

Magnitude Homology

Nadja Häusermann Magnitude Workshop

D-MATH

Outline

- 1. The Magnitude of a Graph
- 2. The Definition of Magnitude Homology
- 3. Induced Maps
- 4. Disjoint Unions
- 5. The Mayer-Vietoris Sequence

Outline

1. The Magnitude of a Graph

- 2. The Definition of Magnitude Homology
- 3. Induced Maps
- 4. Disjoint Unions
- 5. The Mayer-Vietoris Sequence

Definition

A graph G is a pair (V(G), E(G)) consisting of a finite set V(G) representing the vertices of G and a set E(G) of unordered pairs of distinct vertices. The set E(G) is the set of edges of G.

Definition

A graph G is a pair (V(G), E(G)) consisting of a finite set V(G) representing the vertices of G and a set E(G) of unordered pairs of distinct vertices. The set E(G) is the set of edges of G.

Definition:

The shortest path metric d_G (or just d if there is no risk of confusion) is the map $d_G: V(G) \times V(G) \rightarrow [0, \infty]$ which sends any two vertices $x, y \in V(G)$ to the length of a shortest path from x to y in G if such a path exists. If no such path exists, then $d_G(x, y) = \infty$.

The Magnitude of a graph

Definition:

For any graph G, let $|G|_q$ be the magnitude of the symmetry matrix $Z_G = Z_G(q)$ given by

$$Z_G(x,y) = q^{d(x,y)}$$

for $x, y \in G$. The matrix $Z_G(q)$ is viewed as an element in $\mathbb{Q}(q)$ or $\mathbb{Z}[[q]]$.

The Magnitude of a graph

Definition:

For any graph G, let $|G|_q$ be the magnitude of the symmetry matrix $Z_G = Z_G(q)$ given by

$$Z_G(x,y) = q^{d(x,y)}$$

for $x, y \in G$. The matrix $Z_G(q)$ is viewed as an element in $\mathbb{Q}(q)$ or $\mathbb{Z}[[q]]$.

Example (The complete bipartite graph $K_{3,2}$) The complete bipartite graph $K_{3,2}$ for integers has magnitude

$$|K_{3,2}|_q = \frac{5 - 7q}{(1+q)(1-2q^2)}$$

ETH zürich D-MATH

Outline

1. The Magnitude of a Graph

2. The Definition of Magnitude Homology

- 3. Induced Maps
- 4. Disjoint Unions
- 5. The Mayer-Vietoris Sequence

Definition:

Let G be a graph. The length ℓ of a tuple $(x_0, \ldots, x_k) \in G^{k+1}$ of vertices of G is the sum

$$\ell(x_0, \dots, x_k) = \sum_{i=0}^{k-1} d(x_i, x_{i+1}).$$

Note that for k = 0 the length of a tuple (x_0) is $\ell(x_0) = 0$.

Definition:

Let G be a graph. The length ℓ of a tuple $(x_0, \ldots, x_k) \in G^{k+1}$ of vertices of G is the sum

$$\ell(x_0, \dots, x_k) = \sum_{i=0}^{k-1} d(x_i, x_{i+1}).$$

Note that for k = 0 the length of a tuple (x_0) is $\ell(x_0) = 0$.

Definition:

The magnitude chain group $MC_{k,l}(G)$ of a graph G in bidegree (k,l) for $k, l \ge 0$ is the free abelian group generated by (k + 1)-tuples $(x_0, ..., x_k)$ of vertices of G satisfying $x_0 \ne x_1 \ne ... \ne x_k$ and $\ell(x_0, ..., x_k) = l$.

ETH zürich D-MATH

Definition:

The magnitude chain group $MC_{k,l}(G)$ of a graph G in bidegree (k, l) for $k, l \ge 0$ is the free abelian group generated by (k + 1)-tuples $(x_0, ..., x_k)$ of vertices of G satisfying $x_0 \ne x_1 \ne ... \ne x_k$ and $\ell(x_0, ..., x_k) = l$.

Definition:

The magnitude chain group $MC_{k,l}(G)$ of a graph G in bidegree (k,l) for $k,l \ge 0$ is the free abelian group generated by (k + 1)-tuples $(x_0, ..., x_k)$ of vertices of G satisfying $x_0 \ne x_1 \ne ... \ne x_k$ and $\ell(x_0, ..., x_k) = l$.

