1, x2, . . . , xn) =
k⊕
i=1

ai0 � x
ai1
1 � x

ai2
2 � . . .� x

ain
n ⊕ c0 � xc1

1 � x
c2
2 � . . .� x

cn
n

and suppose

p′(x1, x2, . . . , xn) =
k⊕
i=1

ai0 � x
ai1
1 � x

ai2
2 � . . .� x

ain
n .

According to Proposition 3.4 (c1, c2, . . . , cn) is contained in conv{(a1
1, . . . , a

1
n), . . . , (ak1, . . . , akn)}.

This implies that

c1 + c2 + . . .+ cn = (
k∑
i=1

tia
i
1) + (

k∑
i=1

tia
i
2) + . . .+ (

k∑
i=1

tia
i
n)

= t1
n∑
j=1

a1
j + t2

n∑
j=1

a2
j + . . .+ tk

n∑
j=1

akj

≤ max
i=1,...,n

n∑
j=1

aij

Therefore max
i=1,...,n

n∑
j=1

aij = max{ max
i=1,...,n

{
n∑
j=1

aij},
n∑
j=1

cj} and in turn that deg p ≤ deg p′. The

same argument works for a representation with more than one redundant monomial.

This implies that all functionally equivalent tropical expressions have the same degree,

so we can define the degree of a tropical polynomial p as follows:

Degp = deg q,

where q is any tropical expression representing p.
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3.4 Max-Plus Polynomials

Most of the definitions concerning max-plus polynomials are analogous to the definitions

concerning tropical polynomials with ⊕ substituted by �.

Let x1, x2, . . . , xn be variables representing elements in the max-plus semiring. A max-

plus polynomial expression is a finite linear combination of tropical monomial expressions:

p(x1, x2, . . . , xn) = a1 � x
a1

1
1 x

i12
2 . . . x

a1
n
n � a2 � x

a2
1

1 x
a2

2
2 . . . xa

2
n
n � . . .� am � x

am1
1 x

am2
2 . . . xa

m
n
n .

Here the coefficients a1, a2, . . . am are real numbers and the exponents aij for 1 ≤ j ≤ n and

1 ≤ i ≤ m are nonnegative integers.

We say that c0 � xc1
1 � x

c2
2 � . . .� xcnn in

p(x1, x2, . . . , xn) = �k
i=1a

i
0 � x

ai1
1 � x

ai2
2 � . . .� x

ain
n � c0 � xc1

1 � x
c2
2 � . . .� x

cn
n

is redundant if for all (x1, x2, . . . , xn) ∈ Rn

c0 + c1x1 � c2x2 + . . .+ cnxn ≤ max
1≤i≤k

(ai0 + ai1x1 + . . .+ ainxn).

Proposition 3.3 and Proposition 3.4 extend directly to the max-plus setting since

− max
1≤i≤k

ai = min
1≤i≤k

−ai

for any real numbers a1, . . . , ak.

Proposition 3.10 (Redundancy, special example). Let

p(x1, x2, . . . , xn) = �k
i=1x

ai1
1 � x

ai2
2 � . . .� x

ain
n � xc1

1 � x
c2
2 � . . .� x

cn
n

Then the monomial xc1
1 �x

c2
2 � . . .�xcnn is redundant if and only if (c1, . . . , cn) is contained
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in the convex hull of points {(a1
1, . . . , a

1
n), . . . , (ak1, . . . , akn)}.

Proposition 3.11 (Redundancy, general case). Let

p(x1, x2, . . . , xn) = �k
i=1a

i
0 � x

ai1
1 � x

ai2
2 � . . .� x

ain
n � c0 � xc1

1 � x
c2
2 � . . .� x

cn
n

Then the monomial c0 � xc1
1 � x

c2
2 � . . . � xcnn is redundant if and only if (c0, c1, . . . , cn) is

contained in

C =
∞⋃

M=1
Conv(

k⋃
i=1
{(ai0, ai1, . . . , ain)} ∪

k⋃
i=1
{(ai0 −M,ai1, . . . , a

i
n)}).

Definition 3.12. Max-plus polynomials are the semiring of equivalence classes of max-plus

polynomial expressions with respect to functional equivalence relation ∼. In the case of n

variables we denote it by MaxPlus[x1, x2, . . . , xn].

An equivalent of Proposition 3.9 holds in the max-plus setting allowing us to define the

degree of a max-plus polynomial p represented by

q(x1, x2, . . . , xn) = a1 � x
a1

1
1 x

a1
2

2 . . . xa
1
n
n ⊕ a2 � x

a2
1

1 x
a2

2
2 . . . xa

2
n
n ⊕ . . .⊕ am � x

am1
1 x

am2
2 . . . xa

m
n
n ,

as

deg p = max
1≤i≤m

(ai1 + ai2 + . . .+ ain).

3.5 Tropical Rational Functions

In the semirings of tropical polynomials and max-plus polynomials the operation � is not

invertible. We have more flexibility to manipulate expressions if we allow inverses with

respect to �.
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Definition 3.13. A tropical rational expression r is a quotient

r(x1, . . . , xn) = p(x1, . . . , xn)� q(x1, . . . , xn)−1,

where p is a tropical polynomial expression and q is an R-tropical polynomial expression.

Remark 3.14. Tropical rational expressions are the localization of the semiring of tropical

polynomial expressions with respect to the multiplicatively closed set of R-tropical polynomial

expressions.

We say that tropical rational expressions r and s are functionally equivalent and write

r ∼ s if

r(x1, x2, . . . , xn) = s(x1, x2, . . . , xn)

for all (x1, x2, . . . , xn) ∈ (R ∪∞)n.

Since

−min(a, b) = max(−a,−b),

tropical rational expressions are composed of taking the maxima and minima of linear

functions, i.e. the set of tropical rational expressions is the smallest subset of functions

Rn → R containing all constant maps, projections and closed under +, min and max.

Conversely, any function from this set can be represented by an expression of the form

p � q−1, where p and q are tropical polynomial expressions. The algorithm to produce p

and q is best demonstrated by an example.
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Example 3.15. Let r(x1, x2) = x−1
1 � x2 ⊕ (x2)−1 ⊕ (x2 � x1 ⊕ x1)−1. We can write

r(x1, x2) = min(−x1 + x2,−x2,−min(x2 + x1, x1))

= min(−x1 + x2 + min(x2 + x1, x1),−x2 + min(x2 + x1, x1), 0)−min(x2 + x1, x1)

= min(min(2x2, x2),min(x1,−x2), 0)−min(x2 + x1, x1)

= min(2x2, x2, x1,−x2, 0)−min(x2 + x1, x1)

= min(3x2, 2x2, x1 + x2, 0, x2)−min(2x2 + x1, x1 + x2)

= (x2
2 ⊕ x2

2 ⊕ x1x2 ⊕ 0⊕ x2)� (x2
2x1 ⊕ x1x2)−1.

This is similar to adding fractions with different denominators.

Definition 3.16. The semiring of equivalence classes of tropical rational expressions with

respect to the functions equivalence relation is RTrop[x1, x2, . . . , xn] and is called the semir-

ing of rational tropical functions.



Chapter 4

Symmetric Tropical Polynomials,

Min-Plus Polynomials and Tropical

Rational Functions

4.1 Symmetric Tropical Polynomials

Definition 4.1. A tropical polynomial p ∈ Trop[x1, x2, . . . , xn] is symmetric if

p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n))

for every permutation π ∈ Sn.

We denote the semiring of symmetric tropical polynomials by Trop[x1, x2, . . . , xn]Sn .

We work with a fixed n throughout this section.

Example 4.2. Let n = 3. The tropical polynomials x2
1 ⊕ x2

2 ⊕ x2
3 and x1 � x2 � x3 are

symmetric.

44
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We define a symmetrization operator:

Sym: Trop[x1, x2, . . . , xn] → Trop[x1, x2, . . . , xn]Sn

p(x1, x2, . . . , xn) 7→
⊕

π∈Sn p(xπ(1), xπ(2), . . . , xπ(n)).

Proposition 4.3. Let p, q ∈ Trop[x1, x2, . . . , xn]. Then:

1. Sym(p⊕ q) = Sym(p)⊕ Sym(q),

2. a� Sym(p) = Sym(a� p).

Proof. We leave the proof to the reader.

Proposition 4.4. Let p ∈ Trop[x1, . . . , xn]. Then

p is symmetric⇔ Sym(p) = p.

Proof. (⇒) Suppose p is symmetric. Then p(x1, x2, . . . , xn) = p(xπ(1), xπ(2), . . . , xπ(n)) for

all π ∈ Sn and (x1, x2, . . . , xn) ∈ Rn. Since ⊕ is idempotent,

p(x1, x2, . . . , xn) =
⊕
π∈Sn

p(x1, x2, . . . , xn) =
⊕
π∈Sn

p(xπ(1), xπ(2), . . . , xπ(n))

for all (x1, x2, . . . , xn) ∈ Rn. Consequently, Sym(p) = p.

(⇐) By definition Sym(p) is symmetric and since p = Sym(p) so is p.

The following symmetric tropical polynomials will play an important role in our discus-

sion.

Definition 4.5. Given variables x1, . . . , xn, we define the elementary symmetric tropical
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polynomials e1, . . . , en ∈ Trop[x1, x2, . . . , xn] by the formulas

e1 = x1 ⊕ . . .⊕ xn,
...

ek = Sym(x1 � . . .� xk),
...

en = x1 � x2 � . . .� xn.

The total degree of expression ek is k. Elementary symmetric tropical polynomials give

coordinates on Rn/Sn. In other words, they separate orbits.

Proposition 4.6. Let [x1, . . . , xn] and [y1, . . . , yn] be two orbits under the Sn-action on Rn.

If

ei([x1, . . . , xn]) = ei([y1, . . . , yn])

for all i, then [x1, . . . , xn] = [y1, . . . , yn].

Proof. Suppose [x1, . . . , xn] and [y1, . . . , yn] are orbits for which

ei([x1, . . . , xn]) = ei([y1, . . . , yn])

for all i. We assume without loss of generality that x1 ≤ x2 ≤ . . . ≤ xn and y1 ≤ y2 ≤ . . . ≤ yn.

Since

e1([x1, . . . , xn]) = e1([y1, . . . , yn]),

it follows that x1 = y1 = e1([x1, . . . , xn]). Next note that

x1 + x2 = e2([x1, . . . , xn]) = e2([y1, . . . , yn]) = y1 + y2.

