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Abstract

The magnitude of finite metric spaces is a cardinality-like invariant
counting the ‘effective number of points’ of a metric space. By equipping
graphs with the shortest path metric, we can view them as metric
spaces and thus consider their magnitude. We give several examples
of magnitude of finite metric spaces and graphs, we prove how the
magnitude behaves with respect to the cartesian product of metric
spaces. Since the shortest-path metric is integer-valued, we can also
define magnitude of graphs as a formal power series. The magnitude of
graphs satisfies cardinality-like properties such as an inclusion-exclusion
principle and additivity with respect to disjoint unions. These properties
can also be proven using the magnitude homology of graphs, which
categorifies the magnitude. We prove several properties of magnitude
homology, including a Mayer-Vietoris type theorem, which implies the
inclusion-exclusion principle for magnitude. Furthermore, we study
a type of graphs called diagonal graphs, for which the coefficients of
the magnitude alternate in sign and prove that joins are diagonal. We
provide several computer calculated examples of magnitude homology
using our code written for SageMath.
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Chapter 1

Introduction

The magnitude of finite metric spaces is a cardinality-like invariant intro-
duced in [5] by Leinster. The magnitude can be interpreted as counting the
‘effective number of points’ of the space, which is illustrated by the following
example. Consider a metric space (A, d) with 3 points and distances accord-
ing to Figure 1.1 below. We calculate the magnitude of A with the help of
the so-called symmetry matrix:

ZA =

 1 e−10 e−10

e−10 1 e−0.1

e−10 e−0.1 1

 .

The entry of the symmetry matrix corresponding to x, y ∈ A is given by
e−d(x,y). The matrix ZA is invertible and in this special case the magnitude of
(A, d) is given by the sum over all entries of the inverse Z−1

A . This yields

|A| =
3

∑
i=1

3

∑
j=1

(Z−1
A )(i, j) = 2.05

up to 2 decimals. We can also scale the space (A, d) by a factor t > 0 and
compute the magnitude of every scaled version. This procedure produces a
function in t, which we have plotted in Figure 1.2. We call this the magnitude
function of the metric space A. For small t, meaning the space is viewed
from far away, all three points are close together and therefore the magnitude

a

b

c
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10
0.1

Figure 1.1: Schematic figure of the metric space (A, d), indicating the distances between the
points.
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Figure 1.2: Magnitude function of the metric space (A, d).

is close to 1, as there is only 1 ‘effective point’. After zooming in a bit, the
point a can be seen separately from the other two points, thus the magnitude
is around 2. When t is getting larger, all three points can be seen individually
and the magnitude approaches 3. Indeed, for every finite metric space, the
magnitude approaches the number of points of that space as t goes to infinity.

Magnitude first appeared in [9] by Solow and Polasky in 1994. They
studied biological diversity and called what we define as magnitude the
‘effective number of species’. The definition of magnitude of a metric space
comes from a more general definition of magnitude of enriched categories,
which is explained in [5], but is beyond the scope of this thesis.

Instead, we define the magnitude of a matrix and directly introduce
magnitude for finite metric spaces using symmetry matrices. In [6], Leinster
generalized the notion of magnitude to the setting of graphs. By viewing
graphs as metric spaces on their vertex set with the shortest path distance,
one can apply the definition of magnitude for finite metric spaces. The
additional property that the shortest path distance is integer-valued can be
used to define the magnitude of a graph as a power series in a formal variable
q, or equivalently, as a rational function in the formal variable q. We denote
this magnitude of a graph G by |G|q. The magnitude for graphs also satisfies
cardinality-like properties, Leinster proved in [6] that the magnitude of
graphs is additive with respect to the disjoint union of graphs. Furthermore,
let G and H be two graphs, then we can take their cartesian product G □ H,
in analogy to the cardinality of the cartesian product of sets, the magnitude
satisfies

|G □ H|q = |G|q · |H|q, (1.1)

and with some additional assumptions on the graphs, the following inclusion-
exclusion principle for the magnitude holds:

|G ∪ H|q = |G|q + |H|q − |G ∩ H|q.
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Leinster also gave an example of two connected graphs that share the same
magnitude, but have different Tutte polynomials, showing that the magnitude
is not derived by this previously known graph invariant but contains other
information.

Hepworth and Willerton introduced the magnitude homology of graphs
in [3]. The magnitude homology of a graph G is a bigraded homology theory
denoted by MH∗,∗(G). It categorifies the magnitude in a sense that the graded
Euler characteristic of the magnitude homology equals the magnitude:

∑
k,l≥0

(−1)k rank(MHk,l(G)) · ql = |G|q. (1.2)

By applying this relation to properties of the magnitude homology, Hepworth
and Willerton were able to prove the above properties of the magnitude found
by Leinster. In particular, they showed that

MH∗,∗(G ⊔ H) ∼= MH∗,∗(G)⊕ MH∗,∗(H),

which implies the additivity of magnitude with respect to disjoint unions.
Equation (1.1) about the magnitude of the cartesian product of graphs can be
deduced by a Künneth type theorem for magnitude homology. Furthermore,
Hepworth and Willerton proved a Mayer-Vietoris type theorem for magnitude
homology that relates the magnitude homology of a union of graphs G and
H (with some further assumptions) to the magnitude homology of G, H, and
the intersection G ∩ H. Concretely, they showed that there is a split short
exact sequence

0 → MH∗,∗(G ∩ H) → MH∗,∗(G)⊕ MH∗,∗(H) → MH∗,∗(G ∪ H) → 0,

which recovers the inclusion-exclusion principle for the magnitude. By
considering Equation (1.2), one can deduce that for a graph G where all
magnitude homology groups MHk,l(G) are trivial for k ̸= l, the coefficients
of the magnitude alternate in sign. This can be seen for example in the
magnitude of the triangle, which is

|K3|q = 3 − 6q + 12q2 − 24q3 + 48q4 − 96q5 + . . .

Such graphs are called diagonal graphs and Hepworth and Willerton proved
that the join of two non-empty graphs is diagonal. This is true, for example,
of the complete graphs, which are the iterated joins of one-vertex graphs.

The main portion of this thesis is dedicated to the paper ‘Categorifying
The Magnitude of a Graph’ by Hepworth and Willerton [3] and proving its
statements in detail. Furthermore, we have written our own code to compute
magnitude homology of graphs using SageMath.
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In Chapter 2 of this thesis, we introduce magnitude for matrices and
finite metric spaces. Using the shortest path metric on graphs, we study
the magnitude of graphs. In Chapter 3, we define magnitude homology
of graphs and show how it categorifies the magnitude. Furthermore, we
compute the magnitude homology of disjoint unions and prove a Mayer-
Vietoris type theorem. Finally, we study diagonal graphs and prove that all
joins of non-empty graphs belong to this type of graphs.
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Chapter 2

Magnitude

The goal of this chapter is to define magnitude of graphs, so that we can
later establish a connection between magnitude and the magnitude homology.
We do this by first defining magnitude of matrices and finite metric spaces.
It is also possible to approach magnitude via enriched categories. This is
explained, for example, in [7, Section 5.2.3.]

Notation: To avoid confusion with notation, we denote throughout the thesis
the cardinality of a finite set A by #A, as the standard notation |A| denotes
the magnitude.

2.1 The Magnitude of a Matrix

Let k be a commutative semiring (this is a ring with a multiplicative unity,
but were we do not require every element to have an additive inverse) and
let A be a finite set. A matrix Z ∈ kA×A is to be understood as an #A × #A
square matrix over k indexed by the elements of the set A. For any two
elements a, b ∈ A, we write Z(a, b) for the entry of Z indexed by (a, b).
Furthermore, we denote by e ∈ kA the column vector e = (1, . . . , 1)T where
each entry is 1. We mostly follow [7, Section 5.2.1.] for this section.

Definition 2.1. A weighting on a matrix Z ∈ kA×A is a column vector w ∈ kA

such that Zw = e. Furthermore, we say a weighting is positive, if all its entries are
positive. Analogously we define negative and non-negative weightings.

Definition 2.2. A coweighting on a matrix Z ∈ kA×A is a row vector v ∈ kA

such that vZ = eT.

By the definition of matrix multiplication, a column vector w ∈ kA is a
weighting on a matrix Z ∈ kA×A if

∀a ∈ A ∑
b∈A

Z(a, b)w(b) = 1.
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2.1. The Magnitude of a Matrix

Analogously, a row vector v ∈ kA is a coweighting on a matrix Z ∈ kA×A if

∀b ∈ A ∑
a∈A

v(a)Z(a, b) = 1.

Furthermore, we observe that for any matrix Z ∈ kA×A, and w and v a
weighting and coweighting on Z respectively, then

∑
a∈A

w(a) = eTw = vZw = ve = ∑
a∈A

v(a).

That is, if w is a weighting on a matrix Z, and v is a coweighting on the same
matrix, then the sum of the entries of w is equal to the sum of the entries of
v. This allows us to make the following definition.

Definition 2.3. For a matrix Z ∈ kA×A that admits both a weighting and a
coweighting, let w be any weighting on Z and v be any coweighting on Z. The
magnitude |Z| of Z is the common quantity

|Z| = ∑
a∈A

w(a) = ∑
a∈A

v(a).

Remark 2.4. When the matrix Z ∈ kA×A is invertible, it has a unique weighting
w = Z−1e and a unique coweighting v = eTZ−1. In this case, the magnitude is the
sum of the entries of the inverse Z−1:

|Z| = ∑
a∈A

w(a) = ∑
a∈A

(Z−1e)(a) = ∑
a∈A

∑
b∈A

Z−1(a, b).

Not every matrix has a weighting and thus a magnitude, consider for
example the matrix that has 0 as every entry. However, the following propo-
sition gives us a class of matrices that do possess magnitude, namely the
positive definite matrices.

Proposition 2.5 ([5, Proposition 2.4.3]). For a positive definite matrix Z ∈ RA×A,
the magnitude |Z| is defined and equal to

|Z| = sup
0 ̸=x∈RA

(∑a∈A x(a))2

xTZx
,

and the supremum is attained exactly when x is a non-zero scalar multiple of the
unique weighting on Z.

Proof. Since Z is positive definite, we can use the Cauchy-Schwarz inequality,
which states that for any two row vectors x, w ∈ RA

(xTZx)(wTZw) ≥ (xTZw)2,
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2.2. The Magnitude of a Finite Metric Space

with equality if and only if x and w are linearly dependent, that is, if one
is a non-zero scalar multiple of the other. Any positive definite matrix is
invertible, so by Remark 2.4 we can take w ∈ RA to be the unique weighting
on Z to rewrite the left-hand-side of the Cauchy-Schwarz inequality as

(xTZx)(wTZw) = (xTZx)(wTe) = (xTZx) ∑
a∈A

w(a).

The right-hand-side of the Cauchy-Schwarz equation is

(xTZw)2 = (xTe)2 =

(
∑
a∈A

x(a)

)2

.

Combining these two equalities and using that for all x ∈ RA\{0} the term
xTZx > 0 because Z is positive definite, we conclude

|Z| = ∑
a∈A

w(a) ≥ (∑a∈A x(a))2

(xTZx)

with equality if and only if x is a scalar multiple of the weighting w.

2.2 The Magnitude of a Finite Metric Space

In this section, we define the magnitude of finite metric spaces. We also
provide results that support the interpretation of the magnitude of a finite
metric space as a ‘measure of the effective number of points’ of that space,
as well as some introductory examples of magnitude and general properties.
We consider metric spaces in which the metric is allowed to take the value ∞,
because the metric we work with in the following chapters has this property.
We follow [7, Section 5.2.4.].

Definition 2.6. The magnitude |A| of a finite metric space (A, d) is the magni-
tude of the matrix Z = ZA ∈ RA×A whose entry corresponding to (a, b) ∈ A × A
is given by

ZA(a, b) = e−d(a,b),

if ZA has a magnitude. The matrix ZA is called the symmetry matrix.

Definition 2.7. A column vector w ∈ RA is a weighting for the finite metric
space (A, d) if w is a weighting on its symmetry matrix, so if ZAw = e.

Note that the matrix ZA of a finite metric space (A, d) is symmetric. Thus,
if w ∈ RA is a weighting for (A, d), then

wTZA = wTZT
A = (ZAw)T = eT,

so the transpose wT is a coweighting on ZA. Hence, if a weighting for the
metric space (A, d) exists, then ZA admits both a weighting and a coweighting
and the following is well defined.
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2.2. The Magnitude of a Finite Metric Space

Definition 2.8. For a finite metric space (A, d) that admits a weighting, the
magnitude of (A, d) is

|A| = |ZA| = ∑
a∈A

w(a)

for any weighting w of A.

There are metric spaces that do not possess a weighting and hence do not
have a magnitude, see Example 2.25, which we will discuss later.

Example 2.9 ([5, Examples 2.1.1.]). Let us look at some simple metric spaces and
their magnitude.

i) The magnitude of the empty space is 0 because its symmetry matrix is the
empty matrix. The one point space has magnitude 1, its symmetry matrix is
(1).

ii) Let (A, d) be the metric space consisting of precisely two points a1 and a2 that
are at distance x > 0 apart from each other. To calculate the magnitude of A,
we have to find its symmetry matrix ZA, which is

ZA =

(
1 e−x

e−x 1

)
.

This matrix is invertible with inverse

Z−1
A =

1
1 − e−2x

(
1 −e−x

−e−x 1

)
.

By Remark 2.4, the magnitude of A is

|A| = |ZA| = ∑
1≤i,j≤2

Z−1
A (i, j) =

2 − 2e−x

1 − e−2x = 1 + tanh
( x

2

)
.

In Figure 2.1 we plot the magnitude as a function of the distance x between the
two points. We can see that for larger x, the magnitude is close to 2, which is
the number of points in A. If x is small, the magnitude is closer to 1 because in
that case the two points are not far apart from each other, so they do not appear
as separate points but more as one ‘blurry’ point. In this sense, magnitude
captures the effective number of points of a finite metric space.

The next results provide us with some metric spaces that do have magni-
tude. The first proposition states that if we scale up a space big enough, it
will have a magnitude.

Proposition 2.10 ([8, Theorem 2]). Let (A, d) be a finite metric space with n
points and suppose that for all a, b ∈ A with a ̸= b the distance

d(a, b) > log(n − 1).

Then A possesses a weighting and therefore its magnitude |A| is defined.
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2.2. The Magnitude of a Finite Metric Space

0 2 4 6

1

1.5

2

x

|ZA|

Figure 2.1: The magnitude of the two point space.

Proof. First, note that the statement is true for n = 0 and n = 1, as we have
seen in Example 2.9 above. Next, consider n ≥ 2. The diagonal entries of the
symmetry matrix ZA are all 1 and for any 1 ≤ i ̸= j ≤ n we use the condition
from the statement to deduce

ZA(i, j) = e−d(i,j) < e− log(n−1) =
1

n − 1
.

Consider any symmetric matrix Z ∈ Rn×n satisfying these conditions, mean-
ing for all i = 1, . . . , n the entry Z(i, i) = 1 and for any 1 ≤ i ̸= j ≤ n the
matrix satisfies 0 ≤ Z(i, j) < 1

n−1 . By Proposition 2.5, it is enough to show
that Z is positive definite. Let x ∈ Rn be any column vector, then

xTZx =
n

∑
i=1

x(i)Z(i, i)x(i) + ∑
1≤i ̸=j≤n

x(i)Z(i, j)x(j)

=
n

∑
i=1

x(i)2 + ∑
1≤i ̸=j≤n

x(i)Z(i, j)x(j). (2.1)

We need to show that xTZx ≥ 0 with equality if and only if x = 0, so let us
now bound the second sum in (2.1) from below. The negative summands can
be written as x(i)Z(i, j)x(j) = −Z(i, j)|x(i)||x(j)| because all entries of Z are
non-negative by assumption, thus we obtain the estimate

x(i)Z(i, j)x(j) > − 1
n − 1

|x(i)||x(j)| (2.2)

for the negative summands. Note that the positive summands satisfy the
lower bound in (2.2) as well. Using this estimation and some calculations, we

9



2.2. The Magnitude of a Finite Metric Space

obtain for all x ∈ Rn

xTZx ≥
n

∑
i=1

x(i)2 − 1
n − 1 ∑

1≤i ̸=j≤n
|x(i)||x(j)|

=
1

2(n − 1) ∑
1≤i ̸=j≤n

(|x(i)|2 + |x(j)|2)− 1
n − 1 ∑

1≤i ̸=j≤n
|x(i)||x(j)|

=
1

2(n − 1) ∑
1≤i ̸=j≤n

(|x(i)| − |x(j)|)2 ≥ 0.

It is left to show that equality holds if and only if x = 0. The last inequality
in the calculation above is an equality if and only if |x(1)| = · · · = |x(n)| = α
for some α ∈ R≥0. The first lower bound is an equality if and only if there are
no positive terms that we bounded from below and, because Z(i, j) < 1

n−1 is
a strict inequality, if and only if there are no negative terms. This leaves us
with α = 0 as the only possibility, which shows that Z is positive definite.

2.2.1 Homogeneous Metric Spaces

In this subsection we introduce a condition that ensures a metric space to
have magnitude. Concretely, we look at homogeneous finite metric spaces.

Definition 2.11. A metric space (A, d) is homogeneous if its isometry group acts
transitively on the points of A.

Proposition 2.12 ([5, Proposition 2.1.5]). A finite homogeneous metric space
(A, d) with n points, and any fixed point a0 ∈ A has a positive weighting and its
magnitude is given by

|A| = n
∑a∈A e−d(a,a0)

=
n2

∑a,b∈A e−d(a,b)
.

Proof. We will give a concrete weighting for A using the following claim.

Claim: For any x ∈ A, the sum S(x) = ∑a∈A ZA(x, a) is independent of
x ∈ A.

Proof of Claim: Let x, y ∈ A be any two points. Because A is homogeneous,
there exists an isometry f : A → A such that f (x) = y. Thus,

S(x) = ∑
a∈A

e−d(x,a) = ∑
a∈A

e−d( f (x), f (a)) = ∑
a∈A

e−d(y, f (a)) = ∑
b∈A

e−d(y,b) = S(y).

■
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2.2. The Magnitude of a Finite Metric Space

The claim allows us to write S = ∑a∈A e−d(x,a) for any x ∈ A instead of
S(x). Consider the column vector w ∈ RA given by w(b) = 1/S for all b ∈ A.
We show that w is a weighting for A. Indeed, for any a ∈ A we have

∑
b∈A

ZA(a, b)w(b) = ∑
b∈A

e−d(a,b) 1
S
=

1
S
· S = 1.

Using the weighting w to calculate the magnitude of A yields

|A| = ∑
a∈A

w(a) =
n
S
=

n
∑a∈A e−d(a,a0)

,

which proves the first equality. Note also that w(a) = 1
S > 0 for every a ∈ A,

so the weighting is positive, and

n
S
=

n2

∑a∈A S
=

n2

∑a∈A ∑b∈A e−d(a,b)
.

2.2.2 Cartesian Product of Metric Spaces

The cardinality of sets is multiplicative with respect to the Cartesian
product. Since magnitude is a cardinality-like invariant, we would expect
that it behaves similarly. Indeed, in this short subsection we prove such a
relation.

Definition 2.13. Let (A, dA) and (B, dB) be two metric spaces. We denote by
A ×1 B the metric space consisting of the set A × B equipped with the metric d
given by

∀(a, b), (a′, b′) ∈ A × B d((a, b), (a′, b′)) = dA(a, a′) + dB(b, b′).

The map d in the definition above is indeed a metric for A × B, which
can immediately be verified using that dA and dB are metrics for A and B
respectively.

Proposition 2.14. Suppose that (A, dA) and (B, dB) are finite metric spaces with
weightings w ∈ RA and v ∈ RB respectively. A weighting x ∈ RA×B for the space
(A ×1 B, d) is given by

∀(a, b) ∈ A × B x(a, b) = w(a) · v(b)

and the magnitude is |A ×1 B| = |A| · |B|.
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2.2. The Magnitude of a Finite Metric Space

Proof. We verify by direct calculations that x ∈ RA×B from the statement is a
weighting. Let (a, b) ∈ A × B be any point, then

∑
(c,d)∈A×B

ZA×1B((a, b), (c, d)) · x(c, d) = ∑
(c,d)∈A×B

e−d((a,b),(c,d))w(c)v(d)

= ∑
(c,d)∈A×B

e−dA(a,c)−dB(b,d)w(c)v(d)

= ∑
c∈A

e−dA(a,c)w(c) ∑
d∈B

e−dB(b,d)v(d) = 1.

Since all sums are finite there is no problem exchanging the order. The last
equality holds because w and v are weightings for A and B respectively.
Lastly, we can calculate the magnitude

|A ×1 B| = ∑
(a,b)∈A×B

x(a, b) = ∑
(a,b)∈A×B

w(a)v(b) = |A| · |B|.

2.2.3 Expansion of a Finite Metric Space

This short subsection explores the relation of the magnitude of two finite
metric spaces that are expansions of each other.

Definition 2.15. A metric space (A, dA) is an expansion of a metric space (B, dB)
if there exists a distance decreasing surjection f : A → B, that is a surjective map
f : A → B such that for any a ∈ A, b ∈ B the distance dA(a, b) ≥ dB(a, b).

The following example of an expansion of a metric space will appear
again later in Section 2.4.

Example 2.16. Let (A, d) be any finite metric space. Consider any factor t > 1,
the metric space (A, td) can be thought of as the space (A, d) zoomed in. This
space (A, td) is an expansion of (A, d) since the identity id : A → A is a distance
decreasing surjection.

Lemma 2.17 ([5, Lemma 2.2.5]). Let (A, dA) and (B, dB) be finite metric spaces,
each admitting a non-negative weighting. If A is an expansion of B, then |A| ≥ |B|.

