ETHzürich

Outline

1. The Magnitude of a Graph
2. The Definition of Magnitude Homology
3. Induced Maps
4. Disjoint Unions
5. The Mayer-Vietoris Sequence

Outline

1. The Magnitude of a Graph

2. The Definition of Magnitude Homology
3. Induced Maps
4. Disjoint Unions
5. The Mayer-Vietoris Sequence

The Magnitude of a Graph

Definition

A graph G is a pair $(\mathrm{V}(G), \mathrm{E}(G))$ consisting of a finite set $\mathrm{V}(G)$ representing the vertices of G and a set $\mathrm{E}(G)$ of unordered pairs of distinct vertices. The set $\mathrm{E}(G)$ is the set of edges of G.

The Magnitude of a Graph

Definition

A graph G is a pair $(\mathrm{V}(G), \mathrm{E}(G))$ consisting of a finite set $\mathrm{V}(G)$ representing the vertices of G and a set $\mathrm{E}(G)$ of unordered pairs of distinct vertices. The set $\mathrm{E}(G)$ is the set of edges of G.

Definition:

The shortest path metric d_{G} (or just d if there is no risk of confusion) is the map
$d_{G}: \mathrm{V}(G) \times \mathrm{V}(G) \rightarrow[0, \infty]$ which sends any two vertices $x, y \in \mathrm{~V}(G)$ to the length of a shortest path from x to y in G if such a path exists. If no such path exists, then $d_{G}(x, y)=\infty$.

The Magnitude of a graph

Definition:

For any graph G, let $|G|_{q}$ be the magnitude of the symmetry matrix $Z_{G}=Z_{G}(q)$ given by

$$
Z_{G}(x, y)=q^{d(x, y)}
$$

for $x, y \in G$. The matrix $Z_{G}(q)$ is viewed as an element in $\mathbb{Q}(q)$ or $\mathbb{Z}[[q]]$.

The Magnitude of a graph

Definition:

For any graph G, let $|G|_{q}$ be the magnitude of the symmetry matrix $Z_{G}=Z_{G}(q)$ given by

$$
Z_{G}(x, y)=q^{d(x, y)}
$$

for $x, y \in G$. The matrix $Z_{G}(q)$ is viewed as an element in $\mathbb{Q}(q)$ or $\mathbb{Z}[[q]]$.
Example (The complete bipartite graph $K_{3,2}$)
The complete bipartite graph $K_{3,2}$ for integers has magnitude

$$
\left|K_{3,2}\right|_{q}=\frac{5-7 q}{(1+q)\left(1-2 q^{2}\right)} .
$$

Outline

1. The Magnitude of a Graph
2. The Definition of Magnitude Homology
3. Induced Maps
4. Disjoint Unions
5. The Mayer-Vietoris Sequence

The Definition of Magnitude Homology

Definition:

Let G be a graph. The length ℓ of a tuple $\left(x_{0}, \ldots, x_{k}\right) \in G^{k+1}$ of vertices of G is the sum

$$
\ell\left(x_{0}, \ldots, x_{k}\right)=\sum_{i=0}^{k-1} d\left(x_{i}, x_{i+1}\right)
$$

Note that for $k=0$ the length of a tuple $\left(x_{0}\right)$ is $\ell\left(x_{0}\right)=0$.

The Definition of Magnitude Homology

Definition:

Let G be a graph. The length ℓ of a tuple $\left(x_{0}, \ldots, x_{k}\right) \in G^{k+1}$ of vertices of G is the sum

$$
\ell\left(x_{0}, \ldots, x_{k}\right)=\sum_{i=0}^{k-1} d\left(x_{i}, x_{i+1}\right)
$$

Note that for $k=0$ the length of a tuple $\left(x_{0}\right)$ is $\ell\left(x_{0}\right)=0$.

Definition:

The magnitude chain group $\mathrm{MC}_{k, l}(G)$ of a graph G in bidegree (k, l) for $k, l \geq 0$ is the free abelian group generated by $(k+1)$-tuples $\left(x_{0}, \ldots, x_{k}\right)$ of vertices of G satisfying $x_{0} \neq x_{1} \neq \ldots \neq x_{k}$ and $\ell\left(x_{0}, \ldots x_{k}\right)=l$.

