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Abstract

At the core of the analysis of the functionality and structure of the
brain is the research of its fundamental units, the neurons. In particular,
the shape of the neuron has proven to be the most influential factor in
understanding the functionality of the brain. For this reason, scientists
began to observe neurons under the microscope and classify them
by properties, such as their branching structure or total length. This
created the first classifications of neurons by their morphology. In
this thesis, we introduce a method for the classification of neuronal
morphologies, called the Topological Morphology Descriptor (TMD). This
descriptor captures the shape of the neuron by associating to it a multiset
of intervals, called a barcode. We also present a stochastic right inverse
to the TMD algorithm, the Topological Neuronal Synthesis (TNS), that
synthesizes a neuron from a given barcode. With the goal of developing
these methods, we first introduce trees, simplicial complexes and homology.
The former is one of the most significant invariants of algebraic topology
measuring the number of holes, voids and higher-dimensional cavities.
We then extend the notion of homology to the setting of filtered spaces.
This extension gives rise to the notion of persistent vector spaces and
enables the construction of an invariant, similar to homology, that
captures the shape of finite metric spaces. This invariant, on which both
the TMD and TNS are based, is called persistent homology.
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Chapter 1

Introduction

Understanding the functionalities and structures of the mammalian brain
has always been of great interest to scientists. At the core of this research has
been the analysis of its fundamental units: neurons. Neurons are the cells
responsible for receiving electric inputs from the environment and sending
new electrical signals to target cells. They are composed of the dendrites, the
axon and the soma, which contains the nucleus.

Figure 1.1: Illustration of a neuron with the soma, the axon and the dendrites [25].

Researchers have demonstrated that the shape of a neuron influences its
functionality. Traditionally, neurons were observed under the microscope
and neuroscientists classified them by their branching structure or total
length.

It is possible to create a digital reconstruction of a neuron by sampling a set
of points in R3 along each branch, together with edges connecting adjacent
sets of points. This reconstruction is a combinatorial merge tree preserving
the same morphological information as the neuronal cell. The dendrites
correspond to the branches, the axon to the central branch and the soma to
the root of the merge tree, and the height function is given by the Euclidean
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1. Introduction

distance of each vertex from the root. Formally, a merge tree (T, h) is a rooted
combinatorial tree1 equipped with a height function h : V(T)→ R∪ {∞}.

The development of an efficient technique to examine branching structures
has proven more complex than expected. This issue has been addressed
using tools from Topological Data Analysis (TDA). TDA is a field of data
science whose goal is to capture the qualitative properties of the shape
of finite metric spaces. The foundational tool of TDA is called persistent
homology. Persistent homology is an invariant of finite metric spaces or more
generally, filtered topological spaces, that encodes the information contained
in the shape of data sets over multiple scales. It tracks the births and deaths
of topological features across different scales. The result is a barcode, that
provides valuable information about the structure of a given metric space or
a filtered topological space.

The structure of a merge tree can be analyzed with the help of sublevel set
filtrations, which are particularly useful for the computation of persistent
homology. A sublevel set filtration is a nested sequence of spaces {Xai}0⩽i⩽n
where a0 ⩽ . . . ⩽ an and Xai = h−1(−∞, ai] for 0 ⩽ i ⩽ n. Intuitively, each
sublevel set Xai = h−1[−∞, ai) represents a set of points with h-values less
than ai. To illustrate this, consider Figure 1.2, which depicts a merge tree
(T, h) along with a corresponding sublevel set filtration {h−1(−∞, ai]}1⩽i⩽3,
where the values ai are taken from the set{2.5, 3.5, ∞} for 1 ⩽ i ⩽ 3. Each
of these values defines a different sublevel set, corresponding to a distinct
subset of the vertex set V(T) = {b0, b1, b2, d2, d1, b3, d3, d0}.

Figure 1.2: Example of a sublevel set filtration {Xai}1⩽i⩽3 of a merge tree (T, h), where Xa3 = T.

An example of the application of persistent homology to a merge tree (T, h)

1A rooted combinatorial tree is a tree with a distinguished vertex r, called the root. Each
vertex in a combinatorial tree has either degree 3 or degree 1.
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and the resulting barcode B is depicted in Figure 1.3. The barcode B is
composed of four bars, each representing the lifetime of a different branch.
For example the bar [b2, d2) represents the branch with birth time b2 and
death time d2. The longest bar [b0, d0) is the trunk of the merge tree, to which
the other branches are attached. Its birth time is b0, which is the leaf with the
lowest h-value and its death time is d0, which is the vertex corresponding to
the root. This visualization gives valuable information about the structure of
the merge tree.

Figure 1.3: Application of persistent homology on a merge tree (T, h) and the resulting barcode
B.

Persistent homology is a key component for a stable and efficient algorithm
for the automatic digital classification of neuronal morphologies. This al-
gorithm is called Topological Morphology Descriptor (TMD) and is based on
the application of persistent homology to merge trees to capture their shape.
The TMD encodes the branching structure of neuronal trees in a persistent
barcode as demonstrated in the previous example. Each interval of the
persistent barcode represents the lifetime of a branch, containing its birth
and death time. We compare the different tree structures with the use of the
bottleneck distance [17, 15].

In A Topological Representation of Branching Neuronal Morphologies [16], it was
demonstrated that the TMD algorithm can classify any type of a rooted tree
equipped with a height function, providing a topological benchmark for the
comparison of different structures. The TMD algorithm is applied with the
goal of classifying pyramidal cells, which are a particular type of neuron
associated with advanced cognitive functions found in the cerebral cortex of
most mammalian brains. Using the TMD algorithm it was possible to classify
pyramidal cells of different species by comparing the corresponding barcodes.

3



1. Introduction

The resulting differences yielded a coherent classification, confirming the
success rate of the TMD algorithm.(Figure 1.4)

Figure 1.4: Comparison of pyramidal cells coming from differ species: Part (a) of the figure
illustrates neurons from different species, each row corresponds to a species: (I) cat, (II) dragonfly,
(III) fruit fly, (IV) mouse, (V) rat. In parts (b) and (c) there are respectively their corresponding
persistent barcode and diagram and in (d) we can see an illustration of their unweighted persistent
image [16].

The development of the TMD algorithm leads to the question of whether it is
possible to recover the initial data, the neuron, from the barcode resulting
from the TMD. This can be done by defining an algorithm called the Topo-
logical Neuronal Synthesis (TNS), which synthesizes an artificial neuron from
the input barcode. The TNS consists of three components: initiation of growth,
elongation and branching/termination. After the initiation of the growth, each
growing tip is assigned a probability to bifurcate, terminate or elongate that
depends on the distance from the soma. The morphology of the resulting
artificial neurons is proved to be combinatorial equivalent to the digital re-
construction of the corresponding neurons, i.e. the digital reconstruction of
the tree and the resulting artificial tree are isomorphic [17, 16].

In this thesis, we focus on the development of the TMD and TNS algorithms.
To this end, we first introduce trees, simplicial complexes and homology.
We then extend the concept of homology to finite metric spaces and filtered
topological spaces by introducing persistent homology. We also analyze
the behaviour and stability of the TNS algorithm, and show that the TNS
beheaves as a stochastic right inverse for the TMD.
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Figure 1.5: The different components of the TNS algorithm applied for the synthesis of a neuron
in (A) and the growth of a neuronal tree by a given barcode in (B) with a graph of the associated
probability to bifurcate or terminate [18].
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Chapter 2

Trees, Simplicial Complexes and
Homology

In this chapter, we review the definitions of graphs, trees and simplicial
complexes, and define homology groups. Before defining trees with the help
of [6, 17], we introduce the basic notions of graphs using the book Graph
Theory [8] written by Diestel, Reinhard. For the introduction of simplicial
complexes and homology theory, we refer to Algebraic Topology [14], Computa-
tional topology for data analysis [7] and Topological pattern recognition for point
cloud data [3].

2.1 Graphs

The first objects we introduce are graphs, which are mathematical objects
used to model various types of relations.

Definition 2.1 A graph is a pair G = (V(G), E(G)) of sets, such that

E(G) ⊆ V(G)×V(G).

We always assume that V(G) ∩ E(G) = ∅. The elements of V(G) are called
vertices of the graph G and the elements of E(G) are its edges. The graph G is said
to be finite if its number of vertices is finite.

Example 2.2 In Figure 2.1 there are two graphs G and G′, where the respective
edges and vertices are given by

V(G) = {v0, v1, v2, v3}, E(G) = {{v0, v1}, {v1, v2}, {v1, v3}, {v2, v3}},
V(G′) = {w0, w1, w2, w3}, E(G′) = {{w0, w1}, {w1, w2}, {w2, w3}}.
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2. Trees, Simplicial Complexes and Homology

Figure 2.1: The picture on the left depicts a graph G with vertex set V(G) = {v0, v1, v2, v3} and
edges E(G) = {{v0, v1}, {v1, v2}, {v1, v3}, {v2, v3}}. The one on the right right depicts a graph
G′ with vertex set V(G′) = {w0, w1, w2, w3} and edges E(G′) = {{w0, w1}, {w1, w2}, {w2, w3}}.

Definition 2.3 For a graph G two vertices v, w ∈ V(G) are called adjacent
vertices if {v, w} ∈ E(G) is an edge of G. The degree of a vertex v ∈ V is the
number of edges containing v, i.e.

deg(v) := |{w ∈ V(G) | {v, w} ∈ E(G)}|.

Definition 2.4 A graph G is called a binary graph if for every vertex v ∈ V(G),
deg(v) is either 1 or 3.

Definition 2.5 A labeling of a graph G is a map ρ : V(G) → S, where S is a
set of labels. If S is a subset of the natural numbers N, then we call the map ρ an
ordered labeling.

Definition 2.6 A path is a non-empty graph P = (V(P), E(P)) of the form

V(P) = {v0, . . . , vk}, E(P) = {v0v1, . . . , vk−1vk},

where the vi are all distinct. If P = v0 . . . vk−1 is a path and k ⩾ 3, then the graph
C := P + vk−1v0 is called a cycle. We call a graph with no cycles an acyclic graph.
The number of edges of a path or of a cycle is its length.

Figure 2.2: The graph in (i) has one cycle, denoted by v3v2v4v3 with length 3 and the graph in
(ii) is an example of an acyclic graph.

Remark 2.7 Intuitively a path is a sequence of adjacent vertices v0, . . . , vk, and a
cycle is a path with vi ̸= vj, i ̸= j, for 1 ⩽ i, j ⩽ k− 1, for which v1 = vk.
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2.1. Graphs

Definition 2.8 The distance dG(v, w) in G between two vertices v, w ∈ V(G) is
the length of the shortest path between v and w in G. If such a path does not exist,
we set dG(v, w) := ∞.

To give a purely combinatorial representation of a finite graph, we introduce
adjacency matrices. These are useful to verify whether two vertices are
adjacent or not.

Definition 2.9 The adjacency matrix A = (aij)n×n of G is defined by

aij :=

{
1 if vivj ∈ E(G),
0 otherwise.

Remark 2.10 Adjacency matrices exist for all graphs that have an ordered labeling
of the vertices.

Example 2.11 For the graph in Figure 2.2 (i), the adjacency matrix is

A(G) =



v0 v1 v2 v3 v4 v5

v0 0 1 0 0 0 0
v1 1 0 0 1 0 0
v2 0 0 0 1 1 0
v3 0 1 1 0 1 0
v4 0 0 1 1 0 1
v5 0 0 0 0 1 0

.

Definition 2.12 Let G = (V(G), E(G)) and G′ = (V(G′), E(G′)) be two graphs,
then a map φ : V(G) → V(G′) is a graph homomorphism from G to G′

if it preserves the adjacency of the vertices, i.e. {x, y} ∈ E(G) implies that
{φ(x), φ(y)} ∈ E(G′). If φ is bijective and its inverse φ−1 is also a homomorphism,
we call φ a graph isomorphism and say that G and G′ are isomorphic, G ∼ G′.

Example 2.13 In Figure 2.3 the map φ : V(G)→ V(G′) given by

φ(v0) = w1, φ(v1) = w1, φ(v2) = w4,
φ(v3) = w3, φ(v4) = w2, φ(v5) = w5.

defines a graph isomorphism.

Remark 2.14 If two graphs are isomorphic, then their adjacency matrices are equal.
Thus, we do not make any distinction between isomorphic graphs and write G = G′

instead of G ∼ G′. This distinction is only considered in case one refers to G and G′

as abstract graphs.

Definition 2.15 A graph G is called connected if it is non-empty and any two of
its vertices are linked by a path in G.

9



2. Trees, Simplicial Complexes and Homology

Figure 2.3: The graphs G and G′ are isomorphic through φ.

Figure 2.4: A connected and a disconnected graph.

Definition 2.16 A directed graph is a pair G of vertices and edges together with
two maps

init : E(G)→ V(G), ter : E(G)→ V(G).

The maps init and ter assign to every edge e an initial vertex init(e) and terminal
vertex ter(e). The edge e is said to be directed from init(e) to ter(e).

Example 2.17 In Figure 2.5, G is a directed graph with vertices and edges

V(G) = {v0, v1, v2, v3, v4} and E(G) = {e0, e1, e2, e3, e4, e5}.

Notice that every edge ei ∈ E(G) has a corresponding init(ei) and ter(ei).

e0 : init(e0) = v0 and ter(e0) = v1, e1 : init(e1) = v0 and ter(e1) = v2,
e2 : init(e2) = v2 and ter(e2) = v3, e3 : init(e3) = v1 and ter(e3) = v3,
e4 : init(e4) = v4 and ter(e4) = v3, e5 : init(e5) = v3 and ter(e5) = v4.

Definition 2.18 For a directed graph G, we call a vertex w ∈ V(G) adjacent to
v ∈ V, if (v, w) ∈ E(G) or if (w, v) ∈ E(G). The elements of

N+(v) := {w ∈ V(G) | (v, w) ∈ E(G)}, N−(v) := {u ∈ V | (u, v) ∈ E(G)}

are respectively called the successors of v and the predecessors of v. The in-degree
is defined as deg+(v) := |N+(v)| and the out-degree as deg−(v) := |N−(v)|.
The degree of a vertex v is given by

deg(v) := deg+(v) + deg−(v).

10



2.2. Trees

Figure 2.5: Example of a directed graph G with vertices V(G) = {v0, v1, v2, v3, v4} and edges
E(G) = {(v0, v1), (v0, v2), (v1, v3), (v2, v3), (v1, v3), (v3, v4), (v4, v3)} = {e0, e1, e2, e3, e4, e5}.

Example 2.19 Consider the directed graph G in Figure 2.5. Successors and prede-
cessors of the vertex v3 are

N+(v3) = {w ∈ V(G) | (v3, w) ∈ E} = {v4},
N−(v3) = {w ∈ V(G) | (w, v3) ∈ E} = {v1, v2, v4}.