Proof. Suppose A is an expansion of B and let f : A → B be a distance
decreasing surjection. Choose a right inverse g : B → A of f . We observe that
∀a ∈ A, b ∈ B the distance

dA(a, g(b)) ≥ dB( f (a), f (g(b)) = dB( f (a), b),

which implies

ZB( f (a), b) = e−dB( f (a),b) ≥ e−dA(a,g(b) = ZA(a, g(b)). (2.3)

12



2.3. The Magnitude of a Graph

Let w and v be non-negative weightings for A and B respectively, using the
defining property of weightings and the estimation (2.3) we obtain

|A| = ∑
a∈A

w(a)

(
∑
b∈B

ZB( f (a), b) · v(b)

)
︸ ︷︷ ︸

=1

= ∑
(a,b)∈A×B

w(a) · ZB( f (a), b) · v(b)

≥ ∑
(a,b)∈A×B

w(a) · ZA(a, g(b)) · v(b) = ∑
b∈B

(
∑
a∈A

w(a) · ZA(a, g(b))

)
︸ ︷︷ ︸

=1

v(b)

= |B|.

Note that we need both w and v to be non-negative weightings for the
estimation.

2.3 The Magnitude of a Graph

In this section we explain how we view graphs as metric spaces in order
to use the previous section to study their magnitudes. We also discuss a way
to deal with the implicit choice of the base in the symmetry matrix and apply
it to an example.

Definition 2.18. A graph G is a pair (V(G), E(G)) consisting of a finite set V(G)
representing the vertices of G and a set E(G) of unordered pairs of distinct vertices.
The set E(G) is the set of edges of G.

This means the graphs that we consider in this thesis are finite, undirected
graphs without loops and multiple edges. To denote a vertex x of a graph
G we also write x ∈ G instead of the lengthier x ∈ V(G). Given any such
graph G, we can view it as a metric space on the set of vertices V(G) with
the following metric.

Definition 2.19. The shortest path metric dG (or just d if there is no risk of
confusion) is the map dG : V(G)× V(G) → [0, ∞] which sends any two vertices
x, y ∈ V(G) to the length of a shortest path from x to y in G if such a path exists. If
no such path exists, then dG(x, y) = ∞.

With this definition we obtain a metric space (G, dG), if we allow the
metric to take the value ∞, and hence we can look at its magnitude using the
results from Section 2.2.

Example 2.20 (Complete bipartite graph K3,2). Let us study the magnitude of
the complete bipartite graph K3,2 with the vertices labelled as in Figure 2.2 above.
The symmetry matrix Z = ZK3,2 is

13



2.3. The Magnitude of a Graph

3

2

1

5

4

Figure 2.2: Complete bipartite graph K2,3.

Z =


1 e−2 e−2 e−1 e−1

e−2 1 e−2 e−1 e−1

e−2 e−2 1 e−1 e−1

e−1 e−1 e−1 1 e−2

e−1 e−1 e−1 e−2 1

 .

For the weighting w on Z denote N = (1 + e−1)(1 − 2e−2). For i = 1, 2, 3 we
define w(i) = 1−e−1

N and for i = 4, 5 we define w(i) = 1−2e−1

N . A direct calculation
yields Zw = e, hence the magnitude is

|Z| =
5

∑
i=1

w(i) =
5 − 7e−1

(1 + e−1)(1 − 2e−2)
= 2.43,

up to two decimals.

In the following, we address the implicit choice we made in the definition
of magnitude of a finite metric space. The entries of the symmetry matrix are
defined to have base e−1, but we could have also chosen any other base. The
approach to deal with this implicit choice we discuss here is from [6, Section
2], in Section 2.4 we explain an alternative way. Here, we make use of the
fact that the shortest path distance of a graph is integer valued. Let q be a
formal variable, which we use to replace e−t. That is, for a graph G viewed
as a metric space with the shortest path metric d we define the symmetry
matrix ZG = ZG(q) whose entry corresponding to (x, y) ∈ G2 is given by

ZG(x, y) = qd(x,y),

where we use the convention that q∞ = 0. We consider ZG = ZG(q) as a
matrix over the ring Q(q) of rational functions in the formal variable q. By
considering this approach, we get the following advantage. The matrix ZG(0)
is the identity, therefore the determinant det(ZG(q)) has constant term 1 and
is invertible in the field Q(q). It follows that ZG(q) is invertible over Q(q)
and thus G has a well defined magnitude, which is a rational function in q.
Alternatively, we can view ZG(q) as a matrix over the ring Z[[q]] of power
series in q and because det(ZG(q)) is also invertible over Z[[q]] by the same
reasoning as above, we find that ZG(q) is an invertible matrix over Z[[q]] and

14



2.3. The Magnitude of a Graph

hence we can also view the magnitude as a formal power series in q. Viewing
the magnitude as a rational function over q or as a formal power series in
q gives the same result because they are equal when viewed as elements in
the ring Q((q)) of formal Laurent series in q, of which both Q(q) and Z[[q]]
are subrings. In conclusion, we have the following alternative definition of
magnitude for a graph.

Definition 2.21. For any graph G, let |G|q be the magnitude of the symmetry
matrix ZG = ZG(q) given by

ZG(x, y) = qd(x,y)

for x, y ∈ G. The matrix ZG(q) is viewed as an element in Q(q) or Z[[q]].

The next result generalizes the previous example of the complete bipartite
graph K2,3 and uses the new approach of viewing the magnitude as a rational
function in q.

Proposition 2.22 ([6, Example 3.4]). The complete bipartite graph Km,n for integers
m, n ≥ 1 has magnitude

|Km,n|q =
(m + n)− (2mn − m − n)q

(1 + q)(1 − (m − 1)(n − 1)q2)
.

Proof. Let the bipartition of Km,n be given by A ⊔ B where #A = m and
#B = n. The symmetry matrix Z = ZKm,n(q) is

Z(x, y) =


1 if x = y
q2 if x ̸= y and (x, y ∈ A or x, y ∈ B)
q if x ∈ A, y ∈ B or x ∈ B, y ∈ A.

Let us denote N = (1 + q)(1 − (m − 1)(n − 1)q2), we define a column vector
w ∈ Q(q)m+n by

w(a) =
1 + (1 − n)q

N
∀a ∈ A

and

w(b) =
1 + (1 − m)q

N
∀b ∈ B.

Direct calculation shows that for a ∈ A we have

∑
x∈A⊔B

Z(a, x)w(x) =

=
1 + (1 − n)q

N
+ (m − 1)q2 1 + (1 − n)q

N
+ nq

1 + (1 − m)q
N

= 1,

15



2.4. The Magnitude Function

and for b ∈ B

∑
x∈A⊔B

Z(b, x)w(x) =

= mq
1 + (1 − n)q

N
+

1 + (1 − m)q
N

+ (n − 1)q2 1 + (1 − m)q
N

= 1.

This proves that w is a weighting on Z and thus the magnitude is

|Km,n|q =
m+n

∑
i=1

w(i) = m · 1 + (1 − n)q
N

+ n · 1 + (1 − m)q
N

=
(m + n)− (2mn − m − n)q
(1 + q)(1 − (m − 1)(n − 1)q2 .

2.4 The Magnitude Function

In the following section, we introduce a second way to deal with the
implicit choice we made in the definition of magnitude of a finite metric
space. The idea is to not only look at the magnitude as one number like we
did at the start, but consider the so-called magnitude function. To every finite
metric space (A, d), we consider the family of metric spaces {tA}t>0 where
tA denotes the metric space (A, td), which is just a scaled version of (A, d).
If we look at the magnitude of each scaled version we get a function in t that
captures how the scaling of the space changes the magnitude. This scaling
gets rid of the implicit choice of the base because we add an additional factor
t > 0 in the exponent of the entries in the symmetry matrix.

Definition 2.23. The magnitude function of a finite metric space (A, d) is the
(partially defined) function t 7→ |tA| for t ∈ R>0.

Examples of the magnitude function already appeared in the introduction
and in item ii) of Example 2.9. The next proposition that proves several
properties about the magnitude function further supports the interpretation
of magnitude as the effective number of points. But we will see in the
example afterwards that the magnitude function does not always behave
‘nicely’. To prove the proposition, we use Subsection 2.2.3.

Proposition 2.24 ([5, Propposition 2.2.6]). Let (A, d) be a finite metric space with
n points.

i) The magnitude function |tA| is defined for all but finitely many t > 0.

ii) For sufficiently large t > 0, the magnitude function is increasing in t.

iii) The limit limt→∞|tA| = n.
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2.4. The Magnitude Function

Proof. Let RA×A denote the space of real A × A matrices, the subset GL(A)
of invertible matrices is an open subset of RA×A. By entry-wise convergence,
we find the following limit in RA×A

ZtA −−→
t→∞

1A ∈ GL(A), (2.4)

where 1A denotes the identity matrix of RA×A. Recall that for any matrix
Z ∈ GL(A), we have an explicit formula for the unique weighting wZ on Z
given by

wZ(a) = ∑
b∈A

Z−1(a, b) = ∑
b∈A

adj(Z)(a, b)
det(Z)

∀a ∈ A, (2.5)

where adj(Z) denotes the adjugate of Z.

i) The limit limt→∞ ZtA = 1A lies in the open set GL(A), hence there
exists T > 0 such that ZtA ∈ GL(A) for all t ≥ T, or in other words,
the matrices ZtA are invertible for t sufficiently large. We can define
the matrix ZtA ∈ CA×A given by (ZtA)(a, b) = e−td(a,b) for any t ∈ C.
The determinant det(ZtA) is a polynomial in the entries of ZtA and
thus a holomorphic function in t. By our first observation, we know
that det(ZtA) ̸= 0 for t ≥ T, and thus by the holomorphicity of the
determinant, there can only be finitely many zeros of det(ZtA) in (0, ∞).
It follows that |tA| is defined for all but finitely many t > 0 by Remark
2.4.

ii) For this proof we use Lemma 2.17 about the magnitude of an expansion
of a metric space, so we need to show two things. First, we show that for
sufficiently large t > 0, the space tA has a positive weighting. For every
a ∈ A, the function Z 7→ wZ(a) is continuous on GL(A) by the explicit
formula (2.5). Let a ∈ A be any point, since w1A(a) = 1, the continuity
implies that there exists an open neighbourhood Ua ⊂ GL(A) of 1A
such that for every Z ∈ Ua the weighting wZ(a) > 0. Taking the
intersection ∩a∈AUa, we get an open neighbourhood U ⊂ GL(A) of 1A
such that

∀a ∈ A ∀Z ∈ U wZ(a) > 0.

By the convergence in (2.4) it follows that ZtA ∈ U for sufficiently large
t. Second, for any t1 > t2 large enough such that both t1A and t2A
have a positive weighting and well defined magnitude, the space t1A
is an expansion of t2A as we saw in Example 2.16. Finally, we can
apply Lemma 2.17 and conclude that |t1A| ≥ |t2A| for sufficiently large
t1 > t2.

iii) The explicit formula (2.5) for the unique weighting of an invertible
matrix Z implies that the function which sends an invertible matrix

17



2.4. The Magnitude Function

Z ∈ GL(A) to its magnitude |Z| is continuous. For t large enough,
the matrix ZtA is invertible because of (2.4), hence we can calculate the
limit

lim
t→∞

|tA| = lim
t→∞

|ZtA| = | lim
t→∞

ZtA| = |1A| = n.

Example 2.25 (Complete bipartite graph K3,2). Let us study the magnitude
function of the complete bipartite graph K3,2. We can use Proposition 2.22. By
replacing q with e−t we obtain the magnitude function

|tK2,3| =
5

∑
i=1

w(i) =
5 − 7e−t

(1 + e−t)(1 − 2e−2t)
,

which we have plotted in Figure 2.3. We see that for t = log(
√

2), the magnitude

0 1 2 3 4

0

1

2

3

4

5

t

|tK2,3|

Figure 2.3: Magnitude function |tK2,3|.

funcion is not defined and hence the metric space log(
√

2)K3,2 does not posses
magnitude. Furthermore, all the properties of the magnitude function we have proven
in Proposition 2.24 can be observed, but there are also some unexpected behaviours.
There are intervals on which the magnitude function is decreasing, and it even takes
on negative values for certain t. At some point t ≥ 0, the magnitude is larger than 5,
the number of points in K3,2. Looking at the subspace K3,1 ⊂ K3,2, we find another
unexpected behaviour. By Proposition 2.22 the magnitude function of K3,1 is

|tK3,1| =
4 − 2e−t

1 + e−t .

For t = 0.3 we have |tK3,2| = 1.09 and |tK3,1| = 1.45 rounded up to two decimal
points, so there is a strict subspace of K3,2 that has larger magnitude for some t > 0.
To summarise, we have seen an example for a finite metric space (A, d) that satisfies
the following ‘strange’ properties
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2.4. The Magnitude Function

• ∃t > 0 such that |tA| is undefined;

• ∃t > 0 such that |tA| is decreasing at t;

• ∃t > 0 such that |tA| < 0;

• ∃B ⊂ A a strict subspace such that there is t > 0 with |tB| > |tA|.

Example 2.26. In this example we calculate the magnitude function of the complete
graph and cyclic graph using Proposition 2.12 about the magnitude of a homogeneous
space. The complete graph Kn and the cyclic graph Cn are both homogeneous because
of their symmetry. Thus, we find

|tKn| =
n2

n(n − 1)e−t + n
=

n
(n − 1)e−t + 1

.

For the cyclic graphs we look at the cases n even and n odd separately. If n is odd
and we fix any vertex a0 ∈ Cn, then for each i = 1, . . . , n−1

2 there are precisely two
vertices that are distance i away from a0 and thus

|tCn| =
n

1 + 2 ∑
(n−1)

2
i=1 e−t·i

=
n(e−t − 1)

2e−
t(n+1)

2 − e−t − 1
.

When n is even and a0 ∈ Cn is any fixed vertex, then there is precisely one vertex at
distance n/2 from a0, and for every i = 1, . . . , n

2 − 1 there are precisely two vertices
at distance i from a0. Hence the magnitude function is

|tCn| =
n

1 + 2 ∑
n
2 −1
i=1 e−t·i + e−

tn
2

=
n(e−t − 1)

(e−
tn
2 − 1)(e−t + 1)

.
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Chapter 3

Magnitude Homology

In this chapter, we define the magnitude homology of a graph and see
how it categorifies the magnitude from the previous chapter. We will com-
pute the magnitude homology of several examples and also include some
computer calculations from our own code that can be found in Appendix
A.1. Furthermore, we describe the magnitude homology of a disjoint union
of graphs and prove a Mayer-Vietoris type theorem for magnitude homology.
Finally, there is a type of graph that has zero magnitude homology groups
everywhere except on the diagonal. These graphs are the topic of the last
section in this chapter. This section is based on [3]. We also need some
homological algebra, as a reference we used [10].

3.1 The Definition of Magnitude Homology

We start by defining the magnitude homology of a graph and apply the
definition to several examples. We deduce some basic properties and prove
how the magnitude homology relates to the magnitude of a graph. There are
also some computer calculated tables to illustrate the magnitude homology
of some examples. Let us start by defining the setting we need throughout
the chapter.

Definition 3.1. Let G be a graph. The length ℓ of a tuple (x0, . . . , xk) ∈ Gk+1 of
vertices of G is the sum

ℓ(x0, . . . , xk) =
k−1

∑
i=0

d(xi, xi+1).

Note that for k = 0 the length of a tuple (x0) is ℓ(x0) = 0.

We use the notation (x0, . . . , x̂i, . . . , xk) to denote the tuple we obtain by
removing the entry xi from the tuple (x0, . . . , xk).
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3.1. The Definition of Magnitude Homology

Remark 3.2. For every graph G and tuple (x0, . . . , xk) of vertices of G, the triangle
inequality implies that

∀i = 0, . . . , k ℓ(x0, . . . , x̂i, . . . , xk) ≤ ℓ(x0, . . . , xk),

which we refer to as the triangle inequality of ℓ.

Definition 3.3. The magnitude chain group MCk,l(G) of a graph G in bidegree
(k, l) for k, l ≥ 0 is the free abelian group generated by (k + 1)-tuples (x0, ..., xk) of
vertices of G satisfying x0 ̸= x1 ̸= . . . ̸= xk and ℓ(x0, . . . xk) = l.

We do allow a tuple (x0, . . . , xk) ∈ MCk,l(G) to have two equal entries, as
long as they are not next to each other, see also Example 3.10 below.

Definition 3.4. For a graph G and integers l ≥ 0, k ≥ 1 we define the differential

∂ : MCk,l(G) → MCk−1,l(G)

by the alternating sum ∂ = ∑k−1
i=1 (−1)i∂i, where ∂i : MCk,l(G) → MCk−1,l(G) is

defined on the generators by

∂i(x0, . . . , xk) =

{
(x0, . . . , x̂i, . . . , xk) if ℓ(x0, . . . , x̂i, . . . , xk) = l
0 else

(3.1)

and then linearly extended to the whole group MCk,l(G).

The condition ℓ(x0, . . . , x̂i, . . . , xk) = l in (3.1) says that the length l of the
tuple (x0, . . . , xk) must be preserved if we remove the i-th entry of the tuple.
This condition is equivalent to

d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1) (3.2)

because these are the only summands that differ in ℓ(x0, . . . , x̂i, . . . , xk) and
ℓ(x0, . . . , xk). This also shows why the differential ∂ is well defined. We know
by definition that xi−1 ̸= xi and xi ̸= xi+1, so the distances d(xi−1, xi) and
d(xi, xi+1) are both greater than or equal to 1 and thus the right-hand-side is
also greater than or equal to 1, which shows xi−1 ̸= xi+1. Since we want do
define a homology, we need a chain complex. The next lemma shows that
MC∗,l(G) is a chain complex for any graph G and a fixed integer l ≥ 0.

Lemma 3.5. For any graph G and integers l ≥ 0 and k ≥ 2, the composition

MCk,l(G)
∂−→ MCk−1,l(G)

∂−→ MCk−2,l(G)

is equal to the zero map.
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Proof. Let (x0, . . . , xk) be any generator of MCk,l(G), we start by showing that
for all 0 ≤ i < j ≤ k the relation

∂i ◦ ∂j(x0, . . . , xk) = ∂j−1 ◦ ∂i(x0, . . . , xk) (3.3)

holds. By definition and by using that i < j, the left-hand-side equals to
(x0, . . . , x̂i, . . . , x̂j, . . . , xk) if

ℓ(x0, . . . , x̂j, . . . , xk) = l and ℓ(x0, . . . , x̂i, . . . , x̂j, . . . , xk) = l (3.4)

and to 0 otherwise. The triangle inequality for ℓ from Remark 3.2 implies

ℓ(x0, . . . , x̂i, . . . , x̂j, . . . , xk) ≤ ℓ(x0, . . . , x̂j, . . . , xk) ≤ ℓ(x0, . . . , xk) = l,

so the condition we have found in (3.4) is equivalent to the condition
ℓ(x0, . . . , x̂i, . . . , x̂j, . . . , xk) = l. Analogously, the right-hand-side of (3.3)
is equal to (x0, . . . , x̂i, . . . , x̂j, . . . ., xk) if

ℓ(x0, . . . , x̂i, . . . , x̂j, . . . ., xk) = l and ℓ(x0, . . . , x̂i, . . . , xk) = l (3.5)

and to 0 otherwise. In this case one needs to pay attention because i < j and
by removing xi first, the indices afterwards shift, so the (j − 1)th entry of
the tuple (x0, . . . , x̂i, . . . , xk) is not xj−1 but xj. With the same argument as
before, using the triangle inequality for ℓ, we see that the condition from (3.5)
is equivalent to ℓ(x0, . . . x̂i, . . . , x̂j, . . . , xk) = l as well, which proves that the
relation (3.3) does indeed hold. To conclude, we calculate the composition of
the differential map with itself. First, we split the sum up:

∂ ◦ ∂ =
k−2

∑
i=1

(−1)i∂i ◦
k−1

∑
j=1

(−1)j∂j =

=
k−2

∑
i=1

i−1

∑
j=1

(−1)j+i(∂i ◦ ∂j) +
k−2

∑
i=1

(−1)2i(∂i ◦ ∂i) +
k−2

∑
i=1

k−1

∑
j=i+1

(−1)j+i(∂i ◦ ∂j)

(3.6)

We can apply the relation from (3.3) to the last sum in this expression and
reindex to obtain

k−2

∑
i=1

k−1

∑
j=i+1

(−1)j+i(∂i ◦ ∂j) =
k−2

∑
i=1

k−1

∑
j=i+1

(−1)j+i(∂j−1 ◦ ∂i)

=
k−2

∑
i=1

k−2

∑
j=i

(−1)j+i+1(∂j ◦ ∂i).

By adding the middle sum from (3.6), the terms with i = j vanish:

k−2

∑
i=1

(−1)2i(∂i ◦ ∂i) +
k−2

∑
i=1

k−2

∑
j=i

(−1)j+i+1(∂j ◦ ∂i) =
k−3

∑
i=1

k−2

∑
j=i+1

(−1)j+i+1(∂j ◦ ∂i)
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In the first sum of (3.6) we exchange the order of summation to get

k−2

∑
i=1

i−1

∑
j=1

(−1)j+i(∂i ◦ ∂j) =
k−3

∑
j=1

k−2

∑
i=j+1

(−1)j+i(∂i ◦ ∂j).

The last two results sum up to 0, so the composition of the differential with
itself vanishes.

Definition 3.6. The magnitude chain complex MC∗,∗(G) of a graph G is the
direct sum ⊕

l≥0

MC∗,l(G)

of chain complexes.

Remark 3.7. We mostly consider one component at a time of the magnitude chain
complex of a graph G. Hence, for simplicity we also call the chain complex MC∗,l(G)
for a fixed l ≥ 0 the magnitude chain complex of G.

Definition 3.8. The magnitude homology MH∗,∗(G) of a graph G is the bigraded
abelian group defined by the homology groups

MHk,l(G) = Hk(MC∗,l(G))

for k, l ≥ 0.

Before we compute the magnitude homology of some examples, we prove
an immediate property which shows that some of the magnitude homology
groups are always trivial.

Proposition 3.9. If k > l, then the magnitude homology MHk,l(G) = 0 for any
graph G.

Proof. Let k > l ≥ 0 be arbitrary. For any two distinct vertices x, y ∈ G, their
distance d(x, y) ≥ 1 because we have d defined to be the shortest path metric.
Thus, any tuple (x0, . . . , xk) of vertices of G satisfying x0 ̸= x1 ̸= . . . . ̸= xk
has length

ℓ(x0, . . . , xk) = d(x0, x1) + · · ·+ d(xk−1, xk) ≥ k > l.

