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Abstract

Clustering algorithms are a widely used tool in machine learning and data science that
organize data points into “groups” by recognizing patterns. They have proven useful for
dealing with ever-increasing amounts of data. We review a formalization and classifi-
cation of clustering algorithms developed by Carlsson and Mémoli [CM10b]. For such
formal clustering algorithms we will use the term clustering functor. An important
theoretical result in the study of clustering algorithms is an impossibility theorem by
Kleinberg [Kle02]. It states that no clustering algorithm can be rich, consistent and scale
invariant at the same time. As identified by Carlsson and Mémoli, the so-called Vietoris-
Rips clustering functor has some unique characterizing properties [CM10a, Thm. 18],
[CM10b, Thm. 7.1]. The Vietoris-Rips clustering functor is based on the idea that for
some threshold parameter δ > 0, we assign two data points to the same cluster if, ac-
cording to some metric, they are δ-close to each other. It was previously shown that the
Vietoris-Rips clustering functor satisfies a set of modified conditions from Kleinberg’s
impossibility theorem [CM10b, Sec. 7.3.1]. By showing that these modified conditions
imply the characterizing properties of the Vietoris-Rips clustering functor discussed by
Carlsson and Mémoli, we were able to prove that the Vietoris-Rips clustering functor
uniquely satisfies the modified conditions from Kleinberg’s impossibility theorem.
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Introduction

A central problem in machine learning and data science is the task of clustering data,
i.e., “grouping” data points according to some patterns. Underlying most clustering
techniques is the notion of a distance between data points. Motivated by this, we think
of data as a finite metric space, i.e. a finite set equipped with a metric and of a clustering
algorithm as a map assigning to a finite metric space either a partition (Figure 1a) or a
dendrogram (Figure 1b) of the underlying set.

Figure 1a: A partition of seven points.
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Figure 1b: A dendrogram of five points.

A dendrogram is a (rooted) tree with data points as leaves. The dendrogram represents
the order in which data points are “merged” into clusters. In Figure 1b, we have a
dendrogram over the points {a, b, c, d, e}. Here, we first merge a and b, as well as d
and e into respective pairs. Then, we add c to the cluster containing a and b. Finally,
we merge all five points into a single cluster. By stopping this merging process early,
we obtain a partition of the data points. In this sense, dendrograms are more general
than partitions. Depending on the clustering algorithm used, a dendrogram may need
to satisfy additional properties. Clustering algorithms that produce a partition are
sometimes called classical and those that produce a dendrogram are called hierarchical.
In this thesis we use the language of category theory to succinctly describe properties
of clustering algorithms. In particular, clustering algorithms are seen as special functors
mapping from appropriate categories of finite metric spaces to partitions or dendrograms.
For this reason, we refer to such clustering algorithms as classical and hierarchical clus-
tering functors respectively [CM10b]. We do not require the reader to be familiar with
category theory; we introduce and give examples of all the necessary concepts.

3



First we work with classical clustering functors, where two central properties of clustering
functors are considered.

• Surjectivity, which means that for any partition of a set of n points we can find a
metric on these n points such that our clustering functor produces this partition.

• Splitting, which refers to a particular behaviour of clustering functors on metric
spaces with two points. Namely, two points are “merged” into a single cluster if
and only if they are δ-close for some δ > 0.

The latter is a characterizing property of the so-called Vietoris-Rips clustering functor
[CM10b, Thm. 6.4]. In this thesis we show that under certain technical assumptions
surjectivity implies splitting. In some sense this means that a global property of a
clustering functor (surjectivity) implies a local property (splitting).
For classical clustering algorithms there exists an important impossibility theorem by
Kleinberg [Kle02] which states that there exists no clustering algorithm satisfying the
following three properties at the same time:

• Richness is the term used by Kleinberg to describe surjectivity.

• Consistency is the property that decreasing the distance between points inside a
cluster does not change the clustering.

• Scale invariance refers to the fact that we can rescale the metric and the clustering
remains the same.

At the end we consider a modified version of the above conditions presented in [CM10b,
Sec. 7.3.1] that concern hierarchical clustering functors, more precisely, scaling hier-
archical clustering functors. We show that scaling hierarchical clustering functors are
essentially the same as classical clustering functors1. Utilizing this trick and the tools
described earlier, we can show that the modified Kleinberg conditions give rise to a
unique (up to some transformation) hierarchical clustering functor.

1We show that there is a one-to-one correspondence between scaling hierarchical clustering functors
and what we call regular classical clustering functors.
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Chapter 1

Data Clustering

Data clustering refers to the procedure of assigning to a set of data points some kind of
“grouping”. This is often used as a first step in machine learning pipelines as a way to
reduce data complexity. In the simplest case this “grouping” is a partition of the original
data points. This is also called classical clustering (see Figure 1a). Alternatively, we
could assign a so-called dendrogram to the data points, which is referred to as hierarchical
clustering (see Figure 1b). The first part this chapter explains these concepts in more
detail.
Next, we discuss two examples of commonly studied clustering algorithms. Namely, k-
means clustering, a classical clustering technique and linkage clustering, a hierarchical
clustering algorithm. By contextualizing these algorithms with computations we demon-
strate how they can fall short in certain cases. This part is based on the books [ELLS11]
and [SSMÁU21].
Finally, we show how clustering algorithms can be seen as remaining invariant under
certain transformations of their input. One such transformation could be the introduc-
tion of noise into the data. If we model this noise as some transformation of the “ground
truth” we can then try to construct a clustering algorithm that is invariant under this
transformation. In other words, the output of our clustering algorithm would not depend
on the noise. This idea naturally leads to Kleinberg’s impossibility result [Kle02].
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1.1 Partitions, Dendrograms and Clustering Algorithms

In this section, we make precise what we mean by a “partition” or a “dendrogram”,
which will enable us to formally define clustering algorithms.

Definition 1.1: Partitions of Finite Sets

Let X be a finite set. A partition P of X is the set of equivalence classes X/∼P

for some equivalence relation ∼P on X. The set of all such partitions is denoted
by P(X). Furthermore:

• We interchangeably use P (the partition) and ∼P (the corresponding equiv-
alence relation).

• A single equivalence class Xα ∈ P will be called a block or part of P .

It naturally makes sense to use partitions as outputs of (classical) clustering algorithms,
where a block of a partition is to be interpreted as a cluster.
When describing a partition it is often easier to describe a minimal set of conditions
the partition relation must satisfy. More formally, we talk about taking the transitive
closure of a relation.

Definition 1.2

Given a relation ∼ on a set X its transitive closure is the transitive relation ∼+

such that for x, y ∈ X we have
x ∼+ y

if there exists a sequence x = x0, x1, . . . , xn = y with xi ∼R xi+1 for all
i = 0, . . . , n − 1 [LP97, p.337]. In this case we also say that ∼+ is generated
by ∼.

In particular, if ∼ is reflexive and symmetric then ∼+ is an equivalence relation. Later
we will use this fact to define equivalence relations as transitive closures of reflexive and
symmetric relations.

Example 1.3

Let G = (V, E) be a graph, then E is a binary symmetric relation on V . Two points
v, w ∈ V lie in the same connected component of G if there exists a path, i.e., a
sequence v = v0, v1, . . . , vn = w such that (vi, vi+1) ∈ E for all i = 0, . . . , n−1. The
resulting partition of V into connected components corresponds to the transitive
closure of E.

To define a dendrogram we need to give a precise meaning to what we previously infor-
mally described as the “merging” of clusters.
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Definition 1.4: Refinement

Let P, Q ∈ P(X). Then we write P ⪯ Q and say that P refines Q if

∀x, y ∈ X : x ∼P y =⇒ x ∼Q y.

This defines a partial order on P(X).

Example 1.5

Consider X := {a, b, c} together with partitions

P := {{a}, {b}, {c}} and Q := {{a, b}, {c}}.

As the blocks in P are always contained in some block of Q we have P ⪯ Q.

This corresponds to the idea of “merging” in the sense that if we have P, Q ∈ P(X) such
that P ⪯ Q we can say that Q can be obtained from P by “merging” blocks of P .
There are two extreme kinds of partitions: one where all points belong to the same
equivalence class, and another where each point forms its own equivalence class. For
this we introduce the following notation.

Definition 1.6

We say that P ∈ P(X) is:

1. discrete if x ∼P y ⇐⇒ x = y.

2. trivial if x ∼P y for all x, y ∈ X.