Now that we have successors and predecessors, we can calculate the degree of v3.
Notice that a vertex can be both in N+(v3) and N−(v3).

deg+(v3) = |N+(v3)| = 1, deg−(v3) = |N−(v3)| = 3,
deg(v3) = deg+(v3) + deg−(v3) = 4.

Figure 2.6: The directed graph in Figure 2.5 with edges between the predecessors of the vertex
v3 in red and successors in green.

2.2 Trees

To create a digital model of a neuron we rely on the notion of rooted trees. In
particular, we focus on binary trees, since the probability that two branches
of a neuron bifurcate at the exact same point is almost zero. In this section

11



2. Trees, Simplicial Complexes and Homology

we use the notions and definitions introduced in the papers From trees to
barcodes and back again I, II [17, 6].

2.2.1 Combinatorial Trees

Definition 2.20 A combinatiorial tree T is a connected, acyclic, binary, directed
graph, such that each vertex has either degree 3, called an inner vertex, or degree 1,
called a leaf. A combinatorial tree T is finite if the number of vertices is finite. A
vertex v is a parent of a vertex w if there exists a directed edge from w to v, in that
case, w is a child of v.

Remark 2.21 In a combinatorial tree, there are no vertices with degree 2.

Figure 2.7: A combinatorial tree in (i) and a non-combinatorial tree in (ii).

Example 2.22 In Figure 2.7 the tree in (i) is a combinatorial tree since each vertex
has either degree 1 or degree 3. On the other hand, the object in (ii) is not a
combinatorial tree since there are vertices that have degree 2.

Definition 2.23 A rooted tree T is a combinatorial tree with a distinguished vertex
r called the root. This is the only vertex of degree 1 in T that has no parent.

Remark 2.24 In the case of a combinatorial tree an inner vertex is also called a
branching or a bifurcation point and a leaf is called a termination. Every vertex,
besides the root, has a unique parent and at most two children.

It is also important to note that every tree is fully defined by the set of vertices
V and the partial order “is a parent of”.

Remark 2.25 Since combinatorial trees are a special case of graphs all the definitions
for graphs introduced in Section 2.1 still hold for combinatorial trees.

Proposition 2.26 For a rooted combinatorial tree T an embedding of T in R3 always
exists.

Proof Every rooted combinatorial tree with root r is defined by its set of
vertices V(T) and its parent-child relations. Regarding the set of vertices

12



2.2. Trees

Figure 2.8: A combinatorial rooted tree with root r. The vertices v and w are respectively an
example of a branching point and of a termination. Moreover, the directed edge from w to v
tells us that v is a parent of w.

as a subset of R3 enables to place the vertices following the parent-child
relation, where parents are placed above children. Start from the root, which
is always placed at (0, 0, 0) and continue by assigning coordinates (x, y, z) to
each vertex v ∈ V(T), where the z-coordinate depends on the tree depth of v
and the x- and y- coordinate are chosen such that no vertices overlap. □

In this thesis, we mostly focus on geometric trees, which are the type of trees
used for modeling neurons. We also refer to them as neuronal trees.

Definition 2.27 A geometric tree is the embedding of a combinatorial tree in R3.
The set of geometric trees is denoted by T .

On the set of geometric trees we can define the following equivalence relation.
Let T, T′ ∈ T ,

T ∼
comb

T′ ⇐⇒ T and T′ are embeddings of the same finite rooted tree.

2.2.2 Merge Trees

Trees were introduced to study the relations between people (family trees)
and/or the relations between species (phylogenetic trees). This is the reason
for the common use of the words parent and child. The relation “is a parent
of” is mostly described in mathematics by a height function, which gives
rise to the notion of merge trees.

Definition 2.28 A merge tree is a rooted combinatorial tree T together with a func-
tion h : V(T)→ R∪ {∞}, called a height function that satisfies two properties.

1. If v is the parent of w, then h(v) ⩾ h(w),

2. if r is the root node, then h(r) = ∞.

13



2. Trees, Simplicial Complexes and Homology

Two merge trees (T, h) and (T′, h′) are isomorphic if there is a graph isomorphism
φ : T → T′ such that h = h′ ◦ φ. A generic merge tree is a merge tree (T, h), such
that h is injective.

Example 2.29 The tree T in Figure 2.9 is an example of a merge tree, with height
function h : V(T)→ R∪ {∞}. The vertices of T are

V(T) = {b0, b1, b2, b3, d0, d1, d2, d3}.

Take now b3, d3 ∈ V(T), then h(d3) ⩽ h(b3) since d3 is a parent of b3. It also holds
that h(r) = ∞, where r is the root of T.

Remark 2.30 Trees are normally drawn with the root higher than the leaves. We
do not use this convention and consider trees with a similar structure as trees that
appear in nature, where the root is lower than the leaves.

Proposition 2.31 Every merge tree (T, h) has an ordered labeling.

Proof Consider the height function h : V → R∪ {∞} and order the vertices
according to their h-value. Assign to the leaf l with the lowest h-value the la-
bel 0. Then label the remaining vertices based on their order of appearance.□

Definition 2.32 Labels on the leaves are called birth labels and the ones on the
internal vertices are called death labels.

Figure 2.9: A merge tree, where the vertices are labeled according to their order of appearance.
Moreover, the labels in blue are the birth labels and the ones in red are the death labels.

14
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Definition 2.33 Two generic merge trees (T, h) and (T′, h′) are combinatorially
equivalent if there exists a graph isomorphism φ : T → T′, such that:

1. For every pair of leaf nodes vi, vj ∈ V(T), if h(vi) < h(vj), then

h′(φ(vi)) < h′(φ(vj)).

2. For every pair of internal nodes vi, vj ∈ V(T), if h(vi) < h(vj), then

h′(φ(vi)) < h′(φ(vj)).

Definition 2.34 A combinatorial merge tree T is a combinatorial tree equipped
with an order labeling Ll of the leaves and Li of the internal nodes such that for
internal nodes v, w ∈ V(T), if v is a parent of w, then Li(v) > Li(w).

2.3 Simplicial Complexes

In this section, we introduce simplicial complexes, which generalize graphs.
They are combinatorial objects built by gluing vertices, edges, faces, etc.
along common boundaries. With the help of these combinatorial objects,we
approximate topological spaces, including finite metric spaces.

Definition 2.35 For a finite set of k + 1 points X = {x0, . . . , xk} ∈ Rd we say
that x = ∑k

i=0 tixi is an affine combination, if ∑k
i=0 ti = 1. The set of all affine

combinations is called affine hull. It is a k-plane if the k + 1 points are affinely
independent, by which we mean that any two affine combinations x = ∑k

i=0 tixi
and y = ∑k

i=0 sixi are equal if and only if ti = si for every 1 ⩽ i ⩽ k.

Remark 2.36 For a d-dimensional space Rd we can have at most d linearly inde-
pendent vectors and hence d + 1 affinely independent points.

Definition 2.37 An affine combination x = ∑k
i=0 tixi is a convex combination if

ti ⩾ 0 for each 1 ⩽ i ⩽ k. Moreover, the set of all convex combinations is called a
convex hull.

Definition 2.38 Let X = {x0, . . . , xk} be a set of affinely independent k + 1
points. A k-simplex is the convex hull of k + 1 affinely independent points
σ = σ{x0, . . . , xk}. This is also called the simplex spanned by X in Rk and
its dimension is dim σ = k. The points xi are called vertices and for any subset
∅ ̸= Y ⊆ X we call the simplices σ(Y), spanned by Y, the faces of σ. Since Y is
a subset of an affinely independent set X, it is also affinely independent and hence
defines a simplex.

Example 2.39 Embeddings of graphs, introduced in Section 2.1, are a special case
of simplicial complexes.
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2. Trees, Simplicial Complexes and Homology

Figure 2.10: A graphic representation of a vertex, an edge a face, and a tetrahedron.

Remark 2.40 The simplices of the lowest dimension have special names. For exam-
ple, a 0-simplex is called a vertex, a 1-simplex an edge, a 2-simplex a triangle and
a 3-simplex a tetrahedron.

Gluing together simplices of different dimensions along common boundaries
leads to the notion of geometric and abstract simplicial complexes.

Definition 2.41 (Geometric Simplicial Complex) A geometric simplicial com-
plex is a finite collection X of simplices in a Euclidean space such that the following
conditions hold:

1. For any simplex σ ∈ X , all faces of σ are also contained in X ,

2. For any two simplices σ and τ of X , the intersection σ ∩ τ is a simplex, which
is a face of both σ and τ.

The dimension of X is dimX = max{dim σ | σ ∈ X}.

Example 2.42 Figure 2.11 (i), (ii) represents two examples of geometric simplicial
complexes. In contrast, in Figure (iii) and (iv) we have two objects that are not
geometric simplicial complexes. In (iii) we can see that the yellow triangle is not a
face of any of the two triangles in contradiction to (2) of Definition 2.41. In (iv) we
have a tetrahedron with a missing face, which does not fulfill requirement (1) of the
definition.

Figure 2.11: Object in (i) and (ii) are examples of simplicial complex, but (iii) and (iv) are not.

Forgetting about the geometry of simplicial complexes and focussing only on
the connection between their vertices provides a combinatorial construction,
known as abstract simplicial complexes. These complexes are a generalization
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of graphs that include higher dimensional simplices, like triangles and tetra-
hedra. Abstract simplicial complexes are easier to construct than geometric
simplicial complexes because it is not necessary to provide an embedding in
an Euclidean space.

Definition 2.43 (Abstract Simplicial Complex) An abstract simplicial com-
plex X is a pair X = (V(X), Σ(X)), where V(X) is a finite set called the vertices
of X and ∅ ̸= Σ(X), called the simplices is a subset of the collection of all subsets
of V(X) satisfying the condition:

If σ ∈ Σ(X) and ∅ ̸= τ ⊆ σ, then τ ∈ Σ(X).

We say that a k-simplex σ has dimension k if |σ| = k + 1.

Definition 2.44 Let X1, X2 be abstract simplicial complexes with vertex sets V1, V2,
respectively. An isomorphism between X1, X2 is a bijection φ : V1 → V2 such that
the sets X1 and X2 are the same under the renaming of the vertices by φ and its
inverse.

Comparing the definition of geometric and abstract simplicial complexes, the
existence of a correspondence between the two is almost evident. Note that
given a geometric simplicial complex, it is always possible to construct an
abstract simplicial complex by ignoring all simplices of dimension bigger
than 0 and keeping only its set of vertices. In this way, any simplicial complex
X determines an abstract simplicial complex X, called a vertex scheme of X .

Definition 2.45 (Vertex Scheme) Let X be a geometric simplicial complex with
vertices V and let X be the collection of all subsets {v0, . . . , vk} of V such that the
vertices {v0, . . . , vk} span a simplex of X . The collection X is called the vertex
scheme of X .

We additionally notice that every abstract simplicial complex X determines
the underlying space of the geometric simplicial complex in Rd, for d suffi-
ciently large, up to homeomorphism. This is denoted by |X| and is called the
geometric realization of X.

Definition 2.46 A geometric simplicial complex |X| ⊆ Rd is called a geometric
realization of an abstract simplicial complex X if and only if there exists an
embedding e : V(X) → Rm that takes every k-simplex {x0, . . . , xk} in X to a
k-simplex in |X| that is the convex hull of {e(x0), . . . , e(xk)}. It is uniquely
determined up to isomorphism.

The geometric realization of an abstract simplicial complex K with n vertices
as an (n− 1)-simplex in Rn−1 can always be constructed. To do this, consider
an (n− 1)-simplex in Rn, where each vertex vi has the i-th coordinate equal
to 1 and all the other equal to 0.

17
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Example 2.47 Observe the pair X = (V(X), Σ(X)), with

V(X) = {v0, v1, v2, v3, v4},
Σ(X) = {V(X), [v0, v1], [v0, v2], [v1, v2], [v0, v3], [v1, v3], [v2, v3], [v2, v4],

[v3, v4], [v0, v1, v3], [v1, v2, v3], [v0, v1, v2], [v0, v2, v3], [v0, v2, v1, v3]}.
This is an abstract simplicial complex, since V(X) is finite, Σ(X) is not empty and it
holds that for all σ ∈ Σ(X) with ∅ ̸= τ ⊆ σ, τ ∈ Σ(X). The geometric realization
of the abstract simplicial complex X is represented in Figure 2.12. Now consider
X′ = (V(X′), Σ(X′)) with

V(X′) = {v0, v1, v2, v3, v4},
Σ(X′) = {V(X′), [v0, v1], [v0, v2], [v1, v2], [v0, v3], [v1, v3], [v2, v3], [v2, v4],

[v3, v4], [v0, v1, v3], [v0, v1, v2], [v0, v2, v3], [v0, v2, v1, v3]}.
Then [v1, v2, v3] /∈ Σ(X′), but [v1, v2, v3] ⊆ [v1, v2, v3, v4], hence X′ can not be an
abstract simplicial complex.

Figure 2.12: Geometric realization of X in Example 2.47.

Definition 2.48 Let X and Y be two abstract simplicial complexes. A map of
abstract simplicial complexes f : X → Y is a map of sets fV : V(X) → V(Y)
such that for any simplex σ ∈ Σ(X), it holds fV(σ) ∈ ΣY.

The geometric realization construction is functorial, which means that every
map f : X → Y induces a continuous map | f | : |X| → |Y| such that:

• | f ◦ g| = | f | ◦ |g|,
• |idX| = id|X|.

We can approximate a topological space by using triangulation, which means
finding a geometric simplicial complex K homeomorphic to X. Triangula-
ble spaces include differentiable manifolds and topological manifolds of
dimension less than three.

Definition 2.49 Let X be a topological space. An abstract simplicial complex K is
called a triangulation of X if there exists an homeomeorphism f : |K| → X, where
|K| is the geometric realization of K.
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Example 2.50 Let T2 ⊆ R3 be the torus. The Torus is triangulable, since it is a
two-dimensional topological manifold. One possinle triangulation of the torus is
depicted in Figure 2.13.

Figure 2.13: The two-dimensional torus (left) and one of its triangulations(right).

2.4 Homology

Homology groups are one of the most important tools of algebraic topology.
They capture information about connectivity, voids, and holes within a
topological space by analyzing boundaries and cycles. The idea behind
homology is to count the number of cavities, by identifying all the cycles that
are not a boundary of some subspace of X.

Definition 2.51 For a field k, let X be a simplicial complex and i ⩾ 0. An i-chain
is a formal sum of i-simplices in X written as c = ∑ anσn, where the σn are the
i-simplices and an ∈ k are the coefficients.

Definition 2.52 Let X be a simplicial complex. The i-chains form a vector space
over k with the binary operations:

• Componetwise addition: Let c = ∑ anσn and d = ∑ bnσn be i-chains, then

c + d := ∑(an + bn)σn.

• Scalar multiplication: Let α ∈ k and c = ∑ anσn be an i-chain, then

α · c = α · a ∑ anσn := ∑ αanσn.

The identity is the chain 0 = ∑ 0 · σn and the inverse of a chain c is −c. This group
is called the group of i-chains and is denoted Ci = Ci(X).