Hence, there are no generators of MCk,l(G) and consequently also the magni-
tude homology MHk,l(G) vanishes.

Example 3.10 (Four-cycle). Let us calculate the magnitude homology groups for
the four-cycle C4 for 0 ≤ l ≤ 2. To do this, we look at a fixed l and find the chain
complex MC∗,l(C4) and its homology groups. We denote the vertices of the graph by
a1, a2, a3, a4 according to Figure 3.1.
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a1

a2

a4

a3

Figure 3.1: Four-cycle.

• Let l = 0.

– MC0,0(C4) is the free abelian group generated by the tuples (x0) of
vertices in C4 such that ℓ(x0) = 0. Every 1-tuple has length zero, so the
generators for MC0,0(C4) are the vertices of C4:

(a1), (a2), (a3), (a4)

– For k > 0, the groups MCk,0(C4) = 0 by Proposition 3.9 above.

Thus, the magnitude chain complex MC∗,0(C4) is

· · · → 0 → 0 → MC0,0(C4),

all its differentials are zero and the magnitude homology groups are

MHk,0(C4) ∼=
{

MC0,0(C4) if k = 0
0 else

∼=
{

Z4 if k = 0
0 else.

• Let l = 1.

– MC0,1(C4) is generated by tuples (x0) of vertices in C4 with length
ℓ(x0) = 1, but tuples with exactly one entry have length 0, so the
magnitude chains MC0,1(C4) = 0.

– MC1,1(C4) is generated by tuples (x0, x1) of two distinct vertices in C4
with ℓ(x0, x1) = 1, which means that x0 and x1 are neighbours in C4.
So, the generators of MC1,1(C4) are

(a1, a2), (a1, a4), (a2, a3), (a2, a1), (a3, a4), (a3, a2), (a4, a1), (a4, a3)

and hence MC1,1(C4) ∼= Z8.

– As above, for k > 1 we have MCk,1(C4) = 0 by Proposition 3.9.

We get the magnitude chain complex MC∗,1(C4):

· · · → 0 → MC1,1(C4) → 0
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Again, all the differentials are 0 and the magnitude homology groups are

MHk,1(C4) ∼=
{

MC1,1(C4) if k = 1
0 else

∼=
{

Z8 if k = 1
0 else.

• Let l = 2.

– MC0,2(C4) = 0 as before.

– MC1,2(C4) is generated by tuples (x0, x1) of two distinct vertices of C4
such that ℓ(x0, x1) = 2, that is, the shortest path between x0 and x1 has
length 2. This yields the four generators

(a1, a3), (a2, a4), (a3, a1), (a4, a2),

so MC1,2(C4) ∼= Z4.

– MC2,2(C4) is generated by tuples (x0, x1, x2) of vertices of C4 such that
x0 ̸= x1, x1 ̸= x2, and ℓ(x0, x1, x2) = 2. Because the neighbour-
ing vertices are distinct, the distance between them is greater than or
equal to 1, implying that for every generator of MC2,2(C4) the distances
d(x0, x1) = 1 and d(x1, x2) = 1. To calculate the number of generators
of MC2,2(C4), note that in the cyclic graph C4 every vertex has exactly
two neighbours. For x0 we can take any of the four vertices and the
vertices x1 and x2 each have to be one of the two neighbours of the pre-
vious entry. It follows that there are precisely 4 · 2 · 2 = 16 generators,
concretely they are given by

(a1, a2, a3), (a1, a2, a1), (a1, a4, a1), (a1, a4, a3),
(a2, a3, a4), (a2, a3, a2), (a2, a1, a2), (a2, a1, a4),
(a3, a4, a1), (a3, a4, a3), (a3, a2, a3), (a3, a2, a1),
(a4, a1, a2), (a4, a1, a4), (a4, a3, a4), (a4, a3, a2).

– As before, for k > 2 we have MCk,2(C4) = 0 by Proposition 3.9.

The chain complex MC∗,2(C4) is

· · · → 0 → MC2,2(C4)
∂−→ MC1,2(C4) → 0,

so all the differentials except maybe ∂ : MC2,2(C4) → MC1,2(C4) are zero and
the magnitude homology groups MCk,2(C4) all vanish except for maybe k = 1
or k = 2. To find the remaining magnitude homology groups, we need to
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determine the differential map. Let us calculate the image of ∂ on all generators
of MC2,2(C4):

∂(a1, a2, a3) = −(a1, a3) ∂(a1, a2, a1) = 0
∂(a1, a4, a1) = 0 ∂(a1, a4, a3) = −(a1, a3)

∂(a2, a3, a4) = −(a2, a4) ∂(a2, a3, a2) = 0
∂(a2, a1, a2) = 0 ∂(a2, a1, a4) = −(a2, a4)

∂(a3, a4, a1) = −(a3, a1) ∂(a3, a4, a3) = 0
∂(a3, a2, a3) = 0 ∂(a3, a2, a1) = −(a3, a1)

∂(a4, a1, a2) = −(a4, a2) ∂(a4, a1, a4) = 0
∂(a4, a3, a4) = 0 ∂(a4, a3, a2) = −(a4, a2)

From this calculation we see that every generator of MC1,2(C4) is in the
image of ∂, thus the magnitude homology MH1,2(C4) = 0. The remaining
homology group MH2,2(C4) ∼= ker(∂) ⊂ MC2,2(C4) because the image of
∂ : MC3,2(C4) → MC2,2(C4) is zero. Using the calculations of the differential
above, we find that the kernel is the free abelian group generated by the twelve
generators

(a1, a2, a1), (a1, a4, a1), (a2, a3, a2), (a2, a1, a2),
(a3, a4, a3), (a3, a2, a3), (a4, a1, a4), (a4, a3, a4),
(a1, a2, a3)− (a1, a4, a3), (a2, a3, a4)− (a2, a1, a4),
(a3, a4, a1)− (a3, a2, a1), (a4, a1, a2)− (a4, a3, a2).

Hence, the magnitude homology MH2,2(C4) ∼= Z12.

These results could also be verified by computer calculations we did in SageMath.
The code to the program can be found in Appendix A.1. Table 3.1 shows the
ranks of the magnitude homology groups of the four-cycle computed with this
program. It appears that only the diagonal entries are non-zero and the rank
rank(MCl,l(C4)) = 4(l + 1)) for l ≥ 0. Indeed, we prove later in Section 3.5 that
the only non-zero homology groups of the four-cycle are on the diagonal. Furhermore,
one approach to compute the ranks of the diagonal entries is by using a Künneth
Theorem for magnitude homology [3, Chapter 5].

In the next example we describe the magnitude homology of the discrete
graph En for n ≥ 1, this is the graph on n vertices without any edges.

Example 3.11 (Discrete graph En). We need the following observations to un-
derstand the magnitude chain groups of the discrete graph En for n ≥ 1. Any two
distinct vertices x, y ∈ En have distance d(x, y) = ∞. A generator (x0, . . . , xk)
of MCk,l(En) for k, l ≥ 0 has finite length and the length of a 1-tuple is always 0.
Therefore, the only non-trivial magnitude chain group of En is MC0,0(En) and it is
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l⧹k 0 1 2 3 4 5 6 7 8 9 10
0 4 0 0 0 0 0 0 0 0 0 0
1 0 8 0 0 0 0 0 0 0 0 0
2 0 0 12 0 0 0 0 0 0 0 0
3 0 0 0 16 0 0 0 0 0 0 0
4 0 0 0 0 20 0 0 0 0 0 0
5 0 0 0 0 0 24 0 0 0 0 0
6 0 0 0 0 0 0 28 0 0 0 0
7 0 0 0 0 0 0 0 32 0 0 0
8 0 0 0 0 0 0 0 0 36 0 0
9 0 0 0 0 0 0 0 0 0 40 0
10 0 0 0 0 0 0 0 0 0 0 44

Table 3.1: Ranks of the magnitude homology of C4 computed with SageMath.

the free abelian group generated by 1-tuples (x0) for x0 ∈ En, this is the free abelian
group generated by the vertices of En. All differential maps of the magnitude chain
complex must be zero, so the magnitude homology groups are

MHk,l(En) ∼= MCk,l(En) ∼=
{

Zn if k = l = 0
0 else.

Example 3.12 (Complete graph Kn). In this example, we calculate the homology
groups for the complete graph Kn for any n ≥ 2. First, we need to understand the
magnitude chain complex of Kn. In the complete graph, the shortest path distance
between any two distinct vertices is 1. Thus, any tuple (x0, . . . , xk) of vertices of Kn
such that x0 ̸= . . . ̸= xk has length

ℓ(x0, . . . , xk) =
k−1

∑
i=0

d(xi, xi+1) = k.

It follows that for any l ≥ 0 the only non-zero magnitude chain group in the chain
complex MC∗,l(Kn) is MCl,l(Kn) and the generators for this group are all tuples
(x0, . . . , xl) of vertices of Kn such that x0 ̸= . . . ̸= xl . There are precisely n · (n− 1)l

generators. Because all differentials in the magnitude chain complex are zero, the
magnitude homology groups of the complete graph are

MHk,l(Kn) ∼= MCk,l(Kn) ∼=
{

Zn·(n−1)l
if k = l

0 else.

In all of the examples above, the magnitude homology groups in bide-
gree (0, 0) and (1, 1) were free abelian and generated by the vertices and the
oriented edges respectively, the next proposition shows that this is true in gen-
eral. Before stating it, let us introduce some notation. First, we write ZA for
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the free abelian group on the set A. Second, for a graph G we denote by
#‰

E (G)

the set of oriented edges of G, that is
#‰

E (G) = {(x, y) | {x, y} ∈ E(G)}. So,
for any edge {x, y} ∈ E(G) there are two oriented edges (x, y), (y, x) ∈ #‰

E (G).

Proposition 3.13. For any graph G, the magnitude homology groups satisfy:

i) MH0,0(G) ∼= Z V(G);

ii) MH1,1(G) ∼= Z
#‰

E (G).

Proof. i) The magnitude chain group MC0,0(G) is generated by tuples
(x0) of vertices in G such that ℓ(x0) = 0. Every 1-tuple has length 0, so
MC0,0(G) is the free abelian group on the vertices of G. By Proposition
3.9, all other groups in the chain complex MC∗,0(G) are zero, so all the
differential maps are zero and MH0,0(G) ∼= MC0,0(G) = Z V(G).

ii) The magnitude chain group MC0,1(G) = 0 because, as stated above, all
the 1-tuples have length 0. By Proposition 3.9, also the groups MCk,1(G)
for k > 1 vanish. Hence, all the differentials in MC∗,1(G) are zero and
the magnitude homology group MH1,1(G) ∼= MC1,1(G). The group
MC1,1(G) is generated by tuples (x0, x1) of distinct vertices in G with
length ℓ(x0, x1) = 1, that is if (x0, x1) ∈

#‰

E (G) is an oriented edge of the
graph G.

Remark 3.14. For every graph G, Proposition 3.13 shows that

i) rank(MH0,0(G)) = # V(G);

ii) rank(MH1,1(G)) = 2 · # E(G).

The next theorem we prove is justifying the name magnitude homology
by establishing a connection between the magnitude homology and the
magnitude from Chapter 2. First, we need a lemma that describes another
way to compute the magnitude of a graph.

Lemma 3.15 ([6, Prop. 3.9.]). For any graph G

|G|q = ∑
k≥0

(−1)k ∑
x0,...,xk∈G
x0 ̸=... ̸=xk

qℓ(x0,...,xk).

Proof. We calculate the magnitude using a weighting wG. For any vertex
x ∈ G we define

wG(x) = ∑
k≥0

(−1)k ∑
x1,...,xk∈G

x ̸=x1 ̸=... ̸=xk

qℓ(x,x1,...,xk).
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Let y ∈ G be any vertex. To show that wG is a weighting we need to verify
that

∑
x∈G

qd(y,x)wG(x) = 1.

We can start rewriting the left-hand-side by splitting up the sum and using
the definition of wG:

∑
x∈G

qd(y,x)wG(x) = wG(y) + ∑
x∈G\{y}

qd(y,x) ∑
k≥0

(−1)k ∑
x1,...,xk∈G

x ̸=x1 ̸=... ̸=xk

qℓ(x,x1,...,xk)

After rearranging the sums and plugging in the definition for wG(y) we
obtain

∑
k≥0

(−1)k ∑
x1,...,xk∈G

y ̸=x1 ̸=... ̸=xk

qℓ(y,x1,...,xk) + ∑
k≥0

(−1)k ∑
x,x1,...,xk∈G

y ̸=x ̸=x1 ̸=... ̸=xk

qℓ(y,x,x1,...,xk)

= ∑
k≥0

(−1)k

 ∑
x1,...,xk∈G

y ̸=x1 ̸=... ̸=xk

qℓ(y,x1,...,xk) + ∑
x,x1,...,xk∈G

y ̸=x ̸=x1 ̸=... ̸=xk

qℓ(y,x,x1,...,xk)

 = 1,

where the last equation holds because it is a telescoping sum. Therefore,
wG is a weighting and we can calculate the magnitude

|G|q = ∑
x∈G

wG(x) = ∑
x∈G

∑
k≥0

(−1)k ∑
x1,...,xk∈G

x ̸=x1 ̸=... ̸=xk

qℓ(x,x1,...,xk)

= ∑
k≥0

(−1)k ∑
x0,...xk∈G
x0 ̸=... ̸=xk

qℓ(x0,...,xk).

Theorem 3.16. Let G be a graph, then

∑
k,l≥0

(−1)k rank(MHk,l(G)) · ql = |G|q.

Proof. For any graded abelian group C∗ = {Ci}i∈Z the Euler characteristic
χ(C∗) is defined to be the alternating sum χ(C∗) = ∑i∈Z(−1)i rank(Ci).
By a known result, which can be found in [2, Theorem 2.44], the Euler
characteristic satisfies

χ(MC∗,l(G)) = χ(MH∗,l(G)),
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for all l ≥ 0. Using this relation, we calculate

∑
k,l≥0

(−1)k rank(MHk,l(G)) · ql = ∑
l≥0

χ(MH∗,l(G)) · ql

= ∑
l≥0

χ(MC∗,l(G)) · ql

= ∑
k,l≥0

(−1)k rank(MCk,l(G)) · ql .

The magnitude chain group MCk,l(G) is a free abelian group, so its rank is
just the number of generators:

rank(MCk,l(G)) = #{(x0, . . . , xk) ∈ Gk+1 | x0 ̸= . . . ̸= xk ∧ ℓ(x0, . . . , xk) = l}

Consider the sum

∑
l≥0

#{(x0, . . . , xk) ∈ Gk+1 | x0 ̸= . . . ̸= xk ∧ ℓ(x0, . . . , xk) = l} · ql ,

if we sum over tuples instead of summing over l ≥ 0, we see that the above
sum is equal to

∑
(x0,...,xk)∈Gk+1

x0 ̸=... ̸=xk

qℓ(x0,...,xk).

Combining all these observations, we conclude that

∑
k,l≥0

(−1)k rank(MHk,l(G)) · ql = ∑
k≥0

(−1)k ∑
(x0,...,xk)∈Gk+1

x0 ̸=... ̸=xk

qℓ(x0,...,xk)

and by Lemma 3.15 above, the statement follows.

In other words, this theorem tells us that taking the graded Euler charac-
teristic of the magnitude homology of a graph returns the magnitude as a
power series. Let us illustrate this relation on some examples.

Example 3.17 (Complete graph). We have calculated both the magnitude and the
magnitude homology for the complete graph Kn. From Example 3.12, we know the
ranks of the magnitude homology are

rank(MHk,l(Kn) =

{
n(n − 1)l if k = l
0 else.

By the theorem above, the magnitude of the complete graph is equal to the power
series

|Kn|q = ∑
k,l≥0

(−1)k rank(MHk,l(Kn)) · ql = ∑
l≥0

(−1)ln(n − 1)lql .
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This is a geometric series and is equal to the rational function

∑
l≥0

(−1)ln(n − 1)lql = n · 1
1 − (−(n − 1)q)

=
n

(n − 1)q + 1
,

which is indeed what we first calculated in Example 2.26.

Example 3.18 (Five-cycle). With our code for SageMath, we could obtain the
following table of the ranks of the magnitude homology groups MHk,l(C5) of the
five-cycle for k, l ≤ 10. This table can be used to find the first coefficients of the

l⧹k 0 1 2 3 4 5 6 7 8 9 10
0 5 0 0 0 0 0 0 0 0 0 0
1 0 10 0 0 0 0 0 0 0 0 0
2 0 0 10 0 0 0 0 0 0 0 0
3 0 0 10 10 0 0 0 0 0 0 0
4 0 0 0 30 10 0 0 0 0 0 0
5 0 0 0 0 50 10 0 0 0 0 0
6 0 0 0 0 20 70 10 0 0 0 0
7 0 0 0 0 0 80 90 10 0 0 0
8 0 0 0 0 0 0 180 110 10 0 0
9 0 0 0 0 0 0 40 320 130 10 0
10 0 0 0 0 0 0 0 200 500 150 10

Table 3.2: Ranks of the magnitude homology of C5 computed with SageMath.

magnitude of the five-cycle by applying Theorem 3.16. We have to take the alternating
sum of each row, which results in

|C5|q = 5 − 10q + 10q2 + (10 − 10)q3 + (−30 + 10)q4 + (50 − 10)q5

+ (20 − 70 + 10)q6 + (−80 + 90 − 10)q7 + (180 − 110 + 10)q8

+ (40 − 320 + 130 − 10)q9 + (−200 + 500 − 150 + 10)q10 + . . .

= 5 − 10q + 10q2 − 20q4 + 40q5 − 40q6 + 80q8 − 160q9 + 160q10 + . . .

In Example 2.26, we saw that the magnitude of the five-cycle is the rational function

|C5|q =
5(q − 1)

2q3 − q − 1
,

which is indeed equal to the power series starting with the same terms as the one we
found above.

Notice that in Table 3.2, the non-zero ranks of the magnitude homology
are all in the lower triangle, as we have proved in Proposition 3.9. But further-
more, one observes that the non-zero ranks are still somewhat concentrated

31



3.1. The Definition of Magnitude Homology

around the diagonal. The next result will give some explanation for that
phenomenon. Recall that the diameter δ of a graph G is the maximum length
of a shortest path between any two vertices in the graph, formally

δ = max
v∈V(G)

( max
u∈V(G)

d(v, u)).

Proposition 3.19. Let G be a graph and suppose that for some k, l ≥ 0 the magnitude
homology MHk,l(G) ̸= 0. If G has finite diameter δ > 0, then l

δ ≤ k and moreover,
if δ > 1 and l > 0, then l

δ < k.

Proof. If the magnitude homology MHk,l(G) ̸= 0, then also the magni-
tude chain group MCk,l(G) is non-trivial and hence there exists a gener-
ator (x0, . . . , xk) ∈ MCk,l(G). In particular, the tuple (x0, . . . , xk) satisfies
x0 ̸= . . . ̸= xk and ℓ(x0, . . . , xk) = l. By definition of the diameter δ, every
pair of vertices x, y ∈ G has distance d(x, y) ≤ δ. Thus,

l = ℓ(x0, . . . , xk) = d(x0, x1) + · · ·+ d(xk−1, xk) ≤ k · δ, (3.7)

which implies l
δ ≤ k.

Assume now that δ > 1 and l > 0. We prove the statement by contradiction,
so suppose that l

δ = k. As above, let (x0, . . . , xk) ∈ MCk,l(G) be a generator,
then

ℓ(x0, . . . , xk) = l = k · δ.

From Equation (3.7), we see that this is only possible if for all i = 0, . . . , k − 1
the distance d(xi, xi+1) = δ . The diameter is greater than 1 by assumption,
hence in particular d(x0, x1) = δ ≥ 2. Thus, there exists an internal vertex
y ∈ G on a shortest path between x0 and x1, this vertex divides the shortest
path from x0 to x1 in a shortest path from x0 to y and a shortest path from y
to x1, therefore

d(x0, y) + d(y, x1) = d(x0, x1).

It follows that ∂1(x0, y, x1, . . . xk) = (x0, . . . , xk). To finish the proof, we show
that the generator (x0, . . . , xk) is the image of −(x0, y, x1, . . . , xk) under the
differential ∂, which implies that every generator of MCk,l(G) vanishes in
homology, contradicting the assumption that MHk,l(G) ̸= 0. So, we need to
calculate ∂i(x0, y, x1, . . . , xk) for i = 2, . . . k − 1. Note that because y ̸= x1 the
sum of the distances

d(y, x1) + d(x1, x2) > δ ≥ d(y, x2),

which shows that ∂2(x0, y, x1, . . . , xk) = 0. For i = 3, . . . , k − 1 we have

d(xi−1, xi) + d(xi, xi+1) = 2δ > δ ≥ d(xi, xi+2),

implying ∂i(x0, y, x1, . . . , xk) = 0. Altogether, we find

∂(−(x0, y, x1, . . . , xk)) = (x0, . . . , xk),

which concludes the proof.

32



3.2. Induced Maps

Example 3.20. Let us look again at the five-cycle and Table 3.2. The diameter of the
five-cycle is 2. Thus, by the result above, the non-zero homology groups MHk,l(C5)
satisfy

l
2
≤ k ≤ l,

so they are not too far off the diagonal.

3.2 Induced Maps

The goal of this chapter is to categorify the magnitude. Concretely, note
that the magnitude itself can be viewed as an element in the set of power
series in one formal variable with integer coefficients. In this section, however,
we will see that there is a functor between the category of graphs and the
category of graded abelian groups, that associates to a graph its magnitude
homology. This categorification allows us to prove results about magnitude
that could already be shown in [6] from a different viewpoint. We use basic
notions from categroy theory in this section, see [4] as a reference. Let us
first define what we mean by the category of graphs, in particular we need
to define the maps between graphs.

Definition 3.21. For graphs G and H we define a map of graphs or morphism of
graphs f : G → H to be a map f : V(G) → V(H) on the vertex sets such that

∀{x, y} ∈ E(G) { f (x), f (y)} ∈ E(H) or f (x) = f (y).

In other words, a map of graphs f : G → H sends an edge in G either to
an edge in H or contracts the edge to a single vertex in H. Thus, f sends a
path in G to a path in H, which might have fewer edges. This leads us to the
following observation.