Since x1 = y1, this implies x2 = y2. We repeat these steps until we get xi = yi for i ≤ n−1.
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Lastly,

x1 + x2 + . . .+ xn = en([x1, . . . , xn]) = en([y1, . . . , yn]) = y1 + y2 + . . .+ yn.

Since xi = yi for i ≤ n − 1, it follows from this last equation that xn = yn and we are

done.

The goal of the remainder of this section is to prove the following theorem, which states

that elementary symmetric polynomials generate symmetric tropical polynomials.

Theorem 4.7. Every symmetric tropical polynomial in Trop[x1, x2, . . . , xn] can be written

as a tropical polynomial in the elementary symmetric tropical polynomials e1, . . . , en and

e−1
n .

A referee from the journal I submitted the paper on this topic to suggested that a

version of this theorem might hold for polynomial semirings over any semiring and that

this more general statement could be deduced using the ‘transfer principle’ [30]. A relevant

counterexample is the semiring tropical polynomial expressions. Tropical expression x2⊕y2

is not a polynomial in e1,e2 on the level of expressions, but equals e2
1 in Trop[x, y]. The

transfer principle fails because we are not making a statement about specific equations

but rather about generating sets. The problem is that an element in the ring might be

expressed by multiplying, adding and subtracting polynomials, whereas in the semiring the

subtraction step cannot be carried out.

It is actually quite surprising that one can give an argument in the tropical case that

avoids subtraction.

Lemma 4.8. Let us suppose that

p(x1, x2, . . . , xn) =
⊕

1≤s≤m
as � x

is1
1 � . . .� x

isn
n
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is a symmetric tropical polynomial. Then

p(x1, x2, . . . , xn) =
⊕

1≤s≤m
Sym(as � x

is1
1 � . . .� x

isn
n ).

Proof. Follows from Propositions 4.4 and 4.3.

Lemma 4.9. Suppose ij1 , ij2 , . . . , ijk , k ≤ n, are positive integers and a = min(ij1 , ij2 , . . . , ijk).

Then

eak � Sym(xij1−a1 � . . .� xijk−ak ) = Sym(xij11 � . . .� x
ijk
k ).

Proof of Lemma 4.9. Since the Freshman’s Dream holds in tropical arithmetic, the expres-

sion on the left equals

(
⊕
ρ∈Sn

xaρ(1) � . . .� x
a
ρ(k))� (

⊕
π∈Sn

x
ij1−a
π(1) � . . .� x

ijk−a
π(k) ).

By distributivity and commutativity, we can rewrite it as

⊕
ρ∈Sn

⊕
π∈Sn

x
ij1−a
π(1) � . . .� x

ijk−a
π(k) � x

a
ρ(1) � . . .� x

a
ρ(k).

We must show that

⊕
ρ∈Sn

⊕
π∈Sn

x
ij1−a
π(1) � . . .� x

ijk−a
π(k) � x

a
ρ(1) � . . .� x

a
ρ(k) =

⊕
σ∈Sn

x
ij1
σ(1) � . . .� x

ijk
σ(k).

The right hand side is bigger than the left hand side since the minimum is taken over a

smaller set. We must show that

x
ij1−a
π(1) � . . .� x

ijk−a
π(k) � x

a
ρ(1) � . . .� x

a
ρ(k) ≥

⊕
σ∈Sn

x
ij1
σ(1) � . . .� x

ijk
σ(k)
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for any π, ρ ∈ Sn and the claim will follow. Let

M = {m ∈ {1, 2, . . . , k} | jm ∈ {1, 2, . . . , k} exists such that π(m) = ρ(jm)}

and let

J = {jm ∈ {1, 2, . . . , k} |m ∈ {1, 2, . . . , k} exists such that π(m) = ρ(jm)} .

We denote the elements ofM bym1, . . . ,ml, the elements of {1, 2, . . . , k}\M by s1, . . . , sk−l

and the elements of {1, 2, . . . , k} \ J by q1, . . . , qk−l. We simplify the expression

x
ij1−a
π(1) � . . .� x

ijk−a
π(k) � x

a
ρ(1) � . . .� x

a
ρ(k)

to
l⊙

r=1
x
ijmr
π(mr) �

k−l⊙
r=1

x
ijsr−a
π(sr) �

k−l⊙
r=1

xaρ(qr).

For all r = 1, . . . , k − l

x
ijsr−a
π(sr) � x

a
ρ(qr) ≥ x

ijsr
π(sr) ⊕ x

ijsr
ρ(qr).

Tropically multiplying (adding) these inequalities for applicable r yields

⊙l
r=1 x

ijmr
π(mr) �

⊙k−l
r=1(xijsr−aπ(sr) � x

a
ρ(qr)) ≥

⊙l
r=1 x

ijmr
π(mr) �

⊙k−l
r=1(xijsrπ(sr) ⊕ x

ijsr
ρ(qr))

≥
⊕
σ∈Sn x

ij1
σ(1) � . . .� x

ijk
σ(k).

In the last step we use distributivity to expand
⊙l

r=1 x
ijmr
π(mr) �

⊙k−l
r=1(xijsrπ(sr) ⊕ x

ijsr
ρ(qr)) and

then take the minimum over a bigger set.

Lemma 4.10. We can express the symmetrization of any min-plus monomial as a min-plus

polynomial in the elementary symmetric polynomials e1, . . . , en.
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Proof. We prove the statement by induction on Deg p .

If Deg p = 0, then p ≡ a = a(e1, . . . , en).

Suppose now that we can express all symmetric min-plus polynomials of the required

form of total degree less than m as min-plus polynomials in e1, . . . , en.

Let

p(x1, . . . , xn) = Sym(a� xi11 � . . .� xinn ) = a� Sym(xi11 � . . .� xinn ),

where Deg p = deg Sym(a� xi11 � . . .� xinn ) = m and i1, . . . , in are nonnegative.

Suppose exactly ij1 , ij2 , . . . , ijk are nonzero. By Lemma 4.9 we can write

p(x1, . . . , xn) = a� ebk � Sym(xij1−b1 � . . .� xijk−bk )

where b = min(ij1 , . . . , ijk) > 0.

Since

Deg Sym(xij1−b1 � . . .� xijk−bk ) < m,

the claim follows by induction for polynomials of the specified form.

Proof of Theorem 4.7. Let p be a symmetric min-plus polynomial. By Lemma 4.8 we can

write it as

p(x1, . . . , xn) =
⊕

1≤s≤m
Sym(as � x

is1
1 � . . .� x

isn
n ).

By Lemma 4.10 each Sym(as � x
is1
1 � . . .� x

isn
n ) can be written as a min-plus polynomial in

e1, . . . , en. Therefore so can p.

Let q be any symmetric tropical polynomial. We can write it as q = qejn
ejn

, where j is such

an integer that qejn is a symmetric min-plus polynomial.

A symmetric tropical polynomial p can be written in terms of elementary symmetric
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tropical polynomials in many ways. Therefore the uniqueness statement of the Fundamental

Theorem of Symmetric Polynomials does not hold in the tropical setting. However, if we

work with a particular tropical expression we can make an analogue claim.

Corollary 4.11 (Uniqueness). If we apply the algorithm used to prove Theorem 4.7 to the

minimal representation of a symmetric tropical polynomial expression, then the polynomial

expression in e1, . . . , en and e−1
n is also minimal.

Proof. Let

p =
⊕
j

Sym(aj � x
ijn+...+ij1−k
n x

ijn+...+ij2−k
n−1 � . . .� xi

j
n+ijn−1−k

2 � xi
j
n−k

1 ),

be a minimal tropical polynomial expression in n variables, where ij1, . . . , ijn are all positive

integers. Applying the algorithm to p produces

⊕
j

aj � ei
j
n−k
n � ei

j
n−1
n−1 � . . .� e

ij1
1 .

Assume now that this expression in e1, . . . , en is not minimal. This means that a j0 exists

and for any (x1, . . . , xn) an l such that

(aj0 � ei
j0
n −k
n � ei

j0
n−1
n−1 � . . .� e

i
j0
1

1 )(x1, . . . , xn) ≥ (al � ei
l
n−k
n � ei

l
n−1
n−1 � . . .� e

il1
1 )(x1, . . . , xn).

Without loss of generality we may assume x1 ≤ x2 ≤ . . . ≤ xn. This implies that a j0 exists
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and for any (x1, . . . , xn) an l so that

al � x
iln+iln−1+...+il1−k
1 � . . .� xi

l
n−k
n = al � (x1 � . . .� xn)iln−k � . . .� xi

l
1

1

= (al � e
iln−k
n � ei

l
n−1
n−1 � . . .� e

il1
1 )(x1, . . . , xn)

≤ (aj0 � ei
j0
n −k
n � ei

j0
n−1
n−1 � . . .� e

i
j0
1

1 )(x1, . . . , xn)

= aj0 � (x1 � . . .� xn)i
j0
n −k � . . .� xi

j0
1

1

= aj0 � x
i
j0
n +ij0n−1+...+ij01 −k

1 � . . .� xi
j0
n −k
n .

It follows that the term Sym(aj0 � x
i
j0
n +...+ij01 −k
n x

i
j0
n +...+ij02 −k
n−1 � . . .� xi

j0
n +ij0n−1−k

2 � xi
j0
n −k

1 ) in

the original expression must have been redundant. This is a contradition.

The following corollary is a tropical polynomial analogoue of the Fundamental Theorem

of Symmetric Polynomials.

Corollary 4.12 (Fundamental Theorem of Symmetric Min-Plus Polynomials). Every sym-

metric min-plus polynomial in MinPlus[x1, x2, . . . , xn] can be written as a min-plus polyno-

mial in the elementary symmetric tropical polynomials e1, . . . , en. If we apply the algorithm

used to prove Theorem 4.7 to the minimal representation of a min-plus polynomial, then the

expression in e1, . . . , en is also minimal.

4.2 Symmetric Max-Plus Polynomials

Definition 4.13. A max-plus polynomial p ∈ MaxPlus[x1, x2, . . . , xn] is symmetric if

p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n))

for every permutation π ∈ Sn.

We define symmetrization operator � Sym on MaxPlus[x1, x2, . . . , xn] and elementary

symmetric max-plus polynomials analogously to how it is done in Subsection 4.1, but with
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⊕ replaced by �:
σ1 = x1 � . . .� xn,

...

σk = � Sym(x1 � . . .� xk),
...

σn = x1 � x2 � . . .� xn.

The proof of following theorem can be proved similarly as in the previous section.