The Definition of Magnitude Homology

Definition:

The magnitude chain group $\mathrm{MC}_{k, l}(G)$ of a graph G in bidegree (k, l) for $k, l \geq 0$ is the free abelian group generated by $(k+1)$-tuples $\left(x_{0}, \ldots, x_{k}\right)$ of vertices of G satisfying $x_{0} \neq x_{1} \neq \ldots \neq x_{k}$ and $\ell\left(x_{0}, \ldots x_{k}\right)=l$.

The Definition of Magnitude Homology

Definition:

The magnitude chain group $\mathrm{MC}_{k, l}(G)$ of a graph G in bidegree (k, l) for $k, l \geq 0$ is the free abelian group generated by $(k+1)$-tuples $\left(x_{0}, \ldots, x_{k}\right)$ of vertices of G satisfying $x_{0} \neq x_{1} \neq \ldots \neq x_{k}$ and $\ell\left(x_{0}, \ldots x_{k}\right)=l$.

Definition:

For a graph G and integers $l \geq 0, k \geq 1$ we define the differential

$$
\partial: \mathrm{MC}_{k, l}(G) \rightarrow \mathrm{MC}_{k-1, l}(G)
$$

by the alternating sum $\partial=\sum_{i=1}^{k-1}(-1)^{i} \partial_{i}$, where $\partial_{i}: \mathrm{MC}_{k, l}(G) \rightarrow \mathrm{MC}_{k-1, l}(G)$ is defined on the generators by

$$
\partial_{i}\left(x_{0}, \ldots, x_{k}\right)= \begin{cases}\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k}\right) & \text { if } \ell\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k}\right)=l \\ 0 & \text { else }\end{cases}
$$

and then linearly extended to the whole group $\mathrm{MC}_{k, l}(G)$.

The Definition of Magnitude Homology

Lemma:

For any graph G and integers $l \geq 0$ and $k \geq 2$, the composition

$$
\mathrm{MC}_{k, l}(G) \xrightarrow{\partial} \mathrm{MC}_{k-1, l}(G) \xrightarrow{\partial} \mathrm{MC}_{k-2, l}(G)
$$

is equal to the zero map.

The Definition of Magnitude Homology

Definition:

The magnitude chain complex $\mathrm{MC}_{*, *}(G)$ of a graph G is the direct sum

$$
\bigoplus_{l \geq 0} \mathrm{MC}_{*, l}(G)
$$

of chain complexes.

The Definition of Magnitude Homology

Definition:

The magnitude chain complex $\mathrm{MC}_{*, *}(G)$ of a graph G is the direct sum

$$
\bigoplus_{l \geq 0} \mathrm{MC}_{*, l}(G)
$$

of chain complexes.
Remark:
For simplicity, we also call the chain complex $\mathrm{MC}_{*, l}(G)$ for a fixed $l \geq 0$ the magnitude chain complex of G.

The Definition of Magnitude Homology

Definition:

The magnitude chain complex $\mathrm{MC}_{*, *}(G)$ of a graph G is the direct sum

$$
\bigoplus_{l \geq 0} \mathrm{MC}_{*, l}(G)
$$

of chain complexes.

The Definition of Magnitude Homology

Definition:

The magnitude chain complex $\mathrm{MC}_{*, *}(G)$ of a graph G is the direct sum

$$
\bigoplus_{l \geq 0} \mathrm{MC}_{*, l}(G)
$$

of chain complexes.

Definition:

The magnitude homology $\mathrm{MH}_{*, *}(G)$ of a graph G is the bigraded abelian group defined by the homology groups

$$
\mathrm{MH}_{k, l}(G)=\mathrm{H}_{k}\left(\mathrm{MC}_{*, l}(G)\right)
$$

for $k, l \geq 0$.