Naturally, if Q is discrete and P is trivial then Q ⪯ R ⪯ P for all R ∈ P(X).
With this we now have everything to define a dendrogram.

Definition 1.7: Dendrogram [CM10b, Def. 2.2]

Let X be a finite set. A map θ : R≥0 → P(X) with

1. ∀r, s ∈ R≥0 : r ≤ s =⇒ θ(r) ⪯ θ(s),

2. ∃r, s ∈ R≥0 such that θ(r) is trivial and θ(s) is discretea,

3. ∀r ∈ R≥0 ∃ε > 0 such that θ is constant on [r, r + ε),

is called a dendrogram of X. Sometimes r is referred to as the scale.
aIn particular, we get that θ(0) is always discrete.
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This will be familiar to anyone who has seen persistent homology where such properties
are referred to as persistence [Car14, Chap. 3].
As for the relevance of the last condition, consider the following remark.

Remark 1.8

Since X is a finite set, we could decide to omit the third condition in the definition
of a dendrogram. Dendrograms would still have discrete scale i.e. the dendrogram
would still be constant on intervals. However, it would not be clear what value
the dendrogram would take at the endpoints of these intervals. This technicality
will become important for some uniqueness theorems we present later.

Example 1.9

As an example of a dendrogram consider Figure 1.1.

a b c d

1

2 θ

a b c d
⪯

Figure 1.1: A dendrogram θ : R≥0 → P(X) with the four points X = {a, b, c, d}.

Notice how in this case the monotonicity condition is satisfied e.g. θ(1) ⪯ θ(2) as
shown on the righthand side. The second condition of a dendrogram is also met
as it becomes trivial at the top and discrete at the bottom. Finally, the third
condition tells us what value the dendrogram takes whenever a “merge happens”.

With this we can now state the definition of a clustering algorithm.

Definition 1.10: Clustering Algorithm

A clustering algorithm C is a procedure that assigns to a finite metric space (X, d)
either a partition or dendrogram, which we denote by

C(X, d).

In the case that C outputs partitions, we refer to it as a classical clustering algo-
rithm. If it outputs dendrograms, we refer to it as hierarchical.

In Chapter 3 we will revisit this definition, at which point we will call it a clustering
functor.
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1.2 Examples of Clustering Algorithms

Let us consider a few examples of clustering algorithms.

1.2.1 k-means

A common method of clustering is to find a partition of the data into k parts that
minimizes some objective function. One such example is the k-means clustering objective
[SSMÁU21, Sec. 3.1].

Definition 1.11: k-means Clustering

Let {x1, . . . , xn} ⊂ Rd. For k ∈ N k-means clustering refers to finding a partition
C1, . . . , Ck of {x1, . . . , xn} such that

k∑
i=1

∑
x∈Ci

∥x − µi∥2
2

is minimal, where µk := 1
|Ck|

∑
x∈Ck

x is the center of Ck
a.

aIn case Ck = ∅, we set µk = 0 ∈ Rd.

To find such a partition we would have to check all possible partitions of x1, . . . , xn. This
is computationally infeasible. In practice, we use approximate methods such as Lloyd’s
algorithm, which is sometimes simply referred to as the k-means algorithm [SSMÁU21,
Sec. 3.1.2].

Definition 1.12: Lloyd’s Algorithm

Given {x1, . . . , xn} ⊂ Rd and some centers z1, . . . , zk ∈ Rd Lloyd’s algorithm
consists of iteratively applying the following two steps:

1. Assignment Step: Assign each point xi to the cluster Cj such that

j = argmin
1≤l≤k

∥xi − zl∥2
2.

2. Update Step: Update the centers z1, . . . , zk by setting

zj = 1
|Cj |

∑
x∈Cj

x ∀j ∈ {1, . . . , k},

where zj = 0 if Cj = ∅.
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One can show that Lloyd’s algorithm converges after finitely many steps [SSMÁU21,
Thm. 3.14]. We will see that the choice of starting centers z1, . . . , zk can have a significant
impact on the outcome of the algorithm.

Example 1.13

Consider the set {(0, 0), (0, 1), (2, 0), (2, 1)} ⊂ R2, k = 2 and two possible choices
of starting centers:

1. z1 = (0, 1/2) and z2 = (2, 1/2);

2. z′
1 = (1, 0) and z′

2 = (1, 1).

Consider the first case. In the first assignment step we assign (0, 0) and (0, 1)
to the first cluster C1 and similarly (2, 0) and (2, 1) to the second cluster C2. In
the update step we update the centers and get z1 = 1

2 [(0, 0) + (0, 1)] = (0, 1/2).
Similarly, we get z2 = (2, 1/2). Notice that these are the same centers as we
started with. Therefore, the algorithm converges after just one iteration.

Repeating the same computations for the second case we notice that the algorithm
will also converge after just one step to the original centers. This will result in
the red and blue clusters as seen in Figure 1.2.

z1 z2

starting centers (1)

z′
1

z′
2

starting centers (2)

Figure 1.2: k-means clustering for different starting centers.

In fact the first solution is the one minimizing the k-means objective. So we see
that the choice of initial centers is important for the outcome of the algorithm. For
this reason in practice one might run the algorithm multiple times with different
initial centers drawn from some distribution and then choose the best solution.

Another potential downside of the k-means algorithm is that its clusters are always
convex.
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Example 1.14

Consider the following data points in Figure 1.3 for k = 2.

Figure 1.3: Points generated by adding noise to two circles and the result of
running the k-means algorithm for k = 2.

In this case, the k-means algorithm will be unable to separate the two circles
because it produces convex clusters, causing it to divide the data along a straight
line.

1.2.2 Linkage Clustering

Let us now consider a clustering algorithm that produces a dendrogram as an output. We
achieve this by consecutively merging clusters based on some distance criterion [ELLS11,
Sec. 4.2.2].

Definition 1.15: Linkage Clustering

Let X := {x1, . . . , xn} ⊂ Rn and d : P(X) × P(X) → R≥0
a a distance function

between clusters. We start with the partition

B
(0)
j := {xj}

for j ∈ {1, . . . , n}. Given a partition

B
(k)
1 , . . . , B

(k)
n−k of x1, . . . , xn

we successively merge the clusters j and ℓ such that

d(B(k)
j , B

(k)
ℓ )

is minimal for j, ℓ ∈ {1, . . . , n − k}.
aP(X) denotes the power set of X.
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The reason this is in fact a hierarchical clustering algorithm, is that we can now construct
the dendrogram θ : R≥0 → P(X) given by

θ(t) := {B
(k)
1 , . . . , B

(k)
n−k} ∈ P(X)

for all t ∈ [k, k + 1) and k = 0, . . . , n − 1.
Depending on the distance function d we use we call linkage clustering

• single-linkage clustering if dmin(Bi, Bj) := min{d(x, y) : x ∈ Bi, y ∈ Bj};

• complete-linkage clustering if dmax(Bi, Bj) := max{d(x, y) : x ∈ Bi, y ∈ Bj};

• average-linkage clustering if davg(Bi, Bj) := 1
|Bi||Bj |

∑
x∈Bi,y∈Bj

d(x, y).

Example 1.16

As an example, consider the data points in Figure 1.4 and their corresponding den-
drogram obtained from single-linkage clustering. Here we first merge the points
v, w and z, y as they are the closest. Next we add the point x to the cluster
{v, w} as x is closer to {v, w} than {y, z}. Finally, we merge the remaining two
clusters {v, w, x} and {y, z} to obtain a dendrogram. Notice how this order is
fully described on the righthand side.

v

w

x

y

z

d
(v

,
w

)
=

1

d(w, x) = 2

d(v, x) = 2

d(x, z) = 3

d(x, y) = 3

d(y
,

z)
=

1

v w x y z

Figure 1.4: Example of single-linkage clustering with the data points
{v, w, x, y, z} ⊂ R2 on the left and the resulting dendrogram on the right.

A downside of this definition of linkage clustering is that the output will always be a
binary tree. In particular, if we have three equidistant points it is unclear which should
be merged first. We can fix this by introducing a “tie-breaking” rule or by merging
more than two clusters at once. We will see more about this once we define hierarchical
clustering functors in Chapter 3.
Other problems of single-linkage clustering include its insensitivity to density and the
tendency to produce long chains as clusters. Complete-linkage and average-linkage clus-
tering, on the other hand, have nice properties with regard to density, but it has been
shown that they are not stable under small perturbations of the data [CM10a, Sec. 3.6],
[LW67].
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1.3 Invariance of Clustering Algorithms

One desirable property of a clustering algorithm is that it remains invariant under certain
transformations of the data. The reason this is desirable is that we can model noise in
the data as some transformation of the underlying “ground truth”. If an algorithm is
invariant under such transformations we can hope to recover the ground truth. As we
are going to see, it is often not realistic to expect that such an algorithm even exists. But
this still motivates the description of clustering algorithms in terms of their invariances.