Theorem 4.14 (Fundamental Theorem of Symmetric Max-Plus Polynomials). Every sym-

metric max-plus polynomial in MaxPlus[x1, x2, . . . , xn] can be written as a max-plus poly-

nomial in the elementary symmetric max-plus polynomials σ1, . . . , σn. If we apply the algo-

rithm used to prove Theorem 4.7 to the minimal representation of a max-plus polynomial,

then the expression in σ1, . . . , σn is also minimal.

4.3 Symmetric Rational Tropical Functions

Definition 4.15. A rational tropical function r ∈ RTrop[x1, x2, . . . , xn] is symmetric if

r(x1, . . . , xn) = r(xπ(1), . . . , xπ(n))

for all permutations π ∈ Sn.

We denote the algebra of symmetric rational tropical functions by RTrop[x1, x2, . . . , xn]Sn .

We can extend Sym to RTrop[x1, x2, . . . , xn]:

Sym: RTrop[x1, . . . , xn] → RTrop[x1, . . . , xn]Sn

r(x1, . . . , xn) 7→
⊕
π∈Sn r(xπ(1), xπ(2), . . . , xπ(n)).

The operator Sym is well-defined, additive, and commutes with tropical multiplication. A
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rational tropical function r is symmetric if and only if Sym(r) = r.

Theorem 4.16. Every symmetric rational tropical function function in RTrop[x1, x2, . . . , xn]

can be written as a rational tropical function in the elementary symmetric tropical polyno-

mials e1, . . . , en.

Proof. Any rational tropical function r may be written as

r = p� q−1,

where p and q are in Trop[x1, x2, . . . , xn] and whose monomials all have nonnegative powers.

Let (x1, . . . , xn) ∈ Rn. Since r is symmetric,

p(xπ(1), . . . , xπ(n))� q(x1, . . . , xn) = p(x1, . . . , xn)� q(xπ(1), . . . , xπ(n))

for all π ∈ Sn. Tropically summing over π ∈ Sn gives

⊕
π∈Sn

(p(xπ(1), . . . , xπ(n))� q(x1, . . . , xn)) =
⊕
π∈Sn

(p(x1, . . . , xn)� q(xπ(1), . . . , xπ(n))).

By distributivity,

(
⊕
π∈Sn

p(xπ(1), . . . , xπ(n)))� q(x1, . . . , xn) = p(x1, . . . , xn)� (
⊕
π∈Sn

q(xπ(1), . . . , xπ(n))).

Since this holds for all (x1, . . . , xn) ∈ Rn,

Sym(p)� q = p� Sym(q),

and consequently

p� q−1 = Sym(p)� Sym(q)−1.

By Theorem 4.7 Sym(q) and Sym(p) are tropical polynomials in e1, . . . , en. Consequently
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r is a rational tropical function in e1, . . . , en.



Chapter 5

r-Symmetric Tropical Polynomials,

Min-Plus Polynomials and

Rational Functions

5.1 r-Symmetric Tropical Polynomials

A tropical polynomial in n variables is symmetric if it is invariant under the action of Sn that

permutes the variables. We can generalize this definition as follows: a tropical polynomial

in nr variables, divided into n blocks of r variables each, is r-symmetric if it is invariant

under the action of Sn that permutes the blocks while preserving the order of the variables

within each block.

We state the relevant results for the case when r = 2, but by induction we can prove

similar statements for a general r (with r = 2 as the base case). We focus on r = 2 because

persistence barcodes, persistence analogoues of Betti numbers, are collections of intervals.

Each interval is given as a point (x, y) and represents a feature which is ‘born’ at x and

which ‘dies’ at y. Since the order of intervals does not matter, we must identify functions

56
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symmetric with respect to the action of Sn on (R2)n that permutes pairs.

Fix n. Let the symmetric group Sn act on the matrix of indeterminates

X =



x1,1 x1,2

x2,1 x2,2
...

...

xn,1 xn,2


by left multiplication. We want to find a generating set for the subset of Trop[x1,1, x1,2, . . . , xn,2]

that is invariant under the action of Sn described above.

Definition 5.1. A tropical polynomial p ∈ Trop[x1,1, x1,2, . . . , xn,2] is 2-symmetric if

p(x1,1, x1,2, . . . , xn,1, xn,2) = p(xπ(1),1, xπ(1),2, . . . , xπ(n),1, xπ(n),2)

for every permutation π ∈ Sn.

Definition 5.2. A min-plus polynomial p ∈ MinPlus[x1,1, x1,2, . . . , xn,2] is 2-symmetric if

p(x1,1, x1,2, . . . , xn,1, xn,2) = p(xπ(1),1, xπ(1),2, . . . , xπ(n),1, xπ(n),2)

for every permutation π ∈ Sn.

Given a tropical monomial in the variables x1,1, x1,2, . . . , xn,2, we construct its exponent

matrix from the matrix X by replacing each variable by its exponent.

Example 5.3. Let n = 2. The exponent matrix of x1,1 � x2,2 is

1 0

0 1

 .
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We define the symmetrization map with respect to the row permutation action of Sn:

Trop[x1,1, x1,2, . . . , xn,2] → Trop[x1,1, x1,2, . . . , xn,2]Sn

p(x1,1, x1,2, . . . , xn,1, xn,2) 7→
⊕
π∈Sn p(xπ(1),1, xπ(1),2, . . . , xπ(n),1, xπ(n),2).

We denote this map by Sym2.

Example 5.4. Let n = 2. The symmetrization of x1,1 � x2,2 is

Sym2(x1,1 � x2,2) = x1,1 � x2,2 ⊕ x2,1 � x1,2.

Proposition 5.5. Let p(x1,1, . . . , xn,2), q(x1,1, . . . , xn,2) ∈ Trop[x1,1, . . . , xn,2]. Then:

1. Sym2(p⊕ q)(x1,1, . . . , xn,2) = Sym2(p)(x1,1, . . . , xn,2)⊕ Sym2(q)(x1,1, . . . , xn,2),

2. a� Sym2(p)(x1,1, . . . , xn,2) = Sym2(a� p)(x1,1, . . . , xn,2).

3. p is 2-symmetric⇔ Sym2(p) = p.

Proof. This proof is similar to the proofs of Propositions 4.3 and 4.4.

We want to identify an equivalent of elementary symmetric tropical polynomials in this

setting. Let

En =





e1,1 e1,2

e2,1 e2,2
...

...

en,1 en,2


6= [0]2n | ei,j ∈ {0, 1} for i = 1, 2, . . . , n, and j = 1, 2


.

Each matrix E ∈ En determines a tropical monomial P (E).
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Example 5.6. Let n = 3. If

E =


1 0

1 0

0 1

 ,

then P (E) = x1,1 � x2,1 � x3,2.

We denote the set of orbits under the row permutation action on En by En/Sn. Each

orbit {E1, E2, . . . Em} determines a 2-symmetric tropical polynomial

P (E1)⊕ P (E2)⊕ . . .⊕ P (Em).

Definition 5.7. We call 2-symmetric tropical polynomials that arise from orbits En/Sn

elementary. We let e(e1,1,e1,2),...,(en,1,en,2) denote the tropical polynomial that arises from the

orbit 



e1,1 e1,2

e2,1 e2,2
...

...

en,1 en,2




.

Example 5.8. Let n = 2. The set of orbits under the S2 action is

E2/S2 =




1 1

1 1


 ,

1 0

1 1


 ,

1 1

0 1


 ,

0 0

1 1


 ,


1 0

1 0




1 0

0 1


 ,

0 1

0 1


 ,

0 1

0 0


 ,

1 0

0 0





.
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A few examples of elementary 2-symmetric tropical polynomials are:

e[(1,1)(1,1)] = x1,1 � x1,2 � x2,2 � x2,1,

e[(1,0)(1,1)] = x1,1 � x2,1 � x2,2 ⊕ x1,1 � x1,2 � x2,1,

e[(1,1)(0,1)] = x1,1 � x1,2 � x2,2 ⊕ x1,2 � x2,1 � x2,2,

e[(1,0)(0,0)] = x1,1 ⊕ x2,1.

For simplicity we write e[(1,0)] instead e[(1,0)(0,0)] when n is clear from the context. Similarly

e[(1,1)2] represents e[(1,1)(1,1)].

Now we show that elementary 2-symmetric tropical polynomials give coordinates on

R2n/Sn.

Theorem 5.9. Let [(x1, y1), . . . , (xn, yn)] and [(x′1, y′1), . . . , (x′n, y′n)] be two orbits under the

row permutation action on R2n. If

e([(x1, y1), . . . , (xn, yn)]) = e([(x′1, y′1), . . . , (x′n, y′n)])

for all elementary 2-symmetric tropical polynomials e, then

[(x1, y1), . . . , (xn, yn)] = [(x′1, y′1), . . . , (x′n, y′n)].

Proof. Suppose that x1 ≤ x2 ≤ . . . ≤ xn, x′1 ≤ x′2 ≤ . . . ≤ x′n, y1 ≤ y2 ≤ . . . ≤ yn and

y′1 ≤ y′2 ≤ . . . ≤ y′n.

Let [(x1, yπ(1)), . . . , (xn, yπ(n))] and [(x′1, y′ρ(1)), . . . , (x
′
n, y
′
ρ(n))] be two orbits under the

row permutation action on R2n that satisfy

e([(x1, yπ(1)), . . . , (xn, yπ(n))]) = e([(x′1, y′ρ(1)), . . . , (x
′
n, y
′
ρ(n))])

for all elementary 2-symmetric tropical polynomials.
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Applying e[(1,0)], we get x1 = x′1. Applying e[(1,0),(1,0)], we get

x1 + x2 = x′1 + x′2

and from here x2 = x′2 and so on. Finally, applying e[(1,0)n] yields xn = x′n.

We use a similar argument using e[(0,1)], e[(0,1),(0,1)], . . . , e[(0,1)n] to show that

y1 = y′1, y2 = y′2, . . . , yn = y′n.

Given evaluations of elementary 2-symmetric tropical polynomials on [(x1, yπ(1)), . . . , (xn, yπ(n))],

we must prove that the permutation ρ on the set of pairs [(x1, yρ(1)), . . . , (xn, yρ(n))] equals

π. We prove this by induction.

First we show that yπ(1) = yρ(1).

Let I = {yk ∈ {y1, y2, . . . , yn} | yk < yπ(1)}. We evaluate e[(1,1)(0,1)|I|] where |I| is the

cardinality of I.

The following inequalities hold

x1 + yπ(1) +
∑
yk∈I yk ≤ xm + yπ(m) + (

∑
yk∈I yk − yπ(m) + yπ(1)) for yπ(m) < yπ(1)

x1 + yπ(1) +
∑
yk∈I yk ≤ xm + yπ(m) + (

∑
yk∈I yk) for yπ(1) ≤ yπ(m)

since x1 ≤ x2 ≤ . . . ≤ xn.