Remark 3.22. Alternatively, we can define a map of graphs f : G → H to be a map
on the vertex sets f : V(G) → V(H) such that

∀x, y ∈ V(G) dH( f (x), f (y)) ≤ dG(x, y).

With this second definition we can easily see that for any map f : G → H
between graphs, the length of any tuple (x0, . . . , xk) ∈ Gk+1 satisfies

ℓ( f (x0), . . . , f (xk)) ≤ ℓ(x0, . . . , xk) (3.8)

The set of graphs together with the maps of graphs form the category of
graphs, this is indeed a category, which can be verified in a straight forward
way. As mentioned above, we define a functor from the category of graphs
to the category of bigraded abelian groups.
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Definition 3.23. If f : G → H is a map of graphs, the induced chain map
f# : MC∗,∗(G) → MC∗,∗(H) is defined on generators by

f#(x0, . . . , xk) =

{
( f (x0), . . . , f (xk)) if ℓ( f (x0), . . . , f (xk)) = ℓ(x0, . . . , xk)

0 else.

Proposition 3.24. Let f : G → H be a map of graphs. The above defined induced
map f# is indeed a chain map, that is, it commutes with the differential ∂:

f# ◦ ∂ = ∂ ◦ f#.

Proof. It is enough to verify the commutativity on the generators. Let k, l ≥ 0
and let (x0, . . . , xk) ∈ MCk,l(G) be a generator. Similarly to the proof of
Lemma 3.5, we show that for any i ∈ {1, . . . , k − 1} the equation

( f# ◦ ∂i)(x0, . . . , xk) = (∂i ◦ f#)(x0, . . . , xk) (3.9)

holds. The left-hand-side is equal to ( f (x0), . . . f̂ (xi), . . . , f (xk)) if

ℓ(x0, . . . , x̂i, . . . , xk) = l and ℓ( f (x0), . . . , f̂ (xi), . . . , f (xk)) = l

and to 0 otherwise. To simplify the condition, note that by the triangle
inequality for ℓ from Remark 3.2 and the inequality (3.8) we have

ℓ( f (x0), . . . , f̂ (xi), . . . , f (xk)) ≤ ℓ(x0, . . . , x̂i, . . . , xk) ≤ ℓ(x0, . . . , xk) = l.

Thus, the left-hand-side of Equation (3.9) is non-zero if and only if

ℓ( f (x0), . . . , f̂ (xi), . . . , f (xk)) = l.

The right-hand-side of (3.9) is equal to ( f (x0), . . . , f̂ (xi), . . . , f (xk)) if

ℓ( f (x0), . . . , f (xk)) = l and ℓ( f (x0), . . . , f̂ (xi), . . . , f (xk)) = l

and to zero otherwise. Continuing as we did for the left-hand-side, we find
the inequality

ℓ( f (x0), . . . , f̂ (xi), . . . , f (xk)) ≤ ℓ( f (x0), . . . , f (xk)) ≤ ℓ(x0, . . . , xk) = l,

from which we can conclude that both sides of (3.9) are equal. The differential
is the alternating sum ∂ = ∑k−1

i=1 (−1)i∂i, so the result follows.

Definition 3.25. Let f : G → H be a map of graphs. The induced map in
homology is the map

f∗ : MH∗,∗(G) → MH∗,∗(H)

induced by the chain map f#.
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Proposition 3.26. The assignment sending any graph G to its magnitude homology
MH∗,∗(G), and any map of graphs f to its induced map f∗ is a functor from the
category of graphs to the category of bigraded abelian groups.

Proof. We need to verify that

i) for any graph G, the induced map of the identity (1G)∗ = 1MH∗,∗(G) ;

ii) for any two maps of graphs f : G → H, g : H → K, the composition
satisfies (g ◦ f )∗ = g∗ ◦ f∗.

The first item follows immediately from the definitions; the chain map
induced by the identity 1G is the identity on the chains MC∗,∗(G) and thus
the induced map in homology is the identity on MH∗,∗(G).
For the second item, let f : G → H, g : H → K be two maps of graphs. We
proceed similarly as in Lemma 3.5 and in the previous proposition. Consider
first the chains. So, let k, l ≥ 0, and let (x0, . . . , xk) ∈ MCk,l(G) be a generator.
On the one hand, from the definition it follows that (g ◦ f )#(x0, . . . , xk) equals
to ((g ◦ f )(x0), . . . , (g ◦ f )(xk)) if

ℓ((g ◦ f )(x0), . . . , (g ◦ f )(xk)) = l

and to 0 otherwise. On the other hand, the image (g# ◦ f#)(x0, . . . , xk) equals
to (g( f (x0)), . . . , g( f (xk))) if

ℓ( f (x0), . . . , f (xk)) = l and ℓ(g( f (x0)), . . . , g( f (xk))) = l

and to 0 otherwise. By using the inequality (3.8) we obtain

ℓ(g( f (x0)), . . . , g( f (xk))) ≤ ℓ( f (x0), . . . , f (xk)) ≤ ℓ(x0, . . . , xk) = l,

so the composition (g# ◦ f#)(x0, . . . , xk) is non-zero if and only if

ℓ(g( f (x0)), . . . , g( f (xk))) = l.

We can conclude that (g# ◦ f#) = (g ◦ f )# and therefore also in homology
(g∗ ◦ f∗) = (g ◦ f )∗.

The induced maps in bidegrees (0, 0) and (1, 1) can be described concretely.
Recall that by Proposition 3.13, for any graph G

• the magnitude homology MH0,0(G) ∼= MC0,0(G) is the free abelian
group generated by the vertices of G;

• the magnitude homology MH1,1(G) ∼= MC1,1(G) is the free abelian
group generated by the oriented edges of G.

This is why we speak of a vertex and an oriented edge in MH0,0(G) and
MH1,1(G) respectively, and not of their equivalence classes.
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Proposition 3.27. Let f : G → H be a map of graphs, then

i) the induced map f∗ : MH0,0(G) → MH0,0(H) sends a vertex x ∈ V(G) to
the vertex f (x) ∈ V(H);

ii) the induced map f∗ : MH1,1(G) → MH1,1(H) send (x, y) ∈ #‰

E (G) to the
oriented edge ( f (x), f (y)) ∈ #‰

E (H) if that is an edge, and to 0 otherwise.

Proof. i) The induced map f# sends a vertex (x0) ∈ MC0,0(G) to ( f (x0))
if ℓ( f (x0)) = 0 by definition. But the length of a 1-tuple is always 0, so
for any (x0) ∈ MC0,0(G) we have

f∗(x0) = ( f (x0)).

ii) The induced chain map is defined on a generator (x0, x1) ∈ MC1,1(G)
by

(x0, x1) 7→
{
( f (x0), f (x1)) if ℓ( f (x0), f (x1)) = 1
0 else.

Because f is a map of graphs, we have

dH( f (x0), f (x1)) ≤ dG(x0, x1) = 1.

Hence, either dH( f (x0), f (x1)) = 1 which means { f (x0), f (x1)} ∈ E(H)
and f (x0, x1) = ( f (x0), f (x1)), or dH( f (x0), f (x1)) = 0 implying that
f∗(x0, x1) = 0.

Definition 3.28. A map of graphs f : G → H is an isomorphism of graphs if
there exists a map of graphs g : H → G which is an inverse to f , that is, such that
f ◦ g = 1H and g ◦ f = 1G.

Remark 3.29. We can characterise an isomorphism of graphs in the following way.
A map f : V(G) → V(H) on the vertex sets of two graphs is an isomorphism of
graphs if it is bijective and if

{x, y} ∈ E(G) ⇐⇒ { f (x), f (y)} ∈ E(H). (3.10)

Indeed, such a map f is a map of graphs and because of the property (3.10) its inverse
f−1 is also a map of graphs. For the other direction, let f : G → H be an isomorphism
of graphs as in the Definition 3.28 above and let g : H → G be its mutual inverse.
Being mutually inverse to each other, the maps f and g must be bijections on the
vertex sets of the graphs. Together with the fact that they are also maps of graphs,
we obtain the implication {x, y} ∈ E(G) =⇒ { f (x), f (y)} ∈ E(H) from f and
the implication { f (x), f (y)} ∈ E(H) =⇒ {g( f (x)), g( f (y))} = {x, y} ∈ E(G)
from g.
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Corollary 3.30. Let f : G → H be a map of graphs. If the induced map in homology
f∗ : MH∗,∗(G) → MH∗,∗(H) is an isomorphism, that is, f∗ is a group isomorphism
in each bidegree, then f is an isomorphism of graphs.

Proof. If f∗ : MH∗,∗(G) → MH∗,∗(H) is an isomorphism, then in particular
f∗ : MH0,0(G) → MH0,0(H) is an isomorphism. By Proposition 3.27, the map
f : V(G) → V(H) on the vertices is bijective. Let us now check the Condition
(3.10). The map f∗ : MH1,1(G) → MH1,1(H) is an isomorphism as well, which
implies that the image of any oriented edge (x0, x1) ∈

#‰

E (G) under f∗ is non-
zero, hence { f (x0), f (x1)} is an edge in H by Proposition 3.27. Conversely,
any edge {y0, y1} ∈ E(H) is in the image of f∗, so { f−1(y0), f−1(y1)} is an
edge in G.

3.3 Disjoint Unions

This section shows how the magnitude homology behaves with respect
to disjoint unions. As a consequence, we obtain that the magnitude of two
disjoint graphs is the sum of the magnitudes of each of the graphs.

Proposition 3.31. Let G and H be two graphs, we denote by G ⊔ H their disjoint
union. Let i : G → G ⊔ H and j : H → G ⊔ H be the inclusion maps. The induced
map on the direct sum

i∗ ⊕ j∗ : MH∗,∗(G)⊕ MH∗,∗(H) → MH∗,∗(G ⊔ H)

is an isomorphism.

Proof. We first consider the chain level, let k, l ≥ 0. Let (x0, . . . , xk) be a gen-
erator of the chain group MCk,l(G ⊔ H), so the length ℓ(x0, . . . , xk) = l < ∞
and in particular for all i ∈ {0, . . . , k − 1} the distance

dG⊔H(xi, xi+1) ≤ ℓ(x0, . . . , x1) < ∞.

It follows that the vertices x0, . . . , xk all lie either in G or all lie in H. With this
observation, we define the map h : MCk,l(G ⊔ H) → MCk,l(G)⊕ MCk,l(H)
defined on the generators by

h(x0, . . . , xk) =

{
((x0, . . . , xk), 0) if x0, . . . , xk ∈ V(G)

(0, (x0, . . . , xk)) if x0, . . . , xk ∈ V(H)

and extend linearly. By considering the images of the generators, we see that
h is an inverse to i# ⊕ j#, hence also the induced map in homology i∗ ⊕ j∗ is
an isomorphism.

Corollary 3.32. The magnitude of the disjoint union of two graphs G and H satisfies

|G ⊔ H|q = |G|q + |H|q.
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Proof. The rank of the direct sum of two abelian groups A and B satisfies
rank(A ⊕ B) = rank(A) + rank(B). Thus, the Euler characteristic of a direct
sum of two graded abelian groups C∗ and D∗ is χ(C∗⊕ D∗) = χ(C∗)+χ(D∗).
Using this together with Proposition 3.31 above and Theorem 3.16 about the
relation of magnitude and magnitude homology, we obtain

|G ⊔ H|q = ∑
l≥0

χ(MH∗,l(G ⊔ H))ql

= ∑
l≥0

χ(MH∗,l(G))ql + ∑
l≥0

χ(MH∗,l(H))ql

= |G|q + |H|q.

3.4 The Mayer-Vietoris Sequence

In this section, we prove a Mayer-Vietoris type theorem for the magnitude
homology, in fact, we obtain a split short exact Mayer-Vietoris sequence.
Again, we can use the result about magnitude homology to deduce the
so-called inclusion-exclusion principle for magnitude. We finish the section
by using the Mayer-Vietoris theorem to compute the magnitude homology
of trees and wedge sums of graphs. In this section we consider a connected
graph X. The connectivity simplifies some definitions but is not a real
constraint because with the result from last section we can describe the
magnitude of a disconnected graph by looking at its connected components.
We start by giving some definitions that are in analogy to a convex subset in
Rn, in which for any two points, the shortest path connecting them lies also
in the convex set.

Definition 3.33. A subgraph U ⊂ X is called convex if

∀u, v ∈ U dU(u, v) = dX(u, v).

Definition 3.34. Let U ⊂ X be a convex subgraph. We say that X projects to U if
for every vertex x ∈ X there is a vertex π(x) ∈ U such that

∀u ∈ U d(x, u) = d(x, π(x)) + d(π(x), u). (3.11)

If the graph X projects to a subgraph U, then for any vertex x ∈ X there
exists precisely one vertex π(x) ∈ U satisfying property (3.11). Indeed,
assume there are two vertices p1, p2 ∈ U with this property. By taking
π(x) = p1 we obtain

d(x, p2) = d(x, p1) + d(p1, p2)
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and with π(x) = p2 we have

d(x, p1) = d(x, p2) + d(p2, p1).

These equations imply that d(p1, p2) = 0, so any two points satisfying (3.11)
are equal. Furthermore, the unique vertex π(x) is the vertex of U closest to
the vertex x, since for every other vertex v ∈ U \ {u} the distance

d(x, v) = d(x, u) + d(u, v) > d(x, u).

This is also analogous to convex subsets in Rn; every point in Rn has a closest
point in any convex subset.

Remark 3.35. Because of the uniqueness we just discussed, we find that if a graph
X projects to a subgraph U, then there is a well-defined map π : X → U, x 7→ π(x).

Remark 3.36. We have seen that if X projects to a subgraph U, then the projection
π(x) of any vertex x ∈ X is the vertex in U that is closest to x. But it is not true
that X projects to a subgraph U ⊂ X if each vertex of X has a closest vertex in
U. Take for example X to be the five-cycle with its subgraph U consisting of two
adjacent edges, see Figure 3.2a below. Both vertices a4 and a5 have a closest vertex in
the red subgraph, but there is no projection. Thus, projecting to U ⊂ X is stronger
than the property that each point of X has a closest point in U.

a4

a5a3

a1a2

(a)

a6a3

a4 a5

a1a2

(b)

a5

a4 a6

a7a3

a1a2

(c)

Figure 3.2: The five-cycle on the left does not project to the red subgraph. The even cycle
in the middle projects to the red red subgraph, the projection is π(a3) = π(a4) = a2 and
π(a5) = π(a6) = a1. The odd cycle on the right does not project to its red subgraph because
the vertex a5 can not be projected to the red edge.

Example 3.37. As illustrated in Figure 3.2b and 3.2c, we consider the following
two examples.

i) Every even cyclic graph projects to any of its edges.

ii) No odd cyclic graph projects to any of its edges.

In this section, we work with the union of two graphs. This is to be
understood as the union G ∪ H of labelled graphs G and H, with vertex
set V(G ∪ H) = V(G) ∪ V(H) and E(G ∪ H) = E(G) ∪ E(H). It is not the
disjoint union of the graphs, see also the example in Figure 3.3.
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a1

a2

a4

a3

(a) Graph G

a1

a2

a5

(b) Graph H

a1

a2

a4

a3

a5

(c) The union G ∪ H

Figure 3.3: Example of a labelled union of graphs.

Definition 3.38. A projecting decomposition is a triple (X; G, H) consisting of
a graph X and subgraphs G, H ⊂ X such that

i) X = G ∪ H;

ii) G ∩ H is convex in X;

iii) H projects to G ∩ H.

Given a projecting decomposition (X; G, H) we write

iG : G → X, jG : G ∩ H → G,

iH : H → X, jH : G ∩ H → H

for the inclusions.

Definition 3.39. A decomposition map f : (X; G, H) → (X′; G′, H′) is a map of
graphs f : X → X′ such that f (G) ⊂ G′ and f (H) ⊂ H′.

Definition 3.40. A decomposition map f : (X; G, H) → (X′; G′, H′) is projecting
if H = f−1(H′) and if for every vertex h ∈ H the equality f (π(h)) = π( f (h))
holds.

Lemma 3.41 ([6, Lemma 4.4]). Let X be a graph with subgraphs G, H ⊂ X such
that X = G ∪ H. Every path in X from a vertex in G to a vertex in H contains a
vertex in the intersection G ∩ H.

Proof. Let x0 ∈ G and xn ∈ H be two vertices connected by a path P in X
given by x0, x1, . . . , xn. Let i ∈ {0, . . . , n} be the largest index such that the
vertex xi ∈ G. We show that xi ∈ H as well, which will give us the desired
vertex in the intersection. This is clear if i = n by assumption. If i < n, then
xi+1 /∈ G, so the edge {xi, xi+1} is not in G either. But because X = G ∪ H,
the edge {xi, xi+1} must be in E(H), implying that xi ∈ H.

Lemma 3.42. In a projecting decomposition (X; G, H), all the subgraphs

G ∩ H ⊂ X, G ∩ H ⊂ G, G ∩ H ⊂ H, G ⊂ X, H ⊂ X

are convex.
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Proof. The subgraphs G ∩ H ⊂ X and G ∩ H ⊂ H are convex by definition of
a projecting decomposition. For the rest, note first that in any graph B with
subgraph A ⊂ B and vertices x, y ∈ A, we have dB(x, y) ≤ dA(x, y) because
every path in A is also a path in B. Let us now show that G ∩ H is convex
in G. Consider vertices u, v ∈ G ∩ H, by the observation we just made we
obtain the inequalities

dX(u, v) ≤ dG(u, v) ≤ dG∩H(u, v). (3.12)

But we know that dG∩H(u, v) = dX(u, v), because G ∩ H ⊂ X is convex, so
all the inequalities in (3.12) are in fact equalities.
To show that G ⊂ X is convex we follow the proof given in [6, Lemma 4.3].
Let u, v ∈ G be arbitrary vertices. We assume that X is connected, so let
n = dX(u, v) < ∞ and take a shortest path P in X from u to v with the
additional assumption that it has the greatest possible number of vertices in
G of all those shortest paths. Let us say P is the path u = x0, x1, . . . , xn = v,
we show by contradiction that P must already be a path in G. Suppose there
exists an index j ∈ {0, . . . , n} such that xj /∈ G. By Lemma 3.41 above, there
exist indices i, k ≥ 0 such that 0 ≤ i < j < k ≤ n and xi, xk ∈ G ∩ H. Consider
the path xi, . . . , xk. It is a shortest path in X from xi to xk because it is part of
a shortest path from u to v, thus dX(xi, xk) = k − i. The subgraph G ∩ H ⊂ X
is convex by definition, so dG∩H(xi, xk) = k − i as well. Hence, there exists a
path xi = ui, . . . , uk = xk in G ∩ H, but then the path

u = x0, x1, . . . , xi = ui, . . . , uk = xk, xk+1, . . . , xn = v

is another shortest path in X that contains strictly more vertices in G than P.
This is a contradiction and we conclude that the path P already lies in G and
therefore dX(u, v) ≥ dG(u, v). By the argument at the beginning of the proof,
we have the other inequality dX(u, v) ≤ dG(u, v). The proof that H ⊂ X is
convex is completely analogous.

This lemma is important for the proof of the Mayer-Vietoris sequence, as it
ensures that the distance of two vertices in any subgraph of the decomposition
is the same even when the vertices are viewed in a larger subgraph of the
decomposition. Recall that a chain subcomplex B∗ of a chain complex C∗ of
abelian groups is a chain complex such that Bn ⊂ Cn is a subgroup for every
n ∈ Z and the differential of B∗ is the restriction of the differential on C∗,
that is, if the inclusion i : B∗ → C∗ is a chain map.

Definition 3.43. Given a projecting decomposition (X; G, H), let MC∗,∗(G, H)
denote the chain subcomplex of MC∗,∗(G ∪ H) spanned by those tuples (x0, . . . , xk)
with entries all in G or all in H.

Theorem 3.44 (Excision for magnitude chains). Let (X; G, H) be a projecting
decomposition. For every l ≥ 0, the inclusion

MC∗,l(G, H) → MC∗,l(G ∪ H)
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is a quasi-isomorphism, that is, it induces an isomorphism in homology.

The proof of excision for magnitude homology is rather lengthy, so we
split it up into several lemmas. The general idea is to show that the quotient
complex MC∗,l(G ∪ H)/MC∗,l(G, H) is acyclic by showing that some auxil-
iary chain subcomplexes are also acyclic. Let (X; G, H) denote a projecting
decomposition throughout the proof.

Definition 3.45. Let l ≥ 0 and let a, b ∈ X be a pair of vertices such that either
a ∈ G \ H and b ∈ H \ G, or a ∈ H \ G and b ∈ G \ H; that is, a and b are
not both contained in G and not both contained in H. Define A∗,l(a, b) to be the
chain subcomplex of MC∗,l(G ∪ H) spanned by the tuples (x0, . . . , xk) for which
x0 = a, xk = b and x1, . . . , xk−1 ∈ G ∩ H.

Lemma 3.46. Let l ≥ 0 and a, b ∈ X be a pair of vertices not both contained in G
and not both contained in H. The chain complex A∗,l(a, b) is acyclic, that is, for
every k ≥ 0 the homology group Hk(A∗,l(a, b)) = 0.

Proof. We show that the identity map id : A∗,l(a, b) → A∗,l(a, b) is chain
homotopic to the zero map, that is, that there exists a chain homotopy
s : A∗,l(a, b) → A∗+1,l(a, b) satisfying ∂ ◦ s + s ◦ ∂ = id. This proves the
lemma because two chain maps that are chain homotopic induce the same
map in homology and if the identity id∗ is the trivial map, then all homology
groups of A∗,l(a, b) are zero. We begin by considering the case b ∈ H \ G and
a ∈ G \ H, let us define the map s : A∗,l(a, b) → A∗+1,l(a, b) defined on the
generators (x0, . . . , xk) ∈ Ak,l(a, b) by

s(x0, . . . , xk) =

{
(−1)k(x0, . . . , xk−1, π(xk), xk) if π(xk) ̸= xk−1

0 else,

Where π denotes the projection map from H to G ∩ H. Note that this is map
is well-defined; the fact that H projects to G ∩ H ensures that the length is
preserved, because d(xk−1, π(xk)) + d(π(xk), xk) = d(xk−1, xk). To show that
s is the required chain homotopy, we verify that for any k ≥ 0, any generator
(x0, . . . , xk) ∈ Ak,l(a, b) satisfies

k

∑
i=1

(−1)i(∂i ◦ s)(x0, . . . , xk) +
k−1

∑
i=1

(−1)i(s ◦ ∂i)(x0, . . . , xk) = (x0, . . . , xk).