The Definition of Magnitude Homology

Definition:

The magnitude chain complex $\mathrm{MC}_{*, *}(G)$ of a graph G is the direct sum

$$
\bigoplus_{l \geq 0} \mathrm{MC}_{*, l}(G)
$$

of chain complexes.

Definition:

The magnitude homology $\mathrm{MH}_{*, *}(G)$ of a graph G is the bigraded abelian group defined by the homology groups

$$
\mathrm{MH}_{k, l}(G)=\mathrm{H}_{k}\left(\mathrm{MC}_{*, l}(G)\right)
$$

for $k, l \geq 0$.

Proposition:

If $k>l$, then the magnitude homology $\mathrm{MH}_{k, l}(G)=0$ for any graph G.

Example: (The four-cycle)

- Let $l=0$.

Example: (The four-cycle)

- Let $l=0$.
- $\mathrm{MC}_{0,0}\left(C_{4}\right)$ is generated by

$$
\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right),\left(a_{4}\right)
$$

Example: (The four-cycle)

- Let $l=0$.
- $\mathrm{MC}_{0,0}\left(C_{4}\right)$ is generated by

$$
\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right),\left(a_{4}\right)
$$

- Let $l=1$.

Example: (The four-cycle)

- Let $l=0$.
- $\mathrm{MC}_{0,0}\left(C_{4}\right)$ is generated by

$$
\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right),\left(a_{4}\right)
$$

- Let $l=1$.
$-\mathrm{MC}_{0,1}\left(C_{4}\right)=0$.

Example: (The four-cycle)

- Let $l=0$.
- $\mathrm{MC}_{0,0}\left(C_{4}\right)$ is generated by

$$
\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right),\left(a_{4}\right)
$$

- Let $l=1$.
$-\mathrm{MC}_{0,1}\left(C_{4}\right)=0$.
- $\mathrm{MC}_{1,1}\left(C_{4}\right)$ is generated by the eight tuples

$$
\left(a_{1}, a_{2}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{2}, a_{1}\right),\left(a_{3}, a_{4}\right),\left(a_{3}, a_{2}\right),\left(a_{4}, a_{1}\right),\left(a_{4}, a_{3}\right)
$$

Example: (The four-cycle)

- Let $l=2$.

Example: (The four-cycle)

- Let $l=2$.
$-\mathrm{MC}_{0,2}\left(C_{4}\right)=0$.

Example: (The four-cycle)

- Let $l=2$.
$-\mathrm{MC}_{0,2}\left(C_{4}\right)=0$.
- $\mathrm{MC}_{1,2}\left(C_{4}\right)$ is generated by the four tuples

$$
\left(a_{1}, a_{3}\right),\left(a_{2}, a_{4}\right),\left(a_{3}, a_{1}\right),\left(a_{4}, a_{2}\right)
$$

Example: (The four-cycle)

- Let $l=2$.
$-\mathrm{MC}_{0,2}\left(C_{4}\right)=0$.
- $\mathrm{MC}_{1,2}\left(C_{4}\right)$ is generated by the four tuples

$$
\left(a_{1}, a_{3}\right),\left(a_{2}, a_{4}\right),\left(a_{3}, a_{1}\right),\left(a_{4}, a_{2}\right)
$$

- $\mathrm{MC}_{2,2}\left(C_{4}\right)$ is generated by the 16 tuples

$$
\begin{aligned}
& \left(a_{1}, a_{2}, a_{3}\right),\left(a_{1}, a_{2}, a_{1}\right),\left(a_{1}, a_{4}, a_{1}\right),\left(a_{1}, a_{4}, a_{3}\right), \\
& \left(a_{2}, a_{3}, a_{4}\right),\left(a_{2}, a_{3}, a_{2}\right),\left(a_{2}, a_{1}, a_{2}\right),\left(a_{2}, a_{1}, a_{4}\right), \\
& \left(a_{3}, a_{4}, a_{1}\right),\left(a_{3}, a_{4}, a_{3}\right),\left(a_{3}, a_{2}, a_{3}\right),\left(a_{3}, a_{2}, a_{1}\right), \\
& \left(a_{4}, a_{1}, a_{2}\right),\left(a_{4}, a_{1}, a_{4}\right),\left(a_{4}, a_{3}, a_{4}\right),\left(a_{4}, a_{3}, a_{2}\right) .
\end{aligned}
$$