It follows from here that

e[(1,1)(0,1)|I|]([(x1, yπ(1)), . . . , (xn, yπ(n))]) = x1 + yπ(1) +
∑
yk∈I

yk.

Now we note that e[(1,1)(0,1)|I|]([(x1, yρ(1)), . . . , (xn, yρ(n))]) equals

min( min
{k | yρ(1)∈I}

(xk +
∑
yk∈I

yk + yπ(1)), min
{k | yρ(1) /∈I}

(xk +
∑
yk∈I

yk + yρ(1))).
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For this minimum to equal x1 + yπ(1) +
∑
yk∈I yk, we must have yρ(1) ≤ yπ(1).

A similar argument using J = {yk ∈ {y1, y2, . . . , yn} | yk < yρ(1)} and evaluating

e[(1,1)(0,1)|J|] shows that yπ(1) ≤ yρ(1).

We conclude that yπ(1) = yρ(1).

Now suppose that yπ(s) = yρ(s) for all s < m. We want to show that yπ(m) = yρ(m). Let

us first suppose that π(i) < π(m) for i < m. Let

I = {yk ∈ {y1, y2, . . . , yn} | yk < yπ(m)}.

We evaluate at e[(1,1)m−1(0,1)|I|−m+2] where |I| is the cardinality of I and conclude that

yρ(m) ≤ yπ(m).

Let {i1, . . . , im−1} be a permutation of {π(1), . . . , π(m−1)} for which i1 ≤ i2 ≤ . . . ≤ im−1.

Now suppose that i(m−2) < π(m) < i(m−1). Let

I = {yk ∈ {y1, y2, . . . , yn} | yk < yπ(m)}.

Let s be such that i(m−2) = π(s). We evaluate at e[(1,0)(1,1)m−2(0,1)|I|−m+3] where |I| is the

cardinality of I and conclude that then yρ(m) ≤ yπ(m).

We use a similar argument in the following cases

i(m−3) < π(m) < i(m−2), i(m−4) < π(m) < i(m−3), . . . , i1 < π(m) < i2

and conclude that yρ(m) ≤ yπ(m) in each.

Finally, let π(m) < i1 and let I = {yk ∈ {y1, y2, . . . , yn} | yk < yπ(m)}. Applying

e[(1,0)m−1(1,1)(0,1)|I|] we deduce that yρ(m) ≤ yπ(m).

So in all cases yρ(m) ≤ yπ(m). A similar argument holds for the permutation ρ. It follows

that yπ(m) = yρ(m).
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Unfortunately an equivalent of Theorem 4.7 does not hold for r-symmetric tropical

polynomials. We show that when r = 2 and n = 2 no finite set of generators exists for the

2-symmetric tropical polynomials.

Proposition 5.10. Trop[x1,1, x1,2, x2,1, x2,2]S2 is not finitely generated.

Proof. Suppose a finite set of monomials, {xi1,11,1 � x
i1,2
1,2 � x

i2,1
2,1 � x

i2,2
2,2 }i∈I , exists such that

Sym2(I) = {Sym2(xi1,11,1 � x
i1,2
1,2 � x

i2,1
2,1 � x

i2,2
2,2 )}i∈I

generates Trop[x1,1, x1,2, x2,1, x2,2]S2 . Since I is finite, an integer d ≤ 1 exists such that

0 ≤ i1,1, i1,2, i2,1, i2,2 ≤ d− 1

for all i ∈ I.

We show by contradiction that xd1,1 � x1,2 ⊕ xd2,1 � x2,2 is not generated by

G = {Sym2(xj1,11,1 � x
j1,2
1,2 � x

j2,1
2,1 � x

j2,2
2,2 )}j1,1,j1,2,j2,1,j2,2≤d−1,

and consequently not by Sym2(I).

First note that this tropical polynomial expression representing the function is minimal.

Suppose xd1,1�x1,2⊕xd2,1�x2,2 can be generated by elements of G; that is, can be represented

by a tropical expression P , which is a tropical sum of tropical products of the elements

from G (we can expand any expression to one of this form using distributivity). The

term xd1,1 � x1,2 only appears in P if P contains a tropical product of symmetrizations of

monomials S1S2 . . . Sn, Si ∈ G, where for some a, 0 ≤ a < d,

S1 = Sym2(xa1,1 � x1,2) = xa1,1 � x1,2 ⊕ xa2,1 � x2,2, and Sj = Sym2(xaj1,1) = x
aj
1,1 ⊕ x

aj
2,1

for other j such that
∑n
j=2 aj = d− a (this must hold because P is functionally equivalent
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to xd1,1 � x1,2 ⊕ xd2,1 � x2,2).

Expression P contains xd2,1 � x2,2 by symmetry. But it also contains, for example,

xa1,1�x1,2�xd−a2,1 . By assumption P is functionally equivalent to xd1,1�x1,2⊕xd2,1�x2,2, so

xd1,1 � x1,2 ⊕ xd2,1 � x2,2 is the minimal expression for P as argued earlier. This implies that

xa1,1 � x1,2 � xd−a2,1 ≥ x
d
1,1 � x1,2 ⊕ xd2,1 � x2,2

for all x1,1, x1,2, x2,1, x2,2 ∈ R. This is equivalent to

0 ≥ min{(d− a)(x1,1 − x2,1), a(x2,1 − x1,1) + x2,2 − x1,2}

at all points, which clearly does not hold. This contradicts our initial assumption and

shows that the minimal form of P cannot be xd1,1 � x1,2 ⊕ xd2,1 � x2,2 and in turn implies

that xd1,1 � x1,2 ⊕ xd2,1 � x2,2 cannot be generated by G.

5.2 r-Symmetric Max-Plus Polynomials

A max-plus polynomial in nr variables, divided into n blocks of r variables each, is r-

symmetric if it is invariant under the action of Sn that permutes the blocks while preserving

the order of the variables within each block. We define 2-symmetric max-plus polynomials

in Section 5.1 with ⊕ replaced by � and all results from that section hold in this setting.

Definition 5.11. We call 2-symmetric max-plus polynomials that arise from orbits En/Sn

elementary. We let σ(e1,1,e1,2),...,(en,1,en,2) denote the tropical polynomial that arises from the

orbit 



e1,1 e1,2

e2,1 e2,2
...

...

en,1 en,2




.
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5.3 r-Symmetric Rational Tropical Functions

Definition 5.12. A rational tropical function r ∈ RTrop[x1,1, x1,2, . . . , xn,1, xn,2] is 2-

symmetric if

r(x1,1, x1,2, . . . , xn,1, xn,2) = r(xπ(1),1, xπ(1),2, . . . , xπ(n),1, xπ(n),2)

for all permutations π ∈ Sn.

We denote the algebra of 2-symmetric rational tropical functions by RTrop[x1,1, . . . , xn,2]Sn .

We can extend Sym2 to RTrop[x1,1, . . . , xn,2].

Sym2 : RTrop[x1,1, . . . , xn,2] → RTrop[x1,1, . . . , xn,2]Sn

r(x1,1, x1,2, . . . , xn,1, xn,2) 7→
⊕

π∈Sn r(xπ(1),1, xπ(1),2, . . . , xπ(n),1, xπ(n),2).

Operator Sym2 is well-defined, additive, and commutes with tropical multiplication. A

rational tropical function r is 2-symmetric if and only if Sym2(r) = r.

Theorem 5.13. Every symmetric rational tropical function in RTrop[x1,1, . . . , xn,2] can be

written as a rational tropical function in the elementary 2-symmetric tropical polynomials.

We prove this by induction with respect to a special order on min-plus monomials.

Note that any such monomial xj1,11,1 � x
j1,2
1,2 � . . .� x

jn,1
n,1 � x

jn,2
n,2 may be represented by a 2n-

tuple (j1,1, j1,2, . . . , jn,1, jn,2) ∈ Z2n
≥0. The number of nonzero entries in such a 2n-tuple is a

measure of how ‘spread out’ a monomial is:

S(xj1,11,1 � x
j1,2
1,2 � . . .� x

jn,1
n,1 � x

jn,2
n,2 ) = | {(i, k) ∈ {1, 2, . . . , n} × {1, 2} | ji,k 6= 0} |.

Let

m1 = x
j1,1
1,1 � x

j1,2
1,2 � . . .� x

jn,1
n,1 � x

jn,2
n,2
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and

m2 = x
s1,1
1,1 � x

s1,2
1,2 � . . .� x

sn,1
n,1 � x

sn,2
n,2 .

Notice that Deg(m1) =
∑n
i=1(ji,1 + ji,2) and Deg(m2) =

∑n
i=1(si,1 + si,2). Then we

define order >S as follows:

m1 >S m2 ⇔ Deg(m1) > Deg(m2)

or Deg(m1) = Deg(m2), S(m1) < S(m2)

or Deg(m1) = Deg(m2), S(m1) = S(m2),m1 >lex m2.

Example 5.14. Let

m1 = x1,1 � x1,2 � x2,1,

and

m2 = x1,1 � x2
1,2.

We have Deg(m1) = Deg(m2) = 3, S(m1) = 3, S(m2) = 2. Since S(m2) < S(m1), we have

m2 >S m1.

Proposition 5.15. Relation >S is a well-ordering on the set of min-plus monomials.

Lemma 5.16. The 2-symmetrization of any min-plus monomial can be written as a rational

tropical function in the elementary symmetric polynomials.

Proof. We prove the statement by induction on the set of min-plus monomials well-ordered

by >S . Monomial x0
1,1 � x0

2,1 � . . .� x0
1,n � x0

2,n = 0 and as such is a rational function of

2-symmetric elementary polynomials. By definition the symmetrization of a monomial of

degree 1 is a 2-symmetric elementary polynomial.

Let us suppose that this statement holds for all monomials xs1,1
1,1 � . . .� x

sn,2
n,2 with

x
s1,1
1,1 � . . .� x

sn,2
n,2 <S x

i1,1
1,1 � . . .� x

in,2
n,2 .
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We must show that it holds for xi1,11,1 � . . . � x
in,2
n,2 and then the statement will follow by

induction. If i1,1, . . . , in,2 ≤ 1, then Sym2(xi1,11,1 � . . . � x
in,2
n,2 ) is an elementary symmetric

polynomial by definition.