Remark 2.53 For dimensions i less than zero and greater than dim X the group
Ci(X) is trivial.
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2. Trees, Simplicial Complexes and Homology

From now on we fix X a simplicial complex and use the notation Ci without
specifying the complex.

To establish a connection between groups of different dimensions, we define
maps ∂i : Ci → Ci−1 for every i.

Definition 2.54 Let σ = [v0, . . . , vi] ∈ Ci be an i-simplex spanned by the vertices
{v0, . . . , vi}. The boundary of σ is given by

∂i(σ) =
i

∑
n=0

(−1)nσ|[v0,...,v̂n,...,vi ].

The boundary of the i-simplex [v0, . . . , vi] is a sum of its (i− 1)-dimensional faces,
where v̂j, means that the vertex vj is omitted.

Remark 2.55 If k is Z2, it is not important to take into account the factor (−1)n

in the boundary of a simplex, since 1 = −1.

Remark 2.56 Note that for an i-chain c = ∑ anσn, the boundary ∂i(c) = ∑ an∂i(c)
is a linear combination of (i− 1)-chains.

The map ∂i : Ci → Ci−1 is a homomorphism since

• ∂i(c + d) = ∂i(c) + ∂i(d) for every i-chain c, d ∈ Ci,

• ∂i(αc) = α∂i(c) for every i-chain c ∈ Ci and for every α ∈ k.

It is called the boundary homomorphism or boundary map.

Proposition 2.57 For the groups Ci and the maps ∂i, the identity

∂i−1 ◦ ∂i ≡ 0

holds for every i ⩾ 0.

Proof Let σ ∈ Ci(X), then ∂i(σ) = ∑i
n=0(−1)nσ|[v0,...,v̂n,...,vi ], we calculate

∂i−1∂i(σ) = ∂i−1(
i

∑
n=0

(−1)nσ|[v0,...,v̂n,...,vi ]) =

= ∑
m<n

(−1)n(−1)mσ|[v0,...,v̂m,...,v̂n,...,vi ]+

+ ∑
m>n

(−1)n(−1)m−1σ|[v0,...,v̂n,...,v̂m,...,vi ]

After switching m and n in the second sum, it becomes the negative of the
first, hence the latter two summations cancel. □
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Example 2.58 Consider the simplicial complex X of Figure 2.14. First, we deter-
mine the chain groups that appear in X.

C0(X) = {v0, v1, v2, v3, v4},
C1(X) = {[v0, v1], [v0, v2], [v1, v2], [v2, v3], [v2, v4], [v3, v4]},
C2(X) = {[v2, v3, v4]}.

For i > 2 we do not have simplices, hence Ci(X) = 0. Since the map ∂i is an
homomorphism for every i it holds that ∂i(0) = 0. At this point, we are ready to
compute the boundary of each element of the chain groups. For C0(X) it holds that
∂0(vi) = 0 for every i ∈ {0, . . . , 4}. For the edges, we have the following boundaries:

∂1([v0, v1]) = v1 − v0, ∂1([v0, v2]) = v2 − v0,
∂1([v1, v2]) = v2 − v1, ∂1([v2, v3]) = v3 − v2,
∂1([v2, v4]) = v4 − v2, ∂1([v3, v4]) = v4 − v3.

The boundary of the triangle [v2, v3, v4] is given by

∂2([v2, v3, v4]) = [v3, v4]− [v2, v4] + [v2, v3].

Figure 2.14: Simplicial complex of Example 2.58

Definition 2.59 A chain complex C• over a field k is a sequence of abelian groups
Ci for i ⩾ 0 together with linear maps ∂i : Ci → Ci−1 , such that ∂i−1 ◦ ∂i ≡ 0.

. . . Ci+1 Ci Ci−1 . . . C0 0←→∂i+2 ←→∂i+1 ←→∂i ←→∂i−1 ←→∂1 ←→∂0

Definition 2.60 (Cycle) An i-chain c ∈ Ci is called an i-cycle if ∂i(c) = 0. The
set of all i-cycles forms a group called the i-th cycle group Zi = Zi(X) under the
addition defined for chains. Moreover, it holds that Zi = ker ∂i.

Definition 2.61 (Boundary) An i-chain c ∈ Ci is called an i-boundary if there
exists d ∈ Ci+1, such that c = ∂i+1(d). The set of all i-boundaries is a group called
the i-th boundary group Bi = Bi(X). Additionally, it holds that Bi = Im ∂i+1.
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Example 2.62 Consider the simplicial complex X in Figure 2.14. Using the bound-
aries obtained in Example 2.58 we want to analyze the boundaries of the simplices
[v0, v1] + [v1, v2]− [v0, v2] and [v2, v3] + [v3, v4]− [v2, v4].

∂1([v0, v1] + [v1, v2]− [v0, v2]) = ∂1([v0, v1]) + ∂1([v1, v2]) + ∂1([v0, v2]) =

= v1 − v0 + v2 − v1 − v2 + v0 =

= 0,
∂1([v2, v3] + [v3, v4]− [v2, v4]) = ∂1([v2, v3]) + ∂1([v3, v4]) + ∂1([v2, v4]) =

= v3 − v2 + v4 − v3 − v4 + v2 =

= 0.

Since both calculations result in 0, we could now conclude that these simplices are
1-cycles. However, there exists a 2-simplex such that

∂2([v2, v3, v4]) = [v3, v4]− [v2, v4] + [v2, v3].

Hence, we conclude that the 1-simplex [v3, v4]− [v2, v4] + [v2, v3] is a boundary
and that [v0, v1] + [v1, v2]− [v0, v2] is a cycle.

Remark 2.63 The condition ∂i−1 ◦ ∂i ≡ 0 implies that for every i, Bi ⊆ Zi.

Since the boundary map is a homomorphism, there exist bases that determine
its matrix representation.

Definition 2.64 (Boundary Matrix) Let {σn}n∈N ⊆ Ci and {τn}n∈N ⊆ Ci−1
be bases of Ci and Ci−1 respectively. The boundary operator ∂i : Ci → Ci−1 can
be represented by a matrix, called the boundary matrix Di, where the columns
correspond to the i-simplices and the rows to the (i− 1)-simplices. The (n, m)-entry
of Di is given by

di
nm =

{
1 if σn ∈ τm,
0 otherwise.

(2.1)

Example 2.65 Consider again the simplex in Figure 2.14 for each boundary map.
As a reminder, the chain groups of X are given by

C0(X) = {v0, v1, v2, v3, v4},
C1(X) = {[v0, v1], [v0, v2], [v1, v2], [v2, v3], [v2, v4], [v3, v4]},
C2(X) = {[v2, v3, v4]},

and for i > 2, Ci(X) = {0}. The boundary matrix for every i > 1 is Di = 0, except
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when i = 0, 1, then the boundary maps are

D0 =



v0v1 v1v2 v0v2 v2v3 v2v4 v3v4

v0 1 0 1 0 0 0
v1 1 1 0 0 0 0
v2 0 1 1 1 1 0
v3 0 0 0 1 0 1
v4 0 0 0 0 1 1

, D1 =



v2v3v4

v0v1 0
v1v2 0
v0v2 0
v2v3 1
v2v4 1
v3v4 1

.

Everything we proved for the boundary map holds as well for boundary
matrices.

Proposition 2.66 The matrix product Di−1 · Di is equal to the zero matrix.

As seen in Example 2.62, an i-cycle can also be the boundary of an (i + 1)-
simplex. The idea behind homology is to count the cavities of a topological
space by analyzing cycles that are not the boundaries of other simplices.

Definition 2.67 Let k be a field, then i-th homology group Hi of a chain complex
C•(X) with coefficients in k is the group Hi = Zi/Bi. The i-th Betti number βi is
then given by its rank βi = rankHi.

The most important property of such a construction is its functoriality, which
is the reflection of the behavior between simplicial complexes and continuous
maps between topological spaces [14].

Proposition 2.68 For any abstract simplicial complex X and Y and a continuous
map f : X → Y there is an induced linear map Hn( f ) : Hn(X)→ Hn(Y).

Example 2.69 Here we take into account the complex of Figure 2.14 and the com-
putation of the boundaries in Example 2.58 to compute the homology groups of the
chain complex C•(X). For i > 2 we have that Zi = Bi = {0}, since in that case
Ci(X) = {0} therefore Hi(X) = {0} for i > 2. It remains to calculate Zi and Bi
for i ⩽ 2,

Z0 = ker ∂0 = ⟨v0, v1, v2, v3, v4⟩,
Z1 = ker ∂1 = ⟨[v0, v1]− [v0, v2] + [v1, v2], [v2, v3] + [v3, v4]− [v2, v4]⟩,
Z2 = ker ∂2 = {0},
B0 = Im ∂1 = ⟨v0, v1, v2, v3, v4⟩,
B1 = Im ∂2 = ⟨[v2, v3] + [v3, v4]− [v2, v4]⟩
B2 = Im ∂3 = {0}.
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After calculating all the groups needed, it remains to take their quotient and get the
homology groups Hi(X) for i ⩽ 2.

H0(X) = Z0⧸B0
= ⟨v0, v1, v2, v3, v4⟩⧸⟨v0, v1, v2, v3, v4⟩

∼= {0},

H1(X) = Z1⧸B1
=
⟨[v0, v1]− [v0, v2] + [v1, v2], [v2, v3] + [v3, v4]− [v2, v4]⟩

⟨[v2, v3] + [v3, v4]− [v2, v4]⟩
∼=

∼= ⟨[v0, v1]− [v0, v2] + [v1, v2]⟩ ∼= Z,

H2(X) = Z2⧸B2
= {0}⧸{0} = {0}.

As a last step, we take the ranks of these groups and conclude that

βi =

{
1 if i = 1,
0 otherwise,

Hi(X) =

{
Z if i = 1;
0 otherwise.

So the simplicial complex in Figure 2.14 has only one hole of dimension one. It is
connected and it has no 2-dimensional holes.

From the resulting Betti numbers, we conclude that the simplicial complex in Figure
2.14 is connected, has one hole of dimension one and for all other i ⩾ 2 there are no
i-dimensional cavities.

We have now derived simplicial homology, designed to capture the shape of
simplicial complexes. Unfortunately, this does not work on every topological
space X, since the existence of a triangulation of X is not guaranteed. To
extend the notion of homology Eilenberg defined the more general theory of
singular homology for any topological space X. If X is triangulable, then
both the simplicial homology of this space and its singular homology are
isomorphic.
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Chapter 3

Filtrations and Persistent Homology

Understanding the shape of finite metric spaces with homology groups is
not helpful, because these do not provide information beyond its number of
points. This is the reason for the construction of a different invariant, called
Persistent Homology. Persistent homology detects holes, shapes and voids of
finite metric spaces, after assigning a filtration of simplicial complexes to the
point cloud. Most of the theory encountered is based on Topological Pattern
Recognition for Point Cloud Data [3].

3.1 Filtrations

Before we dive into the study of persistent homology, we describe the objects
that enable the construction of a topological space from a point cloud 1. The
theory developed in this subchapter is taken from Computational topology for
Data Analysis [7] and from Topological Data Analysis with Applications [4].

To first gain some intuition, we introduce the Vietoris-Rips complex, used
to construct a simplicial complex, and therefore a topological space, from a
point cloud.

Definition 3.1 Let (X, d) be a finite metric space. Given a real r > 0, the Vietoris-
Rips complex is the abstract simplicial complex VR(X, r), with vertex set X, and
for which [x0, . . . , xk] is a k-simplex if and only if d(xi, xj) ⩽ 2r for every pair of
vertices 0 ⩽ i < j ⩽ k.

Example 3.2 In Figure 3.1 we have a point cloud on which we construct Vietoris-
Rips complexes. Different thresholds ri, lead to simplicial complexes of different
homotopy types. For example, in the last simplicial complex, we can notice that a
hole appears for the first time.

1A finite subset of a metric space (X, d).
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Figure 3.1: Examples of Vietoris-Rips complexes for different thresholds.

Taking the collection of all Vietoris-Rips complexes, results in a nested
sequence of simplicial complexes {VR(X, r)}r∈R+ . For r ⩽ s take a k-simplex
σ = [x0, . . . , xk] ∈ VR(X, r). By definition it holds that d(xi, xj) ⩽ 2r ⩽ 2s for
every 0 ⩽ i < j ⩽ k , thus σ ∈ VR(X, s). This gives a natural inclusion map

ι : VR(X, r) ↪→ VR(X, s)

for every r ⩽ s.

Vietoris-Rips complexes are an example of a filtration, which are the objects
we introduce next.

Definition 3.3 (Filtration) A filtration F = F (X) of a topological space X is a
nested sequence of topological subspaces {Xi}1⩽i⩽n together with inclusion maps for
i ⩽ j, ι : Xi ↪→ Xj

F : ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = X.

Definition 3.4 Let K be a simplicial complex. A simplicial filtration is a nested
sequence of subcomplexes of K denoted by F = F (K), with

F : ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

If Ki\Ki−1 is either empty or a single simplex for 1 ⩽ i ⩽ n, then F is called a
simplex-wise filtration.

Example 3.5 In Figure 3.2 we have an example of a simplicial filtration F of a
simplicial complex X = (V(X), Σ(X)), with

V(X) = {a, b, c, d} and Σ(X) = {a, b, c, d, ab, ac, ad, bc, cd, abc}.

The sequence of subcomplexes {Xi}0⩽i⩽4 is given by

X0 = {a, b}, X1 = {a, b, c, d}, X2 = {a, b, c, d, ab, ad, bc},
X3 = {a, b, c, d, ab, ac, ad, bc}, X4 = {a, b, c, d, ab, ac, ad, bc, cd, abc}.

and the inclusion map are ι : Xi → Xi+1 for 0 ⩽ i ⩽ 3.
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Figure 3.2: Example of a simplicial filtration F of the simplicial complex X.

To work with persistent homology, we mostly use a filtration induced by a
real-valued function f : X → R for a topological space X.

Definition 3.6 (Sublevel Sets) Let X be a topological space and f : X → R a
function, then the sublevel set of f at a ∈ R is defined as:

X⩽a = f−1((−∞, a]) = {x ∈ X | f (x) ∈ (−∞, a]}.

Remark 3.7 If not specified, we omit “⩽” in the subscript:

Xa := X⩽a = f−1(−∞, a].

Definition 3.8 (Sublevel-set Filtration) For a topological space X and a real-
valued function f : X → R, denote with Xa = f−1(−∞, a] the sublevel set for the
function value a. For a sequence of real numbers a0 ⩽ a1 ⩽ . . . ⩽ an, with a0 = −∞
and Xa0 = ∅. Then the sequence of subspaces of X connected by inclusions gives
the filtration F f

F f : ∅ = Xa0 ↪→ Xa1 ↪→ Xa2 ↪→ · · · ↪→ Xan .

called the sublevel-set filtration.

Definition 3.9 For a topological space X and a function f : X → R is called
tame if the homology groups of its sublevel sets have finite rank and change via
inclusion-induced maps only at finitely many points t ∈ R, called critical points.