Example: (The four-cycle)

The images of the generators under the differential $\partial: \mathrm{MC}_{2,2}\left(C_{4}\right) \rightarrow \mathrm{MC}_{1,2}\left(C_{4}\right)$ are

$$
\begin{array}{ll}
\partial\left(a_{1}, a_{2}, a_{3}\right)=-\left(a_{1}, a_{3}\right) & \partial\left(a_{1}, a_{2}, a_{1}\right)=0 \\
\partial\left(a_{1}, a_{4}, a_{1}\right)=0 & \partial\left(a_{1}, a_{4}, a_{3}\right)=-\left(a_{1}, a_{3}\right) \\
\partial\left(a_{2}, a_{3}, a_{4}\right)=-\left(a_{2}, a_{4}\right) & \partial\left(a_{2}, a_{3}, a_{2}\right)=0 \\
\partial\left(a_{2}, a_{1}, a_{2}\right)=0 & \partial\left(a_{2}, a_{1}, a_{4}\right)=-\left(a_{2}, a_{4}\right) \\
\partial\left(a_{3}, a_{4}, a_{1}\right)=-\left(a_{3}, a_{1}\right) & \partial\left(a_{3}, a_{4}, a_{3}\right)=0 \\
\partial\left(a_{3}, a_{2}, a_{3}\right)=0 & \partial\left(a_{3}, a_{2}, a_{1}\right)=-\left(a_{3}, a_{1}\right) \\
\partial\left(a_{4}, a_{1}, a_{2}\right)=-\left(a_{4}, a_{2}\right) & \partial\left(a_{4}, a_{1}, a_{4}\right)=0 \\
\partial\left(a_{4}, a_{3}, a_{4}\right)=0 & \partial\left(a_{4}, a_{3}, a_{2}\right)=-\left(a_{4}, a_{2}\right) .
\end{array}
$$

Example: (The four-cycle)

The images of the generators under the differential $\partial: \mathrm{MC}_{2,2}\left(C_{4}\right) \rightarrow \mathrm{MC}_{1,2}\left(C_{4}\right)$ are

$$
\begin{array}{ll}
\partial\left(a_{1}, a_{2}, a_{3}\right)=-\left(a_{1}, a_{3}\right) & \partial\left(a_{1}, a_{2}, a_{1}\right)=0 \\
\partial\left(a_{1}, a_{4}, a_{1}\right)=0 & \partial\left(a_{1}, a_{4}, a_{3}\right)=-\left(a_{1}, a_{3}\right) \\
\partial\left(a_{2}, a_{3}, a_{4}\right)=-\left(a_{2}, a_{4}\right) & \partial\left(a_{2}, a_{3}, a_{2}\right)=0 \\
\partial\left(a_{2}, a_{1}, a_{2}\right)=0 & \partial\left(a_{2}, a_{1}, a_{4}\right)=-\left(a_{2}, a_{4}\right) \\
\partial\left(a_{3}, a_{4}, a_{1}\right)=-\left(a_{3}, a_{1}\right) & \partial\left(a_{3}, a_{4}, a_{3}\right)=0 \\
\partial\left(a_{3}, a_{2}, a_{3}\right)=0 & \partial\left(a_{3}, a_{2}, a_{1}\right)=-\left(a_{3}, a_{1}\right) \\
\partial\left(a_{4}, a_{1}, a_{2}\right)=-\left(a_{4}, a_{2}\right) & \partial\left(a_{4}, a_{1}, a_{4}\right)=0 \\
\partial\left(a_{4}, a_{3}, a_{4}\right)=0 & \partial\left(a_{4}, a_{3}, a_{2}\right)=-\left(a_{4}, a_{2}\right) .
\end{array}
$$