Otherwise, let us suppose that exactly ij1
1 ,j

1
2
, ij2

1 ,j
2
2
, . . . , ijk1 ,jk2

among i1,1, . . . , in,2 are pos-

itive. Let a = min(ij1
1 ,j

1
2
, ij2

1 ,j
2
2
, . . . , ijk1 ,jk2

) and

e = Sym2(xj1
1 ,j

1
2
� . . .� xjk1 ,jk2 ).

We observe

ea � Sym2(x
i
j1
1 ,j

1
2
−a

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2
−a

jk1 ,j
k
2

).

Since the Freshman’s Dream holds in tropical arithmetic, the expression on the left equals

(
⊕
ρ∈Sn

xaρ(j1
1),j1

2
� . . .� xa

ρ(jk1 ),jk2
)� (

⊕
π∈Sn

x
i
j1
1 ,j

1
2
−a

π(j1
1),j1

2
� . . .� x

i
jk1 ,j

k
2
−a

π(jk1 ),jk2
).

By distributivity, we can rewrite it as

⊕
ρ∈Sn

⊕
π∈Sn

xaρ(j1
1),j1

2
� . . .� xa

ρ(jk1 ),jk2
� x

i
j1
1 ,j

1
2
−a

π(j1
1),j1

2
� . . .� x

i
j1
1 ,j

1
2
−a

π(jk1 ),jk2
.

By commutativity and Freshman’s Dream this equals

Sym2(x
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2

jk1 ,j
k
2

)⊕
⊕
ρ∈Sn

⊕
π∈Sρn

xaρ(j1
1),j1

2
� . . .� xa

ρ(jk1 ),jk2
� x

i
j1
1 ,j

1
2
−a

π(j1
1),j1

2
� . . .� x

i
j1
1 ,j

1
2
−a

π(jk1 ),jk2
.

Here Sρn = {π ∈ Sn | r ∈ {1, . . . , k} exists such that (π(jr1), jr2) /∈ {(ρ(js1), js2)}ks=1}.

We denote xa
ρ(j1

1),j1
2
� . . .� xa

ρ(jk1 ),jk2
� x

i
j1
1 ,j

1
2
−a

π(j1
1),j1

2
� . . .� x

i
j1
1 ,j

1
2
−a

π(jk1 ),jk2
by pρ,π and write:

Sym2(x
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2

jk1 ,j
k
2

) = ea � Sym2(x
i
j1
1 ,j

1
2
−a

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2
−a

jk1 ,j
k
2

)� (
⊕
ρ∈Sn

⊕
π∈Sρn

pρ,π)−1.
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Since
⊕
ρ∈Sn

⊕
π∈Sρn pρ,π is symmetric and Sym2 is additive,

⊕
ρ∈Sn

⊕
π∈Sρn

pρ,π = Sym2(
⊕
ρ∈Sn

⊕
π∈Sρn

pρ,π) =
⊕
ρ∈Sn

⊕
π∈Sρn

Sym2(pρ,π).

Observe that

pρ,π <S x
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2

jk1 ,j
k
2

for every π ∈ Sρn and ρ ∈ Sn. This holds since Deg pρ,π = Degx
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . . � x

i
jk1 ,j

k
2

jk1 ,j
k
2

and

because by definition Sρn contains π for which such r exists that (π(jr1), jr2) /∈ {(ρ(js1), js2)}ks=1

and therefore S(pρ,π) ≥ S(x
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2

jk1 ,j
k
2

) + 1.

Moreover,

x
i
j1
1 ,j

1
2
−a

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2
−a

jk1 ,j
k
2

<S x
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2

jk1 ,j
k
2
,

so by the inductive hypothesis Sym2(x
i
j1
1 ,j

1
2
−a

j1
1 ,j

1
2
� . . .� x

i
jk1 ,j

k
2
−a

jk1 ,j
k
2

) can be written as a rational

tropical function in 2-symmetric elementary tropical polynomials.

By induction Sym2(pρ,π) are rational tropical functions in 2-symmetric elementary trop-

ical polynomials.

Since we can express Sym2(x
i
j1
1 ,j

1
2

j1
1 ,j

1
2
� . . . � x

i
jk1 ,j

k
2

jk1 ,j
k
2

) as a rational tropical function in 2-

symmetric elementary tropical polynomials, the proof is complete.

Proof of Theorem 5.13. Any rational tropical function r may be written as

r(x1,1, . . . , xn,2) = p(x1,1, . . . , xn,2)� q(x1,1, . . . , xn,2)−1,

where p and q are 2-symmetric tropical polynomials. It follows from Lemma 5.16 that

2-symmetrization of any min-plus polynomial can be written as a rational tropical func-

tion in the elementary symmetric polynomials (using additivity of Sym2). Consequently,

Sym2(p(x1,1, . . . , xn,2)) and Sym2(q(x1,1, . . . , xn,2)) are rational tropical functions in ele-

mentary 2-symmetric tropical polynomials as is their tropical quotient r(x1,1, . . . , xn,2).



Chapter 6

Max-Plus, Min-Plus Type

Coordinates

In this chapter we identify max-plus polynomials that we can use as coordinates on the

barcode space and prove that they are stable with respect to the bottleneck and Wasserstein

distances.

We work with a slightly modified definition of the barcode space. In Chapter 2 we

encode a barcode with n intervals as a vector (x1, y1, x2, y2, . . . , xn, yn), where xi denotes

the left endpoint of the i-th interval and yi the right endpoint. Here we represent the same

barcode as (x1, d1, x2, d2, . . . , xn, dn) where xi is the left endpoint of the i-th interval and

di its length. A space of barcodes with n intervals is the orbit space of Sn on the product

([0,∞) × [0,∞))n given by permuting the coordinates. We denote it by B′n. The barcode

space B′ is the quotient ∐
n

B′n/∼,

where ∼ is generated by equivalences of the form

[(x1, d1), (x2, d2), . . . , (xn, dn)] ∼ [(x1, d1), (x2, d2), . . . , (xn−1, dn−1)],

69
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whenever dn = 0.

6.1 Max-Plus Polynomials on the Barcode Space

In this section we find all max-plus polynomials that we can use as coordinates on the

barcode space and prove that they are stable with respect to the bottleneck and Wasserstein

distances.

The first step is to identify max-plus polynomials on the the image of B′n → B′, Bn.

This is the set obtained from B′n by taking the quotient of the following equivalence relation:

two multisets of n intervals each,

I = {(x1, d1), (x2, d2), . . . , (xn, dn)} and J = {(x1, d1), (x2, d2), . . . , (xn, dn)}

are equivalent if such subsets A,B ⊆ {1, . . . , n} exist, that for all α ∈ A, β ∈ B multisets

of intervals I \ {(xα, 0)} and J \ {(xβ, 0)} are identical.

If Wi ⊆ ([0,∞) × [0,∞))n is the subset of n-tuples of pairs (x1, d1, x2, d2, . . . , xn, dn),

which satisfy di = 0, then these functions are precisely the 2-symmetric max-plus polyno-

mials whose restriction to Wi is independent of xi for all i.

Lemma 6.1. Let the minimal representation of a max-plus polynomial p(x1, d1, . . . , xn, dn)

be

�i=1...,ma
i
0 � x

ai1
1 � d

bi1
1 � . . .� x

ain
n � db

i
n
n .

Then p restricted to Wj is independent of xj if and only if aij = 0 for all i = 1, . . . ,m.

Proof. The direction (⇐) follows immediately. We must show (⇒). Suppose not all aij are

0. Let I be the set of indices i for which

|aij | = max{|aij | ; i = 1, . . . ,m}.
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Let i0 ∈ I. If ai0j > 0, then p(0, . . . , 0, xj , 0, . . . , 0) = ai00 � x
a
i0
j

j for xj big. In this case

p(x1, d1, . . . , xn, dn) depends on xi. By assumption ai0j ≥ 0. This implies that the only way

the expression does not depend on xi is if ai0j = 0.

Corollary 6.2. The subsemiring of max-plus polynomials whose restriction to Wi is inde-

pendent of xi for all i contains precisely the max-plus polynomials of the form

�i=1...,ma
i
0 � d

bi1
1 � . . .� d

bin
n .

We denote this semiring by Dn.

Proposition 6.3. Let DSn
n denote the subring of elements of Dn which are invariant under

the action of Sn. Then σ[(0,1)], σ[(0,1)2], . . . , σ[(0,1)n] generate DSn, in the sense that any

element of DSn is of the form

�i=1...,ma
i
0 � σ

bi1
[(0,1)] � . . .� σ

bin
[(0,1)n],

where ai0 ∈ R and all bij nonnegative integers.

Proof. The statement follows from Theorem 4.12.

Now that we have identified appropriate functions for each Bn separately, we must

assemble them to get functions on the barcode space. When n ≥ m, the natural inclusion

Bm → Bn

{(x1, d1), . . . , (xm, dm)} 7→ {(x1, d1), . . . , (xm, dm), (0, 0), . . . , (0, 0)}

induces in,m : Dn → Dm, defined by

in,m(f)((x1, d1), . . . , (xm, dm)) = f((x1, d1), . . . , (xm, dm), (0, 0), . . . , (0, 0)),
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The map in,m is Sm-equivariant (Sm acts by permuting the first m pairs of variables). It

follows that we may construct composites

imn : DSn
n ↪→ DSm

n

iSmn,m−−−→ DSm
m

and an inverse system

. . .
in+1
n−−−→ DSn

n

inn−1−−−→ D
Sn−1
n−1

in−1
n−2−−−→ . . .

i21−−→ DS1
1 .

Observe that σ[(0,1)k] with k 6= n is mapped to σ[(0,1)k] with inn−1 and that inn−1(σ[(0,1)n]) =

σ[(0,1)n−1]). Therefore inn−1 are surjections for all positive integers n. We do not wish to

include functions such as

max
i∈N

xi

and for this reason we take a filtered inverse limit of these objects instead of the inverse

limit. The total degree is the filter we use. Recall that Deg p of a max-plus polynomial

p(x1, x2, . . . , xn) = a1 � x
i11
1 x

i12
2 . . . x

i1n
n � a2 � x

i21
1 x

i22
2 . . . x

i2n
n � . . .� am � x

im1
1 x

im2
2 . . . xi

m
n
n

is max1≤j≤m(ij1 + ij2 + . . .+ ijn). Let

kDn = {p ∈ Dn |Deg p ≤ k}

Map inn−1 induces ki
n
n−1 : kDSn

n
ki
n
n−1−−−→ kD

Sn−1
n−1 . We denote the inverse limit of this system

by Dk. The space of max-plus polynomials on the barcode space, D , is precisely ∪∞k=1D
k.