Note that for i = 1, . . . , k − 2 we have

(∂i ◦ s)(x0, . . . , xk) = (−1)k(x0, . . . , x̂i, . . . , xk−1, π(xk), xk),

if π(xk) ̸= xk−1 and d(xi−1, xi+1) = d(xi−1, xi) + d(xi, xi+1), and otherwise,
(∂i ◦ s)(x0, . . . , xk) = 0. Furthermore,

(s ◦ ∂i)(x0, . . . , xk) = (−1)k−1(x0, . . . , x̂i, . . . , xk−1, π(xk), xk)
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if π(xk) ̸= xk−1 and d(xi−1, xi+1) = d(xi−1, xi) + d(xi, xi+1). Otherwise
(s ◦ ∂i)(x0, . . . , xk) = 0. Therefore, the sum

(∂i ◦ s)(x0, . . . , xk) + (s ◦ ∂i)(x0, . . . , xk) = 0

for i = 1, . . . , k − 2. All that is left to show is that

(−1)k−1(∂k−1 ◦ s)(x0, . . . , xk)︸ ︷︷ ︸
1

+ (−1)k(∂k ◦ s)(x0, . . . , xk)︸ ︷︷ ︸
2

+

(−1)k−1(s ◦ ∂k−1)(x0, . . . , xk)︸ ︷︷ ︸
3

= (x0, . . . , xk).

We verify this by dealing with the three possible cases separately. For each
case we use that H projects to G ∩ H and in particular we need the following
two equations

d(xk, xk−2) = d(xk, π(xk)) + d(π(xk), xk−2),
d(xk, xk−1) = d(xk, π(xk)) + d(π(xk), xk−1).

(3.13)

• If xk−1 = π(xk), then s(x0, . . . , xk) = 0 and hence 1 = 0 and 2 = 0.
The first equation of (3.13) implies ∂k−1(x0, . . . , xk) = (x0, . . . , x̂k−1, xk).
From xk−2 ̸= xk−1 = π(xk) it follows that

s(∂k−1(x0, . . . , xk)) =

(−1)k−1(x0, . . . , xk−2, π(xk), xk) = (−1)k−1(x0, . . . , xk),

hence 3 = (x0, . . . , xk).

• If xk−1 ̸= π(xk) and d(xk−2, xk−1) + d(xk−1, xk) > d(xk−2, xk), then
s(x0, . . . , xk) = (−1)k(x0, . . . , xk−1, π(xk), xk), and ∂k−1(x0, . . . , xk) = 0,
so we already have 3 = 0. The second equation from (3.13) shows
that ∂k(s(x0, . . . , xk)) = (−1)k(x0, . . . , xk−1, xk) and thus the second
summand 2 = (x0, . . . , xk). By both Equations (3.13) and the second
assumption of this case it follows that

d(xk−2, xk−1) + d(xk−1, π(xk)) > d(xk−2, π(xk)),

so the differential ∂k−1(s(x0, . . . , xk)) = 0 and 1 = 0.

• If xk−1 ̸= π(xk) and d(xk−2, xk−1) + d(xk−1, xk) = d(xk−2, xk), then
s(x0, . . . , xk) = (−1)k(x0, . . . , xk−1, π(xk), xk) and thus 2 = (x0, . . . , xk).
The assumptions also imply ∂k−1(x0, . . . , xk) = (x0, . . . , x̂k−1, xk) and
with Equations (3.13) we obtain

d(xk−2, xk−1) + d(xk−1, π(xk)) = d(xk−2, π(xk)),

which shows that π(xk) ̸= xk−2 because the left-hand side is non-
zero. Altogether, we can calculate 1 = −(x0, . . . , xk−2, π(xk), xk) and
3 = (x0, . . . , xk−2, π(xk), xk).
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Indeed, in all three cases 1 + 2 + 3 = (x0, . . . , xk).
The proof of the case b ∈ G \ H, a ∈ H \ G has the same structure as before,
but we can not just exchange G and H because it is only assumed that H
projects to the intersection G ∩ H and not G. We need to define a new map
s′ : A∗,l(a, b) → A∗+1,l(a, b), let s′ be defined on the generators by

s′(x0, . . . , xk) =

{
−(x0, π(x0), x1, . . . , xk) if π(x0) ̸= x1

0 else.

Again, this map is well-defined because H projects to G ∩ H and we need to
show that ∂ ◦ s′ + s′ ◦ ∂ = id, or in terms of generators (x0, . . . , xk) ∈ Ak,l(a, b):

k

∑
i=1

(−1)i(∂i ◦ s′)(x0, . . . , xk) +
k−1

∑
i=1

(−1)i(s′ ◦ ∂i)(x0, . . . , xk) = (x0, . . . , xk)

For i = 3, . . . , k we have

(∂i ◦ s′)(x0, . . . , xk) =
−(x0, π(x0), x1, . . . , x̂i−1, . . . , xk) if π(x0) ̸= x1 and

d(xi−2, xi) = d(xi−2, xi−1) + d(xi−1, xi)

0 else

= (s′ ◦ ∂i−1)(x0, . . . , xk),

hence the difference (∂i ◦ s′ − s′ ◦ ∂i−1)(x0, . . . , xk) = 0 and it is only left to
show that

−(∂1 ◦ s′)(x0, . . . , xk)︸ ︷︷ ︸
1

+ (∂2 ◦ s′)(x0, . . . , xk)︸ ︷︷ ︸
2

+

−(s′ ◦ ∂1)(x0, . . . , xk)︸ ︷︷ ︸
3

= (x0, . . . , xk).

Similarly to before, we do a case by case analysis and use that H projects to
G ∩ H. In particular, we will refer to the equations

d(x0, x2) = d(x0, π(x0)) + d(π(x0), x2),
d(x0, x1) = d(x0, π(x0)) + d(π(x0), x1).

(3.14)

• If π(x0) = x1, then 1 = 2 = 0. The first equation of (3.14) implies
∂1(x0, . . . , xk) = (x0, x2, . . . , xk). Together with x2 ̸= x1 = π(x0) it fol-
lows that (s′ ◦ ∂1)(x0, . . . , xk) = −(x0, π(x0), x2, . . . , xk) = −(x0, . . . , xk)
and hence 3 = (x0, . . . , xk).
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• If π(x0) ̸= x1 and d(x0, x2) < d(x0, x1) + d(x1, x2), then we have
∂1(x0, . . . , xk) = 0 and it follows that 3 = 0. The assumptions also im-
ply s′(x0, . . . , xk) = −(x0, π(x0), x1, . . . , xk), so 1 = (x0, x1, . . . , xk) and
with Equations (3.14) we find d(π(x0), x2) < d(π(x0), x1) + d(x1, x2),
which shows 2 = 0.

• If π(x0) ̸= x1 and d(x0, x2) = d(x0, x1) + d(x1, x2), then the image
s′(x0, . . . , xk) = −(x0, π(x0), x1, . . . , xk), so the composition with ∂1
yields (∂1 ◦ s′)(x0, . . . , xk) = −(x0, x1, . . . , xk) and thus 1 = (x0, . . . , xk).
By Equations (3.14) and the second assumption of this case we obtain

d(π(x0), x2) = d(π(x0), x1) + d(x1, x2), (3.15)

which implies 2 = (∂2 ◦ s′)(x0, . . . , xk) = −(x0, π(x0), x2, . . . , xk). The
right-hand-side of Equation (3.15) is non-zero, thus π(x0) ̸= x2 and
with the second assumption of this case it follows that the composi-
tion (s′ ◦ ∂1)(x0, . . . , xk) = −(x0, π(x0), x2, . . . , xk), so the last summand
3 = (x0, π(x0), x2, . . . , xk).

In all these three cases we find that indeed 1 + 2 + 3 = (x0, . . . , xk) and
therefore we showed that the chain complex A∗,l(a, b) is acyclic.

Let us recall a definition and result from homological algebra, which we
need for the next lemma.

Definition 3.47. A filtration on a chain complex C∗ is an ordered family of chain
subcomplexes

. . . ⊂ Fp−1 ⊂ Fp ⊂ Fp+1 ⊂ . . .

of C∗.

Lemma 3.48. Let F0 ⊂ F1 ⊂ . . . ⊂ Fl = C∗ be a filtration on a chain complex C∗.
If for every index i = 1, . . . , l the quotient complex Fi/Fi−1 is acyclic, then the chain
complex Fl/F0 is also acyclic.

Proof. For every i = 1, . . . , l, the inclusion and projection map fit into the
short exact sequence

0 −→ Fi−1 −→ Fi −→ Fi/Fi−1 −→ 0,

which induces the following long exact sequence in homology:

. . . → H∗+1(Fi/Fi−1) → H∗(Fi−1) → H∗(Fi) → H∗(Fi/Fi−1) → . . .

The assumption that the quotient complex Fi/Fi−1 is acyclic implies that
the inclusion Fi−1 ↪−→ Fi induces an isomorphism in homology. Thus, the
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inclusion i : F0 ↪−→ Fl is a quasi isomorphism as well because it is equal to the
composition of the inclusions F0 ↪−→ F1 ↪−→ . . . ↪−→ Fl . The short exact sequence

0 −→ F0
i−→ Fl

p−→ Fl/F0 → 0,

where p is the projection map, induces the long exact sequence

. . . H∗+1(Fl/F0)
d−→ H∗(F0)

i∗−→∼= H∗(Fl)
p∗−→ H∗(Fl/F0)

d−→ H∗−1(F0)
i∗−→∼= H∗−1(Fl)

p∗−→ H∗−1(Fl/F0) → . . .

in homology with connecting homomorphism d. Exactness of the sequence
implies that both p∗ and d are trivial because ker(p∗) = im(i∗) = H∗(Fl) and
im(d) = ker(i∗) = 0. It follows that 0 = im(p∗) = ker(d) = H∗(Fl/F0).

Definition 3.49. For an integer j ≥ 0, the j-th suspension ΣjC∗ of a chain complex
C∗ is the chain complex with (ΣjC∗)i = Ci−j for all i ∈ Z.

Definition 3.50. Fix l ≥ 0 and let b ∈ (G∪ H) \ (G∩ H) be a vertex. If b ∈ H \G,
define the chain complex B∗,l(b) to be the subcomplex of MC∗,l(G ∪ H) spanned
by tuples of the form (x0, . . . , xk) with xk = b and x0, . . . , xk−1 ∈ G. We further
denote by B∗,l(b) the chain subcomplex of B∗,l(b) spanned by tuples (x0, . . . , xk) for
which x0, . . . , xk−1 ∈ G ∩ H. If instead b ∈ G \ H, then we interchange G and H
in the definition of B∗,l(b) and B∗,l(b).

Lemma 3.51. The quotient complex B∗,l(b)/B∗,l(b) is acyclic for any l ≥ 0 and
any b ∈ (G ∪ H) \ (G ∩ H).

Proof. The idea of the proof is to use Lemma 3.48 above, so we start by
defining a filtration. Let us first suppose that b ∈ H \ G, for i = 0, . . . , l let
Fi ⊂ B∗,l(b) be the chain subcomplex for which the group in degree k > i is
spanned by the tuples (x0, . . . , xk) ∈ Bk,l(b) satisfying xi, . . . , xk−1 ∈ G ∩ H,
and for the groups in degree k ≤ i we impose no condition. Note that the
restriction of the differential to these subgroups is well defined, so the Fi’s
are indeed chain subcomplexes. We obtain a filtration

B∗,l(b) = F0 ⊂ F1 ⊂ · · · ⊂ Fl = B∗,l(b)

of B∗,l(b) and by the previous lemma it is enough to show that for every
i = 1, . . . , l the quotient complex (Fi/Fi−1)∗ is acyclic. So, let i = 1, . . . , l be
any fixed index, the generators of (Fi/Fi−1)k are the generators of Fi that
are not also generators of Fi−1 because both Fi and Fi−1 are free abelian
groups. Concretely, for k ≥ i the generators of (Fi/Fi−1)k are the tuples
(x0, . . . , xk) ∈ Bk,l(b) for which xi−1 ∈ G \ H and xi, . . . , xk−1 ∈ G ∩ H, and
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for k ≤ i − 1 we have (Fi)k = (Fi−1)k = Bk,l(b) so the quotient complex
(Fi/Fi−1) = 0. Let us define a map

ξ :
⊕

(x0,...,xi−1)

Σi−1A∗,l−l′(xi−1, b) → Fi/Fi−1

where the direct sum is taken over all tuples (x0, . . . , xi−1) ∈ Gi with
xi−1 ∈ G \ H and l′ = ℓ(x0, . . . , xi−1). Define ξ on a generator (xi−1, yi, . . . , yk)
of (Σi−1A∗,l−l′(xi−1, b))k = Ak−i+1,l−l′(xi−1, b) from the summand corre-
sponding to (x0, . . . , xi−1) by

ξ((xi−1, yi, . . . , yk)) = (−1)(i−1)k(x0, . . . , xi−1, yi, . . . , yk).

Before continuing, we verify that this is indeed a generator of the quotient
(Fi/Fi−1)k. The length satisfies

ℓ(x0, . . . , xi−1, yi, . . . , yk) = ℓ(x0, . . . , xi−1) + ℓ(xi−1, yi, . . . , yk) =

l′ + (l − l′) = l,

as needed, the vertex xi−1 ∈ G \ H by assumption, and by the definition
of A∗,l−l′(xi−1, b) it follows that yk = b and yi, . . . , yk−1 ∈ G ∩ H, so ξ
is well-defined. Next, we show that ξ is an isomorphism of chain com-
plexes. It is immediate from the definition that ξ is injective on the gen-
erators and because any generator (x0, . . . , xk) ∈ (Fi/Fi−1)k is the image
of (xi−1, . . . , xk) ∈ (Σi−1A∗,l−l′(xi−1, b))k corresponding to the summand
(x0, . . . , xi−1), the map ξ is a bijection on the generators in each degree and
consequently an isomorphism of groups. It is left to show that ξ is a chain
map, for this we need to check that the following diagram commutes for
every k ≥ 0.

(⊕Σi−1A∗,l−l′(xi−1, b))k (Fi/Fi−1)k

(⊕Σi−1A∗,l−l′(xi−1, b))k−1 (Fi/Fi−1)k−1

∂

ξ

∂

ξ

First, note that the differential on Fi/Fi−1 is induced by the differential
∂ on MC∗,l(G ∪ H), which is given in degree k by the alternating sum
∑k−1

j=1 (−1)j∂j. Let us look at the maps ∂j and consider first j = 1, . . . , i − 1
and a generator (x0, . . . , xk) ∈ (Fi/Fi−1)k. If we label the vertices in the tuple
(x0, . . . , x̂j, . . . , xk) by (y0, . . . , yk−1), then we see that for the indices j′ > j, the
vertex xj′ corresponds to yj′−1. Therefore, the vertices yi−1, . . . , yk−2 are the
vertices xi, . . . , xk−1 ∈ G∩ H and it follows that (x0, . . . , x̂j, . . . , xk) ∈ (Fi−1)k−1
if the length is preserved after removing xj and hence ∂j is the trivial map
on Fi/Fi−1. For j = i, . . . , k − 1, the map ∂j still removes the j-th entry of a
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generator if that preserves the length, and otherwise sends it to 0.
Now, we verify commutativity of the diagram, let (x0, . . . , xi−1) be a tu-
ple of vertices in G with xi−1 ∈ G \ H and set l′ = l(x0, . . . , xi−1). Let
(xi−1, yi, . . . , yk) ∈ (Σi−1A∗,l−l′(xi−1, b))k be a generator. Viewed as an ele-
ment in the direct sum (⊕Σi−1A∗,l−l′(xi−1, b))k, the image of this generator
under ξ is (−1)(i−1)k(x0, . . . , xi−1, yi, . . . , yk). With the considerations above,
we apply the differential and obtain

∂((−1)(i−1)k(x0, . . . , xi−1, yi, . . . , yk)) =

k−1

∑
j=i

(−1)j+(i−1)k∂j(x0, . . . , xi−1, yi, . . . , yk).

By first applying the differential and then the map ξ to the generator
(xi−1, yi, . . . , yk), we get the sum

k−i

∑
j=1

(−1)jξ(∂j(xi−1, yi, . . . , yk)). (3.16)

For any j = 1, . . . , k − 1, the j-th summand in (3.16) can be further expressed
as

(−1)j · (−1)(i−1)(k−1)(x0, . . . , xi−1, yi, . . . , ŷi+j−1, . . . , yk)

if d(yi+j−2, yi+j) = d(yi+j−2, yi+j−1)+ d(yi+j−1, yi+j), and is 0 otherwise. After
substituting j + i − 1 = j′ in (3.16), we obtain

k−1

∑
j′=i

(−1)j′+(k−2)(i−1)∂j′(x0, . . . , xi−1, yi, . . . , yk),

and since (−1)2(i−1) = 1, the diagram commutes. By interchanging the roles
of G and H, we obtain the proof if instead b ∈ G \ H.

We are now able to prove the excision theorem for magnitude homology,
let us recall the following fact from homological algebra.

Remark 3.52. Let D∗ be a chain complex with a chain subcomplex C∗ ⊂ D∗. If
the quotient complex D/C is acyclic, then the inclusion i : C∗ → D∗ is a quasi-
isomorphism. This statement follows from the induced long exact sequence in
homology of the short exact sequence

0 → C
i

↪−→ D
p−→ D/C → 0,

where p denotes the projection.
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Proof of Theorem 3.44. The idea of the proof is to use again a filtration to show
with Lemma 3.48 that the quotient complex MC∗,l(G ∪ H)/MC∗,l(G, H) is
acyclic, which then implies with the previous Remark 3.52 that the inclusion
map MC∗,l(G, H) ↪−→ MC∗,l(G ∪ H) is a quasi-isomorphism.
For i = 0, . . . , l let Fi be the chain subcomplex of MC∗,l(G ∪ H) spanned in
degree k ≥ i by the tuples (x0, . . . , xk) such that x0, . . . , xk−i either all lie in G
or all in H. When k < i we impose no condition, this produces a filtration

MC∗,l(G, H) = F0 ⊂ F1 ⊂ · · · ⊂ Fl = MC∗,l(G ∪ H).

We claim that there is a chain map isomorphism⊕
(xk−i+1,...,xk)

Σi−1(B∗,l−l′(xk−i+1)/B∗,l−l′(xk−i+1)) → Fi/Fi−1,

where the direct sum is taken over all tuples (xk−i+1, . . . , xk) ∈ (G ∪ H)i with
xk−i+1 ∈ (G ∪ H) \ (G ∩ H) and we denote l′ = ℓ(xk−i+1, . . . , xk). For con-
structing the isomorphism, let us look at one summand, say corresponding
to (xk−i+1, . . . , xk) as described above. Consider the map

β : Σi−1B∗,l−l′(xk−i+1) → Fi/Fi−1

defined on generators by β(x0, . . . , xk−i+1) = (x0, . . . , xk). Let us quickly
verify that this is well defined. By assumption, xk−i+1 ∈ G ∪ H \ G ∩ H, so
B∗,l−l′(xk−i+1) is defined and a generator (x0, . . . , xk−i+1) ∈ Bk−i+1,l−l′(xk−i+1)
satisfies ℓ(x0, . . . , xk−i+1) = l − l′ and

x0, . . . , xk−i ∈
{

G if xk−i+1 ∈ H \ G
H if xk−i+1 ∈ G \ H

Then, the tuple (x0, . . . , xk) has length

ℓ(x0, . . . , xk) = ℓ(x0, . . . , xk−i+1) + ℓ(xk−i+1, . . . , xk) = l − l′ + l′ = l

and x0, . . . , xk−i all lie either in G or in H, hence (x0, . . . , xk) ∈ Fi and we can
project it to (x0, . . . , xk) ∈ Fi/Fi−1.

Claim: The kernel ker(β) = Σi−1B∗,l−l′(xk−i+1).

Proof of Claim: Let k ≥ 0, because the image β(x0, . . . , xk−i+1) = (x0, . . . , xk) of
a generator (x0, . . . , xk−i+1) ∈ (Σi−1B∗,l−l′(xk−i+1))k satisfies that the vertices
x0, . . . , xk−i are in the intersection G ∩ H, the vertices x0, . . . , xk−i+1 all lie
either in G or all in H. Therefore, the tuple (x0, . . . , xk) ∈ Fi−1 and

Σi−1B∗,l−l′(xk−i+1) ⊂ ker(β).

For the other inclusion, let B be the set of generators of (Σi−1B∗,l−l′(xk−i+1))k
and let

g = ∑
t∈B

nt · t ∈ ker(β),
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for some coefficients nt ∈ Z be an arbitrary element in the kernel, meaning
β(g) ∈ Fi−1. It follows that for every (x0, . . . , xk−i−1) = t ∈ B such that nt ̸= 0,
already t ∈ Fi−1 because the map sending a generator (x′0, . . . , x′k−i+1) ∈ B
to (x′0, . . . , x′k) ∈ Fi is injective. By definition, this means the vertices
x0, . . . , xk−i+1 all either lie in G or all in H. Additionally, we know that
xk−i+1 ∈ (G ∪ H) \ (G ∩ H) and t ∈ (Σi−1B∗,l−l′(xk−i+1))k, so

x0, . . . , xk−i ∈
{

G if xk−i+1 ∈ H \ G
H if xk−i+1 ∈ G \ H

which implies that x0, . . . , xk−i ∈ G ∩ H and thus t ∈ Σi−1B∗,l−l′(xk−i+1) and
also g ∈ Σi−1B∗,l−l′(xk−i+1). ■

It follows that β factors through Σi−1B∗,l−l′(xk−i+1), and we get the injec-
tive map

β : Σi−1(B∗,l−l′(xk−i+1)/B∗,l−l′(xk−i+1)) → Fi/Fi−1

induced by β. Taking the direct sum as described earlier, we obtain the
injective map

ξ :
⊕

(xk−i+1,...,xk)

Σi−1(B∗,l−l′(xk−i+1)/B∗,l−l′(xk−i+1)) → Fi/Fi−1.