3.2 Persistent Vector Spaces

For a filtration F of a topological space X, whenever t ⩽ s there is an inclusion
map ι : Xt ↪→ Xs between subcomplexes Xt, Xs ⊆ X. By functoriality these
maps induce homomorphisms between homology groups

hi
t,s = ι∗ : Hi(Xt)→ Hi(Xs)

for all i ⩾ 0 and 0 ⩽ t ⩽ s with t, s ∈ R. This leads to

Hi(F ) : 0 = Hi(X0)→ · · · → Hi(Xt)→ · · · → Hi(Xs)→ · · ·
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called a persistent vector space.

As we noticed in Figures 3.2 and 3.1 the appearing subcomplexes have
different homotopy types. Hence, it is important to compute and record
homology groups for each of these complexes and see how generators map.
The persistent vector space {Hi(Xr)}r∈R contains all this information. To
better understand such an object, we introduce the general definition of a
persistent vector space and investigate its properties.

Definition 3.10 (Persistent Vector Space) Let k be a field. A family of k-vector
spaces {Vr}r∈R together with linear transformations LV(r, r′) : Vr → Vr′ , whenever
r ⩽ r′, is called apersistent vector space if for any r ⩽ r′ ⩽ r′′

LV(r, r′) · LV(r′, r′′) = LV(r, r′′). (3.1)

Such a construction can be generalized to different objects, like sets, topo-
logical spaces, or simplicial complexes. When we speak of a persistent
object we mean a family {Xr}r∈R parametrized by R together with a map
φX(r, r′) : Xr → Xr′ whenever r ⩽ r′, with the same property as in Definition
3.1.

Definition 3.11 (Linear transformation) A linear transformation of persis-
tent vector spaces over k, f : {Vr}r∈R → {Wr}r∈R, is a family of linear transforma-
tions fr : Vr →Wr, such that for all r ⩽ r′,

fr′ ◦ LV(r, r′) = LW(r, r′) ◦ fr.

This is equivalent to the following diagram being commutative

Vr Vr′

Wr Wr′ .

← →LV(r,r′)

←

→fr

←

→ fr′

← →LW(r,r′)

We call such a linear transformation an isomorphism if it admits a two-sided
inverse.

Example 3.12 Consider the filtration F from Figure 3.2. We can see that the 0-
simplices do not appear all at once: a and b appear at time T0, and c, d at time T1.
Hence, the persistent vector space for the 0-simplices is given by

(C0(F ))r =

{
⟨a, b⟩, r ∈ [T0, T1),
⟨a, b, c, d⟩, r ∈ [T1, ∞).
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The persistent vector space for the 1-simplices is given by

(C1(F ))r =



{0} r ∈ [T0, T1),
⟨ab⟩, r ∈ [T1, T2),
⟨ab, ad, bc⟩, r ∈ [T2, T3),
⟨ab, ac, ad, bc⟩ r ∈ [T3, T4),
⟨ab, ac, ad, bc, cd⟩ r ∈ [T4, ∞).

Lastly,

(C2(F ))r =

{
{0}, r ∈ [T0, T4),
⟨abc⟩, r ∈ [T4, ∞).

For k > 2 we have that (Ck(F ))r = {0} for every r > 0 since there are no simplices
of dimension bigger than 2. For these persistent vector spaces, we can additionally
define linear maps

∂i : {(Ci(F ))r}r∈R+ → {(Ci−1(F ))r}r∈R+ .

Note that after fixing r ∈ R+, these maps can be interpreted as maps between vector
spaces, corresponding to the notion of boundary maps from homology theory.

Definition 3.13 (Sub-persistent Vector Space) A sub-persistent vector space
of {Vr}r∈R is a choice of k-subspaces Ur ⊆ Vr for all r ∈ [0,+∞), such that
LV(r, r′)(Ur) ⊆ Ur′ for all r ⩽ r′.

Remark 3.14 If f : {Vr}r∈R → {Wr}r∈R is a linear transformation, then im( f ) is
the sub-persistent vector space {im( fr)}r∈R.

In our work, we mostly focus on persistent vector spaces with parameter
r ∈ [0,+∞). Whenever r < 0 we set Vr = {0}.

Definition 3.15 (Quotient Persistent Vector Space) If {Ur}r∈R ⊆ {Vr}r∈R is
a sub-persistent vector space, the persistent vector space {Vr/Ur}r∈R, where the
linear transformation LV/U(r, r′) for r ⩽ r′ is given by

Vr/Ur → Vr′/Ur′

[v] 7→ [LV(r, r′)(v)]

is called the quotient persistent vector space.

Definition 3.16 (R+-filtered set) A R+-filtered set (X, ρ) is a set X equipped
with a function ρ : X → [0, ∞).

Definition 3.17 (Free k-vector space) Let k be a field and X a finite set, then the
free k-vector space on the set X, denoted by Vk(X) is the k-linear span of the set
X.
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Definition 3.18 (Free Persistent Vector Space) Let (X, ρ) be a R+-filtered set.
A free persistent vector space on (X, ρ) is the persistent vector space denoted by
{Vk(X, ρ)r}r∈R such that Vk(X, ρ)r ⊆ Vk(X), where Vk(X, ρ)r is the k-linear span
of the set X[r] ⊆ X defined by X[r] = {x ∈ X|ρ(x) ⩽ r}.

Remark 3.19 If r ⩽ r′ it holds X[r] ⊆ X[r′], that implies the inclusion

Vk(X, ρ)r ⊆ Vk(X, ρ)r′ .

Definition 3.20 A persistent vector space {Wr}r∈R is called free if there exists a
R+-filtered set (X, ρ), such that {Wr}r∈R

∼= {Vk(X, ρ)r}r∈R. Moreover, {Wr}r∈R

is called finitely generated, if X is finite.

Proposition 3.21 A linear combination ∑x axx ∈ Vk(X) lies in Vk(X, ρ)r if and
only if ax = 0 for all x ∈ X with ρ(x) > r.

Proof Let v = ∑x∈X axx ∈ Vk(X).
“⇒” Assume that v ∈ Vk(X, ρ)r for a r > 0, then by definition v is a linear
combination of x ∈ X such that ρ(x) ⩽ r, hence v = ∑ x∈X

ρ(x)⩽r
axx, thus by linear

independence it immediately follows that for x ∈ X with ρ(x) > r, ax = 0.
“⇐” Assume that ax = 0 for all x ∈ X with ρ(x) > r, then

v = ∑
x∈X

ρ(x)⩽r

axx + ∑
x∈X

ρ(x)>r

axx

︸ ︷︷ ︸
=0

= ∑
x∈X

ρ(x)⩽r

axx

by assumption, therefore v ∈ Vk(X, ρ)r. □

Definition 3.22 (Finitely Presented Persistence Vector Space) A persistent vec-
tor space {Vr}r∈R is called finitely presented if there exists a linear transformation
f : {Vr}r∈R → {Wr}r∈R, such that

{Vr}r∈R
∼= {Wr}r∈R/Im( f )

and both {Vr}r∈R, {Wr}r∈R are finitely generated free persistent vector spaces.

From linear algebra, it is known that if we choose a basis for the vector spaces
V and W, every linear transformation f : V →W has a corresponding matrix
representation. A similar procedure also exists for persistent vector spaces.

Definition 3.23 Let (X, Y) be a pair of finite sets and k a field. A(X, Y)-matrix
is an array [axy] of elements axy ∈ k for x ∈ X, y ∈ Y. We denote by r(x) the row
corresponding to x ∈ X and by c(y) the column corresponding to y ∈ Y.

Remark 3.24 There exists an r large enough such that {Vk(X, ρ)r} = Vk(X)
since X is finite. Hence, for any linear map f : {Vk(X, ρ)r}r∈R → {Vk(Y, σ)r}r∈R

between finitely generated free persistent vector spaces there exists a map

f∞ : Vk(X)→ Vk(Y)
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3.2. Persistent Vector Spaces

between finite-dimensional vector spaces over k. Therefore, the existence of bases
{x}x∈X ⊆ Vk(X) and {y}y∈Y ⊆ Vk(Y) is guaranteed. The map f between persis-
tent vector spaces is represented by the (X, Y)-matrix A( f ) = [axy] with axy ∈ k.

Proposition 3.25 The (X, Y)-matrix A( f ) has the property that

axy = 0 if ρ(x) > σ(y). (3.2)

Any (X, Y)- matrix A satisfying Equation 3.2 uniquely determines a linear trans-
formation between persistent vector spaces

fA : {Vk(Y, σ)r}r∈R → {Vk(X, ρ)r}r∈R

and the correspondence f → A( f ) and A→ fA are inverses to each other.

Proof Take y ∈ Y a basis vector, then since y is a generator of Vk(Y, σ)σ(y) it
holds that y ∈ Vk(Y, σ)σ(y). On the other hand, by definition of f

f (y) = ∑
x∈X

axyx

is a linear combination of basis vectors of Vk(X, ρ)σ(y). By Proposition 3.21
such a linear combination lies in Vk(X, ρ)σ(y) if and only if axy = 0 whenever
ρ(x) > σ(y). □

The matrices we analyzed in the last proposition have a specific name and
are important in the study of persistent homology.

Definition 3.26 Let (X, ρ) and (Y, σ) be two R+-filtered sets. An (X, Y)- matrix
A = [axy] satisfying the condition that axy = 0, whenever ρ(x) > σ(y) is called
(ρ, σ)- adapted.

Moreover, for R+-filtered sets (X, ρ) and (Y, σ) with maps ρ and σ both
[0, ∞)-valued, any (ρ, σ)-adapted matrix A = [axy] determines a persistent
vector space via the map

θ : A→ {(Vk(X, ρ)/ Im( fA))r}r∈R+ , (3.3)

where fA : {Vk(Y, σ)r}r∈R → {Vk(X, ρ)r}r∈R is the uniquely determined lin-
ear transformation defined in Proposition 3.25 between persistent vector
spaces. For such a matrix A the space θ(A) always defines a finitely pre-
sented persistent vector space.

An example of a finitely presented persistent vector space is given by the
interval persistent vector spaces.

Definition 3.27 An interval persistent vector space P(a, b) for a pair (a, b)
with a ∈ R+, b ∈ R+ ∪ {+∞} and a < b is defined as

P(a, b)r =

{
k if r ∈ [a, b)
0 if r /∈ [a, b)

,
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3. Filtrations and Persistent Homology

where k is a field. We define the linear map for r < r′

LP(a,b)(r, r′) =

{
idk if r, r′ ∈ [a, b),
0 else.

Observe the R+-filtered sets (X, ρ) and (Y, σ), then we can derive the corre-
sponding (ρ, σ)-adapted matrices, which depend on the value taken by b and
derive the persistent vector space.

• b = +∞: From the definition above one can capture that for a ∈ R+

P(a, b)r = k, since then r ∈ [a, b). Moreover P(a, b) is finitely presented
and P(a, b) ∼= Vk(X, ρ). By looking at the map given in Equation 3.3
one can note that A has to be the zero map, henceforth P(a, b) ∼= θ([0]).

• b ∈ R+ is finite: Let X = {x} and Y = {y} contain one single element
and ρ(x) = a and σ(y) = b. Then the (X, Y)-matrix [1] is a one-
dimensional (ρ, σ)-adapted matrix, since a ⩽ b. From these facts,
P(a, b) ∼= θ([1]).

Example 3.28 In Example 3.12 we mentioned the existence of boundary maps

∂i : {Ci(F )r}r∈R → {Ci−1(F )r}r∈R.

It is now possible to write down the boundary matrices that record at “which time”
each simplex appears. For example, denoting the function ρ : Σ(X) → R+ and
taking the simplex bc, we notice that above the second column, we have (bc, 2),
which means that the 1-simplex bc appears ar time ρ(bc) = 2.

(D0)∞ =


(ab,1) (bc,2) (ad,2) (ac,3) (cd,4)

(d,1) 0 0 1 0 1
(c,1) 0 1 0 1 1
(b,0) 1 1 0 0 0
(a,0) 1 0 1 1 0

, (D1)∞ =



(abc,4))

(cd,4) 0
(ac,3) 1
(ad,2) 0
(bc,2) 1
(ab,1) 1

.

3.3 Decomposition Theorem of Persistent Vector Spaces

In the following, we state three important propositions needed to prove the
representation theorem for finitely persistent vector spaces.

Proposition 3.29 For any finitely presented persistent vector space {Vr}r∈R there
exists a matrix A, such that {Vr}r∈R

∼= θ(A).

Proposition 3.30 Let (X, ρ) be an R+- filtered set. Then the group Aut(Vk(X, ρ))
is identified with the group of all (ρ, ρ)-adapted (X, X)-matrices under the corre-
spondence between matrices and linear transformations given in proposition 3.25.
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3.3. Decomposition Theorem of Persistent Vector Spaces

These propositions are a direct consequence of the correspondence between
matrices and linear maps stated in 3.25.

Proposition 3.31 Let (X, ρ) and (Y, σ) be R+- filtered sets, and A a (ρ, σ)-adapted
(X, Y)-matrix. Let now B be a (ρ, ρ)-adapted (X, X)- matrix and C a (σ, σ)-adapted
(Y, Y)-matrix. Then BAC is also (ρ, σ)-adapted (X, Y)-matrix, and there is an
isomorphism between the persistent vector spaces θ(A) ∼= θ(BAC).

To compute kernels and images in linear algebra entails working with Gaus-
sian operations. For the (ρ, σ)-adapted matrices to keep their properties, we
need to introduce some specific operations.

Definition 3.32 Let (X, ρ), (Y, σ) be two R+-filtered sets.

• An adapted row operation is an operation that adds a multiple of r(x) to
r(x′), whenever ρ(x) ⩾ ρ(x′).

• An adapted column operation is an operation that adds a multiple of c(y)
to c(y′), when σ(y) ⩽ σ(y′).

Additionally to adapted row and column operations, we can

• permute columns or rows,

• multiply columns or rows by a scalar α ∈ K with α ̸= 0,

independently of the ρ- and σ-values.

Now we have all the needed tools to prove the representation theorem. We
state the theorem in two parts. First, we state and prove the existence of such
a decomposition.

Theorem 3.33 Let k be a field, then every finitely presented persistent vector space
{Vr}r∈R over k is isomorphic to a finite direct sum

{Vr}r∈R =
n⊕

i=1

P(ai, bi) = P(a1, b1)⊕ . . .⊕ P(an, bn)

for ai ∈ R+ and bi ∈ R+ ∪ {+∞} for all i ∈ {1, . . . , n}.