The image $\operatorname{im}(\partial)=\mathrm{MC}_{1,2}\left(C_{4}\right)$ and the kernel $\operatorname{ker}(\partial)$ is generated by the twelve generators

$$
\begin{aligned}
& \left(a_{1}, a_{2}, a_{1}\right),\left(a_{1}, a_{4}, a_{1}\right),\left(a_{2}, a_{3}, a_{2}\right),\left(a_{2}, a_{1}, a_{2}\right), \\
& \left(a_{3}, a_{4}, a_{3}\right),\left(a_{3}, a_{2}, a_{3}\right),\left(a_{4}, a_{1}, a_{4}\right),\left(a_{4}, a_{3}, a_{4}\right) \\
& \left(a_{1}, a_{2}, a_{3}\right)-\left(a_{1}, a_{4}, a_{3}\right),\left(a_{2}, a_{3}, a_{4}\right)-\left(a_{2}, a_{1}, a_{4}\right), \\
& \left(a_{3}, a_{4}, a_{1}\right)-\left(a_{3}, a_{2}, a_{1}\right),\left(a_{4}, a_{1}, a_{2}\right)-\left(a_{4}, a_{3}, a_{2}\right) .
\end{aligned}
$$

Example: (The four-cycle)

\backslash^{k}	0	1	2	3	4	5	6	7	8	9	10
0	4	0	0	0	0	0	0	0	0	0	0
1	0	8	0	0	0	0	0	0	0	0	0
2	0	0	12	0	0	0	0	0	0	0	0
3	0	0	0	16	0	0	0	0	0	0	0
4	0	0	0	0	20	0	0	0	0	0	0
5	0	0	0	0	0	24	0	0	0	0	0
6	0	0	0	0	0	0	28	0	0	0	0
7	0	0	0	0	0	0	0	32	0	0	0
8	0	0	0	0	0	0	0	0	36	0	0
9	0	0	0	0	0	0	0	0	0	40	0
10	0	0	0	0	0	0	0	0	0	0	44

Table: Ranks of the magnitude homology of C_{4} computed with SageMath.

Ranks of $\mathrm{MH}_{0,0}(G)$ and $\mathrm{MH}_{1,1}(G)$

Proposition:

For any graph G, the magnitude homology groups satisfy:
i) $\mathrm{MH}_{0,0}(G) \cong \mathbb{Z} \mathrm{V}(G)$;
ii) $\mathrm{MH}_{1,1}(G) \cong \mathbb{Z} \overrightarrow{\mathrm{E}}(G)$.

Remark:
For every graph G, the ranks of $\mathrm{MH}_{0,1}(G)$ and $\mathrm{MH}_{1,1}(G)$ are
i) $\operatorname{rank}\left(\mathrm{MH}_{0,0}(G)\right)=\# \mathrm{~V}(G)$;
ii) $\operatorname{rank}\left(\mathrm{MH}_{1,1}(G)\right)=2 \cdot \# \mathrm{E}(G)$.

Magnitude and Magnitude Homology

Theorem:

Let G be a graph, then

$$
|G|_{q}=\sum_{k, l \geq 0}(-1)^{k} \operatorname{rank}\left(\mathrm{MH}_{k, l}(G)\right) \cdot q^{l}=\sum_{l \geq 0} \chi\left(\mathrm{MH}_{*, l}(G)\right) \cdot q^{l}
$$

Example: (The five-cycle)

$$
|G|_{q}=\sum_{k, l \geq 0}(-1)^{k} \operatorname{rank}\left(\mathrm{MH}_{k, l}(G)\right) \cdot q^{l}=\sum_{l \geq 0} \chi\left(\mathrm{MH}_{*, l}(G)\right) \cdot q^{l} .
$$

l										
λ^{k}	0	1	2	3	4	5	6	7	8	9
0	5	0	0	0	0	0	0	0	0	0
1	0	10	0	0	0	0	0	0	0	0
2	0	0	10	0	0	0	0	0	0	0
3	0	0	10	10	0	0	0	0	0	0
4	0	0	0	30	10	0	0	0	0	0
5	0	0	0	0	50	10	0	0	0	0
6	0	0	0	0	20	70	10	0	0	0
7	0	0	0	0	0	80	90	10	0	0
8	0	0	0	0	0	0	180	110	10	0
9	0	0	0	0	0	0	40	320	130	10

Table: Ranks of the magnitude homology of C_{5} computed with SageMath.