Example 1.17

Consider a finite set X representing guests at a gathering and a metric d measuring
the distance between individual guests. When searching for a (classical) clustering
algorithm that finds friendship groups it would make sense to consider algorithms
that have the following properties:

1. If we rescale the metric d, i.e., we change the unit with which we measure
distance, the algorithm will not change its belief.

2. No matter what the friendship groups are, the guests should be able to
arrange themselves in such a way that the algorithm can detect the groups
properly.

3. When guests that the algorithm has classified as belonging to the same group
move even closer to one another, the algorithm should continue to classify
them as part of the same group.

1.3.1 Kleinberg’s Impossibility Theorem

It is apparent that as we require more invariants from a clustering algorithm it becomes
harder to construct one. There exists an important result in this regard. Kleinberg
showed that a generalized version of the properties we considered in Example 1.17 are
impossible to satisfy simultaneously [Kle02]. To state Kleinberg’s theorem we first need
to precisely define these properties.

Definition 1.18: Scale Invariance

We say that a clustering algorithm C is scale invariant if for every finite metric
space (X, d) and λ > 0 we have

C(X, d) = C(X, λ · d),

i.e., re-scaling the metric does not affect the clustering algorithm.
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Definition 1.19: Richness

A clustering algorithm C is rich if for every finite set X and every partition P of
X there exists a metric d on X such that C(X, d) = P .

Definition 1.20: Consistency

Let C be a clustering algorithm. We say that it is consistent if for every finite
metric space (X, d) and every metric d′ on X such that

• d′(x, y) ≤ d(x, y) if x, y are in the same part of C(X, d);

• d′(x, y) ≥ d(x, y) if x, y are in different parts of C(X, d);

we have C(X, d′) = C(X, d).

Kleinberg showed that in combination these properties are impossible to satisfy.

Theorem 1.21: Kleinberg [Kle02, Thm. 2.1]

There exists no clustering algorithm that is scale invariant, rich and consistent at
the same time.

Furthermore, if we drop any of the requirements we can find clustering algorithms satis-
fying the remaining two properties. As an example, k-means clustering from Definition
1.11 is clearly not rich since we restrict ourselves to partitions with k or fewer1 parts. It
is, however, scale invariant.

1Depending on the implementation it is possible that k-means produces partitions with less than k
parts.
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Chapter 2

Categories and Functors

“Category theory starts with the observation that many properties of mathe-
matical systems can be unified and simplified by a presentation with diagrams
of arrows” Saunders Mac Lane, 1978 [ML78, p. 1].

Category theory is a branch of mathematics developed to unify common methods and
structures used in different areas of mathematics. In this thesis, it will serve as a way to
reason about concepts that we define in later chapters. For this chapter we follow books
by Roman [Rom17] and Leinster [Lei14].

2.1 Categories

In mathematics, it is common to study maps between objects, e.g.: continuous functions
between topological spaces, linear maps between vector spaces, etc. Categories create a
framework for this type of mathematical structure.

Definition 2.1: Category [Rom17, Sec. 1.2]

A category C consists of

1. Objects: A classa Ob(C).

2. Morphisms: For every A, B ∈ Ob(C) we have a set MorC(A, B). An
element f ∈ MorC(A, B) is called a morphism from A to B, and we often
write

f : A → B,

even though f is not always a map. Furthermore, MorC(A, B) and
MorC(C, D) are disjoint unless A = C and B = D.
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3. Composition: For every f ∈ MorC(A, B) and g ∈ MorC(B, C) there exists
a g ◦ f ∈ MorC(A, C) called the composition. The composition operation is
associative:

f ◦ (g ◦ h) = (f ◦ g) ◦ h.

4. Identity: For all objects A, B ∈ Ob(C) there exists a morphism
eA ∈ MorC(A, A) such that for f ∈ MorC(A, B) and g ∈ MorC(B, A) we
have

f ◦ eA = f and eA ◦ g = g.

aA class is a collection of mathematical objects.

One reason why Ob(C) is not generally a set is that sets require the axiom of regularity,
disallowing such notions as “the set of all sets”. In particular, classes can be much larger
than sets [Rom17, p. 1]. Nonetheless, we will often define the class of objects using the
following notation:

Ob(C) = {A | A fulfills some condition},

where it is understood that this need not be a proper set.
In the definition of a category we never required any morphisms other than the identity
morphism to exist. This means that we could construct a category with arbitrary objects
and only the identity morphism for each object. Such a category would not be very
interesting to study. It is, however, common to study categories where certain objects
have no morphisms between them.
Interestingly, we can encode many mathematical structures as categories, even some
where it is not immediately obvious that they form a category [Rom17, Chap. 1 Ex. 1-
7], [Lei14, Sec. 1.1].
The most familiar way of thinking about a category is to see morphisms as maps and the
composition as the composition of maps. There are many examples of such categories.

Example 2.2: Category of Sets

Consider the category SET consisting of

• Ob(SET) := {X | X is a set},

• MorSET(X, Y ) := {f : X → Y | f is a map}.

In this case composition is simply the composition of maps and the identity is
given by the identity map idA : x ∈ A 7→ x ∈ A.

Instead of taking arbitrary sets and maps between them, we can also study categories
where the objects have additional structure and the morphisms preserve that structure.
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Example 2.3: Topological Spaces

We can define the category of topological spaces TOP with

• Ob(TOP) := {(X, τ) | X is a set with a topology τ},

• MorTOP(X, Y ) := {f : X → Y | f is continuous}

and the usual composition of maps and identity function. The reason this is in
fact a category is that the composition of continuous maps is continuous.

Similarly, we can define the category of based topological spaces TOP•. In this
case the objects are tuples (X, x0) with x0 ∈ X and morphisms are called based
maps which are continuous maps f : X → Y such that f(x0) = y0.

Example 2.4: Vector Spaces

Another very common category is the category of vector spaces over a field K
denoted by VECK where

• Ob(VECK) := {V | V is a vector space over K},

• MorVECK(V, W ) := {f : V → W | f is a K-linear map}.

This is again a category for similar reasons as in the previous example.

Example 2.5: Groups

We can also consider the category GRP where

1. Ob(GRP) := {G | G is a group},

2. MorGRP(G, H) := {f : G → H | f is a group homomorphism}.

Instead of considering the category of all groups we could restrict the objects to
be abelian groups.

These examples are perhaps the first categories one encounters in mathematics.
We can also consider categories whose morphisms are not maps. In this case it is
important to be clear what the composition ◦ should be.

Example 2.6: Category of Ordering

Consider the category ORDR with

• Ob(ORDR) := R,
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• MorORDR(a, b) :=
{

{(a, b)} if a ≥ b

∅ else
.

We define the composition to be (a, b) ◦ (b, c) := (a, c) if a ≥ b ≥ c together with
the identity (a, a). Notice how this category encodes the full information of the
total ordering ≥ on R. In particular, the composition ◦ encodes transitivity and
the identity encodes reflexivity.

Example 2.7: Group as a Category

Not to be confused with the category of groups GRP, we can also consider a
group as a category itself. Let G be a group. Then we can define a corresponding
category G where

• Ob(G) := {ϵ} where ϵ is an arbitrary element,

• MorG(ϵ, ϵ) := G

and the composition is given by g ◦ h = gh and identity by e ∈ G.

In the previous two examples it might not be intuitive why these compositions form a
category. It is, however, a good exercise to verify that they do.

2.2 Functors

We would now like to study maps between categories. Intuitively, a map like this sends
objects from one category to objects in another and morphisms from one category to
morphisms in the other in a way that preserves composition and the identity morphism.