Note that a generator of the quotient chain complex Fi/Fi−1 in degree k is a
tuple (x0, . . . , xk) ∈ MCk,l(G ∪ H) such that x0, . . . , xk−i either all lie in G or
all in H and xk−i+1 does not lie in the same subgraph as x0, . . . , xk−i. Hence,
(xk−i+1, . . . , xk) is a tuple of vertices in G∪ H and xk−i+1 ∈ (G ∪ H) \ (G ∩ H).
If we denote ℓ(xk−i+1, . . . , xk) = l′, then the generator (x0, . . . , xk) is the
image of (x0, . . . , xk−i+1) ∈ Σi−1B∗,l−l′(xk−i+1) under β corresponding to the
summand (xk−i+1, . . . , xk). This shows that ξ is also surjective and thus it is
an isomorphism in each degree k ≥ 0. It is left to check that ξ is a chain map,
to do this we prove that β is a chain map for each summand. That is, for
every tuple (xk−i+1, . . . , xk) ∈ (G ∪ H)i with xk−i+1 ∈ (G ∪ H) \ (G ∩ H), the
diagram

(Σi−1(B∗,l−l′(xk−i+1)/B∗,l−l′(xk−i+1)))k (Fi/Fi−1)k

(Σi−1(B∗,l−l′(xk−i+1)/B∗,l−l′(xk−i+1)))k−1 (Fi/Fi−1)k−1

β

∂ ∂

β

commutes for every k ≥ 0. The differential ∂ : (Fi/Fi−1)k → (Fi/Fi−1)k−1 is
induced by the alternating sum ∂ = ∑k−1

j=1 (−1)j∂j, we show that for every
j = k − i + 1, . . . , k − 1 the map ∂j is trivial. A generator (x0, . . . , xk) ∈ Fi
satisfies that the vertices x0, . . . , xk−i all either lie in H or in G. In the tuple
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(x0, . . . , x̂j, . . . , xk), where the entry xj is removed, the entries x0, . . . , xk−i stay
the same. Therefore, if the tuple (x0, . . . , x̂j, . . . , xk) still has length l, then it is
a generator of the chain complex Fi−1 in degree k− 1, otherwise ∂j maps it to 0.
Thus, ∂j(x0, . . . , xk) = 0 ∈ (Fi/Fi−1) and the sum of the differential simplifies
to ∂ = ∑k−i

j=1(−1)j∂j. Let (x0, . . . , xk−i+1) ∈ Σi−1B∗,l−l′(xi−1+k)/B∗,l−l′(xi−1+k)

be a generator, its images under each of the two compositions in the diagram
are

(x0, . . . , xk−i+1)
β7−→ (x0, . . . , xk)

∂7−→
k−i

∑
j=1

(−1)j∂j(x0, . . . , xk)

and

(x0, . . . , xk−i+1)
∂7−→

k−i

∑
j=1

(−1)j∂j(x0, . . . , xk−i+1)
β7−→

k−i

∑
j=1

(−1)j∂j(x0, . . . , xk),

so the diagram commutes and ξ is a chain map. The previous Lemma 3.51
states that Σi−1(B∗,l−l′(xk−i+1)/B∗,l−l′(xk−i+1)) is acyclic, it follows that the
chain complex (Fi/Fi−1) is acyclic too for every i ∈ {1, . . . , l}.

With the excision theorem, we can deduce the Mayer-Vietoris sequence
for magnitude homology, which relates the magnitude homologies of X, G,
H, and G ∩ H. Note that unlike for singular homology, the Mayer-Vietoris
sequence we obtain here splits into short exact sequences.

Theorem 3.53 (Mayer-Vietoris for magnitude homology). Let (X; G, H) be a
projecting decomposition. There exists a split short exact sequence

0 → MH∗,∗(G ∩ H)
(jG
∗ ,−jH

∗ )−−−−→ MH∗,∗(G)⊕ MH∗,∗(H)

iG
∗ ⊕iH

∗−−−→ MH∗,∗(G ∪ H) → 0.

The sequence is natural with respect to decomposition maps, and the splitting is
natural with respect to projecting decomposition maps.

Proof. Let l ≥ 0 and consider the sequence

0 −→ MC∗,l(G ∩ H)
(jG

# ,−jH
# )

−−−−→ MC∗,l(G)⊕ MC∗,l(H)
ι−→ MC∗,l(G, H) −→ 0,

where the map ι is induced by the inclusions MC∗,l(G) ↪→ MC∗,l(G, H) and
MC∗,l(H) ↪→ MC∗,l(G, H).

Claim: This sequence is exact.

Proof of Claim: Lemma 3.42 implies that for any tuple (x0, . . . , xk) of vertices
in X that can also be viewed as a tuple of vertices in any of the subgraphs G,
H, or G ∩ H, the length does not change depending on which subgraph we
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consider the vertices to be in. This ensures that the chain maps induced by
inclusions send a tuple (x0, . . . , xk) to itself viewed with vertices in the larger
graph instead of sending it to 0. It follows that the map (jG

# ,−jH
# ) is injective.

To see that ker(ι) = im(jG
# ,−jH

# ), let k ≥ 0 be arbitrary and note that for every
generator (x0, . . . , xk) ∈ MCk,l(G ∩ H), the image ι ◦ (jG

# ,−jH
# )(x0, . . . , xk) = 0,

hence im(jG
# ,−jH

# ) ⊂ ker(ι). For the other inclusion, let α ∈ ker(iG
# ⊕ iH

# ) be
arbitrary. We can write α = (∑k

i=1 nigi, ∑k′
i′=1 mi′hi′) for some generators

gi ∈ MCk,l(G) and hi′ ∈ MCk,l(H), and some coefficients ni, mi′ ∈ Z. We
obtain the equation

k

∑
i=1

nigi +
k′

∑
i′=1

mi′hi′ = 0 ∈ MCk,l(G, H),

and it follows that the coefficients are non-zero only if the vertices in their
corresponding generator all lie in the intersection G ∩ H and the indices of
the non-zero coefficients come in pairs 1 ≤ i0, i′0 ≤ k such that the generators
gi0 = hi′0

and ni0 = −mi′0
. This implies

α = (jG
# ,−jH

# )(
l

∑
j=1

nij gij),

where we sum over all non-zero coefficients. We conclude that also the
inclusion ker(ι) ⊂ im(jG

# ,−jH
# ) holds. The map ι is surjective by definition of

the chain complex MC∗,l(G, H). ■

In the induced long exact sequence in homology, we can use the isomor-
phism H∗(MC∗,l(G, H)) ∼= MH∗,l(G ∪ H) from the Excision Theorem 3.44 to
obtain the following long exact sequence:

. . . −→ MH∗,l(G∩H)
(jG
∗ ,−jH

∗ )−−−−→ MH∗,l(G)⊕ MH∗,l(H)

iG
∗ ⊕iH

∗−−−→ MH∗,l(G ∪ H) −→ MH∗−1,l(G ∩ H) −→ . . .
(3.17)

Next, we will show that this long exact sequence splits into many short exact
sequences by giving a left inverse to (jG

∗ ,−jH
∗ ). Consider the composition Ψ

given by

MH∗,∗(G)⊕ MH∗,∗(H) −→ MH∗,∗(H)
−π∗−−→ MH∗,∗(G ∩ H),

where the first map projects to the second component of the direct sum and π
is the map from Remark 3.35 that exists because H projects to the intersection
G ∩ H. For any k ≥ 0 and any generator (x0, . . . , xk) ∈ MCk,l(G ∩ H), we
have

Ψ ◦ (jG
∗ ,−jH

∗ )(x0, . . . , xk) = Ψ((x0, . . . , xk),−(x0, . . . , xk))

= −π∗(−(x0, . . . , xk)) = (x0, . . . , xk),
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because the vertices x0, . . . , xk already lie in G ∩ H, so their projection is
π(xi) = xi for all i = 0, . . . , k. Therefore, the long exact sequence (3.17) splits
into the split short exact sequences

0 −→ MHk,l(G ∩ H)
(jG
∗ ,−jH

∗ )−−−−→ MHk,l(G)⊕ MHk,l(H)

iG
∗ ⊕iH

∗−−−→ MHk,l(G ∪ H) −→ 0

for all k, l ≥ 0. It is only left to check the naturality claims. First, let
f : (X; G, H) → (X′; G′, H′) be a decomposition map and consider the follow-
ing diagram for k, l ≥ 0:

MHk,l(G ∩ H) MHk,l(G)⊕ MHk,l(H) MHk,l(G ∪ H)

MHk,l(G′ ∩ H′) MHk,l(G′)⊕ MHk,l(H′) MHk,l(G′ ∪ H′)

1( f |G∩H)∗

(jG
∗ ,−jH

∗ )

2(( f |G)∗,( f |H)∗)

iG
∗ ⊕iH

∗

f∗

(jG′
∗ ,−jH′

∗ ) iG′
∗ ⊕iH′

∗

At the level of maps of graphs, it is clear that the following diagrams commute
for Y ∈ {G, H}.

G ∩ H Y

G′ ∩ H′ Y′

jY

f |G∩H f |Y
jY

′

Y G ∪ H

Y′ G′ ∪ H′

iY

f |Y f

iY
′

(3.18)

By using the functoriality of the magnitude homology, it follows that the
squares 1 and 2 commute. Therefore, the Mayer-Vietoris short exact
sequence is natural with respect to decomposition maps.
Second, let f : (X; G, H) → (X′; G′, H′) be any projecting decomposition map
and consider the diagram

MHk,l(G)⊕ MHk,l(H) MHk,l(G ∩ H)⊕ MHk,l(G ∪ H)

MHk,l(G′)⊕ MHk,l(H) MHk,l(G′ ∩ H′)⊕ MHk,l(G′ ∪ H′)

3

∼=
ΦΨ

(( f |G)∗,( f |H)∗) (( f |G∩H)∗, f∗)

∼=
ΦΨ′

where ΦΨ is the splitting isomorphism induced by the left inverse Ψ we
constructed in the proof. Concretely, for every x ∈ MHk,l(G)⊕ MHk,l(H) the
map is defined by

ΦΨ(x) 7→ (Ψ(x), (iG
∗ ⊕ iH

∗ )(x))

and analogous for ΦΨ′ with the maps from the projecting decomposition
(X′; G′, H′). First, for any generator (g0, . . . , gk) ∈ MCk,l(G), the two compo-
sitions in the diagram map the corresponding generator ((g0, . . . , gk), 0) of
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the direct sum MCk,l(G)⊕ MCk,l(H) to

((g0, . . . , gk), 0)
ΦΨ7−→ (0, iG

# (g0, . . . , gk))
(( f |G∩H)#, f#)7−−−−−−−→ (0, f#(iG

# (g0, . . . , gk)))

and

((g0, . . . , gk), 0)
(( f |G)#,( f |H)#)7−−−−−−−−→ (( f |G)#(g0, . . . , gk), 0)

ΦΨ′7−−→ (0, iG
# (( f |G)#(g0, . . . , gk))),

which are equal in homology by functoriality and the second diagram in
(3.18). Second, let (h0, . . . , hk) ∈ MCk,l(H) be a generator, the images of the
corresponding generator (0, (h0, . . . , hk) ∈ MCk,l(G)⊕ MCk,l(H) under the
two compositions of the diagram are

(0, (h0, . . . , hk))
ΦΨ7−→ (−π#(h0, . . . , hk), iH

# (h0, . . . , hk))

(( f |G∩H)#, f#)7−−−−−−−→ (−( f |G∩H)#(π#(h0, . . . , hk)), f#(iH
# (h0, . . . , hk)))

and

(0, (h0, . . . , hk))
(( f |G)#,( f |H)#)7−−−−−−−−→ (0, ( f |H)#(h0, . . . , hk))

ΦΨ′7−−→ (−π#(( f |H)#(h0, . . . , hk)), iH
# (( f |H)#(h0, . . . , hk))).

We know that (π ◦ f )(h) = ( f ◦ π)(h) for every vertex h ∈ H by definition
of a projecting decomposition map and thus by functoriality and the second
commutative diagram in (3.18) we conclude that 3 also commutes. Therefore,
the splitting is natural with respect to projecting decomposition maps.

As we have seen before in the chapter about disjoint unions, the result
about magnitude homology can be used to deduce a property about the
magnitude itself.

Corollary 3.54 (Inclusion-Exclusion). For a projecting decomposition (X; G, H),
the magnitudes satisfy

|X|q = |G|q + |H|q − |G ∩ H|q.

Proof. From the Mayer-Vietoris split short exact sequence of Theorem 3.53
we know that for any k, l ≥ 0, there is an isomorphism

MHk,l(G)⊕ MHk,l(H) ∼= MHk,l(G ∩ H)⊕ MHk,l(G ∪ H)

and by using the additivity of the rank with respect to the direct sum we
obtain

rank(MHk,l(G)) + rank(MHk,l(H)) =

rank(MHk,l(G ∩ H)) + rank(MHk,l(G ∪ H)).
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Taking the alternating sum over k ≥ 0 of the equation above, yields

χ(MH∗,l(G)) + χ(MH∗,l(H)) = χ(MH∗,l(G ∩ H)) + χ(MH∗,l(G ∪ H))

for all l ≥ 0. After rearranging and multiplying both sides by ql and summing
over l ≥ 0 we get

∑
l≥0

χ(MH∗,l(G ∪ H))ql =

∑
l≥0

χ(MH∗,l(G))ql + ∑
l≥0

χ(MH∗,l(H))ql − ∑
l≥0

χ(MH∗,l(G ∩ H))ql .

The statement follows from applying Theorem 3.16, which relates the magni-
tude to the magnitude homology.

The Mayer-Vietoris short exact sequence can be used to compute the
magnitude homology of certain graphs as the following corollary shows.

Definition 3.55. Let G and H be graphs with chosen base vertices. The wedge
sum G ∨ H of G and H is the graph we get by identifying the two base vertices to a
single vertex.

Corollary 3.56. Let G and H be graphs with fixed base vertices and denote the
vertex of their wedge sum corresponding to the base vertices by P. The inclusion
maps a : G → G ∨ H and b : H → G ∨ H induce isomorphisms

a∗ ⊕ b∗ : MHk,l(G)⊕ MHk,l(H)
∼=−−→ MHk,l(G ∨ H),

if k > 0 or l > 0, and an isomorphism

a∗ ⊕ b∗ : (MH0,0(G)⊕ MH0,0(H))/ im(jG
∗ ,−jH

∗ )
∼=−−→ MH0,0(G ∨ H),

where jG : P → G and jH : P → H are the inclusions.

Proof. After labelling the base vertices in G and H by P, the wedge sum
G ∨ H is the same as the labelled union G ∪ H. The intersection G ∩ H = P
is just one vertex, so the triple (G ∨ H; G, H) is a projecting decomposition
and by the Mayer-Vietoris Theorem we obtain the short exact sequence

0 → MH∗,∗(P)
(jG
∗ ,−jH

∗ )−−−−→ MH∗,∗(G)⊕ MH∗,∗(H)
(a∗⊕b∗)−−−−→ MH∗,∗(G ∨ H) → 0.

The magnitude homology of a point is

MHk,l(P) ∼=
{

Z{P} if k = l = 0
0 else,
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so it follows by exactness that for k > 0 or l > 0, the map

a∗ ⊕ b∗ : MHk,l(G)⊕ MHk,l(H) → MHk,l(G ∨ H)

is an isomorphism. If k = l = 0, then by exactness, the map a∗ ⊕ b∗ is
surjective and with the homomorphism theorem we obtain the isomorphism

(MH0,0(G)⊕ MH0,0(H))/ ker(a∗ ⊕ b∗)
∼=−→ MH0,0(G ∨ H)

induced by a∗ ⊕ b∗. Using the exactness of the Mayer-Vietoris sequence we
see that ker(a∗ ⊕ b∗) = im(jG

∗ ,−jH
∗ ) and the result follows.

Remark 3.57. The condition that we need a projecting decomposition for the Mayer-
Vietoris sequence is necessary as the following example shows. Consider the diamond
graph X as in Figure 3.4 below with subgraphs G induced by the vertices {a1, a2, a3}
and H induced by {a1, a3, a4}. Clearly the union G ∪ H is X and the intersection
G ∪ H is convex in X. The subgraphs G and H are both the triangle K3, so their

a1

a2

a4

a3

Figure 3.4: The diamond graph.

magnitude homology is the free abelian group with rank

rank(MHk,l(K3)) =

{
3 · 2l if k = l
0 else,

as we have seen in Example 3.12. The intersection G ∩ H can be viewed as K2, hence
the rank of its magnitude homology is rank(MHk,l(G ∩ H)) = 2 if k = l and 0
otherwise. Neither G nor H project to the intersection. If the Mayer-Vietoris theorem
would hold in this example, then the rank of the magnitude homology of X would
equal

rank(MHk,l(X)) = 2 rank(MHk,l(K3))− rank(MHk,l(G ∩ H)). (3.19)

Computer calculations show that the ranks of the magnitude homology of X are as
in Table 3.3. So, for example in bidegree (2, 2) the formula (3.19) does not hold,
showing that the projection assumption is necessary.

We finish this section by describing the magnitude homology of trees
using the Mayer-Vietoris sequence.
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0 0 1 2 3 4 5 6 7 8
0 4 0 0 0 0 0 0 0 0
1 0 10 0 0 0 0 0 0 0
2 0 0 24 0 0 0 0 0 0
3 0 0 0 58 0 0 0 0 0
4 0 0 0 0 140 0 0 0 0
5 0 0 0 0 0 338 0 0 0
6 0 0 0 0 0 0 816 0 0
7 0 0 0 0 0 0 0 1970 0
8 0 0 0 0 0 0 0 0 4756

Table 3.3: Ranks of the magnitude homology of the diamond graph.

Example 3.58 (Magnitude homology of trees). In this example, we show that
the magnitude homology of a tree T is

MHk,l(T) ∼=


Z V(T) if k = l = 0
Z

#‰

E (T) if k = l > 0
0 else.

(3.20)

For an easier readability, let us introduce a functor F∗,∗ from the category of trees
to the category of bigraded abelian groups representing the right-hand-side of the
isomorphism. That is, for fixed k, l ≥ 0, let F∗,∗(T) of a tree T be defined as

Fk,l(T) =


Z V(T) if k = l = 0
Z

#‰

E (T) if k = l > 0
0 else.

For a map of graphs f : T → S between trees S and T, let f∗ also denote the
induced map by the functor F∗,∗, it is defined as follows. For k = l = 0, the map
f∗ : Z V(T) → Z V(S) maps a vertex x ∈ V(T) to f (x) ∈ V(S) and is extended
linearly. For k = l > 0, the map f∗ : Z

#‰

E (T) → Z
#‰

E (S) is defined on generators by
sending an oriented edge (x, y) ∈ #‰

E (T) to the oriented edge ( f (x), f (y)) ∈ #‰

E (S)
if f (x) ̸= f (y) and to 0 otherwise. In all the other cases, the induced map has to be
the zero map and it is clear from the definitions that this is indeed a functor.
With this setup, we further claim that the isomorphism (3.20) is natural with respect
to maps of trees, that is, for every map of graphs f : T → S between two trees, the
following diagram with the above claimed isomorphism commutes.

MH∗,∗(T) F∗,∗(T)

MH∗,∗(S) F∗,∗(S)

∼=

f∗ f∗

∼=
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Let Θ : F∗,∗ → MH∗,∗ be a transformation defined for any tree T by the morphism
θT of graded abelian groups mapping a vertex x ∈ V(T) to (x) ∈ MH0,0(T) for
k = l = 0. For k = l > 0, the map θt sends a generator of Fk,l(T), which
is an oriented edge (x, y) ∈ #‰

E (T), to the homology class of the (k + 1)-tuple
(x, y, x, y, . . . ), where the entries alternate between the vertices x and y. We show
that this is a natural transformation, that is, the following diagram commutes for
each pair k, l ≥ 0 and any map of trees f : T → S.

Fk,l(T) MHk,l(T)

Fk,l(S) MHk,l(S)

ΘT

f∗ f∗

ΘS

For k ̸= l, there is nothing to prove because both maps ΘT and ΘS are trivial. If
k = l = 0, the diagram commutes because for any generator x ∈ Fk,l(T) = Z V(T)
there is equality

f∗(ΘT(x)) = ( f (x)) = ΘS( f∗(x)).

For k = l > 0, let (x, y) ∈ Fk,l(T) = Z
#‰

E (T) be a generator. The images under the
compositions are

f∗(ΘT(x, y)) =


( f (x), f (y), f (x), f (y), . . . )︸ ︷︷ ︸

k+1

if ℓ( f (x), f (y), . . . ) = l

0 else

and

ΘS( f∗(x, y)) =


( f (x), f (y), f (x), f (y), . . . )︸ ︷︷ ︸

k+1

if f (x) ̸= f (y)

0 else.

