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Abstract

The goal of this thesis is to define persistent homology and to show
how it can be used to classify (hepatic) liver lesions. We introduce the
notions of simplicial complexes and homology. After that, we explain
what persistent vector spaces are and present the structure theorem for
persistent homology. Using this theorem, we are able to represent the
persistent vector space we are interested in by a barcode (or a persistent
diagram). On the set of barcodes we can even define metrics. All these
notions can be used to analyze datasets consisting of point clouds or
black-and-white images. Last, but not least, we present a hands-on
application where we use persistent homology to classify a dataset of
images of liver lesions.
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Chapter 1

Introduction

In the field of topological data analysis one analyzes data sets using techniques
from (algebraic) topology. Topology is a branch of mathematics that studies
the properties of geometric objects that are preserved under continuous
deformations. If we think of a geometric object as being made of dough,
the object is identified with any object it can be continuously deformed into.
Continuous deformations allow for stretching, contracting and twisting. We
are not allowed to tear the dough apart or glue one side to another. For
example, consider Figure 1.1.

X

Figure 1.1: Example of a continuous deformation of a space.

The space X consists of a closed disk. As the figure illustrates, we are able to
deform it into a small point. Thus, for a topologist a closed disk is considered
the same as a point.

X Y

Figure 1.2: Example of spaces with different Betti numbers.

Using algebraic tools, one might also find invariants of topological spaces,
such as the so-called Betti numbers βi, which count the number of i-dimensional
holes a space has. Consider Figure 1.2. The space Y contains one hole, in con-

1



1. Introduction

trast to the space X, which has none. From this we can tell that these spaces
are not the same, since their invariants (the Betti numbers) are different.

We wish to use the invariants of a topological space, like the Betti numbers,
to capture the shape of a given dataset. Consider the datasets as depicted in
Figure 1.3.

(a) A finite subset of a metric space (b) 3 × 3 black-and-white image

Figure 1.3: Examples of datasets.

The first dataset, Figure 1.3a, consist of a finite set of points in a metric space.
The other one, 1.3b, is a black-and-white image, consisting of 3 × 3 pixels.
In topological data analysis one analyzes these kinds of sets by defining
geometrical objects on them. One way to do this is by using a collection of so-
called simplices, where an i-simplex is an object defined by (i + 1) points that
are not contained in an (i − 1)-dimensional subspace of the metric space. For
instance, a 0-simplex is a point, a 1-simplex is line segment, and a 2-simplex
is a triangle, and so on. If we glue these simplices along common boundaries,
we get a simplicial complex. To give a concrete example, consider Figure 1.4.

Figure 1.4: Construction of geometrical objects on data points.

In the figure we assume a dataset is given as a finite set of points in the plane
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R2. We draw around each data point a closed ball, each with the same radius.
We add an i-simplex to the complex if i + 1 balls intersect. The larger the
radius, the more simplices our complex contains. In Figure 1.4 we see how
different radii give rise to different complexes. The first complex is just a set
of discrete points, the second one forms a square, and the last one forms a
tetrahedron.

Using these constructions, we want to find out what the topological features
of the dataset are. But as seen in the previous example, on the same dataset
we can construct distinct complexes with different topological features. So
how can we make any use of them in order to draw conclusion on the “true
shape” of the dataset?

Persistent homology tackles that issue by constructing a 1-parameter family
of simplicial complexes that depends on a parameter r. In Figure 1.4 the
parameter is the radius of the closed balls. For each value of r, we look at
what topological features the corresponding complex has, while keeping
track of when certain features appear (for example when a hole is formed)
and when they disappear (i.e. the hole gets filled in). Features existing for a
long time are considered more likely to reflect the properties of the dataset.
Those that “die” after a short time are more likely due to errors occurring
while sampling the data. One way to represent this is by using barcodes. One
example for such a barcode can be seen in Figure 1.5.

R

T0 T1 T2 T3 T4 T5 T6 T7 T8

β1

Figure 1.5: Barcode of a space for the Betti number β1.

This barcode tells us that the we can detect three 1-dimensional holes in the
space. One appears at T1 and disappears at T3, another one “lives” from T4
until T5 and a last one appears at T4 and gets filled in at T7.