Example: (The five-cycle)

λ^{k}	0	1	2	3	4	5	6	7	8	9
0	5	0	0	0	0	0	0	0	0	0
1	0	10	0	0	0	0	0	0	0	0
2	0	0	10	0	0	0	0	0	0	0
3	0	0	10	10	0	0	0	0	0	0
4	0	0	0	30	10	0	0	0	0	0
5	0	0	0	0	50	10	0	0	0	0
6	0	0	0	0	20	70	10	0	0	0
7	0	0	0	0	0	80	90	10	0	0
8	0	0	0	0	0	0	180	110	10	0
9	0	0	0	0	0	0	40	320	130	10

Table: Ranks of the magnitude homology of C_{5} computed with SageMath.

Example: (The five-cycle)

\backslash^{k}	0	1	2	3	4	5	6	7	8	9
0	5	0	0	0	0	0	0	0	0	0
1	0	10	0	0	0	0	0	0	0	0
2	0	0	10	0	0	0	0	0	0	0
3	0	0	10	10	0	0	0	0	0	0
4	0	0	0	30	10	0	0	0	0	0
5	0	0	0	0	50	10	0	0	0	0
6	0	0	0	0	20	70	10	0	0	0
7	0	0	0	0	0	80	90	10	0	0
8	0	0	0	0	0	0	180	110	10	0
9	0	0	0	0	0	0	40	320	130	10

Table: Ranks of the magnitude homology of C_{5} computed with SageMath.

Proposition:

Let G be a graph and suppose that for some $k, l \geq 0$ the magnitude homology $\mathrm{MH}_{k, l}(G) \neq 0$. If G has finite diameter $\delta>0$, then $\frac{l}{\delta} \leq k$ and moreover, if $\delta>1$ and $l>0$, then $\frac{l}{\delta}<k$.

Outline

1. The Magnitude of a Graph
2. The Definition of Magnitude Homology
3. Induced Maps
4. Disjoint Unions
5. The Mayer-Vietoris Sequence

The Category of Graphs

Definition:

For graphs G and H we define a map of graphs or morphism of graphs $f: G \rightarrow H$ to be a map $f: \mathrm{V}(G) \rightarrow \mathrm{V}(H)$ on the vertex sets such that

$$
\forall\{x, y\} \in \mathrm{E}(G) \quad\{f(x), f(y)\} \in \mathrm{E}(H) \text { or } f(x)=f(y)
$$

The Category of Graphs

Definition:

For graphs G and H we define a map of graphs or morphism of graphs $f: G \rightarrow H$ to be a map $f: \mathrm{V}(G) \rightarrow \mathrm{V}(H)$ on the vertex sets such that

$$
\forall\{x, y\} \in \mathrm{E}(G) \quad\{f(x), f(y)\} \in \mathrm{E}(H) \text { or } f(x)=f(y)
$$

Definition:

If $f: G \rightarrow H$ is a map of graphs, the induced chain map $f_{\#}: \mathrm{MC}_{*, *}(G) \rightarrow \mathrm{MC}_{*, *}(H)$ is defined on generators by

$$
f_{\#}\left(x_{0}, \ldots, x_{k}\right)= \begin{cases}\left(f\left(x_{0}\right), \ldots, f\left(x_{k}\right)\right) & \text { if } \ell\left(f\left(x_{0}\right), \ldots, f\left(x_{k}\right)\right)=\ell\left(x_{0}, \ldots, x_{k}\right) \\ 0 & \text { else. }\end{cases}
$$

The Category of Graphs

Proposition:

Let $f: G \rightarrow H$ be a map of graphs. The above defined induced map $f_{\#}$ is indeed a chain map, that is, it commutes with the differential ∂ :

$$
f_{\#} \circ \partial=\partial \circ f_{\#} .
$$

The Category of Graphs

Proposition:

Let $f: G \rightarrow H$ be a map of graphs. The above defined induced map $f_{\#}$ is indeed a chain map, that is, it commutes with the differential ∂ :

$$
f_{\#} \circ \partial=\partial \circ f_{\#} .
$$

Definition:

Let $f: G \rightarrow H$ be a map of graphs. The induced map in homology is the map

$$
f_{*}: \mathrm{MH}_{*, *}(G) \rightarrow \mathrm{MH}_{*, *}(H)
$$

induced by the chain map $f_{\#}$.