Definition 6.4. A semiring (R,+, ·) is called filtered if there exists such a family of sub-

semirings {Rd}d∈N of (R,+, ·) for operation + that

• Rd ⊂ Rd′ for d ≤ d′,



6.2. STABILITY OF MAX-PLUS POLYNOMIALS 73

• R =
⋃
d Rd,

• Rd ·Rd′ ⊂ Rd+d′ for all d, d′ ∈ N.

Theorem 6.5. Max-plus polynomials on the barcode space, D , have the structure a filtered

semiring. They are generated by elements of the form σ[(0,1)n], where n is a positive integer.

6.2 Stability of Max-Plus Polynomials

In Chapter 2 we argue that stability is the key property that coordinate functions should

satisfy. In this section we prove that the functions from D are stable with respect to the

bottleneck and Wasserstein distances.

Theorem 6.6 (Bottleneck Stability of Max-Plus Polynomials). Let D be the filtered semir-

ing of max-plus polynomials. If F ∈ D , then a constant C exists such that

|F (B1)− F (B2)| ≤ Cd∞(B1,B2)

for any pair of barcodes B1 and B2.

Lemma 6.7. A constant C exists such that

|σ[(0,1)n](B1)− σ[(0,1)n](B2)| ≤ Cd∞(B1,B2)

for any pair of barcodes B1 and B2 and any n ∈ N.

Proof. Let B1 = {(x1, d1), . . . , (xl1 , dl1)} and B2 = {(x′1, d′1), . . . , (x′l2 , d
′
l2

)} be such that

B1 6= B2 and d1 ≥ d2 ≥ . . . ≥ dl1 ≥ 0.

Without loss of generality assume that σ[(0,1)n](B1) ≥ σ[(0,1)n](B2). If n > l1 or n > l2,

we add 0 length intervals to B1, B2 to achieve that their length is n.

Let θ be a bijection where the penalty is minimal, i.e. where P∞(θ) = d∞(B1,B2). As-

sume that θ matches (x1, d1) with (x′1, d′1), (x2, d2) with (x′2, d′2), . . . , (xn, dn) with (x′n, d′n)
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(some of these intervals might be 0 length intervals). Note that for all i in this matching,

|di − d
′
i

2 | ≤ max
i=1,...,m

(|xi − x′i|, |di − d′i + xi − x′i|) ≤ d∞(B1,B2). (6.1)

By the definition of minimal matching max
i=1,...,m

(|xi−x′i|, |di−d′i+xi−x′i|) ≤ d∞(B1,B2). We

must prove the first inequality. Notice that if |di−d
′
i

2 | ≤ |xi − x
′
i|, this follows automatically.

If |di−d
′
i

2 | > |xi − x
′
i|, then

|di − d
′
i

2 | ≤ |di − d′i + xi − x′i|,

proving Inequality 6.1.

Then
nd∞(B1,B2) ≥

∑n
i=1

(di−d′i)
2

= 1
2(
∑n
i=1 di −

∑n
i=1 d

′
i)

= 1
2(σ[(0,1)n](B1)−

∑n
i=1 d

′
i)

≥ 1
2(σ[(0,1)n](B1)− σ[(0,1)n](B1)).

The last inequality holds since
∑n
i=1 d

′
i ≤ σ[(0,1)n](B2). Also note that we chose d1, . . . , dn

in a way that σ[(0,1)n](B1) =
∑n
i=1 di.

We deduce that

|σ[(0,1)n](B1)− σ[(0,1)n](B1)| ≤ 2nd∞(B1,B2),

proving that σ[(0,1)n] is Lipschitz with constant 2n.

Proof of Theorem 6.6. Suppose F1 and F2 are such that C1 and C2 exist such that

|F1(B1)− F1(B2)| ≤ C1d∞(B1,B2)

and

|F2(B1)− F2(B2)| ≤ C2d∞(B1,B2)
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for any any pair of barcodes B1 and B2.

Let H = F1 + F2. Then

|H(B1)−H(B2)| = |F1(B1) + F2(B1)− F1(B2)− F2(B2)|

≤ |F1(B1)− F1(B2)|+ |F2(B1)− F2(B2)|

≤ C1d∞(B1,B2) + C2d∞(B1,B2)

≤ (C1 + C2)d∞(B1,B2).

Let H = max(F1, F2). Then

F1(B2) ≤ F1(B1) + |F1(B2)− F1(B1))| ≤ H(B1) + |F1(B2)− F1(B1))|,

and similarly F2(B2) ≤ H(B1) + |F2(B2)− F2(B1))|. It follows that

H(B2) ≤ H(B1) + max(|F1(B2)− F1(B1))|, |F2(B2)− F2(B1))|),

and by symmetry we conclude that

|H(B1)−H(B2)| ≤ max(C1, C2)d∞(B1,B2).

Any function F from the filtered semiring of max-plus polynomials is generated by

taking maxima and sums of σ[(0,1)n]. Since stability is preserved under these two operations

and since σ[(0,1)n] are stable according to Lemma 6.7, F is also stable.

Theorem 6.8 (Wasserstein Stability of Max-Plus Polynomials). Let D be the filtered semir-

ing of max-plus polynomials. If F ∈ D , then a constant C exists such that

|F (B1)− F (B2)| ≤ C dq(B1,B2)

for any pair of barcodes B1 and B2.
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Proof. Let B1 = {(x1, d1), . . . , (xl1 , dl1)} and B2 = {(x′1, d′1), . . . , (x′l2 , d
′
l2

)} be such that

B1 6= B2 and d1 ≥ d2 ≥ . . . ≥ dl1 ≥ 0.

Without loss of generality assume that σ[(0,1)n](B1) ≥ σ[(0,1)n](B2). If n > l1 or n > l2,

we add 0 length intervals to B1, B2 to achieve that their length is n.

Let θ be a bijection where the penalty is minimal, i.e. where Pp(θ) = dp(B1,B2). As-

sume that θ matches (x1, d1) with (x′1, d′1), (x2, d2) with (x′2, d′2), . . . , (xn, dn) with (x′n, d′n)

(some of these intervals might be 0 length intervals). For all i in this matching,

|di − d
′
i

2 |q ≤ max
i=1,...,m

(|xi − x′i|, |di − d′i + xi − x′i|)q

since x 7→ xq is increasing for x > 0. Then

(σ[(0,1)n](B1)− σ[(0,1)n](B2))q ≤ (σ[(0,1)n](B1)−
∑n
i=1 d

′
i)q

= (
∑n
i=1 di −

∑n
i=1 d

′
i)q

≤ 2q(
∑n
i=1 |

di−d′i
2 |)

q

≤ 2q(n)q−1(
∑n
i=1 |

di−d′i
2 |

q)

≤ 2q(n)q−1Pq(θ)

= 2qnq−1dq(B1,B2).

The first inequality holds since
∑n
i=1 d

′
i ≤ σ[(0,1)n](B2). Also note that we chose d1, . . . , dn in

a way that σ[(0,1)n](B1) =
∑n
i=1 di. To bound

∑n
i=1 |

di−d′i
2 |

q we use Hőlder’s inequality.

6.3 Tropical Rational Functions on the Barcode Space

While the the functions belonging to D are stable and can be used to assign vectors to

barcodes, they do not separate points in the barcode space. Because there simply are not

enough functions among max-plus polynomials to separate points, we expand the set of

functions we observe to all tropical rational functions.
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Let

((x1, d1), . . . , (xn, dn)), ((x′1, d′1), . . . , (x′n, d′n)) ∈ [0,∞)2n.

Without loss of generality we assume that they are lexicographically ordered.

The tropical rational functions that respect equivalence classes of Bn, Rn, must respect

the following equivalence relation ∼ on [0,∞)2n:

((x1, d1), . . . , (xn, dn)) ∼ ((x′1, d′1), . . . , (x′n, d′n))⇔ ∀i : di = d′i ∧ (xi = x′i ∨ di = 0).

Theorem 6.9. No finite subset of Rn exists which separates nonequivalent points in Bn.

Proof. Assume {f1, . . . , fm} ∈ Rn separates nonequivalent points inBn. Let ~x = (x1, d1, . . . , xn, dn)

and ~x′ = (x′1, d′1, . . . , x′n, d′n)

g(~x, ~x′) = max{|f1(~x)− f1(~x′)|, . . . , |fm(~x)− fm(~x′)|}.

The function g is the 1-distance between vectors (f1(~x), . . . , fn(~x)) and (f1(~x′), . . . , fn(~x′)).

Thus g(~x, ~x′) = 0 if and only if ~x and ~x′ are equivalent points.

Since |x| = max(x,−x), g is a tropical rational function, so we can write it as

max
i=1,...,l1

(
n∑
k=1

(ak,ixk + bk,idk) +
n∑
k=1

(a′k,ix′k + b′k,id
′
k) + ci)−

max
j=1,...,l2

(
n∑
k=1

(sk,jxk + tk,jdk) +
n∑
k=1

(s′k,jx′k + t′k,jd
′
k) + uj). (6.2)

For ~x0 = (x, 0, . . . , x, 0) and ~y0 = (y, 0, . . . , y, 0), g(~x0, ~y0) = 0 and consequently

max
i=1,...,l1

(x
n∑
k=1

ak,i + y
n∑
k=1

a′k,i + ci) = max
j=1,...,l2

(x
n∑
k=1

sk,j + y
n∑
k=1

s′k,j + uj).

∑n
k=1 ak,i cannot be 0 for all i unless

∑n
k=1 sk,i is 0 for all i (if they were not, we could set

y to 0 and choose a large x to make the right hand side of the equation larger than the left
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hand side). The same holds for
∑n
k=1 a

′
k,i and

∑n
k=1 s

′
k,i. If

∑n
k=1 ak,i,

∑n
k=1 a

′
k,i,

∑n
k=1 sk,i

and
∑n
k=1 s

′
k,i are 0 for all i, then g is independent of x1, . . . , xn, x

′
1, . . . , x

′
n. This cannot

happen since when n = 1 it would imply that

0 = g(1, 1, 1, 1) = g(1, 1, 2, 1) 6= 0.

We can construct a similar example for other n. It follows that
∑n
k=1 ak,i,

∑n
k=1 a

′
k,i,∑n

k=1 sk,i and
∑n
k=1 s

′
k,i do not all equal 0 for all i. Choose

x, y >

max
i∈N≤l1

(ui, ci)

min( max
i∈N≤l1

(
n∑
k=1

ak,i +
n∑
k=1

ak,i), max
i∈N≤l2

(
n∑
k=1

sk,i +
n∑
k=1

s′k,i))
.