Finally, we apply persistent homology to classify liver lesions. Lesions are
abnormal growths in the liver. Most of them are harmless, but some of them
might be related to cancer. The method of image analysis, which relies on
persistent homology, can help to detect such cancerous lesions. For this, we
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1. Introduction

construct barcodes from images of different lesion types which then. With
the help of machine learning algorithms, we investigate these barcodes and
classify the lesions.
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Chapter 2

Basic Concepts

The goal of this chapter is to introduce the mathematical background and
the tools that we are going to use in this thesis. The chapter is based on
Carlsson’s Topological pattern recognition for point cloud data ([5]), on Hatcher’s
Algebraic Topology ([10]), on Computational Topology for Data Analysis by Dey
and Wang ([9]), as well as on Topological Data Analysis with Applications by
Carlsson and Vejdemo-Johansson ([6]).

2.1 Simplicial Complexes

In this section we will look at topological spaces which can be described in a
very combinatorial way. The building blocks consist of points, line segments
between points, and more generally, of convex hulls of points. To make the
theory work, we must restrict the relative position between the points.

Definition 2.1 Let S = {x0, x1, . . . , xn} ∈ Rk denote a finite subset. We say that
S is in general position if it is not contained in any affine subspace of dimension
n − 1 in Rk.

Note that in the definition the enumeration of the points starts at 0. To
illustrate the definition, let us look at an example.

Example 2.2 Consider S = {x0, x1, x2}, P = {x3, x4, x5} ∈ R2 as in Figure 2.1.

x0

x1 x2

x3

x4

x5

Figure 2.1: Example and counterexample for points in general position.
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2. Basic Concepts

We note that the points of S are in general position, since no three points of S lie
on a line, i.e. in a 1-dimensional subspace of R2, whereas the points of P are not in
general position, since the three points x3, x4, x5 lie on the same line.

Example 2.3 Consider any S = {x0, x1, . . . , xn} ∈ Rn−1. Then S is not in general
position, since its points are all contained in the (n − 1)-dimensional space Rn−1.

The basic building blocks of the objects we will construct are called simplices.

Definition 2.4 Let S = {x0, x1, . . . , xn} ∈ Rk be in general position. We define
the simplex spanned by S to be the convex hull σ = σ(S) of S in Rk, i.e. the set
of points which can be expressed as a linear combination ∑n

i=0 λixi such that

∀i = 0, 1, . . . , n : λi ≥ 0 and
n

∑
i=0

λi = 1.

The points xi of S are called vertices, and the simplices σ(T) spanned by a non-empty
subset T ⊆ S are called faces of σ.

Remark 2.5 We may write σ = [x0, x1, . . . , xn] or just x0x1 . . . xn for the simplex
spanned by the vertices {x0, x1, . . . , xn}.

Example 2.6 Take S = {x0, x1, x2} as seen before on Figure 2.1. The simplex
spanned by S, denoted by σ, is just the triangle spanned by the three points. Take
T = {x1, x2} ⊆ S. Then σ(T), i.e. the edge connecting the vertices x1 and x2, is a
face of σ.

Definition 2.7 If a simplex σ is spanned by k + 1 vertices, we call σ a k-simplex.

Example 2.8 Points are 0-simplices, edges are 1-simplices, triangles are 2-simplices,
tetrahedrons form 3-simplices. The objects can be seen in Figure 2.2.

A

(a) 0-simplex

A B

(b) 1-simplex

A
B

C

(c) 2-simplex

A

B

C

D

(d) 3-simplex

Figure 2.2: Examples of simplices.

Definition 2.9 By a (finite) simplicial complex, we mean a finite collection of
simplices in a Euclidean space Rk, denoted by X , such that the following conditions
hold:
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2.1. Simplicial Complexes

(1) For any simplex σ ∈ X , all faces of σ are also contained in X .

(2) For any two simplices σ and τ of X , the intersection σ ∩ τ is a simplex, which
is a face of both σ and τ.

Example 2.10 Consider the two lists of simplicies

X1 = {A, B, C, AB, AC, ABC},
X2 = {D, E, F, G, DE, FG}.

The objects lie in R2 as depicted in Figure 2.3. X1 is not a simplicial complex since
the edge connecting B and C is missing, i.e. condition (1) is not satisfied. On the
other hand, X2 is not a simplicial complex since the intersection point of the edges
DE and FG is not a simplex in the list, so condition (2) is not satisfied.