Proof From Proposition 3.29 we know that for every finitely presented persis-
tent vector space {Vr}r∈R there exists a (ρ, σ)-adapted (X, Y)-matrix A such
that {Vr}r∈R

∼= θ(A). First assume w.l.o.g that A is a matrix with at most one
non-zero entry in each row and column, and that the non-zero entry is equal
to one. This means that up to permutations of rows and columns, A has the
form

A =

[
In 0n×k

0m×n 0m×k

]
. (3.4)
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Take {(x1, y1), . . . , (xn, yn)} to be the set of all pairs such that axiyi = 1 for
every 1 ⩽ i ⩽ n. From the correspondence between linear maps and matrices
given in Proposition 3.25 and the map θ in Equation 3.3 it holds:

θ(A) ∼= Vk(X, ρ) =
⊕
x∈X

Vk(x, ρ) =

=
n⊕

i=1

Vk(x, ρ)⊕
⊕

x∈X\{x1,...,xn}
Vk(x, ρ) =

=
n⊕

i=1

P(ρ(xi), σ(y1))⊕
⊕

x∈X\{x1,...,xn}
P(ρ(x),+∞).

The last equality holds because of the identity of interval persistent vector
spaces stated in Remark 3.2.

It now remains to show that we can modify every (ρ, σ)-adapted (X, Y)-
matrix A to reach the form in Equation 3.4.

Since X and Y are both finite, we can find y ∈ Y, such that

σ(y) = min{σ(y′) | y′ ∈ Y, c(y′) ̸= 0}

and x ∈ X with
ρ(x) = max

x′∈X
ρ(x′)

and axy ̸= 0. Now we can apply adapted row and column operations.
Since x is chosen to have the maximal ρ-value, we can add r(x) to every other
r(x′) for x, x′ ∈ X. Similarly, y is chosen to have minimal σ-value, therefore
we can add c(y) to every other c(y′) for y, y′ ∈ Y.

1. Add r(x) to r(x′) until each entry of the column c(y) is zero except axy.

2. Add c(y) to c(y′) until each entry of the row r(x) is zero except axy.

The above algorithm gives a matrix, where the only non-zero element of r(x)
and c(y) is axy. To conclude the algorithm, we multiply r(x) by 1

axy
.

We now proceed inductively and do the same operations on the (ρ′, σ′)-
adapted (X\{x}, Y\{y}) matrix with removed r(x) and c(y), where ρ′ and
σ′ are restrictions of ρ and σ to (X\{x}), (Y\{y}) respectively. This process
does not affect r(x) and c(y).
The adapted row and column operations we applied correspond to multi-
plication on the left with a (ρ, ρ)-adapted (X, X)-matrix B and on the right
with a (σ, σ)-adapted (Y, Y)-matrix C, from which then BAC has the desired
properties and from Proposition 3.31 we get that θ(A) ∼= θ(BAC) and have
therefore the desired result. □

As a second step, we state and prove that such a decomposition is unique.
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3.3. Decomposition Theorem of Persistent Vector Spaces

Theorem 3.34 Let {Vr}r∈R be a finitely presented persistent vector space over a
field k and assume that there exist two decompositions

{Vr}r∈R
∼=
⊕
i∈I

P(ai, bi) and {Vr}r∈R
∼=
⊕
j∈J

P(cj, dj)

where I and J are finite sets. Then |I| = |J| and the set of pairs {(ai, bi)}i∈I
occurring is identical to the multiset of pairs {(cj, dj)}j∈J .

Proof Let amin = min
1⩽i⩽n

ai and cmin = min
1⩽j⩽n

cj denote the minimal value over

all ai and cj respectively. At the same time, both minima are represented by
{r ∈ R | Vr ̸= 0}, therefore amin = cmin. Next define

bmin = min{bi | ai = amin} and dmin = min{dj | cj = cmin}

both are again naturally characterized through min{r′ | ker(L(r, r′)) ̸= {0}},
so bmin = dmin. From these two equalities we see that P(amin, bmin) =
P(cmin, dmin) and this interval appears in both decompositions. Now we
want to analyze how many times P(amin, bmin) occurs in each decomposition.
Consider the sum of all occurrences of the summand P(amin, bmin) in both
decompositions. Since these sums are sub-persistent vector spaces of {Vr}r∈R,
there is a characterization of both sums as the sub-persistent vector space
{Wr}r∈R given by the kernel of the linear map

L(r, bmin)|Im(L(amin,r)) : Im(L(amin, r)) −→ Vbmin .

From this characterization the number of summands of the form P(amin, bmin)
in both decompositions is the same. Specifically, denote by

I′ = {i ∈ I | ai = amin, bi = bmin} and J′ = {j ∈ J | cj = cmin, dj = dmin}.

Then it holds |I′| = |J′|. Forming the quotient of {Vr}r∈R by {Wr}r∈R we get
the identification

{Vr}r∈R⧸{Wr}r∈R

∼=
⊕

i∈I\I′
P(ai, bi) and {Vr}r∈R⧸{Wr}r∈R

∼=
⊕

j∈J\J′
P(cj, dj).

By inductively repeating this procedure on the number of summands we
obtain uniqueness of the decomposition. □

In the beginning of Section 3.2, we saw that for a simplicial complex X with
subcomplexes {Xr}r and a corresponding simplicial filtration F the collection
{Hi(Xr)}r∈R forms a persistent vector space. From Theorem 3.33 we deduce
that for this vector space there exists a unique decomposition in a direct sum
of interval persistent vector spaces

{Hi(Xr)}r∈R
∼=

n⊕
j=1

P(aj, bj)

35
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for i ⩾ 0 and some aj, bj ∈ R for each 1 ⩽ j ⩽ n. From this decomposition
we gain a more visual representation of what homology groups represent.
The above direct sum means that for each dimension i ⩾ 0 there are n
i-dimensional holes that get born at time aj and die at bj.

There is an algorithm for computing the homology of such spaces by using
adapted row and column operations instead of the usual arbitrary opera-
tions taught in linear algebra. Thanks to this algorithm we can produce a
presentation for persistent homology.

3.3.1 Persistent Homology Computation

In this section we work with Z2-coefficients, since it simplifies the compu-
tation and the main results don’t change. Recall also that for boundary
matrices Di, Di−1 for i ⩾ 1 it always holds that Di−1 · Di = 0.

Before we dive into the computation of persistent homology groups, we first
need to study some properties for pairs of matrices (A, B), with A · B = 0. We
work with R+-filtered sets (X, ρ), (Y, σ), (Z, τ), where A is a (ρ, σ)-adapted
(X, Y)-matrix and B is a (σ, τ)-adapted (Y, Z)-matrix. Recall that working
with a pair of matrices (A, B) requires some alterations of the Gaussian
operations.

• Arbitrary adapted row operations on A.

• Arbitrary adapted column operations on B.

• Adapted column operations on A have to be done simultaneously with
adapted row operations on B in the following way:

– Multiplication of the i-th column of A by α ̸= 0 corresponds to
multiplication of the i-th row of B by α−1.

– Permutation of two columns of A corresponds to the permutation
of two rows of B.

– Addition of the i-th column times β to the j-th column of A
corresponds to adding β times the j-th row to the i-th row of B.

Applying any of these operations to a pair of matrices (A, B) guarantees that
the resulting pair (A′, B′) also fulfills the property A′ · B′ = 0.

Remark 3.35 For a matrix A over a field k, there is always a sequence of row and

column operations that lead A to a matrix of the form
[

In 0
0 0

]
, where n = rank A.
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Proposition 3.36 Let (A, B) be a pair of matrices with A · B = 0. There exists a
sequence of the operations described above that leads to (A′, B′) with

(In 0 0
0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 0 Im

). (3.5)

The pair (A′, B′) is uniquely determined by (A, B) and it holds that n = rankA,
m = rankB.

Remark 3.37 Proposition 3.36 also holds for (ρ, σ)-adapted (X, Y)-matrices and
(σ, τ)-adapted (Y, Z)-matrices, where (X, ρ), (Y, σ), (Z, τ) are R+- filtered sets.

To compute persistent homology groups we simultaneously apply adapted
row and column operations on a pair of boundary matrices (Di−1, Di), for
i ⩾ 1 to reach the form in Equation 3.5. In this way, we are able to read
off ker(Di−1) and Im(Di), from which one can compute the i-th homology
group and the corresponding Betti number.

Remark 3.38 For convenience, we order the columns in increasing order of the
σ-values and the rows in descending order of ρ-values.

Let us now demonstrate this procedure on an example.

Example 3.39 We now compute the 1-dimensional homology group of the filtration
F of the simplicial complex X illustrated in Figure 3.2. Recall that the boundary
matrices are given by

(D0)∞ =


(ab,1) (bc,2) (ad,2) (ac,3) (cd,4)

(d,1) 0 0 1 0 1
(c,1) 0 1 0 1 1
(b,0) 1 1 0 0 0
(a,0) 1 0 1 1 0

, (D1)∞ =



(abc,4))

(cd,4) 0
(ac,3) 1
(ad,2) 0
(bc,2) 1
(ab,1) 1

.

and that we can only apply adapted row and column operations. Our goal is to
transform the matrix pair (D0, D1) into a matrix of the form as in Equation 3.5.

We begin by modifying a1,1 from 0 to 1 and making sure that this is the only non-zero
entry in r1 and c1. To do so, we first switch the columns c1 and c2. Secondly, we
eliminate all the non-zero entries in r1 and c1, leaving only a1,1 = 1. In this case, we
need to pay attention to the arising time of the simplices, since we switched the first
and second columns. Note that we only denote the operations done on the matrix on
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the left. However, we apply the corresponding operation on the matrix on the right.


(ab,1) (ad,2) (bc,2) (ac,3) (cd,4)

(1) 0 1 0 0 1
(1) 0 0 1 1 1
(0) 1 0 1 0 0
(0) 1 1 0 1 0

,



(abc,4)

(ab,1) 1
(ad,2) 0
(bc,2) 1
(ac,3) 1
(cd,4) 0




(c1 ↔ c2)−−−−−→


(ad,2) (ab,1) (bc,2) (ac,3) (cd,4)

(1) 1 0 0 0 1
(1) 0 0 1 1 1
(0) 0 1 1 0 0
(0) 1 1 0 1 0

,



(abc,4)

(ad,2) 0
(ab,1) 1
(bc,2) 1
(ac,3) 1
(cd,4) 0




(c1 + c5 → c5)−−−−−−−−−→


(ad,2) (ab,1) (bc,2) (ac,3) (ad+cd,4)

(1) 1 0 0 0 0
(1) 0 0 1 1 1
(0) 0 1 1 0 0
(0) 1 1 0 1 1

,



(abc,4)

(ad,2) 0
(ab,1) 1
(bc,2) 1
(ac,3) 1

(ad+cd,4) 0




(r1 + r4 → r4)−−−−−−−−−→




(ad,2) (ab,1) (bc,2) (ac,3) (ad+cd,4)

(1) 1 0 0 0 0
(1) 0 0 1 1 1
(0) 0 1 1 0 0
(0) 0 1 0 1 1

,



(abc,4)

(ad,2) 0
(ab,1) 1
(bc,2) 1
(ac,3) 1

(ad+cd,4) 0




As one might notice, the left matrix has now only a1,1 as a non-zero entry in row r1
and column c1, which is exactly what we wanted to achieve. At this point, we do a
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similar procedure on the submatrix on the left until we reach a form with non-zero
entries only on the diagonal.




(ad,2) (ab,1) (bc,2) (ac,3) (ad+cd,4)

(1) 1 0 0 0 0
(1) 0 0 1 1 1
(0) 0 1 1 0 0
(0) 0 1 0 1 1

,



(abc,4)

(ad,2) 0
(ab,1) 1
(bc,2) 1
(ac,3) 1

(ad+cd,4) 0




(c2 ↔ c3)−−−−−→




(ad,2) (bc,2) (ab,1) (ac,3) (ad+cd,4)

(1) 1 0 0 0 0
(1) 0 1 0 1 1
(0) 0 1 1 0 0
(0) 0 0 1 1 1

,



(abc,4)

(ad,2) 0
(bc,2) 1
(ab,1) 1
(ac,3) 1

(ad+cd,4) 0




(r2 + r3 → r3)−−−−−−−−−→


(ad,2) (bc,2) (ab,1) (ac,3) (ad+cd,4)

(1) 1 0 0 0 0
(1) 0 1 0 1 1
(0) 0 0 1 1 1
(0) 0 0 1 1 1

,



(abc,4)

(ad,2) 0
(bc,2) 1
(ab,1) 1
(ac,3) 1

(ad+cd,4) 0




(c2 + c4 → c4)−−−−−−−−−→


(ad,2) (bc,2) (ab,1) (ac+bc,3) (ad+cd,4)

(1) 1 0 0 0 0
(1) 0 1 0 0 1
(0) 0 0 1 1 1
(0) 0 0 1 1 1

,



(abc,4)

(ad,2) 0
(bc,2) 0
(ab,1) 1

(ac+bc,3) 1
(ad+cd,4) 0
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(c2 + c5 → c5)−−−−−−−−−→


(ad,2) (bc,2) (ab,1) (ac+bc,3) (ad+cd+bc,4)

(1) 1 0 0 0 0
(1) 0 1 0 0 0
(0) 0 0 1 1 1
(0) 0 0 1 1 1

,



(abc,4)

(ad,2) 0
(bc,2) 0
(ab,1) 1

(ac+bc,3) 1
(ad+cd+bc,4) 0




(r3 + r4 → r4)−−−−−−−−−→


(ad,2) (bc,2) (ab,1) (ac+bc,3) (ad+cd+bc,4)

(1) 1 0 0 0 0
(1) 0 1 0 0 0
(0) 0 0 1 1 1
(0) 0 0 0 0 0

,



(abc,4)

(ad,2) 0
(bc,2) 0
(ab,1) 1

(ac+bc,3) 1
(ad+cd+bc,4) 0




(c3 + c4 → c4)−−−−−−−−−→


(ad,2) (bc,2) (ab,1) (ac+bc+ab,3) (ad+cd+bc,4)

(1) 1 0 0 0 0
(1) 0 1 0 0 0
(0) 0 0 1 0 1
(0) 0 0 0 0 0

,



(abc,4)

(ad,2) 0
(bc,2) 0
(ab,1) 0

(ac+bc+ab,3) 1
(ad+cd+bc,4) 0




(c3 + c5 → c5)−−−−−−−−−→


(ad,2) (bc,2) (ab,1) (ac+bc+ab,3) (ad+cd+bc+ab,4)

(1) 1 0 0 0 0
(1) 0 1 0 0 0
(0) 0 0 1 0 0
(0) 0 0 0 0 0

,



(abc,4)

(ad,2) 0
(bc,2) 0
(ab,1) 0

(ac+bc+ab,3) 1
(ad+cd+bc+ab,4) 0




.

Finally, we transformed our matrices into the form we were looking for, therefore, we
are ready to compute ker(∂1) and Im(∂2) and the corresponding homology group.

From the left matrix we get that

∂1(ac + bc + ab) = 0, ∂1(ad + cd + bc + ab) = 0.
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From these two equalities it follows that ker(∂1) is isomorphic to (X, ρ), where
X = ⟨ac + bc + ab, ad + cd + bc + ab⟩, with

ρ(ac + bc + ab) = 3, and ρ(ad + cd + bc + ab) = 4.