Definition 2.8: Functor [Rom17, Sec. 1.3]

Let A, B be two categories. A (covariant) functor, which we denote by

F : A → B,

consists of the following maps, all denoted with the same symbol:

1. A map between the objects of the two categories:

F : Ob(A) → Ob(B);

2. For all X, Y ∈ Ob(A) we have a map between morphisms:

F : MorA(X, Y ) → MorB(F(X),F(Y )). (2.2.1)
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A functor must also satisfy
F(eX) = eF(X), (2.2.2)

where eX denotes the identity morphism on an object X. Furthermore, for every
f ∈ MorA(X, Y ) and g ∈ MorA(Y, Z)

F(g ◦ f) = F(g) ◦ F(f). (2.2.3)

The additional requirements (2.2.2) and (2.2.3) are sometimes referred to as functoriality.

Remark 2.9: Contravariant Functors

Other than covariant functors we can also consider contravariant functors, where
the direction of morphisms are “flipped”, i.e., instead of (2.2.1) we have

F : MorA(X, Y ) → MorB(F(Y ),F(X))

and the composition (2.2.3) is also flipped:

F(g ◦ f) = F(f) ◦ F(g).

Similar to functions, we can also compose functors.

Definition & Proposition 2.10: [Rom17, Sec. 1.3.1]

Let A, B, C be three categories and

F : A → B, G : B → C

two functors. Then G and F can be composed, i.e., we compose the maps between
the objects

GF(X) := G(F(X)) ∈ Ob(C) ∀X ∈ Ob(A),

and for all X, Y ∈ Ob(A) the maps between the morphisms

GF(f) := G(F(f)) ∈ MorC(GF(X),GF(Y )) ∀f ∈ MorA(X, Y ).

This yields a new functor
GF : A → C.

Moreover, the composition of functors is associative.

Here we have a few functors from different areas of mathematics, namely linear algebra
and algebraic topology.
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Example 2.11: The Adjoint Functor [Lei14, Ex. 1.2.12]

Consider the category VECK. Then we can define the contravariant functor

∗ : VECK → VECK,

which maps a vector space V to its (algebraic) dual V ∗ and maps a linear map
f : V → W to its adjoint map f∗ : W ∗ → V ∗. In particular, this functor is
contravariant since it “flips the direction” of the morphisms.

Example 2.12: Fundamental Group Functor [Hat01, Sec. 1.1.2]

The map that assigns to a based topological space (X, x0) its fundamental group
π1(X, x0) and maps continuous functions f : (X, x0) → (Y, y0) to the group ho-
momorphism

π1(X, x0) ∋ [α] 7→ [f ◦ α] ∈ π1(Y, y0)

is a functor
π1 : TOP• → GRP.

Building on the category G from Example 2.7, we can now translate the familiar concept
of a group homomorphism into a functor between categories.

Example 2.13: Group Homomorphism as a Functor

Let G1, G2 be groups, ϕ : G1 → G2 be a group homomorphism and G1, G2 the cor-
responding categories from Example 2.7. The goal is to construct a corresponding
functor

Fϕ : G1 → G1.

Since both G1 and G2 contain a single object ϵ it is clear that Fϕ(ϵ) = ϵ. We still
need to define Fϕ on the morphisms, for which we simply set

Fϕ(g) = ϕ(g) ∈ MorG2(ϵ, ϵ) = G2

for every g ∈ MorG1(ϵ, ϵ) = G1.

It remains to check that this is indeed a functor. It holds that

Fϕ(g ◦ h) = ϕ(g ◦ h) = ϕ(g)ϕ(h)
= ϕ(g) ◦ ϕ(h) = Fϕ(g) ◦ Fϕ(h)

for all g, h ∈ MorG1(ϵ, ϵ) = G1. Since group homomorphisms map the neutral
element to the neutral element we get

Fϕ(eG1) = ϕ(eG1) = eG2 .

20



The forgetful functor will later be used in the definition of clustering functors.

Definition 2.14: [Rom17, Chap. 1 Ex. 10]

Let C be a category whose objects are sets (potentially with some additional
structure) and whose morphisms are certain maps between these sets. Then we
can define the forgetful functor

αC : C → SET

where αC maps objects to their underlying set and morphisms get mapped to their
underlying functions. In this sense, the forgetful functor forgets the additional
structure of the category.

Example 2.15

Consider the category of topological spaces TOP from Example 2.3. In this case
objects (X, τ), (Y, σ) ∈ Ob(TOP) are sets equipped with topologies and mor-
phisms f : (X, τ) → (Y, σ) are continuous maps. In this case the forgetful functor
αTOP forgets the topology τ and the fact that f is continuous, i.e., it maps (X, τ)
to X and f to f .

In particular, we will use the following notation related to the forgetful functor.

Definition 2.16

Let A, B be categories with forgetful functors αA, αB respectively. We say that a
functor F : A → B factorizes the forgetful functors if

αA = αBF.

This means that F preserves the underlying set of an object and the underlying
map of a morphism.

We now have all the required tools to define clustering functors in the next chapter.
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Chapter 3

Clustering Functors

In this chapter we introduce the notion of a clustering functor. Ultimately, a clustering
functor will be a functor, with certain properties, from a category of finite metric spaces
to a category of partitions. Functoriality gives us a nice way of talking about certain
invariances described in Section 1.3. This chapter is based on work done by Carlsson
and Mémoli [CM10b].

3.1 Finite Metric Spaces

First we need to define the category of “inputs” of clustering functors. As we have seen
before that it is natural to think of data as a finite metric space. This motivates the
following definition.

Definition 3.1: Finite Metric Spaces [CM10b, Sec. 3.2]

We define three categories Miso, Minj and Mgen, all sharing the same objects:

Ob(M) := {(X, d) | X is a finite non-empty set and d a metric on X}

for M ∈ {Miso, Minj, Mgen}. The three categories are distinguished by their
morphisms. For A, B ∈ Ob(M):

• MorMgen(A, B) consists of distance non-increasing
functions f : A → B;

• MorMinj(A, B) consists of distance non-increasing
injective functions f : A → B;

• MorMiso(A, B) consists of isometries f : A → B.
The composition of morphisms is given by the composition of functions, and the
identity morphism is the identity function.
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Depending on what kind and the amount of “structure” we would like our clustering
algorithms to “preserve”, we can choose one of the three categories. By construction,
we have the inclusions

Miso ⊂ Minj ⊂ Mgen. (3.1.1)
Furthermore, this inclusion yields functors Miso → Minj → Mgen [Lei14, Def. 1.2.18].
As such, Miso is the category with the fewest morphisms. Indeed, between most objects
there are no morphisms. All morphisms are between spaces of the same isometry class
and have an inverse. In contrast, Mgen has the most morphisms. In particular, for any
metric spaces A, B ∈ Ob(Mgen) we have the morphism

constb : A → B, a 7→ b

for some b ∈ B.

3.2 Outputs of Clustering Functors

In this section we define the category of “outputs” of clustering functors. To do this,
we recall the definition of a partition and dendrogram introduced in Section 1.1 (see
Definitions 1.1 and 1.7). We need additional structure that will allow us to define
categories based on partitions or dendrograms respectively.

Definition 3.2

Let f : X → Y be a map. For some partition P ∈ P(Y ) we define f∗(P ) ∈ P(X)
to be the partition such that

∀x, y ∈ X : x ∼f∗(P ) y ⇐⇒ f(x) ∼P f(y).

We call f∗(P ) the pullback partition of P w.r.t. f .

Example 3.3

Consider X := {a, b, c}, Y := {a, b} and f : X → Y such that

f(a) = a and f(b) = f(c) = b.

If we have a partition
Q := {{a}, {b}}

of Y , then f∗(Q) = {{a}, {b, c}} is the pullback partition of Q w.r.t f . Notice
how f∗(Q) consists of the preimages of the parts of Q.

We would like to combine the idea of a pullback partition defined above with the concept
of refinement from Definition 1.4.

23



Definition 3.4

Let f : X → Y be a map P ∈ P(X) and Q ∈ P(Y ). Then we write

P ⪯f Q

if P ⪯ f∗(Q) and say that P refines Q via f .

Example 3.5

Consider X := {a, b, c} and Y := {a, b} and f : X → Y as in Example 3.3. If we
have the partition

Q := {{a}, {b}}

of Y then we have already seen that f∗(Q) = {{a}, {b, c}}. Thus, for the partition

P := {{a}, {b}, {c}}

of X we have P ⪯f Q.

A useful fact to remember is that if id : X → X is the identity then

P ⪯id Q ⇐⇒ P ⪯ Q. (3.2.1)

With this, we can finally define the categories which will be the “outputs” of clustering
functors.