A

B

C

(a) X1 from Example 2.10.

D E

F

G

(b) X2 from Example 2.10.

Figure 2.3: Counterexamples for simplicial complexes.

We note that a simplicial complex is a family of subsets of the whole vertex
set which determines the relations between the vertices. So, instead of the
geometric object described by the simplicial complex, we might only be
interested in the combinatorial object it defines. I.e. we only consider the set
of vertices and the relations between them. This motivates the next definition.

Definition 2.11 An abstract simplicial complex X is a pair X = (V(X), Σ(X)),
where V(X) is a finite set called the vertices of X, and Σ(X) is a subset of the
collection of all non-empty subsets of V(X) called the simplices, satisfying the
following condition:

∅ ̸= τ ⊆ σ ∈ Σ(X) =⇒ τ ∈ Σ(X).

A simplicial complex X therefore determines an abstract simplicial complex
whose vertex set V(X ) is given by the set of all vertices of X and where
a subset of V(X ) is in the collection of simplices Σ(X ) if and only if the
elements of that subset form a simplex of X . In other words, considering
the abstract simplicial complex X of a simplicial complex X , we do not care
about the distances between the vertices of X , but focus on the relation
between them, i.e. if they are connected by an edge, for instance.
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2. Basic Concepts

Example 2.12 Consider the tetrahedron in R3 given in Figure 2.2d.

This geometric object is described by the vertex set V(X) = {A, B, C, D} and the
simplices

Σ(X) = {A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD}.

We are also able to construct a simplicial complex from an abstract simplicial
complex.

Definition 2.13 Let X′ = (V(X′), Σ(X′)) be an abstract simplicial complex such
that V(X′) = {x0, x1, . . . , xn}, and let S := {e0, e1, . . . , en} be a basis of Rn+1.
Then a simplicial complex X = (S, Σ(X)) is called the geometric realisation of
X′ if the following condition holds:

[xi0 , xi1 , . . . , xik ] ∈ Σ(X′) ⇔ [ei0 , ei1 , . . . , eik ] ∈ Σ(X),

where {i0, i1, . . . , ik} ⊆ {0, 1, . . . , n}.

Remark 2.14 Note that a geometric realisation of an abstract simplicial complex
with vertex set {x0, x1, . . . , xn} does not have to be a (n + 1)-dimensional object. It
can often be embedded in a lower-dimensional subspace of Rn+1.

Furthermore, it is possible to define maps between (abstract) simplicial
complexes:

Definition 2.15 Let X = (V(X), Σ(X)) and Y = (V(Y), Σ(Y)) be two (abstract)
simplicial complexes. We say that f is a map of (abstract) simplicial complexes
if it is a map in the sets of vertices f : V(X) → V(Y) such that

∀σ ∈ Σ(X) : f (σ) ∈ Σ(Y),

where f (σ) = f ([x0, x1, . . . , xk]) = [ f (x0), f (x1), . . . , f (xk)].

Example 2.16 Consider the two abstract simplicial complexes X = (V(X), Σ(X))
and Y = (V(Y), Σ(Y)), such that

V(X) = V(Y) = {A, B, C, D},
Σ(X) = {A, B, C, D, AB, AC, AD, BC, ABC},
Σ(Y) = {A, B, C, D, AB, AD, BC, BD, CD, ABD, BCD}.

The complexes can be seen in Figure 2.4.

Then a map of simplicial complexes f : V(X) → V(Y) is given via

f (A) = B,
f (B) = C,
f (C) = D,
f (D) = A.
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2.2. Homology

A

B C

D

X

A

DC

B

Y
Figure 2.4: The complexes X = (V(X), Σ(X)) and Y = (V(Y), Σ(Y)) from Example 2.16.

Indeed, one easily verifies that for every simplex σ of X we have that f (σ) is a
simplex of Y.

Moreover, if f : V(X) → V(Y) is a function on a vertex set, it induces a
simplicial complex.

Example 2.17 Let X = (V(X), Σ(X)) be a simplicial complex given by the vertex
set V(X) = {A, B, C, D} and set of simplices

Σ(X) = {A, B, C, D, AB, AC, AD, BC, CD, ACD}.