Meanwhile, observing the persistent linear map

(∂2)r : C2(F )r → ker(∂1)r,

represented by the matrix

[ (abc,4)

(ac+bc+ab,3) 1
(ad+cd+bc+ab,4) 0

]
,

we read off that the cycle ad + cd + bc + ab appearing at time 4 never becomes a
boundary, since the corresponding entry in the matrix on the right is 0. The cycle
ac + bc + ab appearing at time 3, has corresponding entry equal to 1, therefore it
becomes a boundary of the 2-simplex abc at time 4. According to Theorem 3.33, we
conclude that the 1-dimensional homology group is isomorphic to P(4, ∞)⊕ P(3, 4).

3.3.2 Persistent Diagrams and Barcodes

As we proved in Theorem 3.33, each finitely presented persistent vector space
has a unique decomposition into interval persistent vector spaces. These are
in one-to-one correspondence with finite subsets, with multiplicity, of the set

{(a, b) | a ∈ [0,+∞), b ∈ [0,+∞] and a < b}.

One can give a visual representation of them in two distinct ways.

• Persistent Barcodes: Families of intervals on the non-negative real line.

Definition 3.40 Let {Vr}r =
⊕n

i=1 P(ai, bi) be a finitely generated free per-
sistent vector space over a field k. Then the persistent barcode of {Vr}r∈R is
the collection of intervals [ai, bi), for i ∈ {1, . . . , n}.

• Persistent Diagram: Collection of points in the subset

{(x, y) ∈ R2 | x ⩾ 0 and x ⩽ y}

of the first quadrant in the (x, y)-plane.

Definition 3.41 Let {Vr}r =
⊕n

i=1 P(ai, bi) be a finitely generated free per-
sistent vector space over a field k. Then the persistent diagram of {Vr}r∈R

is a multiset of points {(ai, bi)}1⩽i⩽n in R2 above the diagonal.

Persistent barcodes often consist of short and long intervals. These have
different interpretations: short intervals mostly represent noise and longer
intervals correspond to underlying geometric features.
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Example 3.42 Let {Vr}r be a finitely generated free persistent vector space with
decomposition

{Vr}r = P(1, 5)⊕ P(2, 3)⊕ P(2, 4)⊕ P(3, 5)⊕ P(1, 2)⊕ P(0, 3).

In Figure 3.3 we see the persistent barcode and persistent diagram associated to the
persistent vector space {Vr}r.

Figure 3.3: Barcode and diagram of the persistent vector space from Example 3.42.

3.4 Bottleneck Distance

After associating persistent barcodes and diagrams to finite metric spaces,
we want to measure the similarity between persistence barcodes and the in-
fluence that small changes can have on a point cloud. Before the construction
of such a metric, we first need to introduce the notion of distance between
intervals.

Definition 3.43 Let I = [x1, y1] and J = [x1, y2] be two intervals in R. The
l∞-distance between I and J is given by

∆(I, J) := max(|x2 − x1|, |y2 − y1|).

For a single interval I = [x, y]

λ(I) =
y− x

2

defines the l∞-distance to the closest interval in {[x, x) | x ∈ R} to I.

Remark 3.44 All the mentioned intervals can be regarded as points in R2.
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Definition 3.45 Let I = {Iα}α∈A and J = {Jβ}β∈B be two families of intervals
for finite sets A and B, and let φ : A′ → B′ be a bijection, where A′ ⊆ A and
B′ ⊆ B. The penalty of φ is defined as

P(φ) = max{max
α∈A′

(∆(Iα, Jφ(α))), max
α∈A\A′

(λ(Iα)), max
β∈B\B′

(λ(Iβ))}.

At this point we introduce the bottleneck distance, which measures the
distance between two families of intervals by finding the minimal distance
between points and allowing unmatched points to be matched with the
diagonal of R2.

Definition 3.46 Let I = {Iα}α∈A and J = {Jβ}β∈B be two families of intervals
for finite sets A and B, the bottleneck distance d∞(I ,J ) is defined as

d∞(I ,J ) := min
φ

P(φ),

where the minimum runs over all possible bijections between subsets of A and B.

One of the most important results about the bottleneck distance is the follow-
ing theorem, that guarantees stability of persistent barcodes and diagrams.
We do not prove it, since it is beyond the scope of this thesis.

Theorem 3.47 Let X be a triangulable space and f , g : X → R two tame functions.
Then the persistent vector spaces {Hk( f−1((−∞, r]))}r and {Hk(g−1((−∞, r]))}r
are finitely presented and therefore admit a barcode for every k ∈N, which we denote
by Bk

f , Bk
g. Then

d∞(Bk
f , Bk

g) ⩽ ∥ f − g∥∞.

Example 3.48 Consider the barcodes I = {[1, 5), [2, 4)} and J = {[2, 3), [4, 5)}.
We have a bijection ρ between the empty subsets of both I and J , which means
that each point is matched to the diagonal. Next there are bijections between the
singletons, where the points that are not included in the subsets are matched to the
diagonal.

φ1 : {[1, 5)} → {[2, 3)}, ψ1 : {[1, 5)} → {[4, 5)},
φ2 : {[2, 4)} → {[2, 3)}, ψ2 : {[2, 4)} → {[4, 5)}.

For example the map φ1 : {[1, 5)} → {[2, 3)} maps the point [1, 5) to [2, 3). The
points that are not included in the subsets, i.e [2, 4) and [4, 5), are then matched to
the diagonal. The last bijections we have are between the sets I and J

ω1 : {[1, 5), [2, 4)} → {[2, 3), [4, 5)}
[1, 5) 7→ [2, 3)
[2, 4) 7→ [4, 5),

ω2 : {[1, 5), [2, 4)} → {[2, 3), [4, 5)}
[1, 5) 7→ [4, 5)
[2, 4) 7→ [2, 3).
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Next, we want to compute the penalty of the bijections found.

P(ρ) = max{max(λ([1, 5)), λ([2, 4))), max(λ([2, 3)), λ([4, 5)))} =

= max{max(
5− 1

2
,

4− 2
2

), max(
3− 2

2
,

5− 4
2

)} =

= max{max(2, 1), max(
1
2

,
1
2
)} = 2.

P(φ1) = max{∆([1, 5), [2, 3)), λ([2, 4)), λ([4, 5))} =

= max{max(|2− 1|, |5− 3|), 4− 2
2

,
5− 4

2
} =

= max{max(1, 2), 1,
1
2
} = 2.

P(ψ1) = max{∆([1, 5), [4, 5)), λ([2, 4)), λ([2, 3))} =

= max{max(|4− 1|, |5− 5|), 4− 2
2

,
3− 2

2
} =

= max{max(3, 0), 1,
1
2
} = 3.

P(φ2) = max{∆([2, 4), [2, 3)), λ([1, 5)), λ([4, 5))} =

= max{max(|2− 2|, |4− 3|), 5− 1
2

,
5− 4

2
} =

= max{max(0, 1), 2,
1
2
} = 2.

P(ψ2) = max{∆([2, 4), [4, 5)), λ([1, 5)), λ([2, 3))} =

= max{max(|4− 2|, |5− 4|), 5− 1
2

,
3− 2

2
} =

= max{max(2, 1), 2,
1
2
} = 2.

P(ω1) = max{∆([1, 5), [2, 3)), ∆([2, 4), [4, 5))} =
= max{max(|2− 1|, |5− 3|), max(|4− 2|, |5− 4|)} =
= max{max(1, 2), max(2, 1)} =
= max{2, 2} = 2.

P(ω2) = max{∆([1, 5), [4, 5)), ∆([2, 4), [2, 3))} =
= max{max(|4− 1|, |5− 5|), max(|2− 2|, |4− 3|)} =
= max{max(3, 0), max(0, 1)} =
= max{3, 1} = 3.
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Now that we are done with the penalties of the functions, we are ready to calculate
the bottleneck distance between the two families I and J .

d∞(I ,J ) = min{P(ρ), P(φ1), P(ψ1), P(φ2), P(ψ2), P(ω1), P(ω2)} = 2

Figure 3.4: Persistent diagram of the two families of intervals discussed in Example 3.48.
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Chapter 4

Neuronal Morphology Characterisation

A key aspect of understanding the structure and functionality of the brain
lies in the comprehension of neurons and their morphology. With the help
of topological data analysis, we introduce the Topological Morphology
Descriptor (TMD), an algorithm that assigns a barcode to a merge tree. This
tool has proven useful for the classification of neuronal morphologies since
these barcodes allow for an accurate comparison of neurons. We primarily
focus on applying the TMD on pyramidal cells, which are a type of neuron
associated with advanced cognitive functions.

In addition to the TMD, we introduce an algorithm that approximates the
right inverse of the TMD called Topological Neuron Synthesis (TNS). The
purpose of the TNS is to recreate the neuronal tree from the barcode created
by the TMD. This chapter is mostly based on the papers From Trees to Barcodes
and Back Again: theoretical and statistical perspectives and From Trees to Barcodes
and Back Again II: Combinatorial and Probabilistic Aspects of a Topological Inverse
Problem [17, 6]. To conclude, we review some results that appear in A
Topological Representation of Branching Neuronal Morphologies [16] with the
TMD algorithm for the classification of neuronal morphologies.

4.1 Neurons

The brain is one of the most complex parts of our body and together with the
nervous system are composed of different types of cells. The fundamental
units are called neurons. Neurons are responsible for our movements, ideas,
sensations, and memories, which arise from the electrical signals that get
passed between them. This electrical event is generated in the axon and is
called action potential. It signals that the neuron is active.
A neuron is composed of three parts: the soma, the dendrites, and the axon.

• The soma is the cell body of the neuron. Here lies the nucleus and the
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4. Neuronal Morphology Characterisation

DNA of the neuron. Additionally, all the proteins transported through
the axon and dendrites are produced in the soma.

• The dendrites are the receiving part of the neuron. They receive synaptic
inputs from the axon and the sum of dendritic inputs determines if
there will be an action potential.

• The axon is a long thin structure where the action potential is generated
and is also the transmitting part of a neuron. The action potential
travels down the axon to cause the release of neurotransmitters into the
synapse.

This allows the neuron to communicate with other neurons. In this thesis we
concentrate on neuronal morphology, i.e. is the shape and structure of the
neuron [25, 20].

Figure 4.1: Representation of a neuron with soma (cell body), dendrites, and axon. [24].

In particular, the neurons we are mostly interested in are called pyramidal
cells. This is a particular type of neuron associated with advanced cognitive
functions found in the cerebral cortex of most mammalian brains. Pyramidal
cells belong to the family of excitatory neurons realizing the neurotransmitter
glutamate. They are characterized by their distinct apical dendritic tree,
longer dendrites emerging from the point end of the soma, and basal den-
dritic tree, shorter dendrite coming from its rounded base, and the pyramidal
shape of their soma, from which their name comes. They cover two-thirds
of all neurons present in the mammalian cerebral cortex. Pyramidal cells all
appear very similar to each other, however, they come up in different shapes
and sometimes also happen to function differently. As one might already
recognize from Figure 4.2 all the illustrated pyramidal cells have the same
structure but at the same time, they are all different [22, 1].

This is where we apply the algorithm introduced in Section 4.2.3, to analyze
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how the pyramidal cells differ from each other and to properly classify them.

Figure 4.2: Pyramidal cells taken from different cortical areas each presenting the apical tuft,
apical and basal dendrites and soma [22].

4.2 From Trees to Barcodes

In this section, we use persistent homology to characterize the topological
and geometric features of a merge tree (T, h). To this purpose, we use the
sublevel set filtration of the height function h of the considered merge tree
embedded in R3. Most importantly, we introduce the TMD algorithm, which
can be applied not only to merge trees but also to geometric trees, providing
a method for their categorization.

For the application of the TMD algorithm to neurons, we first need to create
a corresponding digital reconstruction. Such a digital reconstruction is
done by sampling a set of points in R3 along each branch, together with
edges connecting adjacent points. This results in a combinatorial merge tree
preserving the same morphological information as the neuronal cells.

4.2.1 Elder Rule

The goal of this section is to explain how to create a barcode from a merge
tree. We provide a way of constructing barcodes from merge trees via the
decomposition of branches.

Definition 4.1 (Elder Rule) Let (T, h) be a merge tree, each leaf node marks the
first coordinate of a pair with h(v). If two leaf nodes vi, vj with h(vi) > h(vj) share
an ancestor vk, then the branch with the bigger h-value dies, since it is the one born
last, creating a bar [h(vi), h(vk)) in the barcode.
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From this construction, we recognize that each leaf node marks the beginning
of a bar in the barcode and such always ends at an internal node.

Example 4.2 The merge tree (T, h) in Figure 4.3 is composed by the vertex set
V(T) = {b0, b1, b2, b3, d0, d1, d2, d3}, where bi denotes the leaf of the tree and di the
inner vertices for 0 ⩽ i ⩽ 3. The application of the elder rule to (T, h) creates the
barcode B = {[bi, di)}0⩽i⩽3 illustrated in the figure.

Figure 4.3: Example of a Barcode B generated after the application of the Elder Rule on the
merge tree (T, h).

The Elder Rule can also be defined for combinatorial merge trees, called the
Combinatorial Elder Rule. This replaces the function h with Li and Ll and
instead of giving back a barcode, it returns a pair of labels (Ll(vi), Li(vj))
corresponding to a combinatorial permutation assigning to each birth label a
death label.

Definition 4.3 (Combinatorial Elder Rule) Let (T, Ll , Li) be a combinatorial
merge tree, where each leaf node v marks the first coordinate of a pair label Ll(v). If
two leaf nodes vi, vj with Ll(vi) < Ll(vj) share an ancestor vk, then vk gets paired
with vi, since it has the smallest label, creating the pair (Ll(vi), Li(vk)). From
this rule, the leaf with the smallest label gets paired with the root, constructing
(mini Ll(vi), ∞).

4.2.2 Strict Barcodes

In our application, we produce a particular type of barcodes called strict
barcodes.

Definition 4.4 A strict barcode is a barcode B = {[bi, di)}i∈{0,...,n}, such that
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• the bar [b0, d0) contains all the others:

b0 < bi and d0 > di ∀i ∈ {1, . . . , n},

• No bars are born or die at the same time:

bi ̸= bj and di ̸= dj if i ̸= j.

Remark 4.5 We refer to bi as the birth of a feature and to di as its death.

Example 4.6 The barcode shown in Figure 3.3 is not a strict barcode. The bars
[2, 3), [2, 4) and [1, 2), [1, 5) are born at the same time and the bars [3, 5), [1, 5) die
at the same time.

Remark 4.7 The barcode of a merge tree is always strict.

We denote the set of all barcodes by B and the set of all strict barcodes by Bst.
With Bn ⊆ B we mean all the barcodes with n + 1 bars and with Bst

n ⊆ Bst

we mean all the strict barcodes with n + 1 bars.

Remark 4.8 In a strict barcode, the birth times admit a total order, hence w.l.o.g we
always assume that b0 < b1 < . . . < bn.