Definition:

For a graph G and integers $l \geq 0, k \geq 1$ we define the differential

$$\partial \colon \mathrm{MC}_{k,l}(G) \to \mathrm{MC}_{k-1,l}(G)$$

by the alternating sum $\partial = \sum_{i=1}^{k-1} (-1)^i \partial_i$, where $\partial_i \colon \mathrm{MC}_{k,l}(G) \to \mathrm{MC}_{k-1,l}(G)$ is defined on the generators by

$$\partial_i(x_0,\ldots,x_k) = \begin{cases} (x_0,\ldots,\widehat{x_i},\ldots,x_k) & \text{if } \ell(x_0,\ldots,\widehat{x_i},\ldots,x_k) = l \\ 0 & \text{else} \end{cases}$$

and then linearly extended to the whole group $MC_{k,l}(G)$.

ETH zürich

Lemma:

For any graph G and integers $l \ge 0$ and $k \ge 2$, the composition

$$\mathrm{MC}_{k,l}(G) \xrightarrow{\partial} \mathrm{MC}_{k-1,l}(G) \xrightarrow{\partial} \mathrm{MC}_{k-2,l}(G)$$

is equal to the zero map.

Definition:

The magnitude chain complex $MC_{*,*}(G)$ of a graph G is the direct sum

 $\bigoplus_{l\geq 0} \mathrm{MC}_{*,l}(G)$

of chain complexes.

Definition:

The magnitude chain complex $MC_{*,*}(G)$ of a graph G is the direct sum

 $\bigoplus_{l\geq 0} \mathrm{MC}_{*,l}(G)$

of chain complexes.

Remark:

For simplicity, we also call the chain complex $MC_{*,l}(G)$ for a fixed $l \ge 0$ the magnitude chain complex of G.

Definition:

The magnitude chain complex $MC_{*,*}(G)$ of a graph G is the direct sum

 $\bigoplus_{l\geq 0} \mathrm{MC}_{*,l}(G)$

of chain complexes.

Definition:

The magnitude chain complex $MC_{*,*}(G)$ of a graph G is the direct sum

 $\bigoplus_{l\geq 0} \mathrm{MC}_{*,l}(G)$

of chain complexes.

Definition:

The magnitude homology $MH_{*,*}(G)$ of a graph G is the bigraded abelian group defined by the homology groups

 $\mathrm{MH}_{k,l}(G) = \mathrm{H}_k(\mathrm{MC}_{*,l}(G))$

for $k, l \ge 0$.

Definition:

The magnitude chain complex $MC_{*,*}(G)$ of a graph G is the direct sum

 $\bigoplus_{l\geq 0} \mathrm{MC}_{*,l}(G)$

of chain complexes.

Definition:

The magnitude homology $MH_{*,*}(G)$ of a graph G is the bigraded abelian group defined by the homology groups

 $\mathrm{MH}_{k,l}(G) = \mathrm{H}_k(\mathrm{MC}_{*,l}(G))$

for $k, l \geq 0$.

Proposition:

If k > l, then the magnitude homology $MH_{k,l}(G) = 0$ for any graph G.

ETH zürich

D-MATH

24. - 26. April 2024 10/32

• Let l = 0.

- Let l = 0.
 - $MC_{0,0}(C_4)$ is generated by

 $(a_1), (a_2), (a_3), (a_4).$

• Let l = 0.

– $MC_{0,0}(C_4)$ is generated by

 $(a_1), (a_2), (a_3), (a_4).$

• Let l = 1.

• Let l = 0.

– $MC_{0,0}(C_4)$ is generated by

 $(a_1), (a_2), (a_3), (a_4).$

• Let l = 1.

-
$$MC_{0,1}(C_4) = 0.$$

• Let l = 0.

- $MC_{0,0}(C_4)$ is generated by

 $(a_1), (a_2), (a_3), (a_4).$

• Let l = 1.

-
$$MC_{0,1}(C_4) = 0.$$

– $MC_{1,1}(C_4)$ is generated by the eight tuples

 $(a_1, a_2), (a_1, a_4), (a_2, a_3), (a_2, a_1), (a_3, a_4), (a_3, a_2), (a_4, a_1), (a_4, a_3).$

ETH zürich D-MATH

24. - 26. April 2024 11/32

• Let l = 2.