Let f : V(X) → V(X) be a function on V(X) such that

f (A) = C,
f (B) = D,
f (D) = A,
f (C) = B.

Then f induces the complex Y = (V(Y), Σ(Y)), where V(Y) = V(X) and

Σ(Y) = {A, B, C, D, CD, CB, CA, DB, BA, CBA}.

The complexes can be seen in Figure 2.5.

A B

CD

AB

CD

f

Figure 2.5: A map f on the set of vertices induces a simplical complex.

2.2 Homology

In this section, we define the notion of homology. As a motivation, consider
the abstract simplicial complex X with the list of simplicies

Σ(X) = {A, B, C, D, E, AB, BC, BE, CD, CE, AD, BCE}.

9



2. Basic Concepts

A B

CD

E

Figure 2.6: Simplicial complex with two loops, one of which is filled-in.

The geometric realization of this complex, as seen in Figure 2.6, has one loop,
the square ABCD, and one loop that is filled in by a simplex, the triangle
BCE. The main goal of homology is to investigate how many loops in our
abstract simplicial complex are not filled in. Such loops are often called holes.
To do this, we first introduce the notion of a chain complex that enables us
to construct vector spaces on simplicial complexes. By using some methods
from linear algebra, these vector spaces will allow us to compute the so
called Betti numbers, which count the number of i-dimensional holes of the
underlying simplicial complex.

2.2.1 Chain Complexes

Definition 2.18 Let k be a field and S a finite set. Then the free k-vector space
on S, denoted by Vk(S), is the k-span of S.

Definition 2.19 Let k be a field and X be a given (abstract) simplicial complex.
Denote by Ci(X) the free k-vector space on the set of i-simplices. We call an element
of Ci(X) an i-chain.

One important property of Ci(X) is that it forms a vector space over k: If
c = ∑ cjσj and d = ∑ djσj, we define the sum c + d to be c + d := ∑(cj + dj)σj.
Also, for a ∈ k and c as before, we define the scalar multiplication as follows:
ac := ∑ acjσj. Thus, Ci(X) forms a vector space over k, the so called vector
space of i chains in X. The neutral element is given by 0 := ∑ 0σi.

Remark 2.20 The set of i-simplices forms a basis of Ci(X). Hence, the rank of
Ci(X) is given by the number of i-simplices in X. If i < 0 or i > dim(X), we have
Ci(X) = 0 since there are no simplices of these dimensions.

From now on we will only consider simplicial complexes over the binary
field, i.e. k = Z2. That way, the addition of two i-simplices can considered as
taking the symmetric difference between them.
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2.2. Homology

Definition 2.21 For an i-simplex σ we define its boundary ∂iσ to be the sum of
its (i − 1)-dimensional faces, i.e. if σ = [x0, x1, . . . , xi] then

∂iσ =
i

∑
j=0

[x0, x1, . . . , x̂j, . . . , xi]

where the notation x̂j means that xj is omitted. For an i-chain c = ∑ cjσj, the
boundary is the sum of the boundaries of its simplices, i.e. ∂ic = ∑ cj(∂iσj).

Example 2.22 Let us look again at the complex from Figure 2.6. The boundary of
the triangle BCE, a 2-simplex, is given by BC + BE + CE. The boundary of A, a
0-simplex, is 0.

We observe that “taking boundaries” is a linear map from the set of i-chains
into the set of (i − 1)-chains. This gives rise to the next definition.

Definition 2.23 For a fixed bases of Ci(X) and Ci−1(X), we can represent the
boundary map ∂i : Ci(X) → Ci−1(X) by a matrix, called the boundary matrix.

We choose the set of i-simplices and as the basis of Ci(X). Similarly, the set of
(i − 1)-simplices forms the basis of Ci−1(X). This gives us an ni−1 × ni matrix,
where ni−1 and ni denote the number of (i − 1)-simplices and i-simplices of
X respectively. Each row is indexed by a (i − 1)-simplex and every column is
indexed by an i-simplex. The entries akl such that ∂i = {akl} are defined by

akl =

{
1, if the simplex of row k is a face of the simplex of column l
0, otherwise.

Remark 2.24 We denote both the transformation and the corresponding matrices
by ∂i.