In the first composition, the length ℓ( f (x), f (y), f (x), f (y), . . . ) = l = k if and
only if the distance d( f (x), f (y)) = 1, which is the case if and only if { f (x), f (y)}
is an edge in S. Because f is a map of graphs, this is true precisely if f (x) ̸= f (y),
so the two images of (x, y) above are equal and the diagram commutes. So, the trans-
formation Θ is natural and we now prove that ΘT is already our desired isomorphism
by induction on the number of edges e in the tree T and using the Mayer-Vietoris
short exact sequence in the induction step. For the basis of the induction let us
consider the cases e = 0 and e = 1.
If e = 0, the tree T is a discrete graph, so from the previous Example 3.11 it follows
that the magnitude homology MH0,0(T) is the free abelian group generated by the
vertices of T, and for k > 0 or l > 0 the magnitude homology MHk,l(T) = 0. The
same holds for the groups Fk,l(T) and by definition of ΘT it is clear that the map is
an isomorphism.
In the case e = 1, let us denote the only edge in T by e0 = {v0, v1} and
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find the magnitude homology of T. We have seen before in Proposition 3.13
that the only non-zero magnitude homology groups for l = 0 and l = 1 are
MH0,0(T) ∼= Z V(T) and MH1,1(T) ∼= Z

#‰

E (T). For any l > 1 and k ≥ 0,
observe that a tuple (x0, . . . , xk) of vertices in Tk+1 with x0 ̸= x1 ̸= . . . ̸= xk
of finite length must be either (v0, v1, v0, v1, . . . ) or (v1, v0, v1, v0, . . . ) since v0
and v1 are the only two connected vertices in T. The length of these (k + 1)-
tuples is ℓ(v0, v1, v0, v1, . . . ) = ℓ(v1, v0, v1, v0, . . . ) = k. Therefore, the only non-
trivial group in the magnitude chain complex MC∗,l(T) is MCl,l(T), which is the
free abelian group generated by those two (k + 1)-tuples (v0, v1, v0, v1, . . . ) and
(v1, v0, v1, v0, . . . ). Consequently, the same holds for the magnitude homology and
with the definition of Fk,l(T) and ΘT it immediately follows that ΘT is an isomor-
phism.
Suppose that the number of edges e ≥ 2 and assume that ΘT is an isomorphism if
the number of edges is strictly smaller than e. The idea is to show the induction step
by writing the tree T as a union of two subtrees T1, T2 with strictly less edges than
T and such that (T; T1, T2) is a projecting decomposition, so that we can apply the
Mayer-Vietoris Theorem for magnitude homology. Since T is a tree with at least
two vertices, it has a leaf f = {x0, x1} ∈ E(T), where x0 denotes the vertex that
has no other neighbours except for x1. Let T2 be the subtree of T induced by the
vertices x0 and x1, so its only edge is the leaf f , and let T1 be the subtree of T induced
by the vertex set V(T) \ {x0}. Then, the number of edges # E(T1) < # E(T) and
# E(T2) < # E(T), and the tree T is the union T1 ∪ T2. Furthermore, the intersection
T1 ∩ T2 consists only of the vertex x1, thus it is convex in T, and T2 projects to
T1 ∩ T2. Hence, (T; T1, T2) is a projecting decomposition and we can apply the
Mayer-Vietoris Theorem for magnitude homology to obtain the split short exact
sequence

0 −→ MHk,l(T1 ∩ T2) −→ MHk,l(T1)⊕ MHk,l(T2) −→ MHk,l(T) −→ 0,

for any k, l ≥ 0.

Claim: There is an analogous short exact sequence but with Fk,l instead of MHk,l .
In particular, we want to show that

0 −→ Fk,l(T1 ∩ T2)
(jT1∗ ,−jT2∗ )−−−−−→ Fk,l(T1)⊕ Fk,l(T2)

iT1∗ ⊕iT2∗−−−−→ Fk,l(T) −→ 0

is a short exact sequence for all k, l ≥ 0.

Proof of Claim: For k ̸= l all the involved groups are trivial, so there is nothing to
show. If k = l = 0, then the sequence is concretely given by

0 −→ Z{x1}
(jT1∗ ,−jT2∗ )−−−−−→ Z V(T1)⊕ Z V(T2)

iT1∗ ⊕iT2∗−−−−→ Z V(T) −→ 0.

The map (jT1∗ ,−jT2∗ ) is injective because it maps the generator x1 ∈ Z{x1} to
(x1,−x1) ∈ Z V(T1)⊕ Z V(T2), which is non-zero. Every vertex x ∈ T \ {x0}
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is a vertex in T1, so it is the image of (x, 0) ∈ Z V(T1)⊕ Z V(T2) under the map
(iT1∗ ⊕ iT2∗ ), the vertex x0 ∈ T is the image of (0, x0) ∈ Z V(T1)⊕ Z V(T2). Hence,
the map (iT1∗ ⊕ iT2∗ ) is surjective. The only thing left to show for the claim is that
im((jT1∗ ,−jT2∗ )) = ker(iT1∗ ⊕ iT2∗ ). From

x1
(jT1∗ ,−jT2∗ )7−−−−−→ (x1,−x1)

iT1∗ ⊕iT2∗7−−−→ 0,

the inclusion im((jT1∗ ,−jT2∗ )) ⊂ ker(iT1∗ ⊕ iT2∗ ) follows. For the other inclusion, let
us denote the rest of the vertices in T by x2, . . . , xn and let

y = (
n

∑
i=1

aixi, b0x0 + b1x1) ∈ ker(iT1
∗ ⊕ iT2

∗ )

for some a1, . . . , an, b0, b1 ∈ Z be an arbitrary element from the kernel. That is,

n

∑
i=1

aixi + b0x0 + b1x1 = 0 ∈ Z V(T)

and it follows that the coefficients b0 = 0 and ai = 0 for every i > 1, furthermore
b1 = −a1. We conclude that (jT1∗ ,−jT2∗ )(a1x1) = (a1x1, b1x1) = y and therefore
the other inclusion ker(iT1∗ ⊕ iT2∗ ) ⊂ im((jT1∗ ,−jT2∗ )) holds.
If k = l > 0, then the sequence is

0 −→ 0
(jT1∗ ,−jT2∗ )−−−−−→ Z

#‰

E (T1)⊕ Z
#‰

E (T2)
iT1∗ ⊕iT2∗−−−−→ Z

#‰

E (T) −→ 0.

Thus, we only need to show that iT1∗ ⊕ iT2∗ is an isomorphism. The set of oriented
edges

#‰

E (T) is the disjoint union

#‰

E (T) =
#‰

E (T2) ⊔
#‰

E (T1),

so iT1∗ ⊕ iT2∗ is an isomorphism on the generators and the exactness follows. ■

Because Θ is a natural transformation, we obtain the following commutative
diagram, where both rows are exact:

0 MHk,l(T1 ∩ T2) MHk,l(T1)⊕ MHk,l(T2) MHk,l(T) 0

0 Fk,l(T1 ∩ T2) Fk,l(T1)⊕ Fk,l(T2) Fk,l(T) 0

ΘT1∩T2 (ΘT1 ,ΘT2 ) ΘT

The maps ΘT1∩T2 , ΘT1 , and ΘT2 are isomorphism by our induction hypothesis, so
with the five-lemma we can conclude that ΘT is an isomorphism as well.
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3.5 Diagonal Graphs

We have observed before with Table 3.1 that the magnitude homology of
the four-cycle appears to be non-zero only on the diagonal. In this chapter,
we show that this is indeed the case for the four-cycle and a whole class of
graphs called joins. We will also see some further examples of this property,
let us first define the notion of a diagonal graph.

Definition 3.59. A graph G is diagonal if for all k ̸= l the magnitude homology
MHk,l(G) = 0, that is, if its magnitude homology is non-zero only on the diagonal.

The diagonality of a graph has an immediate effect on the magnitude, as
the following result demonstrates.

Proposition 3.60. If a graph G is diagonal, then the coefficients of its magnitude
|G|q alternate in sign and the magnitude determines the magnitude homology up to
isomorphism.

Proof. Let G be a diagonal graph. Using Theorem 3.16, which relates the
magnitude and the magnitude homology, we obtain

|G|q = ∑
l≥0

∑
k≥0

(−1)k rank(MHk,l(G))ql = ∑
l≥0

(−1)l rank(MHl,l(G))ql .

This immediately shows that the coefficients of |G|q alternate in sign. By
Proposition 3.9 we know that for any l ≥ 0 the group MCl+1,l(G) = 0,
therefore the magnitude homology MHl,l(G) is free abelian and thus deter-
mined up to isomorphism by its rank, which is the absolute value of the
corresponding coefficient in |G|q.

Using the previous section, we can prove the following case of diagonality.

Proposition 3.61. A graph X that admits a projecting decomposition into diagonal
graphs, that is, there is a projecting decomposition (X; G, H) such that G and H are
diagonal, is diagonal itself.

Proof. We can apply the Mayer-Vietoris Theorem 3.53 for magnitude homol-
ogy to the projecting decomposition (X; G, H) and obtain the short exact
sequence

0 −→ MH∗,∗(G ∩ H) −→ MH∗,∗(G)⊕ MH∗,∗(H) −→ MH∗,∗(G ∪ H) −→ 0.

For k ̸= l, this sequence simplifies to

0 −→ MH∗,∗(G ∩ H) −→ 0 −→ MH∗,∗(G ∪ H) −→ 0

because G and H are diagonal. By exactness, it follows that the magnitude
homology MHk,l(G ∪ H) = 0.
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Let us introduce a new operation on two graphs and study its properties,
Figure 3.5 demonstrates the operation on an example.

Definition 3.62. The join G ⋆ H of two graphs G and H is the graph obtained from
the disjoint union G ⊔ H by adding the edge {x, y} for all vertices x ∈ G and all
y ∈ H.

Figure 3.5: Example of the join between the blue graph and the red graph.

Lemma 3.63. Let G and H be two non-empty graphs and consider two vertices
a, b ∈ G ⋆ H. Their distance d(a, b) ∈ {0, 1, 2} and d(a, b) = 2 implies that a and
b both lie in G or both in H.

Proof. There are two cases. First, if the vertex a ∈ G and b ∈ H or vice versa,
then by definition of the join their distance is d(a, b) = 1. Second, both of
them are in G or both in H, without loss of generality, say a, b ∈ G. If a = b,
then the distance d(a, b) = 0. Else a ̸= b and we differentiate whether the
edge {a, b} is in G. If {a, b} /∈ E(G), we use that H is not empty, so there
exists a vertex c ∈ H, which is a neighbour of a and b by the definition of the
join, hence d(a, b) = 2. If {a, b} ∈ E(G), then the distance d(a, b) = 1.

Theorem 3.64. The join of two non-empty graphs G and H is diagonal.

The proof of this theorem is quite long, so we use several definitions and
lemmas to prove it. To simplify their statements, let us fix two non-empty
graphs G and H and an integer l ≥ 0 until we have proven the theorem
above.

Definition 3.65. For any i ∈ {0, . . . , l − 1} let Fi
∗ denote the chain subcomplex of

the chains MC∗,l(G ⋆ H) spanned by those generators (x0, . . . , xk) such that there
exists an index j ≤ i for which d(xj, xj+1) = 2.

We denote by F−1
∗ the zero chain complex to shorten some of the following

statements. Before we continue, let us check that this definition produces
indeed a chain subcomplex of MC∗,l(G ⋆ H).
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Remark 3.66. Let i ∈ {0, . . . , l − 1} and k ≥ 0 be arbitrary and let (x0, . . . , xk)
be any generator of Fi

k. We need to check that the restriction of the differential
∂ = ∑k−1

j′=1(−1)j′∂j′ is well-defined on Fi
∗. If i + 1 < j′ ≤ k − 1, then ∂j′(x0, . . . , xk)

either is zero or the entries x0, . . . , xi+1 do not change, in any case the image
∂j′(x0, . . . , xk) ∈ Fi

k−1. If 1 ≤ j′ ≤ i + 1, then by definition

∂j′(x0, . . . , xk) ={
(x0, . . . , x̂j′ , . . . , xk) if d(xj′−1, xj′+1) = d(xj′−1, xj′) + d(xj′ , xj′+1)

0 else.

We need to show that (x0, . . . , x̂j′ , . . . , xk) ∈ Fi
k−1 if we are in the first case.

By Lemma 3.63 above, the distance d(xj′−1, xj′+1) ∈ {0, 1, 2}. The condition
xj′−1 ̸= xj′ ̸= xj′+1 implies that d(xj′−1, x′j) ∈ {1, 2} and d(xj′ , xj′+1) ∈ {1, 2}.
Thus, the image ∂j′(x0, . . . , xk) is non-zero only if the distances d(xj′−1, xj′+1) = 2
and d(xj′−1, xj) = d(xj′ , xj′+1) = 1. It follows that ∂j′(x0, . . . xk) ∈ Fi

k−1 because
j′ − 1 ≤ i.

We obtain a filtration

F0
∗ ⊂ F1

∗ ⊂ · · · ⊂ Fl−1
∗ ⊂ MC∗,l(G ⋆ H)

of the chain complex MC∗,l(G ⋆ H).

Definition 3.67. Let x ∈ G ⋆ H be any vertex, we define A∗,l(x) to be the chain
subcomplex of MC∗,l(G ⋆ H) that is generated by tuples of the form (x, x1, . . . , xk)
with d(x, x1) = 2. Furthermore, we define B∗,l(x) to be the chain subcomplex of
MC∗,l(G ⋆ H) generated by tuples of the form (x, x1, . . . , xk).

By the same argument as we have seen in Remark 3.66 above, it is clear
that these are indeed chain subcomplexes.

Lemma 3.68. For every i = 0, . . . , l − 1, there is a commutative diagram

⊕
Σi A∗,l−i(xi)

⊕
ΣiB∗,l−i(xi)

Fi
∗/Fi−1

∗ MC∗,l(G ⋆ H)/Fi−1
∗

α∼= β

where the direct sums are taken over tuples (x0, . . . , xi) ∈ (G ⋆ H)i+1 with distance
d(xj, xj+1) = 1 for every j ∈ {0, . . . , i − 1}, and the upper map is the direct sum of
the inclusion maps.
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Proof. We first let i = 0, . . . , l − 1 be arbitrary and define the map α on the
summand corresponding to (x0, . . . , xi) ∈ (G ⋆ H)i+1 as described above by

α : Σi A∗,l−i(xi) −→ Fi
∗/Fi−1

∗

(xi, . . . , xk) 7−→ (−1)ik(x0, . . . , xi, . . . , xk)

for any generator (xi, . . . , xk) ∈ (Σi A∗,l−i(xi))k. First, let us verify that
this map is well-defined. The generator (xi, . . . , xk) ∈ Ak−i,l−i(xi) satisfies
ℓ(xi, . . . , xk) = l − i, which implies that the tuple (x0, . . . , xk) has length

ℓ(x0, . . . , xk) =
i−1

∑
j=0

d(xj, xj+1) + ℓ(xi, . . . , xk) = i + l − i = l,

and (x0, . . . , xk) ∈ Fi
k because d(xi, xi+1) = 2. Next, we check that α is a chain

map, that is, that the following diagram commutes for every k ≥ 0.

(Σi A∗,l−i(xi))k (Fi
∗/Fi−1

∗ )k

(Σi A∗,l−i(xi))k−1 (Fi
∗/Fi−1

∗ )k−1

α

∂ ∂

α

The differential ∂ : (Σi A∗,l−i(xi))k → (Σi A∗,l−i(xi))k−1 is the alternating sum
∂ = ∑k−i−1

j=1 (−1)j∂j and the differential on (Fi
∗/Fi−1

∗ ) is induced by the al-

ternating sum ∂ = ∑k−1
j=1 (−1)j∂j. Let j = 1, . . . , i and consider a genera-

tor (x0, . . . , xk) ∈ Fi
k. With the argument from Remark 3.66 we find that

∂j(x0, . . . , xk) ∈ Fi−1
k−1 and thus the map ∂j is trivial on (Fi

∗/Fi−1
∗ ). The differ-

ential on (Fi
∗/Fi−1

∗ ) therefore simplifies to

∂ =
k−1

∑
j=i+1

(−1)j∂j.

Note that for any index j = 1, . . . , k − i − 1 and an arbitrary generator
(xi, . . . , xk) ∈ (Σi A∗,l−i(xi))k, on one hand

(−1)i∂j+i ◦ α(xi, . . . , xk) = (−1)ik+i∂j+i(x0, . . . , xk)

and on the other hand, because ∂j(xi, . . . , xk) = (xi, . . . , x̂i+j, . . . , xk) if the
length is preserved and 0 otherwise, we have

α ◦ ∂j(xi, . . . , xk) = (−1)i(k−1)∂i+j(x0, . . . , xk).

It follows that α ◦ ∂j = (−1)i∂j+i ◦ α for j = 1, . . . , k − i − 1 and we obtain

α ◦ ∂ =
k−i−1

∑
j=1

(−1)jα ◦ ∂j =
k−i−1

∑
j=1

(−1)j+i∂j+i ◦ α =
k−1

∑
j′=i+1

(−1)j′∂j′ ◦ α = ∂ ◦ α,
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which proves that α is a chain map and thus so is α. The generators
of (Fi

∗/Fi−1
∗ )k are the tuples (x0, . . . , xk) with distance d(xi, xi+1) = 2 and

d(x0, x1) = · · · = d(xi−1, xi) = 1 because these are the generators of Fi
∗ that

do not lie in Fi−1
∗ . Any such generator corresponds to a tuple (x0, . . . , xi)

of vertices in (G ⋆ H)i+1 with d(x0, x1) = · · · = d(xi−1, xi) = 1 and is the
image of (xi, . . . , xk) ∈ (Σi A∗,l−i(xi))k under the map α corresponding to the
summand (x0, . . . , xi). The injectivity of α on the generators follows from the
definition, so we conclude that α is an isomorphism. Analogous to α, let us
define the map β : ⊕ ΣiB∗,l−i(xi) → MC∗,l(G ⋆ H)/Fi−1

∗ on the summand cor-
responding to the tuple (x0, . . . , xi) ∈ (G ⋆ H)i+1 with the conditions above
by

β : ΣiB∗,l−i(xi) −→ MC∗,l(G ⋆ H)/Fi−1
∗

(xi, . . . , xk) 7−→ (−1)ik(x0, . . . , xi, . . . , xk)

for any generator (xi, . . . , xk) ∈ (ΣiB∗,l−i(xi)k. With this definition, it immedi-
ately follows that the diagram in the statement commutes. We also need to
check that β is a chain map, that is, that the diagram

(ΣiB∗,l−i(xi))k (MC∗,l(G ⋆ H)/Fi−1
∗ )k

(ΣiB∗,l−i(xi))k−1 (MC∗,l(G ⋆ H)/Fi−1
∗ )k−1

∂

β

∂

β

commutes for any k ≥ 0. The differential on ΣiB∗,l−i(xi) is the alternating
sum ∂ = ∑k−i−1

j=1 (−1)j∂j and with the same argument as before, it follows

that the differential on MC∗,l(G ⋆ H)/Fi−1
∗ simplifies to ∂ = ∑k−1

j=i+1(−1)j∂j.
We continue analogous to α and find that for every j = 1, . . . , k − i − 1 the
equation β ◦ ∂j = (−1)i∂i+j ◦ β holds. Indeed, both the right and left-hand-
side map a generator (xi, . . . , xk) ∈ (ΣiB∗,l−i(xi))k to (−1)ik+i∂i+j(x0, . . . , xk).
We conclude that β is a chain map as well.

For the next lemma, we consider the following setting. Let x ∈ G ⋆ H
be any vertex and without loss of generality assume that x ∈ G, otherwise
exchange the roles of G and H. Furthermore, fix an arbitrary vertex y ∈ H.

Lemma 3.69. The inclusion A∗,l(x) ↪−→ B∗,l(x) induces the trivial map in homology.

Let us introduce the following definition for the proof of Lemma 3.69.

Definition 3.70. The height of a generator (x, x1, . . . , xk) ∈ A∗,l(x) is the largest
integer h such that for all odd indices i ≤ h the distance d(x, xi) = 2 and for all
even indices i ≤ h the distance d(y, xi) = 2.
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Note that the height of any generator (x, x1, . . . , xk) ∈ A∗,l(x) is at most k,
and at least 1 because d(x, x1) = 2 by definition of A∗,l(x). In the proof, we
will need the following observations regarding the height of a generator.

Remark 3.71. Let (x, x1, . . . , xk) ∈ A∗(x, l) be a generator of height h. By Lemma
3.63, we deduce that all the vertices xj for 1 ≤ j ≤ h and j even lie in H, and the
vertices xj for 1 ≤ j ≤ h and j odd lie in G. Furthemore, we can conclude that
d(x1, x2) = d(x2, x3) = d(x3, x4) = · · · = d(xh−1, xh) = 1.

Proof of Lemma 3.69. Denote by ι the inclusion A∗,l(x) ↪→ B∗,l(x). By con-
structing a chain homotopy s : A∗,l(x) → B∗+1,l(x) satisfying s ◦ ∂ + ∂ ◦ s = ι,
we show that the inclusion ι is chain homotopic to the zero map, which
proves the lemma. Let us consider for any i ≥ 1 the following map
si : A∗,l(x) → B∗+1,l(x) defined on a generator (x, x1, . . . , xk) ∈ A∗,l(x) with
height h by

si(x, x1, . . . , xk) =


(x, y, x, y, . . .︸ ︷︷ ︸

i+1 entries

, xi, . . . , xk) if i ≤ h

0 if i > h.

To verify that si is well-defined, we check that the length of the (k + 2)-tuple
si(x, x1, . . . , xk) = (x, y, x, y, . . . , xi, . . . , xk) is l if i ≤ h. If i ≤ h is even, then
xi ∈ H by Remark 3.71 and thus the distance d(x, xi) = 1 because x ∈ G.
Analogously, if i ≤ h is odd, then xi ∈ G and d(y, xi) = 1 and hence

ℓ(x, y, x, y, . . .︸ ︷︷ ︸
i+1 entries

, xi, . . . , xk) = i · d(x, y) + 1 + ℓ(xi, . . . , xk)

= i + 1 + ℓ(xi, . . . , xk).

The length of (xi, . . . , xk) can be calculated by using Remark 3.71 and the
definition of A∗,l(x), which imply

l = ℓ(x, x1, . . . , xk) = d(x, x1) +
i−1

∑
j=1

d(xj, xj+1) + ℓ(xi, . . . , xk)

= 2 + i − 1 + ℓ(xi, . . . , xk).

It follows that ℓ(xi, . . . , xk) = l − i − 1 and thus ℓ(x, y, x, y, . . . , xi, . . . , xk) = l.
Next, we will verify the following relations between the maps si and ∂i:

i) ∀1 ≤ j < i ∂j ◦ si = 0;

ii) ∀i ≥ 1 ∂i+1 ◦ si = ∂i+1 ◦ si+1;

iii) ∀i ≥ 1, j ≥ i + 2 ∂j ◦ si = si ◦ ∂j−1;

iv) ∂1 ◦ s1 = ι;
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v) ∀1 ≤ j ≤ i si ◦ ∂j = 0.