- Let l = 2.
 - $MC_{0,2}(C_4) = 0.$

- Let l = 2.
 - $MC_{0,2}(C_4) = 0.$
 - $MC_{1,2}(C_4)$ is generated by the four tuples

 $(a_1, a_3), (a_2, a_4), (a_3, a_1), (a_4, a_2).$

- Let l = 2.
 - $MC_{0,2}(C_4) = 0.$
 - $MC_{1,2}(C_4)$ is generated by the four tuples

$$(a_1, a_3), (a_2, a_4), (a_3, a_1), (a_4, a_2).$$

– $MC_{2,2}(C_4)$ is generated by the 16 tuples

$$\begin{aligned} &(a_1,a_2,a_3),(a_1,a_2,a_1),(a_1,a_4,a_1),(a_1,a_4,a_3),\\ &(a_2,a_3,a_4),(a_2,a_3,a_2),(a_2,a_1,a_2),(a_2,a_1,a_4),\\ &(a_3,a_4,a_1),(a_3,a_4,a_3),(a_3,a_2,a_3),(a_3,a_2,a_1),\\ &(a_4,a_1,a_2),(a_4,a_1,a_4),(a_4,a_3,a_4),(a_4,a_3,a_2). \end{aligned}$$

The images of the generators under the differential $\partial : MC_{2,2}(C_4) \to MC_{1,2}(C_4)$ are

$$\begin{array}{ll} \partial(a_1,a_2,a_3) = -(a_1,a_3) & \partial(a_1,a_2,a_1) = 0 \\ \partial(a_1,a_4,a_1) = 0 & \partial(a_1,a_4,a_3) = -(a_1,a_3) \\ \partial(a_2,a_3,a_4) = -(a_2,a_4) & \partial(a_2,a_3,a_2) = 0 \\ \partial(a_2,a_1,a_2) = 0 & \partial(a_2,a_1,a_4) = -(a_2,a_4) \\ \partial(a_3,a_4,a_1) = -(a_3,a_1) & \partial(a_3,a_4,a_3) = 0 \\ \partial(a_3,a_2,a_3) = 0 & \partial(a_3,a_2,a_1) = -(a_3,a_1) \\ \partial(a_4,a_1,a_2) = -(a_4,a_2) & \partial(a_4,a_1,a_4) = 0 \\ \partial(a_4,a_3,a_4) = 0 & \partial(a_4,a_3,a_2) = -(a_4,a_2). \end{array}$$

ETH zürich

The images of the generators under the differential $\partial : MC_{2,2}(C_4) \to MC_{1,2}(C_4)$ are

$$\begin{array}{ll} \partial(a_1,a_2,a_3) = -(a_1,a_3) & \partial(a_1,a_2,a_1) = 0 \\ \partial(a_1,a_4,a_1) = 0 & \partial(a_1,a_4,a_3) = -(a_1,a_3) \\ \partial(a_2,a_3,a_4) = -(a_2,a_4) & \partial(a_2,a_3,a_2) = 0 \\ \partial(a_2,a_1,a_2) = 0 & \partial(a_2,a_1,a_4) = -(a_2,a_4) \\ \partial(a_3,a_4,a_1) = -(a_3,a_1) & \partial(a_3,a_4,a_3) = 0 \\ \partial(a_3,a_2,a_3) = 0 & \partial(a_3,a_2,a_1) = -(a_3,a_1) \\ \partial(a_4,a_1,a_2) = -(a_4,a_2) & \partial(a_4,a_1,a_4) = 0 \\ \partial(a_4,a_3,a_4) = 0 & \partial(a_4,a_3,a_2) = -(a_4,a_2). \end{array}$$

The image $im(\partial) = MC_{1,2}(C_4)$ and the kernel $ker(\partial)$ is generated by the twelve generators

$$\begin{array}{l} (a_1,a_2,a_1), (a_1,a_4,a_1), (a_2,a_3,a_2), (a_2,a_1,a_2), \\ (a_3,a_4,a_3), (a_3,a_2,a_3), (a_4,a_1,a_4), (a_4,a_3,a_4), \\ (a_1,a_2,a_3) - (a_1,a_4,a_3), (a_2,a_3,a_4) - (a_2,a_1,a_4), \\ (a_3,a_4,a_1) - (a_3,a_2,a_1), (a_4,a_1,a_2) - (a_4,a_3,a_2). \end{array}$$

ETHzürich

D-MATH

24. - 26. April 2024 13/32

$l \searrow^k$	0	1	2	3	4	5	6	7	8	9	10
0	4	0	0	0	0	0	0	0	0	0	0
1	0	8	0	0	0	0	0	0	0	0	0
2	0	0	12	0	0	0	0	0	0	0	0
3	0	0	0	16	0	0	0	0	0	0	0
4	0	0	0	0	20	0	0	0	0	0	0
5	0	0	0	0	0	24	0	0	0	0	0
6	0	0	0	0	0	0	28	0	0	0	0
7	0	0	0	0	0	0	0	32	0	0	0
8	0	0	0	0	0	0	0	0	36	0	0
9	0	0	0	0	0	0	0	0	0	40	0
10	0	0	0	0	0	0	0	0	0	0	44

Table: Ranks of the magnitude homology of C_4 computed with SageMath.