Example 2.25 Let X be the simplicial complex given in Figure 2.6. We want to
determine the matrix of ∂1: The row entries correspond to the 0-simplices of X, i.e.
the vertices, whereas the columns correspond to the 1-simplices of X, i.e. the edges.
The entry akl of the matrix is equal to 1 if and only if the vertex of row k is in the
boundary of the edge of column l. Thus the boundary matrix is given by

∂1 =

AB AD BC BE CD CE


A 1 1 0 0 0 0
B 1 0 1 1 0 0
C 0 0 1 0 1 1
D 0 1 0 0 1 0
E 0 0 0 1 0 1

.

The next result tells us that that boundary of a boundary needs to be zero.

11



2. Basic Concepts

Lemma 2.26 (Fundamental Lemma of Homology) For a given (abstract) sim-
plicial complex X, it holds that

∀i ≥ 1 : ∂i · ∂i+1 = 0

where ∂i : Ci(X) → Ci−1(X) and ∂i+1 : Ci+1(X) → Ci(X) are the respective
boundary maps.

Proof Let σ = [x0, x1, . . . , xi+1] be an (i + 1)-simplex. Then we have:

∂i · ∂i+1σ = ∂i

i+1

∑
j=0

[x0, x1, . . . , x̂j, . . . , xi+1]

=
i+1

∑
k=0
k ̸=j

i+1

∑
j=0

[x0, x1, . . . , x̂j, . . . , x̂k, . . . , xi+1]

= 0

where the last step of the equation follows from the observation that for all
m, n ∈ {0, 1, . . . , i + 1} with m ̸= n we can find j, k ∈ {0, 1, . . . , i + 1} such
that

[x0, x1, . . . , x̂j︸︷︷︸
m−th position

, . . . , x̂k︸︷︷︸
n−th position

, . . . , xi+1]

and
[x0, x1, . . . , x̂k︸︷︷︸

m−th position

, . . . , x̂j︸︷︷︸
n−th position

, . . . , xi+1],

both appear in the sum, i.e. we always have a pair of summands where j and
k have switched roles. In particular, these two summands are equal, thus by
summing up these two expressions, we get

2 · [x0, x1, . . . , x̂j, . . . , x̂k, . . . , xi+1]

which is equal to 0, since Ci(X) is a vector space over the field Z2. Thus, the
whole sum sums up to 0 and since the (i + 1)-simplex σ was arbitrary, the
statement follows. □

Now we are ready to give the main definition of this subsection.

Definition 2.27 A chain complex C∗ over a field k is given by a choice of k-vector
spaces Ci, ∀i ≥ 0, together with linear transformations ∂i : Ci → Ci−1 such that
∂i · ∂i+1 ≡ 0 ∀i ≥ 1.

In particular, the i-chain vector spaces Ci(X) together with the boundary
maps ∂i form a chain complex:

. . .
∂i+2−−→ Ci+1(X)

∂i+1−−→ Ci(X)
∂i−→ Ci−1(X)

∂i−1−−→ . . .
∂1−→ C0(X) −→ 0.

12



2.2. Homology

2.2.2 Cycles, Boundaries, Homology

In this subsection, we want to define two particular types of chains which
will help us define homology groups. Throughout the whole section, let X
be an simplicial complex over Z2.

Definition 2.28 Let c ∈ Ci(X) be an i-chain, where i ≥ 0. We say that c is an
i-cycle if ∂ic = 0, i.e. if c has trivial boundary. The set of all i-cycles is denoted by
Zi(X).

Remark 2.29 Zi = ker(∂i), so in particular Zi(X) forms a subspace of Ci(X).

A B

CD

Figure 2.7: A triangulated square.

Example 2.30 Consider the simplicial complex X with list of simplices

Σ(X) = {A, B, C, D, AB, AC, BC, CD, ABC, ACD},

The complex can be seen in Figure 2.7.

Here an example of a 1-chain is given by c1 = AB + BC + AC. Note that

∂1c1 = A + B + B + C + A + C = 0.

Hence, c1 is a 1-cycle. Consider now the 1-chain given by

c2 = AB + AC + AD + BC + CD.

Using the boundary map, we get

∂1c2 = A + B + A + C + A + D + B + C + C + D
= A + C
̸= 0.