Definition 3.6: Classical Clustering Outputs[CM10b, Def. 3.2]

The category C of classical clustering outputs is defined by

Ob(C) := {(X, P ) | X finite non-empty and P ∈ P(X)}

and for all (X, P ), (Y, Q) ∈ Ob(C) we have the morphisms

MorC((X, P ), (Y, Q)) := {f : X → Y | P ⪯f Q}.

In short, we write (X, P ) ⪯f (Y, Q) for such a morphism. As before, the compo-
sition is given by composition of maps and the identity is the identity map.
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Definition 3.7: Hierarchical Clustering Outputs[CM10b, Def. 3.3]

Similarly, we define the category H of hierarchical clustering outputs, given by

Ob(H) :=
{

(X, θX)
∣∣∣ X finite non-empty

and θX : R≥0 → P(X) a dendrogram
}

and for all (X, θX), (Y, θY ) ∈ Ob(H) we have the morphisms

MorH((X, θX), (Y, θY )) := {f : X → Y | ∀r ∈ R≥0 : θX(r) ⪯f θY (r))} .

Again, we write (X, θX) ⪯f (Y, θY ) for such a morphism, and the composition
and identity are defined as before.

Another way of thinking about morphisms in C (or H) is that given (X, P ), (Y, Q) ∈ Ob(C)
a morphism f ∈ MorC((X, P ), (Y, Q)) is simply a map f : X → Y such that

∀x, y ∈ X : x ∼P y =⇒ f(x) ∼Q f(y).

3.3 Clustering Functors

We now have all the tools to define a clustering functor.

Definition 3.8: Clustering Functor [CM10b, Sec. 4.1]

Let M ∈ {Miso, Minj, Mgen} and A ∈ {C, H}. An M-functorial clustering func-
tor (or M clustering functor) is a functor from M to A

C : M −→ A

such that C factorizes the forgetful functors (see Definition 2.16). If A = C we say
that C is classical and otherwise if A = H we say it is hierarchical.

We can express the functoriality of a clustering functor C by the following commutative
diagram.

(X, d) (Y, d)

C(X, d) C(Y, d)

f

C C

⪯f

For a hierarchical clustering functor H we will use the simplified notation:

H(X, d; r) := (X, θX(r)).
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Moreover, for any r ∈ R≥0 a hierarchical clustering functor H induces a classical clus-
tering functor H( · ; r).

Remark 3.9

Recall the inclusions (3.1.1) and their induced functors. Given a clustering func-
tor on a larger category, say C : Mgen → C, this immediately induces clustering
functors on the smaller categories by pre-composition with the inclusion functors
Miso → Minj → Mgen. We will use the same symbol for the induced functors.

With this in mind, it makes sense to think of the categories Miso, Minj, Mgen as being
different levels of “structure” a clustering functor can “preserve” where Miso is the least
restrictive and Mgen the most restrictive.

Remark 3.10

We can extend the partial order ⪯ on P(X) to a partial order on clustering
functors. In particular, if C,D : M → C are classical clustering functors we write
C ⪯ D if

∀(X, d) ∈ Ob(M) : C(X, d) ⪯ D(X, d).

And in case of hierarchical clustering functors C,D : M → H we write C ⪯ D if

∀(X, d) ∈ Ob(M) ∀r ∈ R≥0 : C(X, d; r) ⪯ D(X, d; r).

3.3.1 The Vietoris-Rips Clustering Functor

A very natural example of a clustering functor is the so-called Vietoris-Rips clustering
functor. It can be interpreted as both a classical and hierarchical clustering functor. The
next two chapters will be dedicated to studying the unique properties of this clustering
functor.

Example 3.11: Vietoris-Rips Functor [CM10b, Def. 6.1]

Let δ > 0 and M ∈ {Miso, Minj, Mgen}. The classical Vietoris-Rips clustering
functor

Rδ : M → C

assigns to each metric space (X, d) ∈ M the partition (X, P ) where ∼P is the
equivalence relation generateda by:

∀x, y ∈ X : d(x, y) ≤ δ =⇒ x ∼P y. (3.3.1)

Let us now show that Rδ is indeed a clustering functor. For this, it is sufficient
to show that Rδ is Mgen-functorial. By Remark 3.9, functoriality over Miso and
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Minj will follow.

Let (X, d), (Y, d′) ∈ Ob(Mgen) and (X, P ) := Rδ(X) as well as (Y, Q) := Rδ(Y ).
Take any f ∈ MorMgen(X, Y ), recall that f is distance non-increasing. We have
to show that

P ⪯f Q.

Indeed, let x, y ∈ X such that d(x, y) ≤ δ. Then, we have

d′(f(x), f(y)) ≤ d(x, y) ≤ δ

and therefore f(x) ∼Q f(y). By taking the transitive closure we get that P ⪯f Q,
and we are done.

aGenerated is to be understood in the sense of Definition 1.2.

Since we take the transitive closure of the condition of (3.3.1) two points x, y ∈ X are
in the same cluster if and only if there is a path of points x = x1, x2, . . . , xn = y such
that d(xk, xk+1) ≤ δ for all k = 1, . . . , n − 1.

Remark 3.12

One could use a proper inequality in (3.3.1). The entire theory we are going
to present would still hold, provided we tweak certain definitions accordingly, in
particular, Definition 1.7.

By varying the parameter δ we can obtain the hierarchical Vietoris-Rips clustering func-
tor.

Example 3.13: Vietoris-Rips Functor [CM10b, Ex. 7.1]

For M ∈ {Mgen, Minj, Miso} we can define the hierarchical Vietoris-Rips cluster-
ing functor by

R : M → H

where for (X, d) ∈ Ob(M) and δ > 0 we set

R(X, d; δ) := Rδ(X, d).

Notice that since Rδ is a classical clustering functor and Rδ ⪯ Rδ′ for δ ≤ δ′, R
is indeed a hierarchical clustering functor.

To get an understanding for how the Vietoris-Rips functor works, consider the following
concrete example.
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Example 3.14

Consider the seven points {a, b, c, d, e, f, g} ⊂ R2 shown in the Figure 3.1. Rδ

creates the clusters {a, b, c} and {d, e, f, g}, drawn in red and blue.

δ/2 a

b

c

d ef

g

Figure 3.1: Clusters (red and blue) produced by the Vietoris-Rips functor Rδ

for on the points {a, b, c, d, e, f, g} ⊂ R2.

For clarity, we draw the circles with radius δ/2, i.e. two points are in the same
cluster if circles around them with radius δ/2 intersect.
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Chapter 4

Classification & Uniqueness of
Classical Clustering Functors

In this chapter all clustering functors are of the classical type. Our goal in this section
is to prove a uniqueness result for the Vietoris-Rips clustering functor Rδ from Example
3.11. We start by presenting a useful way of constructing clustering functors. Namely,
we show that any excessive clustering functor can be represented by a family of metric
spaces. This will give an alternative view on the Vietoris-Rips functor. Next we look at
the concept of scale invariance as presented in Theorem 1.21 and show that it is too re-
strictive for our purposes. After this, we are ready to tackle the task of characterizing the
Vietoris-Rips functor by defining properties such as surjectivity, spanning, and splitting.
Depending on the setting, it will turn out that these conditions are all equivalent and
unique to the Vietoris-Rips functor. This chapter is largely based on results presented
in [CM10b].
In this section we restrict ourselves to M ∈ {Minj, Mgen} as it turns out that Miso is
too general for our purpose (recall Remark 3.9). This is also the setting in which the
Vietoris-Rips functor has unique properties.

Remark 4.1: [CM10b, Thm. 6.1]

Let I denote a collection of representatives of isometry classes of finite metric
spaces. For each X ∈ I consider the isometry group Iso(X). This group acts
on P(X) via (ϕ, P ) 7→ ϕ∗(P ). Let ΞX ⊆ P(X) denote the set of fixed points of
this group action. A clustering functor C : Miso → C is uniquely determined by a
choice of PX ∈ ΞX for each X ∈ I.
On the one hand, it is clear that if (X, d) ∼= (Y, d′) are isometric then
C(X, d) = C(Y, d′). On the other hand, if (X, d) ̸∼= (Y, d′) then there exist no
morphisms between X and Y and thus C(X, d) and C(Y, d′) can be independently
chosen from ΞX and ΞY respectively.
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In some sense, Miso clustering functors can be thought of as any algorithm that “does not
consider any particular ordering” of the data points. This is the reason that algorithms
like single linkage clustering (with “tie-breaking”) are not even Miso-functorial (see
Section 1.2.2).