The Category of Graphs

Proposition:

The assignment sending any graph G to its magnitude homology $\mathrm{MH}_{*, *}(G)$, and any map of graphs f to its induced map f_{*} is a functor from the category of graphs to the category of bigraded abelian groups.

Outline

1. The Magnitude of a Graph
2. The Definition of Magnitude Homology
3. Induced Maps
4. Disjoint Unions
5. The Mayer-Vietoris Sequence

The Disjoint Union of Graphs

Proposition:

Let G and H be two graphs, we denote by $G \sqcup H$ their disjoint union. Let $i: G \rightarrow G \sqcup H$ and $j: H \rightarrow G \sqcup H$ be the inclusion maps. The induced map on the direct sum

$$
i_{*} \oplus j_{*}: \mathrm{MH}_{*, *}(G) \oplus \mathrm{MH}_{*, *}(H) \rightarrow \mathrm{MH}_{*, *}(G \sqcup H)
$$

is an isomorphism.

The Disjoint Union of Graphs

Proposition:

Let G and H be two graphs, we denote by $G \sqcup H$ their disjoint union. Let $i: G \rightarrow G \sqcup H$ and $j: H \rightarrow G \sqcup H$ be the inclusion maps. The induced map on the direct sum

$$
i_{*} \oplus j_{*}: \mathrm{MH}_{*, *}(G) \oplus \mathrm{MH}_{*, *}(H) \rightarrow \mathrm{MH}_{*, *}(G \sqcup H)
$$

is an isomorphism.

Corollary:

The magnitude of the disjoint union of two graphs G and H satisfies

$$
|G \sqcup H|_{q}=|G|_{q}+|H|_{q} .
$$

Outline

1. The Magnitude of a Graph
2. The Definition of Magnitude Homology
3. Induced Maps
4. Disjoint Unions
5. The Mayer-Vietoris Sequence

Definitions

Let X be a connected graph.

Definitions

Let X be a connected graph.

Definition:

A subgraph $U \subset X$ is called convex if

$$
\forall u, v \in U \quad d_{U}(u, v)=d_{X}(u, v)
$$

Definitions

Let X be a connected graph.

Definition:

A subgraph $U \subset X$ is called convex if

$$
\forall u, v \in U \quad d_{U}(u, v)=d_{X}(u, v)
$$

Definition:

Let $U \subset X$ be a convex subgraph. We say that X projects to U if for every vertex $x \in X$ there is a vertex $\pi(x) \in U$ such that

$$
\forall u \in U \quad d(x, u)=d(x, \pi(x))+d(\pi(x), u)
$$

Definitions

Let X be a connected graph.

Definition:

A subgraph $U \subset X$ is called convex if

$$
\forall u, v \in U \quad d_{U}(u, v)=d_{X}(u, v)
$$

Definition:

Let $U \subset X$ be a convex subgraph. We say that X projects to U if for every vertex $x \in X$ there is a vertex $\pi(x) \in U$ such that

$$
\forall u \in U \quad d(x, u)=d(x, \pi(x))+d(\pi(x), u)
$$

Remark:

If a graph X projects to a subgraph U, there is a well-defined map $\pi: X \rightarrow U$, where $x \mapsto \pi(x)$.

Definitions

Definition:

A projecting decomposition is a triple $(X ; G, H)$ consisting of a graph X and subgraphs $G, H \subset X$ such that
i) $X=G \cup H$;
ii) $G \cap H$ is convex in X;
iii) H projects to $G \cap H$.