Ranks of $MH_{0,0}(G)$ and $MH_{1,1}(G)$

Proposition:

For any graph G, the magnitude homology groups satisfy:

- i) $MH_{0,0}(G) \cong \mathbb{Z} V(G);$
- ii) $MH_{1,1}(G) \cong \mathbb{Z} \vec{E}(G).$

Remark:

For every graph G, the ranks of $MH_{0,1}(G)$ and $MH_{1,1}(G)$ are

- i) $\operatorname{rank}(\operatorname{MH}_{0,0}(G)) = \# \operatorname{V}(G);$
- ii) $rank(MH_{1,1}(G)) = 2 \cdot \# E(G).$

ETH zürich D-MATH

Magnitude and Magnitude Homology

Theorem:

Let G be a graph, then

$$|G|_q = \sum_{k,l \ge 0} (-1)^k \operatorname{rank}(\operatorname{MH}_{k,l}(G)) \cdot q^l = \sum_{l \ge 0} \chi(\operatorname{MH}_{*,l}(G)) \cdot q^l.$$

Example: (The five-cycle)

$$|G|_{q} = \sum_{k,l \ge 0} (-1)^{k} \operatorname{rank}(\mathrm{MH}_{k,l}(G)) \cdot q^{l} = \sum_{l \ge 0} \chi(\mathrm{MH}_{*,l}(G)) \cdot q^{l}.$$

$$\frac{i \swarrow^{k}}{0} \frac{0}{5} \frac{1}{0} \frac{2}{0} \frac{3}{0} \frac{4}{0} \frac{5}{0} \frac{6}{0} \frac{6}{0} \frac{7}{0} \frac{8}{0} \frac{9}{0} \frac{9}{0} \frac{1}{0} \frac{1}{0} \frac{2}{0} \frac{1}{0} \frac{1}{0$$

Table: Ranks of the magnitude homology of C_5 computed with SageMath.

Example: (The five-cycle)

$l \searrow^k$	0	1	2	3	4	5	6	7	8	9
0	5	0	0	0	0	0	0	0	0	0
1	0	10	0	0	0	0	0	0	0	0
2	0	0	10	0	0	0	0	0	0	0
3	0	0	10	10	0	0	0	0	0	0
4	0	0	0	30	10	0	0	0	0	0
5	0	0	0	0	50	10	0	0	0	0
6	0	0	0	0	20	70	10	0	0	0
7	0	0	0	0	0	80	90	10	0	0
8	0	0	0	0	0	0	180	110	10	0
9	0	0	0	0	0	0	40	320	130	10

Table: Ranks of the magnitude homology of C_5 computed with SageMath.

Example: (The five-cycle)

$l \searrow^k$	0	1	2	3	4	5	6	7	8	9
0	5	0	0	0	0	0	0	0	0	0
1	0	10	0	0	0	0	0	0	0	0
2	0	0	10	0	0	0	0	0	0	0
3	0	0	10	10	0	0	0	0	0	0
4	0	0	0	30	10	0	0	0	0	0
5	0	0	0	0	50	10	0	0	0	0
6	0	0	0	0	20	70	10	0	0	0
7	0	0	0	0	0	80	90	10	0	0
8	0	0	0	0	0	0	180	110	10	0
9	0	0	0	0	0	0	40	320	130	10

Table: Ranks of the magnitude homology of C_5 computed with SageMath.

Proposition:

Let G be a graph and suppose that for some $k, l \ge 0$ the magnitude homology $MH_{k,l}(G) \ne 0$. If G has finite diameter $\delta > 0$, then $\frac{l}{\delta} \le k$ and moreover, if $\delta > 1$ and l > 0, then $\frac{l}{\delta} < k$.