4.1 Excessive and Representable Clustering Functors

We will quickly talk about a simple yet, as we will see, very general way of constructing
clustering functors.

Definition 4.2: Excessive [CM10b, Def. 6.2]

Let M ∈ {Minj, Mgen}. A clustering functor C : M → C is called excessive if
for every (X, d) ∈ Ob(M) and (X, P ) = C(X, d) we have that for every block
Xα ∈ P :

C(Xα, d|Xα×Xα) = (Xα, {Xα})

Let Ω be a family of finite non-empty metric spaces. Such Ω’s can be used to construct
clustering functors. We think of Ω as being a collection of “patterns” and our clustering
algorithm as detecting these “patterns”.

Definition 4.3: Representable [CM10b, Sec. 6.2]

Let M ∈ {Minj, Mgen}. We define the clustering functor represented by Ω as

CΩ : M → C

where CΩ(X, d) = (X, P ) such that ∼P is the equivalence relation generated by

∀x, y ∈ X : ∃ω ∈ Ω ∃ϕ ∈ MorM(ω, (X, d)) s.t. {x, y} ⊂ im(ϕ) =⇒ x ∼P y.

Additionally, C is said to be representable if there exists some Ω such that C = CΩ.

Let us define a simple metric space that will come in handy on several occasions.

Definition 4.4

Let k ∈ N and δ > 0. Then, we define the k-simplex with size δ as the metric
space ∆k(δ) := (X, d) where X = {1, . . . , k} and the metric is given by

d(i, j) :=
{

0 if i = j

δ otherwise
∀i, j ∈ X.
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Example 4.5

With this notation we get a new way of defining the Vietoris-Rips functor, i.e.,

Rδ = C{∆2(δ)}.

Indeed, if (X, d) ∈ Mgen and x, y ∈ X then there exists a morphism
ϕ : ∆2(δ) → (X, d) with {x, y} ⊂ im(ϕ) if and only if d(x, y) ≤ δ.

The fact that Rδ is representable is not a coincidence as we will see in the remainder of
this section.

Remark 4.6: [CM10b, Rem. 6.3]

Notice that for (X, d) ∈ Ω we have CΩ(X, d) = (X, {X}).

This leads to an alternative characterization of CΩ.

Proposition 4.7

Let M ∈ {Minj, Mgen}. For any M-clustering functor

C : M → C

such that C(X, d) is trivial for all (X, d) ∈ Ω we have

CΩ ⪯ C.

Proof. Let (X, d) ∈ Ob(M) and (X, P ) = CΩ(X, d) and (X, Q) = C(X, d). We want to
show that P ⪯ Q.
Let x, y ∈ X such that the generating condition of P holds, i.e., there exists ω ∈ Ω and
ϕ ∈ MorM(ω, (X, d)) such that {x, y} ⊂ im(ϕ).
Since C(ω) is trivial by assumption and by functoriality of C(ω) ⪯ϕ C(X, d), we get that
x ∼Q y. Taking the transitive closure gives the statement.

Importantly, CΩ is the finest clustering functor such that CΩ(X, d) is trivial for all
(X, d) ∈ Ω. The existence of this minimal clustering functor follows from our initial
construction in Definition 4.3.

Theorem 4.8: [CM10b, Thm. 6.2]

Let M ∈ {Minj, Mgen}. A clustering functor C : M → C is representable if and
only if it is excessive.
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Proof. First we show that CΩ is excessive. So let (X, d) ∈ Ob(M) and (X, P ) = CΩ(X, d)
with Xα ∈ P .
Let x, y ∈ Xα such that there exists ω ∈ Ω and ϕ ∈ MorM(ω, (X, d)) such that
{x, y} ⊂ im(ϕ). But now since Xα is a block of P we must have that im(ϕ) ⊂ Xα.
Therefore, we can restrict ϕ, and we have ϕ|Xα ∈ MorM(ω, (Xα, d|Xα×Xα)). By tak-
ing the transitive closure, we conclude that CΩ(Xα, d|Xα×Xα) = (Xα, {Xα}) and CΩ is
excessive.
It remains to show that any excessive clustering functor is representable. For this con-
sider

Ω := {(Xα, d|Xα×Xα) : Xα ∈ P for (X, P ) = C(X, d) and (X, d) ∈ Ob(M)}.

We will show that C = CΩ. By Proposition 4.7 and since C is by definition trivial for all
(X, d) ∈ Ω we have that CΩ ⪯ C.
So it remains to show C ⪯ CΩ. To this end let (X, d) ∈ Ob(M) and (X, P ) = C(X, d)
and (X, Q) = CΩ(X, d). Assume that x, y ∈ X are such that x ∼P y. By definition there
exists ω ⊂ X and ω ∈ Ω such that {x, y} ⊂ ω. Consider the inclusion ι : ω ↪→ X which
is a morphism in MorMinj(ω, (X, d)). Thus by definition of CΩ, we have x ∼Q y.

4.2 Scale Invariant Clustering Functors

Let us quickly talk about scale invariance inspired by Kleinberg’s conditions from The-
orem 1.21, discussed in [CM10b, Sec. 6.6].

Definition 4.9: Scale Invariance

A clustering functor C : M → C is called scale invariant if for all λ > 0 and
(X, d) ∈ Ob(M) we have

C(X, d) = C(X, λ · d).

We now get two interesting distinct behaviors of scale invariant clustering functors. First
we consider the case of Mgen.

Proposition 4.10: [CM10b, Thm. 6.5]

Let C : Mgen → C be a scale invariant clustering functor then one of the following
holds:

1. C(X, d) is trivial for all (X, d) ∈ Ob(Mgen)

2. C(X, d) is discrete for all (X, d) ∈ Ob(Mgen)
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Proof. Let |X| ≥ 2 otherwise the statement is clear. Then for any x ̸= x′ in X we can
find δ, δ′ > 0 and morphisms in Mgen

∆2(δ) f−→ X
g−→ ∆2(δ′)

such that f(1) = x, f(2) = x′, g(x) = 1 and g(x′) = 2. By functoriality we get

C(∆2(δ)) ⪯f C(X, d) ⪯g C(∆2(δ′)).

Recall that by scale invariance we either have that C(∆2(δ)) is trivial or discrete for all
δ > 0. So since x ̸= x′ was arbitrary in X, we get that if

• C(∆2(δ)) is trivial, then C(X) is trivial;

• C(∆2(δ)) is discrete, then C(X) is discrete.

In the case of Minj we have a more interesting behavior.

Proposition 4.11: [CM10b, Thm. 6.6]

Let C : Minj → C be a scale invariant functor then there exists a k ∈ N ⊔ {∞}
such that for all (X, d) ∈ Ob(Minj):

• If |X| > k then C(X, d) is trivial.

• If |X| ≤ k then C(X, d) is discrete.

Notice that if k ∈ {0, ∞} then we recover the behavior from Mgen.

Proof. Notice that for n ≤ n′ there exists a morphism in Minj

∆n(δ) −→ ∆n′(δ).

Therefore, we get that
C(∆n(δ)) ⪯ C(∆n′(δ)).

On the other hand, any permutation of ∆n(δ) is also a morphism in Minj. This gives
us that C(∆n(δ)) is either discrete or trivial.
So together we get that there exists some k ∈ N ⊔ {∞} such that

• ∀n > k : C(∆n(δ)) is trivial.

• ∀n ≤ k : C(∆n(δ)) is discrete.
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By scale invariance, this does not depend on δ. We can now repeat the same argument
as in the previous proposition to get the statement1.

Following this, we immediately see that scale invariant clustering functors cannot be
surjective.

4.3 Surjective Clustering Functors

Another condition in Kleinberg’s impossibility theorem (Theorem 1.21) was richness
(Definition 1.19). We now extend this notion to clustering functors.

Definition 4.12: Surjective

A classical clustering functor C : M → C is called surjective if for every finite set
X and every P ∈ P(X) there exists a metric d on X such that

C(X, d) = (X, P ).

Proposition 4.13: [CM10b, Rem. 6.1]

The Vietoris-Rips functor Rδ is surjective.

Proof. Let X be a finite set and P a partition of X. Define the metric d on X by

d(x, y) :=


0 if x = y

δ x ̸= y and x ∼P y

2δ otherwise
.

It is straightforward to check that this is indeed a metric and that Rδ(X, d) = (X, P ).