Remark 4.9 We use the convention that for a bar [bi, di) ⊆ R with i ⩾ 0, the
corresponding point in R2 are always given by (di, bi) ∈ R2, implying that all the
points have to lie below the diagonal.

Figure 4.4: Example of a strict barcode on the left and the same barcode ordered by birthtime
on the right.

Definition 4.10 Two strict barcodes B = {[bi, di)}0⩽i⩽n and B′ = {[b′i , d′i)}0⩽i⩽n
in Bst

n are equivalent, if their death occurrs in the same order i.e. if for all 1 ⩽ i ̸=
j ⩽ n

B ∼
bar

B′ : ⇐⇒ (di < dj ⇐⇒ d′i < d′j).

This relation defines an equivalence relation on Bst
n .

Remark 4.11 Because the birth ordering of a strict barcode delivers an ordering of
the deaths, there is a bijection from the set of equivalence classes of strict barcodes
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Bst
n with n + 1 bars to the symmetric group Sn given by

Bst
n⧸∼ −→ Sn,

B 7−→ ρB : {1, . . . , n} → {1, . . . , n}
i 7→ |{j ∈ {1, . . . , n} | di < dj}|.

We denote the equivalence class containing a strict barcode B = {(bi, di)}0⩽i⩽n by
(i1, . . . , in), where dik > dik+1 for all 1 ⩽ k ⩽ n. The permutation ρb is often called
associated permutation of B or combinatorial barcode.

Example 4.12 For the strict barcode B = {[bi, di)}0⩽i⩽5 in Figure 4.5 we can find
a permutation in S5 determining the equivalence class that B belongs to. In this case
ρB = (21435).

Figure 4.5: Strict barcode B with corresponding equivalence class ρB = (21435).

Definition 4.13 Let B = {[bi, di)}0⩽i⩽n, B′ = {[b′i , d′i)}0⩽i⩽n ∈ Bst
n be strict

barcodes with n+ 1 bars. Then B and B′ are said to be combinatorially equivalent
if they have the same associated permutations ρB and ρB′ .

Applying the Elder Rule introduced in Definition 4.3 to a merge tree asso-
ciates a permutation to the constructed barcode.

Proposition 4.14 If T and T′ are combinatorially equivalent merge trees, then their
corresponding barcodes B and B′ are combinatorially equivalent.

Proof Since T and T′ are combinatorial equivalent merge trees we know
there is a graph isomorphism φ : T → T′ preserving the order of birth and
death labels. Moreover, since φ is a graph isomorphism, the unique sequence
of edges connecting a pair of nodes in T must be sent to the same sequence
of edges connecting those nodes in T′, the adjacency relation is therefore
preserved, which implies that if the Elder Rule pairs the i-th birth with the
j-th death in T, then so does it in T′. □

At this point, we want to endow the set of all strict barcodes with a metric. To
this purpose, we adapt the bottleneck distance to strict barcodes introduced
in Chapter 3.4.
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Definition 4.15 Given two strict barcodes B, B′ ∈ Bst
n we define the modified

bottleneck distance as

d̃∞(B, B′) = inf
γ∈Sn

sup
0⩽i⩽n

(|bi − b′γ(i)|+ |di − d′γ(i)|).

Remark 4.16 One might notice that in this adapted definition of bottleneck distance,
there is no connection to the diagonal {[x, x) ∈ R2 | x ∈ R}, therefore we cannot
match unmatched points to the diagonal. Moreover, this new definition of bottleneck
distance is only well-defined when both barcodes have the same number of bars.
However, this is not an issue, since we only compare barcodes B ∈ Bst

n with their
transformation under TMD ◦ TNS(B), which always retain the same number of
bars.

4.2.3 Topological Morphology Descriptor

The Topological Morphology Descriptor(TMD) is the surjective function

TMD: T → B.

It captures topological and geometric features from geometric trees and saves
them into a barcode, where each bar represents a branch of the tree. This is
mostly used for the characterization of neuronal morphologies by replacing
geometric trees with the digital representation of neurons. The TMD applies
a similar procedure as the Combinatorial Elder Rule described in Definition
4.3 on geometric trees. It is recursively defined as follows.

Let T be a finite rooted tree with root r, set N of vertices, and L ⊆ N the
subset of leaves. Moreover, let

δ : N → R+, v 7→ ∥v− r∥2

be the function assigning to a vertex its Euclidean distance to the root. Note
that δ fulfills the definition of a height function.

Let µ : N → R be the function defined by

µ(v) =

{
max{δ(l) | l ∈ Lv}, v ∈ N \ L,
δ(v), v ∈ L,

where Lv denotes the set of leaves of the subtree T with root at v. The function
µ creates an ordering of the children of any vertex of T. For v1, v2 ∈ N we
say that v1 is younger than v2, if µ(v1) < µ(v2).

Example 4.17 The tree in Figure 4.6 has set of leaves L and set of inner vertices I,
where N = I ∪ L:

L = {b0, b1, b2, b3}, I = {d0, d1, d2, d3}. (4.1)
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Take b0 ∈ L, then µ(b0) = δ(b0) corresponds to the Euclidean distance to the root.
On the other hand, if we observe d1 ∈ I, we see

µ(d1) = max{δ(l) | l ∈ Ld1} = max{δ(b1), δ(b2)} = δ(b2),

since b2 is further away from the root than b1.

Figure 4.6: Tree with Euclidean distance l1, l2 from the vertices b1, b2 to the root r discussed in
Example 4.17.

The TMD algorithm works as follows:

Let A be a set of vertices, called the active vertices and B a barcode. They
are initially set to A = L, B = ∅.

• Take a leaf l ∈ L and walk along the unique path to the root r.

• When encountering a branching point b, apply the Elder Rule.

• Remove from A all the children of b and add b to A.

• Add one bar to the barcode B for each child of b removed from A,
except the longest bar.

• Apply this procedure iteratively to each vertex, until A = {r, l}, where
µ(l) = max

l′∈L
µ(l′).

Each child removed from A corresponds to a path from some leaf l to a
branching point b, recorded as a bar [δ(b), δ(l)). For the last remaining leaf l
its µ-value will be maximal, resulting in the bar [δ(r), δ(l)) = [0, δ(l)).

For a digitally reconstructed neuron T and a function δ, denoting the distance
from the soma, TMD(T) is a strict barcode, since the probability that two
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Figure 4.7: Computation of the TMD algorithm on the digital reconstruction of a neuron results
in the persistent barcode B. The red disks represent birth and the blue ones’ death points. The
circles on the bar represent at which branch the bifurcation takes place [17].

branch points or two leaves have the same distance from the soma is almost
0.

Definition 4.18 Two geometric trees T, T′ ∈ T are called TMD-equivalent if
their generated barcodes are equivalent, i.e.

T ∼
tmd

T′ : ⇐⇒ TMD(T) ∼
bar

TMD(T′).

Remark 4.19 The output of the TMD algorithm is the 0-dimensional barcode, of the
distance function δ. For a barcode B = {[bi, di)}1⩽i⩽n each bar [bi, di) corresponds
to a connected component in the sublevel sets δ−1([0, t)), which is equal to a branch
of the tree.

4.3 Topological Neuronal Synthesis

In the last section, we introduced the TMD algorithm, which assigns a strict
barcode to a geometric tree. We now want to stochastically reconstruct
the geometric tree T we began with, such that the input barcode B is then
closely related to the generated barcode TMD(T). This process is called
Topological Neuronal Synthesis (TNS), which is mostly used for the dig-
ital reconstruction of brain circuitry by stochastically generating synthetic
neurons.

For an input barcode B, the TNS algorithm goes through three steps while
generating a geometric tree:

1. Initiation of growth,

2. Elongation,
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3. Branching / Termination.

First, it initiates the growth of the tree, then proceeds to elongate it as a
directed random walk. At each step, a growing tip is assigned probabilities
to terminate, bifurcate or elongate depending on the chosen bar and the
distance from the tip to the root. As soon as the bar is used, it is then
removed from B. This process is repeated until the barcode B is empty.

We now give further explanation of the steps of branching/termination and
elongation.

4.3.1 Bifurcation and Termination Process

The branching process in the TNS algorithm is based on the concept of a
Galton-Watson tree, which is a recursively generated finite rooted tree. To
generate such a tree, we independently sample the number of offspring
at each step, from a distribution, and since geometric trees only consist of
elongations, bifurcations, and terminations the only accepted values are:

• zero↔ termination,

• one↔ continuation,

• two↔ bifurcation.

The probability of bifurcating/terminating depends on the distance of the
growing tip from the root, which would transform the tree from a combina-
torial tree to a geometric tree. The probabilities to bifurcate and terminate
are sampled from an exponential distribution e−λx, with free parameter λ.

For a barcode B, the bifurcation/termination step of the growth process of a
geometric tree associated to B works as follows:

• Assign a bar [bi, di) taken from the barcode B to each growing tip and
a bifurcation angle ai, encoded in the barcode1.

• Check if a branch terminates or bifurcates by randomly sampling a
number r in the uniform distribution U(0, 1) and compare it to

PB(bifurcation | dtip) = eλ(dtip−bi),

or
PT(termination | dtip) = eλ(dtip−di),

where in both cases dtip is the distance from the growing tip to the root.
If

r ⩽ PB(bifurcation | dtip) = eλ(dtip−bi
),

1We apply the TNS exclusively to barcodes that have been generatedby the application
of the TMD on a geometric tree. Therefore, the starting point bi, the death point di and the
bifurcation angle ai on a bar are measured and encoded while the TMD runs through the
geometric tree.
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4.3. Topological Neuronal Synthesis

or
r ⩽ PT(termination | dtip) = eλ(dtip−di

),

then respectively either a bifurcation or a termination occurs. In case
none of the two cases holds, the growing tip continues its elongation.

• As soon as a bar is used, it is removed from the barcode to prevent
re-sampling of the same conditional probability.

If dtip < bi, then PB(bifurcation | dtip) < 1 and increases as bi is approached.
The branch will surely bifurcate as soon as dtip = bi, since in that case
PB(bifurcation | dtip) = 1. Moreover, whenever a bifurcation takes place,
then the directions of the new branches depend on the bifurcation angle ai.
Similarly, if dtip < di, then PT(termination | dtip) < 1, hence the growing tip
will terminate as soon as dtip = di and therefore PT(termination | dtip) = 1.

These last two cases we analyzed strongly depend on the choice of λ since it
controls the slope of the probability distribution for bifurcation and termina-
tion. Its choice has thus to be done carefully. If we choose λ to be very high,
then the resulting geometric tree would be identical to the input, but if it is
chosen to be very low, then the resulting geometric tree is completely random
and independent of the input. Assuming that the growing step size is L, we
choose λ ≈ L, which ensures biologically appropriate variance. The step
size L is mostly chosen to be 1, since then the bifurcation and termination
points, although stochastically chosen, are strongly correlated with the input
barcode.

4.3.2 Elongation

To embed a synthesized tree into R3, we need to assign to each of its segment,
edge between two consecutive vertices, a direction, called the direction of a
segment. This is denoted as a vector d⃗ and is the weighted sum of three unit
vectors:

1. The cumulative memory m⃗,

2. A target vector t⃗,

3. A random vector r⃗.

The cumulative memory is a weighted sum of the directions of the branch
with the weight decreasing with the distance from the tip. Observe now the
k-th segment of the growing branch, then the respective memory vector can
be given by a weighted sum of the previous five segment

m⃗ =
5

∑
i=1

e1−ivk−i.
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4. Neuronal Morphology Characterisation

However, the precise choice of this function is not important as long as it
decreases faster than linearly with the growing distance from the tip. The
target vector t⃗ is defined at the beginning of each branch and the random
vector r⃗ is sampled uniformly from R3.
The direction of a segment is therefore given by

d⃗ = ρ⃗r + τ⃗t + µm⃗,

where ρ, τ, µ ∈ R are weight parameters with ρ + τ + µ = 1. Different
combinations of the parameters ρ, τ, µ give the possibility of creating a wide
range of geometric trees.

The TNS works as a right inverse to the TMD only if the branch corresponding
to a bar [bi, di) is attached to branches corresponding to bars [bj, dj) such that
di < dj and bi > bj. This restriction ensures that the Elder Rule still holds
while applying the TMD transformation. This procedure then recreates a tree
almost TMD-equivalent to the original.

Example 4.20 Figure 4.8 A gives a visual representation of the different processes
that the TNS goes through for the synthesis of a neuron. Figure 4.8 B shows a
detailed construction of a neuron from a given barcode. We begin constructing
segments from a barcode as provided by the direction vector d⃗ and the probability for
bifurcation, termination, or elongation depends on the distance from the root/soma.
The probability of bifurcating or terminating increases as soon as one reaches the
birth or the death point of a bar until this reaches one. As soon as a death point
is encountered, the bar it belongs to is removed from the barcode. This process is
continued until there is no bar left in the barcode.

Figure 4.8: In (A) the illustration of the TNS process, showing: (I) Growth initiation of Soma, (II)
Branching/Termination/Continuation of Dendrite, (III) Elongation of Dendrite and (IV) Diameter
Definition. Part (B) represents how a tree is synthesized with the use of probability and the
barcode created from the TMD algorithm. [15]
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4.4 Tree Realization Number

In the description of the TMD, we noticed that it defines a surjective function.
However, it is not injective, since a specific barcode can be generated by
different trees. In this section, we want to analyze to which extent the failure
of injectivity is meaningful for the classification of barcodes.

Definition 4.21 Let B be a barcode. A geometric tree T is called a tree realization
if TMD(T) = B, which is equivalent to T ∈ TMD−1(B).

Figure 4.9: The trees T1, T2, T3 are all tree realizations of the barcode B.

There can be a lot of trees generated from one barcode since TMD is not an
injective function, this is why for any strict barcode B we introduce the set of
combinatorial equivalence classes T (B)

T (B) = TMD−1(B)⧸∼
comb

.

This enables us to characterize the equivalence relation on strict barcodes
through T (B).

Proposition 4.22 If B, B′ ∈ Bst
n are two strict barcodes, then

B ∼
bar

B′ ⇐⇒ T (B) = T (B′).

Definition 4.23 Let B = {[bi, di)}{0⩽i⩽n} ∈ Bst
n be a strict barcode. The tree-

realization number of B is defined as

TRN(B) = |T (B)|,

which is the number of combinatorial equivalence classes of tree-realizations of B.

Example 4.24 In Figure 4.9 we see that T1, T2, T3 and T4 are all the possible tree
realizations of the barcode B, therefore

TRN(B) = |T (B)| = 4.

Although this definition is straightforward, there exists a different charac-
terization of the tree-realization number of a barcode, using the index of
a barcode. Remember that when working with strict barcodes we always
assume w.l.o.g that the bars are ordered by birth.
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Definition 4.25 Let B = {[bi, di)} ∈ Bst
n be a strict barcode. Then for a bar

[bi, di) ∈ B the index of the bar is given by

indexi(B) = |{j | bj < bi < di < dj}| = |{j < i |< di < dj}|.