ETH zürich D-MATH

Outline

1. The Magnitude of a Graph

2. The Definition of Magnitude Homology

3. Induced Maps

4. Disjoint Unions

5. The Mayer-Vietoris Sequence

D-MATH

ETH zürich

Definition:

For graphs G and H we define a **map of graphs** or **morphism of graphs** $f: G \to H$ to be a map $f: V(G) \to V(H)$ on the vertex sets such that

 $\forall \{x,y\} \in \mathrm{E}(G) \qquad \{f(x),f(y)\} \in \mathrm{E}(H) \text{ or } f(x) = f(y).$

Definition:

For graphs G and H we define a **map of graphs** or **morphism of graphs** $f: G \to H$ to be a map $f: V(G) \to V(H)$ on the vertex sets such that

 $\forall \{x,y\} \in \mathcal{E}(G) \qquad \{f(x),f(y)\} \in \mathcal{E}(H) \text{ or } f(x)=f(y).$

Definition:

If $f: G \to H$ is a map of graphs, the **induced chain map** $f_{\#}: MC_{*,*}(G) \to MC_{*,*}(H)$ is defined on generators by

$$f_{\#}(x_0, \dots, x_k) = \begin{cases} (f(x_0), \dots, f(x_k)) & \text{if } \ell(f(x_0), \dots, f(x_k)) = \ell(x_0, \dots, x_k) \\ 0 & \text{else.} \end{cases}$$

ETH zürich

Proposition:

Let $f: G \to H$ be a map of graphs. The above defined induced map $f_{\#}$ is indeed a chain map, that is, it commutes with the differential ∂ :

$$f_{\#} \circ \partial = \partial \circ f_{\#}.$$

Proposition:

Let $f: G \to H$ be a map of graphs. The above defined induced map $f_{\#}$ is indeed a chain map, that is, it commutes with the differential ∂ :

$$f_{\#} \circ \partial = \partial \circ f_{\#}.$$

Definition:

Let $f: G \to H$ be a map of graphs. The **induced map in homology** is the map

 $f_* \colon \mathrm{MH}_{*,*}(G) \to \mathrm{MH}_{*,*}(H)$

induced by the chain map $f_{\#}$.

Proposition:

The assignment sending any graph G to its magnitude homology $MH_{*,*}(G)$, and any map of graphs f to its induced map f_* is a functor from the category of graphs to the category of bigraded abelian groups.

Outline

1. The Magnitude of a Graph

- 2. The Definition of Magnitude Homology
- 3. Induced Maps

4. Disjoint Unions

5. The Mayer-Vietoris Sequence

The Disjoint Union of Graphs

Proposition:

Let G and H be two graphs, we denote by $G \sqcup H$ their disjoint union. Let $i: G \to G \sqcup H$ and $j: H \to G \sqcup H$ be the inclusion maps. The induced map on the direct sum

 $i_* \oplus j_* \colon \mathrm{MH}_{*,*}(G) \oplus \mathrm{MH}_{*,*}(H) \to \mathrm{MH}_{*,*}(G \sqcup H)$

is an isomorphism.

The Disjoint Union of Graphs

Proposition:

Let G and H be two graphs, we denote by $G \sqcup H$ their disjoint union. Let $i: G \to G \sqcup H$ and $j: H \to G \sqcup H$ be the inclusion maps. The induced map on the direct sum

 $i_* \oplus j_* \colon \mathrm{MH}_{*,*}(G) \oplus \mathrm{MH}_{*,*}(H) \to \mathrm{MH}_{*,*}(G \sqcup H)$

is an isomorphism.

Corollary:

The magnitude of the disjoint union of two graphs G and H satisfies

 $|G \sqcup H|_q = |G|_q + |H|_q.$

ETH zürich

D-MATH

24. - 26. April 2024 24/32

Outline

1. The Magnitude of a Graph

- 2. The Definition of Magnitude Homology
- 3. Induced Maps
- 4. Disjoint Unions
- 5. The Mayer-Vietoris Sequence

Let X be a connected graph.

ETH zürich

Let X be a connected graph.

Definition:

A subgraph $U \subset X$ is called **convex** if

 $\forall u, v \in U$ $d_U(u, v) = d_X(u, v).$

Let X be a connected graph.

Definition:

```
A subgraph U \subset X is called convex if
```

$$\forall u, v \in U$$
 $d_U(u, v) = d_X(u, v).$

Definition:

Let $U \subset X$ be a convex subgraph. We say that X projects to U if for every vertex $x \in X$ there is a vertex $\pi(x) \in U$ such that

$$\forall u \in U \qquad d(x, u) = d(x, \pi(x)) + d(\pi(x), u).$$

Let X be a connected graph.