Let (x, x1, . . . , xk) ∈ Ak,l(x) be a generator with height h.

i) Let 1 ≤ j < i, if we remove the j-th entry of (
i+1 entries︷ ︸︸ ︷

x, y, x, y, . . ., xi, . . . , xk),
then there are two consecutive entries of y or x in the resulting the tuple,
depending on whether j is even or odd. In any case, the length will not
be preserved after removing this entry, so ∂j ◦ si(x, x1, . . . , xk) = 0.

ii) Let i ≥ 1. The left-hand-side is equal to

∂i+1 ◦ si(x, x1, . . . , xk) = (x, y, x, y, . . .︸ ︷︷ ︸
i+1 entries

, x̂i, . . . , xk),

if i ≤ h and the length of the tuple ℓ(x, y, x, y, . . . , x̂i, . . . , xk) = l, and
equal to 0 otherwise. The right-hand-side is

∂i+1 ◦ si+1(x, x1, . . . , xk) = ∂i+1(x, y, x, y, . . .︸ ︷︷ ︸
i+2 entries

, xi+1, . . . , xk)

= (x, y, x, y, . . .︸ ︷︷ ︸
i+1 entries

, xi+1, . . . , xk),

if i + 1 ≤ h and the length ℓ(x, y, x, y, . . . , xi+1, . . . , xk) = l, and is equal
to 0 otherwise. It follows that the two sides are equal if i ≤ h − 1 or
i > h. In the case i = h, the right-hand-side is 0. Let us check that the
left-hand-side is also 0. First, assume that i = h is odd. Hence, the
distance d(y, xi+1) ̸= 2 by definition of the height and the vertex xi lies
in G by Remark 3.71. Therefore,

d(y, xi)︸ ︷︷ ︸
=1

+ d(xi, xi+1)︸ ︷︷ ︸
∈{1,2}

̸= d(y, xi+1)︸ ︷︷ ︸
∈{0,1}

and it follows that

ℓ(x, y, x, y, . . . , y︸ ︷︷ ︸
i+1 entries

, x̂i, xi+1, . . . , xk) ̸= ℓ(x, y, x, y, . . . , y︸ ︷︷ ︸
i+1 entries

, xi, . . . , xk),

which shows that the left-hand-side is also equal to 0. In a similar way,
if i = h is even, then xi ∈ H and d(x, xi+1) ̸= 2. We find

d(x, xi)︸ ︷︷ ︸
=1

+ d(xi, xi+1)︸ ︷︷ ︸
∈{1,2}

̸= d(x, xi+1)︸ ︷︷ ︸
∈{0,1}

and also conclude that ∂i+1 ◦ si(x, x1, . . . , xk) = 0.
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iii) Let i ≥ 1, j ≥ i + 2, the left-hand-side is

∂j ◦ si(x, x1, . . . , xk) = (x, y, x, y, . . .︸ ︷︷ ︸
i+1 entries

, xi, . . . , x̂j−1, . . . , xk)

if i ≤ h and the length ℓ(x, y, x, y, . . . , xi, . . . , x̂j−1, . . . , xk) = l, and is 0
otherwise. For the right-hand-side, recall

∂j−1(x, x1, . . . , xk) ={
(x, x1, . . . , x̂j−1, . . . , xk) if ℓ(x, x1, . . . , x̂j−1, . . . , xk) = l
0 else.

Note that because j − 1 ≥ i + 1, the first entries up to xi in the tu-
ples (x, x1, . . . , xj−2, x̂j−1, . . . , xk) and (x, x1, . . . , xk) are the same. In
particular, this implies that i ≤ h, where h denotes the height of
(x, x1, . . . , xk), if and only if i is smaller than or equal to the height
of (x, x1, . . . , x̂j−1, . . . , xk). Thus,

si ◦ ∂j−1(x, x1, . . . , xk) = (x, y, x, y, . . .︸ ︷︷ ︸
i+1 entries

, xi, . . . , x̂j−1, . . . , xk)

if i ≤ h and the length is preserved, otherwise si ◦ ∂j−1(x, x1, . . . , xk) = 0.
So, both sides are equal.

iv) We have previously observed that 1 ≤ h, therefore

(x, x1, . . . , xk)
s17−→ (x, y, x1, . . . , xk)

∂17−→ (x, x1, . . . , xk),

which is just the inclusion.

v) Let 1 ≤ j ≤ i, we begin by investigating ∂j(x, x1, . . . , xk). Assume
that ∂j(x, x1, . . . , xk) ̸= 0, this can only happen if d(xj−1, xj+1) = 2 and
d(xj−1, xj) = d(xj, xj+1) = 1, as we have seen in Remark 3.66. It follows
that xj−1 and xj+1 both lie either in G or both lie in H by Lemma 3.63.
Suppose further that ∂j(x, x1, . . . , xk) has height h′ ≥ j. By Remark 3.71,
it follows that if j is even, then xj−1 ∈ G and xj+1 ∈ H (note that we
consider the tuple (x, xi, . . . , x̂j, . . . , xk)), and if j is odd, then xj−1 ∈ H
and xj+1 ∈ G. This is a contradiction and thus ∂j(x, x1, . . . , xk) is either
0 or a generator of height at most j − 1. In particular, h′ ≤ j − 1 < i
implies that si ◦ ∂j(x, x1, . . . xk) = 0.

Let us define the map s : A∗,l(x) → B∗+1,l(x) as the sum s = ∑i≥1(−1)isi.
Note that because the height of a generator in Ak,l(x) is smaller than or equal
to k, the sum defining the map s is finite for each k ≥ 0, because for i > k the
map si is trivial. With the properties above, we are able to show that s is the
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desired chain homotopy between ι and the zero-map. The composition ∂ ◦ s
can be simplified to

∂ ◦ s = ∑
i≥1

k

∑
j=1

(−1)i+j∂j ◦ si
i)
= ∑

i≥1

k

∑
j=i

(−1)i+j∂j ◦ si

= ∑
i≥1

(−1)i+i∂i ◦ si + ∑
i≥1

(−1)i+i+1 ∂i+1 ◦ si︸ ︷︷ ︸
ii)
=∂i+1◦si+1

+ ∑
i≥1

k

∑
j=i+2

(−1)i+j ∂j ◦ si︸ ︷︷ ︸
iii)
=si◦∂j−1

= ∂1 ◦ s1 + ∑
i≥1

k

∑
j=i+2

(−1)i+jsi ◦ ∂j−1

= ∂1 ◦ s1 − ∑
i≥1

k−1

∑
j=i+1

(−1)i+jsi ◦ ∂j.

For the other composition, we calculate

s ◦ ∂ = ∑
i≥1

k−1

∑
j=1

(−1)i+jsi ◦ ∂j
v)
= ∑

i≥1

k−1

∑
j=i+1

(−1)i+jsi ◦ ∂j

and therefore s ◦ ∂ + ∂ ◦ s = ∂1 ◦ s1, which is the inclusion by the property iv)
above.

Using the previous two lemmas, we can deduce the following.

Lemma 3.72. For i = 0, . . . , l − 1, the inclusion Fi
∗/Fi−1

∗ ↪−→ MC∗,l(G ⋆ H)/Fi−1
∗

induces the zero map in homology.

Proof. Lemma 3.69 states that the upper map in the commutative diagram
of Lemma 3.68 induces the trivial map in homology. Because α is an iso-
morphism, it follows that the lower map in the diagram, which is precisely
the inclusion from the statement of this lemma, induces the trivial map in
homology as well.

Finally, we are able to prove that joins of non-empty graphs are diagonal.

Proof 3.64. We first look at the chain subcomplex Fl−1
∗ ⊂ MC∗,l(G ⋆ H). Recall

that it is spanned by generators (x0, . . . , xk) such that d(xj, xj+1) = 2 for some
j ≤ l − 1. Let k < l and consider any generator (x0, . . . , xk) ∈ MCk,l(G ⋆ H),
the inequality ℓ(x0, . . . , xk) = l > k implies that there exists an index
j ∈ {0, . . . , k − 1} such that d(xj, xj+1) > 1 and thus by Lemma 3.63, the
distance d(xj, xj+1) = 2. Hence, if k < l, then MCk,l(G ⋆ H) = Fl−1

k . Note that
for k = l, a generator (x0, . . . , xk) ∈ MCk,l(G ⋆ H) satisfies k = ℓ(x0, . . . , xk),
which is only possible if for all i ∈ {0, . . . , k − 1} the distance d(xi, xi+1) = 1.
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Therefore, the group Fl−1
k is trivial for k = l. Next, we prove by induc-

tion that for i = 0, . . . , l − 1 the inclusion Fi
∗ ↪−→ MC∗,l(G ⋆ H) induces the

zero map in homology. This finishes the proof because if the inclusion
Fl−1
∗ ↪−→ MC∗,l(G ⋆ H), which is the identity for k < l by the first obser-

vation, induces the zero map in homology, then the magnitude homology
MHk,l(G ⋆ H) = 0 for k < l. The base case i = 0 of the induction is part of
Lemma 3.72. Fix any i = 0, . . . , l − 2 and suppose that for 0 ≤ i′ ≤ i the
inclusion Fi′

∗ ↪−→ MC∗,l(G ⋆ H) does induce the zero map in homology, we
show that this also holds for the inclusion ι : Fi+1

∗ ↪−→ MC∗,l(G ⋆ H). The short
exact sequence

0 → Fi
∗ ↪−→ MC∗,l(G ⋆ H)

p−→ MC∗,l(G ⋆ H)/Fi
∗ → 0

with the inclusion and projection map p induces the following long exact
sequence in homology:

· · · → Hk(Fi
∗) ↪−→ MHk,l(G ⋆ H)

p∗−→ Hk(MC∗,l(G ⋆ H)/Fi
∗) → Hk−1(Fi

∗) ↪−→ . . .

By the induction hypothesis, the map in homology induced by the inclusion
is the zero map and thus exactness of the long exact sequence implies that p∗
is injective. Consider the composition

Fi+1
∗

ι
↪−→ MC∗,l(G ⋆ H)

p−→ MC∗,l(G ⋆ H)/Fi
∗.

If we can show that this composition induces the zero map in homology,
then we are done because the injectivity of p∗ implies that the composition
(p ◦ ι)∗ = p∗ ◦ ι∗ = 0 if and only if ι∗ is the zero map. Let us rewrite p ◦ ι by
the composition

Fi+1
∗ → Fi+1

∗ /Fi
∗ → MC∗,l(G ⋆ H)/Fi

∗. (3.21)

This is indeed the same map as p ◦ ι because a generator (x0, . . . , xk) ∈ Fi+1
k

gets sent to (x0 . . . , xk) + Fi
k under both compositions. By Lemma 3.72, the

second map in the composition (3.21) induces the zero map in homology, and
thus the composition p ◦ ι induces the zero map in homology as well.

Let us look at some examples of graphs that can be written as joins and
are therefore diagonal by the theorem we just proved.

Example 3.73 (Four-cycle). The four-cycle is the join C4 = E2 ⋆ E2, as depicted in
Figure 3.6. Hence, the four-cycle is indeed diagonal.

Example 3.74 (Complete multipartite graphs). The complete multipartite graph
Kn1,..,nk with maximal independent subsets of size n1, . . . , nk ≥ 1 is the iterated
join En1 ⋆ En2 ⋆ · · · ⋆ Enk of the discrete graphs Eni and is therefore diagonal. In
particular, the complete graph Kn can be viewed as the complete multipartite graph of
n independent sets with precisely 1 vertex each, so Kn is diagonal. This was already
shown in Example 3.12.
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Figure 3.6: The four-cycle realized as the join E2 ⋆ E2.

Example 3.75 (1-skeleta of platonic solids). • The 1-skeleton of the tetrahe-
dron is just the complete graph K4, so it is diagonal.

• The 1-skeleton of the cube is the cartesian product K2□K2□K2 and diagonal
by [3, Proposition 7.3.].

• The 1-skeleton of the octahedron is E2 ⋆ E2 ⋆ E2 and thus diagonal.

• Computer calculations with our code showed that the 1-skeleton of the dodeca-
hedron is not diagonal, the ranks of the magnitude homology groups can be
seen in Table 3.4.

l⧹k 0 1 2 3 4 5 6 7 8
0 20 0 0 0 0 0 0 0 0
1 0 60 0 0 0 0 0 0 0
2 0 0 60 0 0 0 0 0 0
3 0 0 120 60 0 0 0 0 0
4 0 0 60 360 60 0 0 0 0
5 0 0 0 380 600 60 0 0 0
6 0 0 0 60 1320 840 60 0 0
7 0 0 0 0 1020 3240 1080 60 0
8 0 0 0 0 180 4620 6120 1320 60

Table 3.4: The ranks of the magnitude homology groups of the Dodecahedral graph.

• The 1-skeleton of the icosahedron is diagonal as shown by [1] using algebraic
morse theory.
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Appendix A

Appendix

A.1 Code

The following code written in SageMath has been used to produce the
tables containing ranks of the magnitude homology of different graphs.
The code can also be accessed through https://github.com/nadjahae/

Magnitude-Homology.

# i n p u t : l i s t
# o u t pu t : l i s t w i t h o u t d u p l i c a t e s , same o r d e r
def removeduplicates ( x ) :

removed = [ ]
for i in x :

i f i in removed :
pass

e lse :
removed . append ( i )

return removed

# i n p u t : k , l i n t e g e r s
# o ut pu t : l i s t wi th a l l u n o r d e r e d p a r t i t i o n s o f n
# with p r e c i s e l y k summands
def p a r t i t i o n s ( k , l ) :

par = [ ]
i f ( k > l or k<0 or l <0) :

return par
e l i f ( k == 0 ) :

i f ( l == 0 ) :
par . append ( [ 0 ] )
return par

e lse :
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return par
e l i f ( l == 0 ) :

return par
e l i f ( k == 1 ) :

par . append ( [ l ] )
return par

e lse :
for i in range ( 1 , l ) :

prev = p a r t i t i o n s ( k−1 , l − i )
for j in prev :

j . i n s e r t ( 0 , i )
par . append ( j )

par = removeduplicates ( par )
return par

# r e t u r n s a l l t h e v e r t i c e s in t h e graph G t h a t
# have p r e c i s e l y d i s t a n c e d i s t from c e n t e r
def graph ba l l (G, center , d i s t ) :

b a l l = [ ]
for ver tex in range (G. order ( ) ) :

i f d i s t == G. d i s t a n c e ( center , ver tex ) :
b a l l . append ( ver tex )

return b a l l

# r e t u r n s a l l g e n e r a t o r s o f MC k , l (G) t h a t s t a r t
# with t h e v e r t e x x 0 and c o r r e s p o n d t o t h e g i v e n
# p a r t i t i o n
def b u i l d g e n e r a t o r (G, x0 , p a r t i t i o n ) :

genera tors = [ ]
length = len ( p a r t i t i o n )
i f length == 1 :

d = p a r t i t i o n [ 0 ]
i f d == 0 :

generators . append ( x0 )
e lse :

x1vars = graph ba l l (G, x0 , d )
for x1 in x1vars :

generators . append ( [ x0 , x1 ] )
e lse :

x1vars = graph ba l l (G, x0 , p a r t i t i o n [ 0 ] )
parminuslead = p a r t i t i o n [ 1 : length ]
for x1 in x1vars :

gen i = b u i l d g e n e r a t o r (G, x1 , parminuslead )
for fo l lowing in gen i :
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fol lowing . i n s e r t ( 0 , x0 )
generators . append ( fol lowing )

return generators

# r e t u r n s a l l g e n e r a t o r s o f MC k , l (G)
def genMC (G, k , l ) :

genera tors = [ ]
n = G. order ( )
pars = p a r t i t i o n s ( k , l )

for par in pars :
for i in range ( n ) :

i g e n e r a t o r s = b u i l d g e n e r a t o r (G, i , par )
for j in i g e n e r a t o r s :

genera tors . append ( j )
return generators

# r e t u r n s t h e rank o f MC k , l (G)
def rankMC (G, k , l ) :

return len (genMC(G, k , l ) )

# r e t u r n s t h e mat r i x c o r r e s p o n d i n g t o t h e
# d i f f e r e n t i a l map MC k , l (G) −> MC k−1 , l (G)
def d i f f e r e n t i a l (G, k , l ) :

rows = rankMC(G, k−1 , l )
c o l s = rankMC(G, k , l )

d i f f = matrix (ZZ, rows , cols , sparse=True )

gen domain = genMC(G, k , l )
gen codomain = genMC(G, k−1 , l )

for gen in gen domain :
c o l = gen domain . index ( gen )
for i in range ( 1 , k ) :

copygen = gen . copy ( )
copygen . pop ( i )
i f copygen in gen codomain :

row = gen codomain . index ( copygen )
d i f f [ row , c o l ] = ( − 1 ) * * i

return d i f f

# r e t u r n s t h e c h a i n complex MC {\ a s t , l } (G)
def lchain complex (G, l ) :

74



A.2. Tables

data = d i c t ( )
for k in range ( l + 2 ) :

data [ k ] = d i f f e r e n t i a l (G, k , l )
return ChainComplex ( data , degree = −1 , b a s e r i n g=ZZ)

# r e t u r n s a t a b l e o f t h e r a n k s o f t h e magnitude homology
# groups MH k , l (G) f o r k = 0 , . . . . , k max and l = 0 , . . . , l max
def table hom ranks (G, k max , l max ) :

rows = [ ]
row0 = [ i for i in range ( k max + 2) ]
row0 . i n s e r t ( 0 , 0 )
rows . append ( row0 )
for i in range ( 1 , l max + 2 ) :

current row = [ ]
Magnitude chain complex = lchain complex (G, i −1)
for j in range ( k max + 1 ) :

current row . append ( Magnitude chain complex . b e t t i ( j ) )
current row . i n s e r t ( 0 , i −1)
rows . append ( current row )

return t a b l e ( rows = rows , header row = True , header column=True )

A.2 Tables

Further examples of ranks of magnitude homology groups calculated
with SageMath and our own code given in Appendix A.1.

l⧹k 0 1 2 3 4 5 6 7 8 9 10 11
0 5 0 0 0 0 0 0 0 0 0 0 0
1 0 10 0 0 0 0 0 0 0 0 0 0
2 0 0 10 0 0 0 0 0 0 0 0 0
3 0 0 10 10 0 0 0 0 0 0 0 0
4 0 0 0 30 10 0 0 0 0 0 0 0
5 0 0 0 0 50 10 0 0 0 0 0 0
6 0 0 0 0 20 70 10 0 0 0 0 0
7 0 0 0 0 0 80 90 10 0 0 0 0
8 0 0 0 0 0 0 180 110 10 0 0 0
9 0 0 0 0 0 0 40 320 130 10 0 0
10 0 0 0 0 0 0 0 200 500 150 10 0
11 0 0 0 0 0 0 0 0 560 720 170 10

Table A.1: The ranks of the magnitude homology groups of C5
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l⧹k 0 1 2 3 4 5 6 7 8 9 10 11
0 8 0 0 0 0 0 0 0 0 0 0 0
1 0 16 0 0 0 0 0 0 0 0 0 0
2 0 0 16 0 0 0 0 0 0 0 0 0
3 0 0 0 16 0 0 0 0 0 0 0 0
4 0 0 8 0 16 0 0 0 0 0 0 0
5 0 0 0 16 0 16 0 0 0 0 0 0
6 0 0 0 0 16 0 16 0 0 0 0 0
7 0 0 0 0 0 16 0 16 0 0 0 0
8 0 0 0 0 8 0 16 0 16 0 0 0
9 0 0 0 0 0 16 0 16 0 16 0 0
10 0 0 0 0 0 0 16 0 16 0 16 0
11 0 0 0 0 0 0 0 16 0 16 0 16

Table A.2: The ranks of the magnitude homology groups of the cyclic graph C8.

0 0 1 2 3 4 5 6 7 8
0 10 0 0 0 0 0 0 0 0
1 0 30 0 0 0 0 0 0 0
2 0 0 30 0 0 0 0 0 0
3 0 0 120 30 0 0 0 0 0
4 0 0 0 480 30 0 0 0 0
5 0 0 0 0 840 30 0 0 0
6 0 0 0 0 1440 1200 30 0 0
7 0 0 0 0 0 7200 1560 30 0
8 0 0 0 0 0 0 17280 1920 30

Table A.3: The ranks of the magnitude homology groups of the Petersen Graph.

l⧹k 0 1 2 3 4 5 6 7 8
0 20 0 0 0 0 0 0 0 0
1 0 60 0 0 0 0 0 0 0
2 0 0 60 0 0 0 0 0 0
3 0 0 120 60 0 0 0 0 0
4 0 0 60 360 60 0 0 0 0
5 0 0 0 380 600 60 0 0 0
6 0 0 0 60 1320 840 60 0 0
7 0 0 0 0 1020 3240 1080 60 0
8 0 0 0 0 180 4620 6120 1320 60

Table A.4: The ranks of the magnitude homology groups of the Dodecahedral graph.
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l⧹k 0 1 2 3 4 5 6 7
0 12 0 0 0 0 0 0 0
1 0 60 0 0 0 0 0 0
2 0 0 240 0 0 0 0 0
3 0 0 0 912 0 0 0 0
4 0 0 0 0 3420 0 0 0
5 0 0 0 0 0 12780 0 0
6 0 0 0 0 0 0 47712 0
7 0 0 0 0 0 0 0 178080

Table A.5: The ranks of the magnitude homology groups of the Icosahedral graph

l⧹k 0 1 2 3 4 5 6 7
0 20 0 0 0 0 0 0 0
1 0 80 0 0 0 0 0 0
2 0 0 170 0 0 0 0 0
3 0 0 120 320 0 0 0 0
4 0 0 0 570 590 0 0 0
5 0 0 0 0 1560 1040 0 0
6 0 0 0 0 720 3900 1850 0
7 0 0 0 0 0 3960 8760 3200

Table A.6: The ranks of the magnitude homology groups of the Folkman graph.

l⧹k 0 1 2 3 4 5 6 7 8
0 4 0 0 0 0 0 0 0 0
1 0 10 0 0 0 0 0 0 0
2 0 0 24 0 0 0 0 0 0
3 0 0 0 58 0 0 0 0 0
4 0 0 0 0 140 0 0 0 0
5 0 0 0 0 0 338 0 0 0
6 0 0 0 0 0 0 816 0 0
7 0 0 0 0 0 0 0 1970 0
8 0 0 0 0 0 0 0 0 4756

Table A.7: The ranks of the magnitude homology groups of the Diamond graph.
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