Intuitively the index of a bar [bi, di) is the number of bars that strictly contain
[bi, di).

Proposition 4.26 The tree-realization number of a strict barcode B = {[bj, dj)}0⩽j⩽n
is equal to the product of the indices of its bars,

TRN(B) = ∏
1⩽i⩽n

indexi(B).

Proof By the Elder Rule in the TMD a branch can be attached to another only
if its corresponding bar is included in the other. This observation enables us
to prove this proposition by using recursion on the number of bars.
We provide a brief sketch. Set T0 = [b0, ∞), which is the trunk of the tree
corresponding to the longest bar of the barcode. Since the tree is connected,
we can recursively attach bars by death time, first to T0, and then in the n-th
step, we attach a branch to Tn to get Tn+1, according to the Elder Rule. □

Example 4.27 For the computation of the tree realization number of the barcode in
Figure 4.10, we first provide the index of each bar.

index1(B) = 1, index2(B) = 2,
index3(B) = 3, index4(B) = 1.

We can make now use of Proposition 4.26 and get that TRN(B) is given by

TRN(B) = ∏
1⩽i⩽4

indexi(B) = 1 · 2 · 3 · 1 = 6.

Figure 4.10: Strict barcode B = {[bi, di)}0⩽i⩽4 used for the computation of the TRN in Example
4.27.
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Remark 4.28 Notice that for a strict barcode B ∈ Bst
n the maximal achievable tree-

realization number is n!, which happens whenever dn < . . . < d1 < d0. Such a
barcode is called a strictly ordered or a Russian doll barcode.

Note that in general, the tree-realization number is not an invariant of the
barcode equivalence relation, since for two barcodes B, B′ ∈ Bst

n it does not
hold that

TRN(B) = TRN(B′)⇒ B ∼ B′.

However, the inverse implication holds:

TRN(B) ̸= TRN(B′)⇒ B ≁ B′,

enabling the identification of non-equivalent barcodes.

4.4.1 Alteration of Barcodes

At this point, we want to investigate up to which point we can interpret the
TRN as an invariant and thus analyze the insertion of a bar into a barcode
and the transposition of two bars in a barcode.

Proposition 4.29 (Addition of a bar) Let B = {[bi, di)}0⩽i⩽n ∈ Bst
n be a strict

barcode and let B′ = B ∪ {[bn+1, dn+1} ∈ Bst
n , where bn+1 > bi for all 1 ⩽ i ⩽ n.

If di1 > . . . > dik−1 > dn+1 > dik > . . . > di1n, then

TRN(B′) = k · TRN(B′). (4.2)

Proof From the ordering condition imposed on dn+1, we recognize that
[bn+1, dn+1) is strictly included in exactly k other bars, so its index is k. The
result in Equation 4.2 follows from Proposition 4.26. □

Example 4.30 In Example 4.26 we saw that TRN(B) = 6. As one can see in
Figure 4.11, we added a bar [b5, d5) in the barcode B, creating a new barcode
B′ = {[bi, di)}0⩽i⩽5. From the picture, one can recognize that index5(B) = 3,
therefore from Proposition 4.26 we get that

TRN(B′) = ∏
1⩽i⩽5

indexi(B′) = 1 · 2 · 3 · 1 · 3 = 18 = 3 · TRN(B),

which is the result we expected using Proposition 4.29.

Proposition 4.31 (Permutation of deaths) Let B = {[bi, di)}{0⩽i⩽n} ∈ Bst
n be

a strict barcode in the equivalence class (i1 · · · in). Let B′ = {[b′i , d′i)}{0⩽i⩽n} be a
new barcode, such that bi = b′i for all i ∈ {0, . . . , n} and di = d′i for all i ̸= ik, ik+1,
while dik = d′ik+1

and dik+1 = d′ik
, i.e. permute the deaths dik with dik+1 .

1. If ik < ik+1, then indexik+1(B′) = indexik+1(B)− 1 and

TRN(B′) =
TRN(B)(indexik+1(B)− 1)

indexik+1(B)
.
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Figure 4.11: Alteration of the barcode B given in Figure 4.10 with the addition of the bar [b5, d5)
used in Example 4.30.

2. If ik > ik+1, then indexik+1(B′) = indexik+1(B) + 1 and

TRN(B′) =
TRN(B)(indexik+1(B) + 1)

indexik+1(B)
.

Proof It is enough to prove the first statement since the second one follows
by switching the role of B and B′.
Assume that ik < ik+1, then by assumption on the barcodes bik < bik+1 . Since
B is in the equivalence class of (i1 · · · in), then dik+1 < dik , which implies that
[bik+1 , dik+1) ⊆ [bik , dik).
On the other hand, since d′ik

= dik+1 < dik = d′ik+1
, we have that

[b′ik+1
, d′ik+1

) ⊈ [b′ik
, d′ik

).

However, it respects all other inclusion that [bik+1 , dik+1) respects in the barcode
B, i.e.

[b′ik+1
, d′ik+1

) ⊆ [b′il
, d′il

)

for all 0 ⩽ l ⩽ indexk+1 − 1, with l ̸= k . Therefore from these inclusions, we
see that the bar [b′ik+1

, d′ik+1
) is contained in (indexk+1 − 1)-bars. This leads to

indexik+1(B′) = indexik+1(B)− 1. (4.3)

Moreover, since b′ik
< b′ik+1

and d′ik
< d′ik+1

, the inclusion [b′ik
, d′ik

) ⊈ [b′ik+1
, d′ik+1

)

doesn’t hold either, however is still respects the same inclusion that [bik , dik)
respects, i.e for 0 ⩽ l ⩽ indexk

[bik , dik) ⊆ [bil , dil ).

Hence,
indexik(B′) = indexik(B).
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Since no other bar is affected when going from B to B′ we can plug Equation
4.3 in the definition of the TRN for the calculation of TRN(B′) .

TRN(B′) =
n

∏
i=1

indexi(B′) = (indexik+1(B)− 1) ·
n

∏
i=1,i ̸=k+1

indexi(B) =

= (indexik+1(B)− 1) · TRN(B)
indexik+1(B)

This calculation yields the result we were looking for. □

Example 4.32 To correctly compute TRN(B′′), we need to compute the indices of
each bar in B′′

index1(B′′) = 1, index2(B′′) = 1, index3(B′′) = 1,
index4(B′′) = 2, index5(B′′) = 1.

Note that B′′ is the barcode coming from the transposition of the deaths d3 and d5 of
the barcode B′, which has assigned permutation ρB′ = (41235), therefore we are in
case 2 of Proposition 4.31. Making now use of Proposition 4.26, we calculate that

TRN(B′′) = 24 =
18 · 4

3
=

TRN(B′)(index5(B′) + 1)
index5(B′)

.

Figure 4.12: Transposition of deaths d3 and d5 in barcode B′ given in Figure 4.11 used in
Example 4.32.

4.5 TMD ◦ TNS

Our focus now lies on the theoretical aspects of the composition of TMD
with TNS. We want to measure the similarity of barcodes with respect to
the bottleneck distance and study the probability of the alteration of two
specific bars after applying TMD ◦ TNS. These two aspects together establish
stability for the TNS and show that the TNS is a good approximation for a
right inverse of the TMD.
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4.5.1 Similarity of Barcodes

Let B = {[bi, di)}0⩽i⩽n ∈ Bst
n be a strict barcode, we fix an appropriate λ for

the TNS and denote the tree TB = TNS(B). Now we apply TMD to the tree
TB getting the barcode B′ = TMD(TB) = {[b′i , d′i)}0⩽i⩽n.

From the TNS algorithm, we know that coming close to a new birth or a
death in a bar raises the probability of bifurcation respectively termination of
the growing branch. Thus for a barcode B = {[bi, di)}0⩽i⩽n ∈ Bst

n the distance
between a bar [bi, di) ∈ B and a bar [b′i , d′i) ∈ B′ = TMD ◦ TNS(B) ∈ Bst

n
follows an exponential distribution for a fix parameter λ

|bi − b′i | ∼ Exp(λ) and |di − d′i| ∼ Exp(λ). (4.4)

Proposition 4.33 Let B = {[bi, di)}0⩽i⩽n ∈ Bst
n and let B′ = TMD ◦ TNS(B).

If B ∼ B′, then

P(d̃∞(B, B′) > ε) ⩽ 1− (1− e−λε(λε + 1)n). (4.5)

Proof Fix γ ∈ Sn to be the identity permutation, then

d̃∞(B, B′) = sup
0⩽i⩽n

|bi − b′i |+ |di − d′i|.

Since we assume that B ∼ B′ it directly follows that the identities in Equation
4.4 hold. For ε > 0 the probability that |bi − b′i |+ |di − d′i| ⩽ ε is given by

P(|bi − b′i |+ |di − d′i| ⩽ ε) = 1− (1 + λε)e−λε, (4.6)

since the distance between the new values follows an exponential distribution.
If we compare Equation 4.6 with the cumulative distribution function of the
Erlang distribution given by

P(k, λx) = 1−
k−1

∑
n=0

(λx)ne−λx

n!
,

we recognize that the probability distribution function of |bi − b′i |+ |di − d′i|
follows an Erlang distribution with k = 2 and λx = λε. Since the random
variables |bi − b′i |+ |di − d′i| are i.i.d (independent and identically distributed)
for all i ∈ {0, . . . , n}, considering the sum of |bi − b′i | + |di − d′i| over all i
leads us to

P(d̃∞(B, B′) ⩽ ε) ⩾ P( sup
0⩽i⩽n

|bi − b′i |+ |di − d′i| ⩽ ε) = (1− (1 + λε)e−λε)n,

which after taking the complement is the result from Equation 4.5 that we
wanted to achieve. □

Proposition 4.33 is the key for the stability of the TNS with respect to the
modified bottleneck distance, depending on the choice of λ.
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4.5.2 Transposition of Death Times

Since the TNS is a stochastic process, the computation TMD ◦ TNS(B) = B′

of a barcode B ∈ Bst
n and the initial input barcode B are rarely identical, so

there might show up some differences. We are therefore interested in the
appearance of major changes, making the barcodes B and B′ not equivalent.
For example, we want to examine if the orders of death times of two bars
in B = {[bi, di)}i∈{0,...,n} changes after applying TMD ◦ TNS, which would
cause the barcodes B and TMD ◦ TNS(B) not to be equivalent.

Proposition 4.34 Let B ∈ Bst
n and let [bi, di), [bj, dj) ∈ B such that di < dj. Let

[b′i , d′i), [b
′
j, d′j) be the corresponding bars in B′ = TMD ◦ TNS(B). The probability

that d′j < d′i is

P(d′j < d′i) =
1
2

e−λ(dj−di). (4.7)

Proof We compute P(d′j < d′i) = P(d′j < d′i | di < dj) is the conditional
probability of d′j < d′i given di < dj. We observe that

P(d′j < d′i) = P(d′j + (di + dj) < d′i + (di + dj)) =

= P(dj + (di − d′i) < di + (dj − d′j)) =

= P(dj + Xi < di + Xj) = P(Xj − Xi < dj − di).

We know that both Xj and Xi follow an exponential distribution with param-
eter λ, therefore, defining Y = Xj − Xi leads us to the density function

fY(t) =
λ

2
e−λt

for t ⩾ 0, from which the result follows:

P(d′j < d′i) = P(Xj − Xi < dj − di) =
∫ ∞

dj−di

fY(t)dt =
1
2

e−λ(dj−di). □

Remark 4.35 Note that there might also occur some birth switches from a barcode B
to TMD ◦ TNS(B), but we do not analyze them, since the neurons we are interested
in have enough distance between the births of their branches.

Thanks to this powerful proposition, we see that the transposition of two
bars is a rare event, which might come up only when the distance between
two deaths is very small. This follows, since from Proposition 4.34 we see
that the probability of the transportation of two bars decreases exponentially
with the distance between their death times.
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4.6 Characterization of Neuronal Morphologies

In the paper A Topological Representation of Branching Neuronal Morphologies [16]
it is shown that the Topological Morphology Descriptor (TMD), introduced in
Section 4.2.3, can be used to classify different types of neurons. It is based on
the comparison between the barcodes constructed with the TMD algorithm,
where each barcode encodes the branching structure of the input tree. The
TMD provides enough information to create an unbiased benchmark for the
categorization of neurons or general trees. Moreover, it can also characterize
and quantify the structural differences between morphological groups.

Persistent barcodes are not enough for capturing differences between neu-
ronal trees, hence we use unweighted persistent images, mostly represented
using heat maps, to which persistent diagrams are converted. We choose
this representation since it allows for a construction of an average image
for groups of trees, which is useful for quantifying the differences between
tree types. The creation of such an image is possible only if we are able to
generate a matrix of pixels, representing the persistent diagram in a vector.
For the generation of such a matrix, we use a method that discretizes a sum
of Gaussian kernels centered at the points of the persistent diagram.

The experiments done in [16] focus on applying the TMD algorithm to
different types of trees. First, they categorize randomly generated trees,
which have properties that can be modified at will. Next, they discuss two
experiments of a more biological nature. The first experiment involves the
analysis of neurons from different species and the second one the study of
distinct types of rat cortical pyramidal cells. The results of these experiments
demonstrate that the TMD can be used to create an efficient classification of
them.

We give a detailed explanation of the experiment involving the distinction of
neurons from different species. For a further discussion of the other experi-
ments we refer the reader to [18].

Experiment: Study of Neurons from Different Species

We want to do a topological comparison between neurons of different species:
cats, dragonflies, fruit flies, mice, and rats. The corresponding neurons with
their persistent diagrams and barcodes are illustrated in Figure 4.13. One
can already suspect by looking at neurons in (a), that each of them belongs
to a different species since their geometric shape appears to be different. In
(b) the corresponding barcode is pictured and we can see more remarkable
differences. In barcodes II, III, and V there are a lot of short bars, in contrast
to barcodes I and IV, which have the longest bar in the upper part of the graph
and more shorter ones as one goes down the y-axis. Another remarkable
difference is that barcodes III and V have a void in the middle, which is
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equivalent to saying that no bars were born or died in that period in contrast
to barcodes I and IV, which are dense almost everywhere. Part (c) illustrates
persistent diagrams and in (d) we can see the persistent diagrams from (c)
together with the unweighted persistent image, which allows us to separate
the five species into the group they originally belonged to.

Figure 4.13: Part (a) of the figure illustrates neurons for different species, each row corresponds
to a species: (I) cat, (II) dragonfly, (III) fruit fly, (IV) mouse, (V) rat. In parts (b) and (c) there
are respectively their corresponding persistent barcode and diagram and in (d) we can see an
illustration of their unweighted persistent image [16].

What was done in A Topological Representation of Branching Neuronal Morpholo-
gies [16], mostly covered the beginning of the categorization of rat pyramidal
cells. A more in-depth analysis of the morphologies of rat pyramidal cells
can be found in the paper Objective Morphological Classification of Neocortical
Pyramidal Cells [18].
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