We denote the set of indices for which the maximum of max
j=1,...,l2

(x
n∑
k=1

ak,i + y
n∑
k=1

a′k,i + ci) is

attained at x
∑n
k=1 ak,i + y

∑n
k=1 a

′
k,i + ci by I. We define J to be the set of indices where

max
j=1,...,l2

(x
n∑
k=1

sk,j + y
n∑
k=1

s′k,j + uj) is attained at x
∑n
k=1 sk,j + y

∑n
k=1 s

′
k,j + uj .

Let i ∈ I and j ∈ J . Since

x
n∑
k=1

ak,i + y
n∑
k=1

a′k,i + ci = x
n∑
k=1

sk,j + y
n∑
k=1

s′k,j + uj

for all big enough x and y,
∑n
k=1 ak,i =

∑n
k=1 sk,j ,

∑n
k=1 a

′
k,i =

∑n
k=1 s

′
k,j and ci = uj .

For any index i let Si denote the set of all such (~x, ~x′) ∈ [0,∞)2n × [0,∞)2n that

max
i=1,...,l1

(
n∑
k=1

(ak,ixk + bk,idk) +
n∑
k=1

(a′k,ix′k + b′k,id
′
k) + ci)

is attained in i. We similarly define Tj to be the set of all such (~x, ~x′) that

max
j=1,...,l2

(
n∑
k=1

(sk,ixk + tk,idk) +
n∑
k=1

(s′k,ix′k + t′k,id
′
k) + ui)
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is attained in j. The sets Si and Tj are closed for all i and j. Let

U = [0,∞)2n × [0,∞)2n \
( ⋃
i/∈I

Si ∪
⋃
j /∈J

Tj
)

Since (~x0, ~y0) ∈ U and U is open in [0,∞)2n × [0,∞)2n, a positive ε exists such that

([x, x+ ε]× [0, ε])n × ([y, y + ε]× [0, ε])n ⊆ U . There exist such i0 ∈ I and j0 ∈ J that

0 = g((x, ε, . . . , x, ε), (x, ε, . . . , x, ε))

= x
∑n
k=1 ak,i0 + x

∑n
k=1 a

′
k,i0

+ ε
∑n
k=1(bk,i0 + b′k,i0) + ci0−

(x
∑n
k=1 sk,j0 + x

∑n
k=1 s

′
k,j0

+ ε
∑n
k=1(tk,j0 + t′k,j0) + uj0)

= (ε
∑n
k=1(bk,i0 + b′k,i0) + ci0)− (ε

∑n
k=1(tk,j0 + t′k,j0) + uj0)

= x
∑n
k=1 ak,i0 + y

∑n
k=1 a

′
k,i0

+ ε
∑n
k=1(bk,i0 + b′k,i0) + ci0−

(x
∑n
k=1 sk,j0 + y

∑n
k=1 s

′
k,j0

+ ε
∑n
k=1(tk,j0 + t′k,j0) + uj0)

= g((x, ε, . . . , x, ε), (y, ε, . . . , y, ε)).

We choose such x and y that x 6= y. For this choice, g((x, ε, . . . , x, ε), (y, ε, . . . , y, ε)) 6= 0,

which is a contradiction.

Theorem 6.9 states that no finite subset of symmetric min-plus, max-plus or tropical

rational functions exists that separates barcodes. In this section we identify a countable set

of tropical rational functions on the barcode space that does.

Theorem 6.10. Let {σ(e1,1,e1,2),...,(en,1,en,2)} be the set of elementary 2-symmetric max-plus

polynomials. Functions, defined by

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, d1, . . . , xn, dn) := σ(e1,1,e1,2),...,(en,1,en,2)(x1⊕dm1 , d1, . . . , xn⊕dmn , dn),

for m ∈ N, i ∈ N≤n are contained in Rn. Furthermore, they separate nonequivalent points

in Bn.
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Proof. Restricted to di = 0, expressions xi ⊕ dmi are 0 and therefore independent of xi and

consequently so are their post-compositions with e(e1,1,e1,2),...,(en,1,en,2). This implies that

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, d1, . . . , xn, dn) is contained in Rn.

We must show that if (x1, d1, . . . , xn, dn) and (x′1, d′1, . . . , x′n, d′n) are not equivalent in

Bn, we can find such Em,(e1,1,e1,2),...,(en,1,en,2) that

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, d1, . . . , xn, dn) 6= Em,(e1,1,e1,2),...,(en,1,en,2)(x′1, d′1, . . . , x′n, d′n).

Let (x1, d1, . . . , xn, dn) and (x′1, d′1, . . . , x′n, d′n) be nonequivalent. Without loss of generality

assume that d1 ≤ . . . ≤ dn and d′1 ≤ . . . ≤ d′n.

Some of the d’s, say d1, . . . , dk−1 = 0 can be 0 (if k = 1 none of d’s is 0). The point

(x1, 0, . . . , xk−1, 0, xk, dk, . . . xn, dn) is equivalent to (0, 0, . . . , 0, 0, xk, dk, . . . xn, dn) and con-

sequently

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, 0, . . . , xk−1, 0, xk, dk, . . . xn, dn) =

Em,(e1,1,e1,2),...,(en,1,en,2)(0, 0, . . . , 0, 0, xk, dk, . . . xn, dn) (6.3)

for all m and (e1,1, e1,2), . . . , (en,1, en,2). Similarly, if d′1, . . . , d′l−1 = 0, then

(x′1, 0, . . . , x′l−1, 0, x′l, d′l, . . . x′n, d′n) ∼ (0, 0, . . . , 0, 0, x′l, d′l, . . . x′n, d′n)

and consequently

Em,(e1,1,e1,2),...,(en,1,en,2)(x′1, 0, . . . , x′l−1, 0, x′l, d′l, . . . x′n, d′n) =

Em,(e1,1,e1,2),...,(en,1,en,2)(0, 0, . . . , 0, 0, x′l, d′l, . . . x′n, d′n) (6.4)

for all m and (e1,1, e1,2), . . . , (en,1, en,2).
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Choose m ∈ N such that

m > max( max
k≤i≤n

xi
di
, max
l≤i≤n

x′i
d′i

).

For this m,

(x1 ⊕ dm1 , d1, . . . , xn ⊕ dmn , dn) = (0, 0, . . . , 0, 0, xk, dk, . . . xn, dn)

and

(x′1 ⊕ d
′m
1 , d′1, . . . , x

′
n ⊕ d

′m
n , dn) = (0, 0, . . . , 0, 0, x′l, d′l, . . . x′n, d′n)

Theorem 5.9guarantees existence of such e ∈ {σ(e1,1,e1,2),...,(en,1,en,2)} that

e(0, 0, . . . , 0, 0, xk, dk, . . . xn, dn) 6= e(0, 0, . . . , 0, 0, x′l, d′l, . . . x′n, d′n).

If we now take Em,e for this choice of m and this e,

Em,e(x1, d1, . . . xn, dn) 6= Em,e(x′1, d′1, . . . , x′n, d′n)

and we are done.

It is hard to characterize all tropical rational functions on Bn, so we work with a

subsemiring of functions obtained by taking maxima, adding and substracting functions

from {Em,(e1,1,e1,2),...,(en,1,en,2)}. We denote this subsemiring by Gn or GSnn when we wish

to stress that all the functions contained in it are symmetric. We have restriction maps

in,m : Gn → Gm, when n ≥ m, induced by

in,m(f)(x1, d1, . . . , xm, dm, . . . , xn, dn) = f(x1, d1, . . . , xm, dm, 0, 0, . . . , 0, 0),

The map in,m is Sm-equivariant, where Sm acts by permuting the first m pairs of variables.
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Maps in,n−1 transform the generators of Gn as follows:

Em,(0,0)j(1,0)k(0,1)l(1,1)p 7→



Em,(0,0)j−1(1,0)k(0,1)l(1,1)p if j 6= 0

Em,(1,1)n−1 if j = 0, k = 0, l = 0

Em,(0,1)l−1(1,1)p if j = 0, k = 0, l ≥ 1

Em,(1,0)k−1(1,1)p if j = 0, k ≥, l = 0

Em,(1,0)k−1(0,1)l(1,1)p � Em,(1,0)k(0,1)l−1(1,1)p if j = 0, k ≥, l ≥ 1

Here p = n − l − k − j. Therefore we in,n−1 is a surjection from Gn to Gn−1 and we may

construct composites

in−1
n : GSnn ↪→ GSn−1

n

i
Sn−1
n,n−1−−−−→ G

Sn−1
n−1 .

We cannot proceed as we did in the case of max-plus polynomials, since we cannot define

a degree of a tropical rational expression. However we can write any r ∈ Gn as

max
i=1,...,l1

(
n∑
k=1

(ak,ixk + bk,idk) +
n∑
k=1

(a′k,ix′k + b′k,id
′
k) + ci)−

max
j=1,...,l2

(
n∑
k=1

(sk,jxk + tk,jdk) +
n∑
k=1

(s′k,jx′k + t′k,jd
′
k) + uj). (6.5)

Now set

kG
Sn
n = {r ∈ Gn | r ∼ p⊕ q−1, p, q are max-plus polynomials with deg p, deg q ≤ k}

Map in−1
n induces ki

n−1
n : kGSnn

ki
n−1
n−−−→ kG

Sn−1
n−1 . We denote the inverse limit of this system

by G k. Let G = ∪∞k=1G
k.

Theorem 6.11. Tropical rational functions in G form a filtered semiring and they sep-

arate points in the barcode space. As a semiring G is generated by elements of the form

Em,(1,0)k(0,1)l(1,1)p where k, l, p are nonnegative integers and m is a positive integer.



6.4. STABILITY OF TROPICAL RATIONAL FUNCTIONS IN G 83

6.4 Stability of Tropical Rational Functions in G

Theorem 6.12 (Bottleneck stability of functions in G ). If F ∈ G , then a constant C exists

such that

|F (B1)− F (B2)| ≤ Cd∞(B1,B2)

for any pair of barcodes B1 and B2.

Lemma 6.13. Let mi = min{xi,mdi} and mj = min{xj ,mdj}. Then

|mi −mj | ≤ 2mmax(|xi − x′i|, |di − d′i + xi − x′i|).

Proof. If xi ≤ mdi and xj ≤ mdj , then

|mi −mj | = |xi − xj |.

If xi ≥ mdi and xj ≥ mdj , then

|mi −mj | = |mdi −mdj | = m|di − dj |.

Let xi ≤ mdi and xj > mdj (the case when xi > mdi and xj ≤ mdj is analogous). Since

0 ≤ xi ≤ mdi,

−mdj ≤ xi −mdj ≤ m(di − dj).