Example 4.14

Let δ > 0 consider X := {a, b, c}. We would like to check that the Vietoris-Rips
functor is indeed able to reach any partition of X. Up to permutation, there are
three possible partitions of X:

• P1 = {{a, b, c}},

• P2 = {{a}, {b}, {c}},

• P3 = {{a, b}, {c}}.

1By using n = |X|, we can find morphisms ∆n(δ) → X → ∆n(δ′) in Minj.
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First, let us consider P1. For this we can define the metric d1 on X such that
d1(i, j) = δ for all i ̸= j. Then, Rδ(X, d1) = (X, P1). For P2 we can do something
similar and use the metric d2 such that d2(i, j) = 2δ for all i ̸= j, and we get
Rδ(X, d2) = (X, P2). Finally, for P3 we can use the metric d3 with d3(a, b) = δ
and d3(a, c) = d3(b, c) = 2δ. This gives us Rδ(X, d3) = (X, P3).

The following property of surjective clustering functors hints that surjectivity and the
Vietoris-Rips functor are closely related.

Definition 4.15: Spanning

We say that a clustering functor C : M → C is spanning if for every
(X, d) ∈ Ob(M) we can find λ0, λ1 > 0 such that

1. C(X, λ · d) is trivial for all 0 < λ ≤ λ0,

2. C(X, λ · d) is discrete for all λ ≥ λ1.

The concept of spanning clustering functors, a term which we introduced here, was
previously discussed by Carlsson and Mémoli as part of the assumptions of a theorem
[CM10b, Thm. 6.4].

Lemma 4.16

Let M ∈ {Minj, Mgen} and C : M → C be a surjective clustering functor. Then
C is spanning.

For the proof of this lemma we need to introduce the following notation.

Definition 4.17

The separation of a metric space (X, d) is given by

sep(X, d) := sep(X) :=
{

0 if |X| ≤ 1
inf{d(x, y) | x, y ∈ X, x ̸= y} otherwise

and the diameter

diam(X, d) := diam(X) := sup{d(x, y) | x, y ∈ X}.

Notice that for any metric space (X, d) with 1 < |X| < ∞ we have

0 < sep(X) ≤ diam(X) < ∞.

Proof of Lemma 4.16. Let (X, d) ∈ Ob(M), we assume that |X| > 1 otherwise the
statement follows directly. Since C is surjective there exists metrics d0, d1 on X such
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that C(X, d0) is trivial and C(X, d1) is discrete.

1. We take
λ0 := sep(X, d0)

diam(X, d) .

Notice that for any 0 < λ ≤ λ0 we have that diam(X, λ · d) ≤ sep(X, d0). Because
of this the function

f : (X, d0) −→ (X, λ · d),
x 7−→ x

is distance non-increasing (and injective), i.e. f ∈ MorM((X, d0), (X, λ · d)). By
functoriality of C, it follows that C(X, d0) ⪯f C(X, λ·d). But, since f is the identity
on the set X we have C(X, d0) ⪯ C(X, λ · d) by (3.2.1). Therefore, C(X, λ · d) must
be trivial.

2. An analogous argument works if we consider λ ≥ λ1 for

λ1 := diam(X, d1)
sep(X, d)

and the function

f : (X, λ · d) −→ (X, d1),
x 7−→ x.

This concludes the proof since we have C(X, λ · d) ⪯ C(X, d1) for the same reason
as above.

4.4 Splitting Clustering Functors

As observed by [CM10b, Thm. 6.4], a characterizing property of the Vietoris-Rips functor
is its behavior on the space ∆2(λ). In particular, we have that Rδ(∆2(λ)) is trivial if
λ ≤ δ and discrete otherwise. This motivates the following definition.

Definition 4.18: Splitting

A clustering functor C : M → C is called splitting at δ0 > 0 if we have

1. C(∆2(δ)) is trivial for all δ ≤ δ0,

2. C(∆2(δ)) is discrete for all δ > δ0.

We can now formulate two results that show to what extent splitting is a characterizing
property of the Vietoris-Rips functor for M ∈ {Minj, Mgen} [CM10b, Thm. 6.4].
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Proposition 4.19

Let C : Minj → C be a clustering functor that splits at δ > 0. Then we have

Rδ ⪯ C.

Proposition 4.20

Let C : Mgen → C be a clustering functor. Then C is splitting at δ > 0 if and only
if

C = Rδ.

Proof of Proposition 4.19. Let (X, d) ∈ Ob(Minj) with (X, P ) = C(X, d) and x ̸= y in X
with d(x, y) ≤ δ. Then there is a map f ∈ MorMinj(∆2(δ), (X, d)) with {x, y} = im(f).
Since C(∆2(δ)) is trivial we have by functoriality that x ∼P y.
Taking the transitive closure we get that Rδ(X, d) ⪯ P and the statement follows since
(X, d) ∈ Ob(Minj) was arbitrary.

Proof of Proposition 4.20. For the converse we notice that clearly Rδ is splitting at δ.

Let C be splitting at δ. In view of the previous proposition it remains to show that
C ⪯ Rδ.
Let (X, d) ∈ Ob(Mgen) with (X, P ) = C(X, d) and (X, R) = Rδ(X, d). We show that
P ⪯ R, more precisely, we show that for all x, y ∈ X we have x ̸∼R y =⇒ x ̸∼P y. For
this we define

δ0 := min{d(x, y) | x, y ∈ X and x ̸∼R y}.

Let now x, y ∈ X such that x ̸∼R y. Then we can find a map f ∈ MorMgen((X, d), ∆2(δ0))
such that f(x) ̸= f(y). One particular way to construct such an f would be to send
every x′ ∼R x to one point in ∆2(δ0) and every x′ ̸∼R x to the other point. By the way
we defined δ0, this map is in fact distance non-increasing.
Since δ0 > δ and C is splitting we get f(x) ̸∼ f(y) so by functoriality we have x ̸∼P y.
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Example 4.21

In some sense, the two previous propositions are the best we can get. For δ > 0
consider the clustering functor R̄δ : Minj → C defined by

R̄δ(X, d) := R δ|X|
2

(X, d).

R̄δ is splitting at δ.

To see that R̄δ is indeed a clustering functor consider metric spaces
(X, d), (Y, d′) ∈ Ob(Minj) and a morphism f ∈ MorMinj((X, d), (Y, d′)). By in-
jectivity of f we immediately get that |X| ≤ |Y |. And we have

R̄δ(X, d) = R δ|X|
2

(X, d)
(1)
⪯ R δ|Y |

2
(X, d)

(2)
⪯f R δ|Y |

2
(Y, d′) = R̄δ(Y, d′),

where (1) follows from the fact that |X| ≤ |Y | and (2) follows from the fact that
Rδ′ is Minj functorial for any δ′ > 0. Therefore, R̄δ is an Minj clustering functor.

Using a similar argument to the one we used to show that Rδ′ is surjective, we
can also show that R̄δ is surjective.

4.5 Uniqueness of the Vietoris-Rips Functor

As previously mentioned, the Vietoris-Rips functor is surjective. In this section we
present the new result that under certain technical assumptions the Vietoris-Rips is the
unique surjective Mgen clustering functor.
In Chapter 5 we will discuss the implications this has on Kleinberg’s theorem (Theorem
1.21).

Definition 4.22: Regularity

A clustering functor C : M → C is regular if for all (X, d) ∈ Ob(M) there exists
some λ ∈ (0, 1) such that

C(X, d) = C(X, λ · d).

Notice that Rδ is regular. The reason we ask for λ ∈ (0, 1) and not λ ∈ (1, ∞) is that
this corresponds to the regularity condition 1.8 for dendrograms.

Remark 4.23

It might seem overly restrictive to ask for regularity. However, if we take some
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(X, d) ∈ Ob(M) and consider the function

λ 7→ C(X, λ · d),

which is piecewise constant and takes only finitely many values. Regularity ensures
that this function is constant on intervals of the form (a, b] for some a < b.
This ensures compatibility with the regularity condition for dendrograms from
Definition 1.7.

Assuming regularity and building on Lemma 4.16, we can now finally show that the
Vietoris-Rips functor is the only surjective regular Mgen clustering functor.

Theorem 4.24: Uniqueness Theorem (Classical)

Let C : Mgen → C then the following are equivalent:

• C is surjective and regular,

• C = Rδ for some δ > 0.

For the proof of this theorem we use the following lemma.

Lemma 4.25

Let C : M → C be a surjective regular clustering functor. Then C is splitting at
some δ > 0.