Definition:

```
A subgraph U \subset X is called convex if
```

$$\forall u, v \in U$$
 $d_U(u, v) = d_X(u, v).$

Definition:

Let $U \subset X$ be a convex subgraph. We say that X projects to U if for every vertex $x \in X$ there is a vertex $\pi(x) \in U$ such that

$$\forall u \in U \qquad d(x, u) = d(x, \pi(x)) + d(\pi(x), u).$$

Remark:

If a graph X projects to a subgraph U, there is a well-defined map $\pi \colon X \to U$, where $x \mapsto \pi(x)$.

ETH zürich

D-MATH

24. - 26. April 2024 26/32

Definition:

A projecting decomposition is a triple (X;G,H) consisting of a graph X and subgraphs $G,H\subset X$ such that

- i) $X = G \cup H$;
- ii) $G \cap H$ is convex in X;
- iii) H projects to $G \cap H$.

Given a projecting decomposition (X; G, H) we write

$$\begin{split} &i^G \colon G \to X, \quad j^G \colon G \cap H \to G, \\ &i^H \colon H \to X, \quad j^H \colon G \cap H \to H \end{split}$$

for the inclusions.

Excision

Definition:

Given a projecting decomposition (X; G, H), let $MC_{*,*}(G, H)$ denote the chain subcomplex of $MC_{*,*}(G \cup H)$ spanned by those tuples (x_0, \ldots, x_k) with entries all in G or all in H.

Theorem: (Excision for magnitude chains)

Let (X; G, H) be a projecting decomposition. For every $l \ge 0$, the inclusion

 $MC_{*,l}(G,H) \to MC_{*,l}(G \cup H)$

is a quasi-isomorphism, that is, it induces an isomorphism in homology.

Theorem: (Mayer-Vietoris for magnitude homology)

Let (X; G, H) be a projecting decomposition. There exists a split short exact sequence

$$0 \to \mathrm{MH}_{*,*}(G \cap H) \xrightarrow{(j^G_*, -j^H_*)} \mathrm{MH}_{*,*}(G) \oplus \mathrm{MH}_{*,*}(H) \xrightarrow{i^G_* \oplus i^H_*} \mathrm{MH}_{*,*}(G \cup H) \to 0.$$

The sequence is natural with respect to decomposition maps, and the splitting is natural with respect to projecting decomposition maps.

The Mayer-Vietoris Sequence

Corollary: (Inclusion-Exclusion principle)

For a projecting decomposition (X; G, H), the magnitudes satisfy

 $|X|_{q} = |G|_{q} + |H|_{q} - |G \cap H|_{q}.$

The Mayer-Vietoris Sequence

Definition:

Let G and H be graphs with chosen base vertices. The wedge sum $G \vee H$ of G and H is the graph we get by identifying the two base vertices to a single vertex.

Corollary:

Let G and H be graphs with fixed base vertices and denote the vertex of their wedge sum corresponding to the base vertices by P. The inclusion maps $a: G \to G \lor H$ and $b: H \to G \lor H$ induce isomorphisms

$$a_* \oplus b_* \colon \mathrm{MH}_{k,l}(G) \oplus \mathrm{MH}_{k,l}(H) \xrightarrow{\cong} \mathrm{MH}_{k,l}(G \lor H),$$

if k > 0 or l > 0, and an isomorphism

$$a_* \oplus b_* \colon (\mathrm{MH}_{0,0}(G) \oplus \mathrm{MH}_{0,0}(H)) / \operatorname{im}(j^G_*, -j^H_*) \xrightarrow{\cong} \mathrm{MH}_{0,0}(G \lor H),$$

where $j^G \colon P \to G$ and $j^H \colon P \to H$ are the inclusions.

Example: (Magnitude Homology of Trees)

The magnitude homology of a tree ${\boldsymbol{T}}$ is given by

$$\mathrm{MH}_{k,l}(T) \cong \begin{cases} \mathbb{Z} \operatorname{V}(T) & \text{ if } k = l = 0\\ \mathbb{Z} \overrightarrow{\mathrm{E}}(T) & \text{ if } k = l > 0\\ 0 & \text{ else.} \end{cases}$$

Reference: Hepworth, R., & Willerton, S. (2017). Categorifying the magnitude of a graph. Homology, Homotopy and Applications, 19(2), 31-60. https://doi.org/10.4310/HHA.2017.v19.n2.a3

Github: https://github.com/nadjahae/Magnitude-Homology

Nadja Häusermann nadjaha@student.ethz.ch