On the other hand −xj < −mdj ≤ 0 and consequently

xi − xj < xi −mdj ≤ xi.

It follows that

|xi −mdj | ≤ max{|xi − x′i|,m|di − d′i||
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and consequently

|mi −mj | ≤ max{|xi − x′i|,m|di − d′i|} ≤ mmax{|xi − x′i|, |di − d′i|}.

By triangle inequality

|di − d′i| ≤ |di − d′i + xi − x′i|+ |xi − x′i| ≤ 2 max(|xi − x′i|, |di − d′i + xi − x′i|).

Finally these two inequalities imply

max(|xi − x′i|, |di − d′i + xi − x′i|) ≤ 2mmax(|xi − x′i|, |di − d′i + xi − x′i|)

Proof of Theorem 6.12. Take E = Em,(0,1)l(1,0)k(1,1)p . Let B1 = {(x1, d1), . . . , (xl1 , dl1)} and

B2 = {(x′1, d′1), . . . , (x′l2 , d
′
l2

)} be such that B1 6= B2. Without loss of generality assume that

Em,(0,1)l(1,0)k(1,1)p(B1) ≥ Em,(0,1)l(1,0)k(1,1)p(B2)

and

Em,(0,1)l(1,0)k(1,1)p(B1) =
p∑
i=1

(mi + di) +
p+k∑
i=p+1

mi +
p+k+l∑

i=p+k+1
di.

If l1, l2 < p+ k + l, we add 0 length intervals to both barcodes.

Let θ be a bijection where the penalty is minimal, i.e. where P∞(θ) = d∞(B1,B2).

Assume that θ matches (x1, d1) with (x′1, d′1), (x2, d2) with (x′2, d′2), . . . , (xp+k+l, dp+k+l)

with (x′p+k+l, d
′
p+k+l). Recall that for all i in this matching,

|di − d
′
i

2 | ≤ max
i=1,...,m

(|xi − x′i|, |di − d′i + xi − x′i|).
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Then

E(B1)− E(B2) =
∑p
i=1(mi + di) +

∑p+k
i=p+1mi +

∑p+k+l
i=p+k+1 di − E(B2))

≤
∑p
i=1(mi −m′i + di − d′i) +

∑p+k
i=p+1(mi −m′i) +

∑p+k+l
i=p+k+1(di − d′i)

= 2|
∑p
i=1

mi−m′i
2 +

∑p
i=1

di−d′i
2 +

∑p+k
i=p+1

mi−m′i
2 +

∑p+k+l
i=p+k+1

di−d′i
2 |

≤ 2(
∑p
i=1 |

mi−m′i
2 |+

∑p
i=1 |

di−d′i
2 |+

∑p+k
i=p+1 |

mi−m′i
2 |+

∑p+k+l
i=p+k+1 |

di−d′i
2 |)

≤ 2(pP∞(θ) + pP∞(θ) + kP∞(θ) + lP∞(θ))

≤ 2(2p+ k + l)d∞(B1,B2).

This proves that E is Lipschitz. In Proof of Theorem 6.6 we showed that stable func-

tions on the barcode space are preserved under taking sums, maxima and minima. Since

Em,(e1,1,e1,2),...,(en,1,en,2) are stable as any F ∈ G is composed of taking sums, maxima and

minima of Em,(e1,1,e1,2),...,(en,1,en,2).

Theorem 6.14 (Wasserstein stability of functions in G ). If F ∈ G , then a constant C

exists such that

|F (B1)− F (B2)| ≤ Cdq(B1,B2)

for any pair of barcodes B1 and B2.

Proof. We denote the function Em,(0,1)l(1,0)k(1,1)p by E. Let B1 = {(x1, d1), . . . , (xl1 , dl1)}

and B2 = {(x′1, d′1), . . . , (x′l2 , d
′
l2

)} be such that B1 6= B2. Without loss of generality assume

that

Em,(0,1)l(1,0)k(1,1)p(B1) ≥ Em,(0,1)l(1,0)k(1,1)p(B2)

and

Em,(0,1)l(1,0)k(1,1)p(B1) =
p∑
i=1

(mi + di) +
p+k∑
i=p+1

mi +
p+k+l∑

i=p+k+1
di.

If l1, l2 < p+ k + l, we add 0 length intervals to both barcodes.

Let θ be a bijection where the penalty is minimal, i.e. where P∞(θ) = dq(B1,B2).
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Assume that θ matches (x1, d1) with (x′1, d′1), (x2, d2) with (x′2, d′2), . . . , (xp+k+l, dp+k+l)

with (x′p+k+l, d
′
p+k+l). Recall that for all i in this matching,

|di − d
′
i

2 |q ≤ max
i=1,...,m

(|xi − x′i|, |di − d′i + xi − x′i|)q

since x 7→ xq is increasing for x > 0. Then

|E(B1)− E(B2)|q = (
∑p
i=1(mi + di) +

∑p+k
i=p+1mi +

∑p+k+l
i=p+k+1 di − E(B2))q

≤ (
∑p
i=1(mi −m′i + di − d′i) +

∑p+k
i=p+1(mi −m′i) +

∑p+k+l
i=p+k+1(di − d′i))q

= 2q|
∑p
i=1

mi−m′i
2 +

∑p
i=1

di−d′i
2 +

∑p+k
i=p+1

mi−m′i
2 +

∑p+k+l
i=p+k+1

di−d′i
2 |

q

≤ 2q(
∑p
i=1 |

mi−m′i
2 |+

∑p
i=1 |

di−d′i
2 |+

∑p+k
i=p+1 |

mi−m′i
2 |+

∑p+k+l
i=p+k+1 |

di−d′i
2 |)

q

≤ 2q(2p+ k + l)q−1(2p+ k + l)Pq(θ)q

= 2q(2p+ k + l)qdp(B1,B2)q.

The first inequality holds since
∑p
i=1(m′i+d′i)+

∑p+k
i=p+1m

′
i+
∑p+k+l
i=p+k+1 d

′
i ≤ E(B2). Second

to last inequality uses Hőlder’s inequality.

This proves that E is Lipschitz. In Proof of Theorem 6.6 we showed that stable func-

tions on the barcode space are preserved under taking sums, maxima and minima. Since

Em,(e1,1,e1,2),...,(en,1,en,2) are stable, F ∈ G is also stable as it is composed of taking sums,

maxima and minima of Em,(e1,1,e1,2),...,(en,1,en,2).



Chapter 7

Classifying Digits

Adcock et al. [1] used polynomial coordinates to classify digits from the MNIST database [24]

of handwritten digits. In this Chapter I compare classification results they obtained with

mine, which were classified using tropical coordinates. Aaron Adcock provided the matlab

code needed to convert digital images into filtrations.

While homology itself cannot distinguish between the digits - 1, 5, and 7 never have

loops, 0, 6, 9 always have loops, 8 has two loops, while 2, 3, 4 might or might not have

loops, depending on style - we can use persistent homology as a measurement of shape.

Figure 7.1 shows the first 100 digits of the database. The original black and white images

Figure 7.1: The first 100 images of the MNIST database.

87
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were first normalized, scaled into a 20 × 20 pixel bounding box and anti-aliased, which

introduced grayscale levels. Pixel values are 0 to 255, where 0 means background (white),

255 means foreground (black).

Following Collins et al. [16], we first threshold (setting pixel values greater than 100 to

1 and the rest to 0) to produce a binary image. We construct four filtrations as follows.

For each pixel we add a vertex, for any pair of adjacent pixels (diagonals included) an edge

and for any triple of adjacent pixels a 2-simplex. We sweep across the rows from the left

and the right and across the columns from top to bottom and vice versa. This adds spatial

information into what would otherwise be a purely topological measurement. We take both

Betti 0 and Betti 1.

This extra spatial information reveals the location of various topological features. For

example, though a ‘9’ and ‘6’ both have one connected component and one loop, the loop

will appear at different locations in the 1-dimensional homology top-down sweep for the ‘9’

and ‘6’ (see Figure 7.3). In digits with no loops 0-dimensional homology right to left sweep

distinguishes ‘3’ from other digits (see Figure 7.2).

We can use different methods for turning barcodes into vectors. Adcock et al. selected

four features, ∑
i xi(yi − xi)∑
i(ymax − yi)(yi − xi)∑
i x

2
i (yi − xi)4∑

i(ymax − yi)2(yi − xi)4

which when applied to the four sweeps, each with a 0-dimensional and 1- dimensional

barcode, gives a feature vector of total size 32. I used command fitcecoc in matlab to get

an error-correcting output codes (ECOC) multiclass model. This model was trained using

support vector machine (SVM). I obtained the best results using the Gaussian kernel. As

is typical when using a SVM, I scaled each coordinate such that the values were between 0

and 1. To measure the classification accuracy I used 100-fold cross-validation. See Table 7.1
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Figure 7.2: 1-dimensional homology bottom to top sweep for ‘0’, ‘2’, ‘6’, ‘8’ and ‘9’.
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Figure 7.3: 0-dimensional homology right to left sweep for ‘1’, ‘3’, ‘4’, ‘5’ and ‘7’.

for results.
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1000 digits 5000 digits 10000 digits
87.5% 90.04% 91.04%

Table 7.1: Classification accuracy using ordinary polynomial coordinates.

Using the following max-plus type coordinates

maxi di maxi<j(di + dj)

maxi<j<k(di + dj + dk) maxi<j<k<l(di + dj + dk + dl)∑
i di

∑
i min(28di, xi)∑

i(maxi(min(28di, xi) + di)− (min(28di, xi) + di)).

yields slightly better results 7.2. Note that I used a many functions involving sums of

1000 digits 5000 digits 10000 digits
87.70% 91.36% 92.41%

Table 7.2: Classification accuracy using max-plus type coordinates.

lengths of intervals. These yielded the best results, which is perhaps not surprising since

when using persistent homology and interpreting the barcode, we assign importance to

features depending on over what range of parameters they persist.

This method just demonstrates how one can use persistent homology with other machine

learning algorithms and does not outperform existing classification algorithms. Figure 7.4

shows examples of digits that were not correctly The most common confusion is between

Figure 7.4: Common Misclassifications.

a ‘5’ and a ‘2’ written with no loop. Other common confusions occur when topological

changes occurred to the digit, for example when ‘8’ is written with no loops, etc.
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These examples also show the power of combining topology with geometry, and in

particular demonstrate how coordinates can serve as a method for organizing the collection

of all barcodes, and therefore any database whose members produce barcodes. They are

also stable with respect to the bottleneck and Wasserstein distances.
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