Proof of Lemma. Let λ ≥ λ′, we consider the identity

id : (X, λ · d) −→ (X, λ′ · d),
x 7−→ x,

which is distance non-increasing, so by functoriality and by refinement via the identity
(3.2.1) we have

C(X, λ · d) ⪯id C(X, λ′ · d) =⇒ C(X, λ · d) ⪯ C(X, λ′ · d) (4.5.1)

for all λ ≥ λ′.
Consider now (X, d) := ∆2(λ). It is clear that

R≥0 −→ P(X),
λ 7−→ C(∆2(λ))

is piecewise constant and can take at most two values (either discrete or trivial), but by
Lemma 4.16 this function takes exactly two values and by (4.5.1) this function is also
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monotonically decreasing (with respect to ≤ on R≥0 and ⪯ on P(X)). So we can find
some δ0 > 0 such that C(∆2(δ)) is trivial and C(∆2(δ′)) is discrete for all δ < δ0 < δ′.
As for the value at δ0 we recall Remark 4.23 and conclude that C(∆2(δ0)) is trivial.
Therefore, C is splitting at δ0.

Proof of Theorem. For the first implication, recall that in Proposition 4.13 we have
already shown that Rδ is surjective. Moreover, it is also regular.
Assuming that C is regular and surjective, from the above lemma we get that C is
splitting at some δ > 0 so by Proposition 4.20 we have that C = Rδ.
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Chapter 5

Hierarchical Clustering Functors

In this chapter, we first establish a link between scaling hierarchical clustering functors
and regular spanning classical clustering functors. With this, we can then tackle the
modified Kleinberg conditions presented in [CM10b, Sec. 7.3.1]. We prove that these
conditions uniquely characterize the hierarchical Vietoris-Rips clustering functor R from
Example 3.13. Carlsson and Mémoli already proved a similar result where Kleinberg’s
assumption of surjectivity was replaced by what we termed splitting [CM10a, Thm. 18].
Similar to classical clustering functors, we also want to define some properties for hier-
archical clustering functors.

Definition 5.1: Surjective

A hierarchical clustering functor H is said to be surjective if for every
(X, θ) ∈ Ob(H) there exists a metric d on X such that H(X, d) = (X, θ).

Remark 5.2

Notice that given a surjective hierarchical clustering functor H, any t ∈ R≥0
induces a surjective classical clustering functor

Ct(X, d) := H(X, d; t).

To discuss a similar notion as scale invariance we need to introduce the following functor.

Definition 5.3: Shift Functor [CM10b, Ex. 4.3]

We define the shift functor sλ : H → H for some λ > 0. Given (X, θ) ∈ Ob(H) we
set

sλ(X, θ) := (X, θλ)
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where θλ(r) := θ( r
λ) for all r ∈ R≥0. By checking the condition on morphisms in

Definition 3.7, we see that this induces a functor.

Instead of scale invariance we can ask that this shift functor behaves nicely with scaling
of the metric.

Definition 5.4: Scaling

Let M ∈ {Miso, Minj, Mgen}. A hierarchical clustering functor H : M → H is
called scaling if for all (X, d) ∈ Ob(M) and λ > 0 we have

H(X, λ · d) = sλH(X, d).

In other words, H is scaling if for all r ∈ R≥0, λ > 0 and (X, d) ∈ Ob(M) we have

H(X, λ · d; r) = H(X, d; rλ−1).

Proposition 5.5: [CM10b, Sec. 7.3.1]

The Vietoris-Rips functor R : M → H is surjective and scaling.

Proof. Let X be a finite set and θ : R≥0 → P(X) be a dendrogram. For any x, y ∈ X
we can define

d(x, y) := inf{r ∈ R≥0 | x ∼θ(r) y}.

Using this we define the metric:

d(x, y) := inf
{

n−1∑
k=1

d(xk, xk+1)
∣∣∣∣∣ ∀n ∈ N ∀x = x1, . . . , xn = y

}
.

It is easy to verify that R(X, d) = (X, θ). Thus, R is surjective. The fact that R is
scaling follows directly from its definition.

Extending the Vietoris-Rips functor to a hierarchical clustering functor can be done
more generally for any regular spanning classical clustering functor.

Proposition 5.6

Let M ∈ {Mgen, Minj}. Then there exists a one to one correspondence between
scaling hierarchical clustering functors and regular spanninga classical clustering
functors.

More precisely given a regular spanning classical clustering functor C : M → C
there exists a unique scaling hierarchical clustering functor HC : M → H such that
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we have
HC(X, d; 1) = C(X, d)

for all (X, d) ∈ Ob(M). Moreover, any scaling hierarchical clustering functor is
of this form.

aRecall Definitions 4.22 and 4.15.

Proof. Given a regular spanning classical clustering functor C : M → C we can define

HC(X, d; r) := C(X, r−1 · d)

for all (X, d) ∈ Ob(M) and r ∈ R≥0.
To show that this is indeed a hierarchical clustering functor it remains to show that
HC(X, d; r) is a dendrogram (recall Definition 1.7).

1. Since for r ≤ r′ the identity map id : (X, r−1 · d) → (X, r′−1 · d) is distance
non-increasing and thus by functoriality of C, we have

HC(X, d; r) = C(X, r−1 · d) ⪯ C(X, r′·d) = HC(X, d; r′).

2. Since by assumption C is spanning we can find r, s ∈ R≥0 such that

HC(X, d; r) := C(X, rd) and HC(X, d; s) := C(X, sd)

are trivial and discrete respectively.

3. For this we use the regularity of C and recall Remark 4.23.

It is clear that HC is scaling since for all r ∈ R≥0, λ > 0 and (X, d) ∈ Ob(M) we have

HC(X, λ · d; r) = C(X, r−1λ · d) = HC(X, d; rλ−1).

On the other hand, given any scaling hierarchical clustering functor H : M → H we can
take C(X, d) := H(X, d; 1) which is a regular spanning classical clustering functor such
that H = HC.

Example 5.7

Using this notation, we get
R = HR1 .

Moreover, for λ > 0 and the shift functor sλ we get that

sλR = sλHR1 = HR1/λ
.
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5.1 Kleinberg’s Conditions

Carlsson and Mémoli noticed that Kleinberg’s impossibility conditions can be interpreted
in the context of hierarchical clustering functors [CM10b, Sec. 7.3.1].

Definition 5.8: Modified Kleinberg Conditions [CM10b, Sec. 7.3.1]

We say that a hierarchical clustering H : M → H functor fulfills the modified
Kleinberg conditions if all the following holds:

1. H is Mgen functorial (i.e. M = Mgen),

2. H is surjective,

3. H is scaling.

We have seen in the above statements that R fulfills the modified Kleinberg conditions.
Using the uniqueness result of Theorem 4.24, we can now show that the modified Klein-
berg conditions uniquely characterize the Vietoris-Rips functor.

Theorem 5.9: Uniqueness Theorem (Hierarchical)

Let H : M → H be a hierarchical clustering functor that fulfills the modified
Kleinberg conditions. Then we have

H = sδR

for some δ > 0.

Proof. Let H : M → H be a hierarchical clustering functor fulfilling the modified Klein-
berg conditions. In particular, we have M = Mgen.
By proposition 5.6, there exists a regular spanning classical functor C : Mgen → C such
that H = HC. Since H is surjective and by Remark 5.2, we have that C is also surjective.
Applying Theorem 4.24, we see that C = Rλ for some λ > 0.
Recall Example 5.7. Using δ := 1/λ, we can then see that

H = HRλ
= sδHR1 = sδR.
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Appendix A

Notation

R≥0 the set of non-negative real numbers
(X, d) a (usually finite non-empty) metric space
sep(X) the separation of a metric space X

diam(X) the diameter of a metric space X

P(X) the set containing all partitions of X

P ∈ P(X) a partition of a set X

∼P equivalence relation corresponding to the partition P ∈ P(X)
θ : R≥0 → P(X) a dendrogram on the set X

⪯, ⪯f refinement and refinement via f

M a category of metric spaces M ∈ {Mgen, Minj, Miso}
C the category of outputs of classical clustering functors
H the category of outputs of hierarchical clustering functors
C a classical clustering functor C : M → C
Rδ the Vietoris-Rips classical clustering functor at scale δ > 0
CΩ the classical clustering functor represented by Ω
H a hierarchical clustering functor H : M → H
HC the scaling hierarchical clustering functor corresponding to C

R the Vietoris-Rips hierarchical clustering functor
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