Given a projecting decomposition $(X ; G, H)$ we write

$$
\begin{array}{ll}
i^{G}: G \rightarrow X, & j^{G}: G \cap H \rightarrow G, \\
i^{H}: H \rightarrow X, & j^{H}: G \cap H \rightarrow H
\end{array}
$$

for the inclusions.

Excision

Definition:

Given a projecting decomposition $(X ; G, H)$, let $\mathrm{MC}_{*, *}(G, H)$ denote the chain subcomplex of $\mathrm{MC}_{*, *}(G \cup H)$ spanned by those tuples $\left(x_{0}, \ldots, x_{k}\right)$ with entries all in G or all in H.

Theorem: (Excision for magnitude chains)
Let $(X ; G, H)$ be a projecting decomposition. For every $l \geq 0$, the inclusion

$$
\mathrm{MC}_{*, l}(G, H) \rightarrow \mathrm{MC}_{*, l}(G \cup H)
$$

is a quasi-isomorphism, that is, it induces an isomorphism in homology.

The Mayer-Vietoris Sequence

Theorem: (Mayer-Vietoris for magnitude homology)
Let $(X ; G, H)$ be a projecting decomposition. There exists a split short exact sequence

$$
0 \rightarrow \mathrm{MH}_{*, *}(G \cap H) \xrightarrow{\left(j_{*}^{G},-j_{*}^{H}\right)} \mathrm{MH}_{*, *}(G) \oplus \mathrm{MH}_{*, *}(H) \xrightarrow{i_{*}^{G} \oplus i_{*}^{H}} \mathrm{MH}_{*, *}(G \cup H) \rightarrow 0
$$

The sequence is natural with respect to decomposition maps, and the splitting is natural with respect to projecting decomposition maps.

The Mayer-Vietoris Sequence

Corollary: (Inclusion-Exclusion principle)
For a projecting decomposition $(X ; G, H)$, the magnitudes satisfy

$$
|X|_{q}=|G|_{q}+|H|_{q}-|G \cap H|_{q} .
$$

The Mayer-Vietoris Sequence

Definition:

Let G and H be graphs with chosen base vertices. The wedge sum $G \vee H$ of G and H is the graph we get by identifying the two base vertices to a single vertex.

Corollary:

Let G and H be graphs with fixed base vertices and denote the vertex of their wedge sum corresponding to the base vertices by P. The inclusion maps $a: G \rightarrow G \vee H$ and $b: H \rightarrow G \vee H$ induce isomorphisms

$$
a_{*} \oplus b_{*}: \mathrm{MH}_{k, l}(G) \oplus \mathrm{MH}_{k, l}(H) \xrightarrow{\cong} \mathrm{MH}_{k, l}(G \vee H),
$$

if $k>0$ or $l>0$, and an isomorphism

$$
a_{*} \oplus b_{*}:\left(\mathrm{MH}_{0,0}(G) \oplus \mathrm{MH}_{0,0}(H)\right) / \operatorname{im}\left(j_{*}^{G},-j_{*}^{H}\right) \xrightarrow{\cong} \mathrm{MH}_{0,0}(G \vee H),
$$

where $j^{G}: P \rightarrow G$ and $j^{H}: P \rightarrow H$ are the inclusions.

Example: (Magnitude Homology of Trees)

The magnitude homology of a tree T is given by

$$
\mathrm{MH}_{k, l}(T) \cong \begin{cases}\mathbb{Z} \mathrm{V}(T) & \text { if } k=l=0 \\ \mathbb{Z} \overrightarrow{\mathrm{E}}(T) & \text { if } k=l>0 \\ 0 & \text { else. }\end{cases}
$$

ETHzürich

Reference: Hepworth, R., \& Willerton, S. (2017). Categorifying the magnitude of a graph. Homology, Homotopy and Applications, 19(2), 31-60. https://doi.org/10.4310/HHA.2017.v19.n2.a3

Github: https://github.com/nadjahae/Magnitude-Homology
Nadja Häusermann
nadjaha@student.ethz.ch