Thus, c2 is not an 1-cycle. Both chains are depicted in Figure 2.8.

Definition 2.31 Let c ∈ Ci(X) be an i-chain, where i ≥ 0. We say that c is an
i-boundary if there exists a d ∈ Ci+1(X) such that c = ∂i+1d. The set of all
i-boundaries is denoted by Bi(X).

Remark 2.32 Bi(X) = im(∂i+1), so in particular Bi(X) forms a subspace of Ci(X).

13



2. Basic Concepts

A B

CD

A B

CD

c1 c2

Figure 2.8: 1-chains from Example 2.30.

Example 2.33 Consider again the simplicial complex from Example 2.30. An
example on a 2-chain is given by c1 = ABC. Note that

∂2c1 = AB + BC + AC =: d1

Thus, d1 defines a 1-boundary. Another example of a 2-chain of X is given by
c2 = ABC + ACD. We apply the boundary map ∂2 and get

∂2c2 = AB + AC + BC + AC + AD + CD
= AB + BC + AD + CD
=: d2

Hence, d2 is also a 1-boundary. The chains and the corresponding boundaries are
depicted in Figure 2.9.

A B

CD

A B

CD

c1

d1
c2

d2

Figure 2.9: 2-chains and their boundaries from Example 2.33.

Proposition 2.34 An i-chain σ is an i-cycle if and only if every simplex in the
boundary ∂iσ appears an even number of times.

Proof Since our coefficients live in Z2, ∂iσ will sum up to zero, if and only if
every simplex in the sum appears to an even number of times. □

From the fundamental lemma of homology (Lemma 2.26) it follows that
Bi(X) ⊆ Zi(X). From this we can define a quotient space.

Definition 2.35 Let i ≥ 1. Then we define the i-th homology group of X to be
given by Hi(X) := Zi(X)/Bi(X). The rank βi := rank(Hi(X)) is called the i-th Betti
number of X.

Example 2.36 One way to think of the Betti number is that βi counts how many
i-dimensional holes the space has: Consider the spaces X, Y, Z as given in Figure
2.10.

14



2.2. Homology

X Y Z

Figure 2.10: Spaces X, Y, Z from Example 2.36.

The space X has two connected components, i.e. two 0-dimensional holes. The
components are given by one filled-in triangle and one filled-in square, in particular
they do not contain anymore holes. Hence, the Betti numbers for the space X are

β0(X) = 2, βi(X) = 0, ∀i > 0.

The space Y has only one connected component, consisting of one filled-in square,
two filled in triangles and two loops, therefore the Betti numbers for Y are

β0(Y) = 1, β1(Y) = 2, βi(Y) = 0, ∀i > 1.

Lastly, the space Z has one connected component, consisting of the faces of a cube. In
particular, the inside of the cube is not included, i.e. the space has a two dimensional
hole. Thus, the Betti numbers for Z are

β0(Z) = 1, β1(Z) = 0, β2(Z) = 1, βi(Z) = 0, ∀i > 2.

Example 2.37 Let us come back to the example at the beginning of section 2.2.1, i.e.
we are looking at the simplicial complex from Figure 2.6. The vector spaces formed
by the i-chains are given as follows:

C0(X) = ⟨A, B, C, D, E⟩,
C1(X) = ⟨AB, AD, BC, BE, CD, CE⟩,
C2(X) = ⟨BCE⟩.

Moreover, ∀i ≥ 3 : Ci = 0. The boundary matrices are

∂2 =

BCE


AB 0
AD 0
BC 1
BE 1
CD 0
CE 1

, ∂1 =

AB AD BC BE CD CE


A 1 1 0 0 0 0
B 1 0 1 1 0 0
C 0 0 1 0 1 1
D 0 1 0 0 1 0
E 0 0 0 1 0 1

, ∂0 = (0).
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One can easily check that

Z0(X) = Ker∂0 = ⟨A, B, C, D, E⟩,
Z2(X) = Ker∂2 = 0.

In order to get Z1(X), we have to work a little more: Note that our only candidates
for cycles that could form a basis of Z1(X) would be

c1 = AB + BC + CD + AD,
c2 = BC + CE + BE,
c3 = AB + BE + CE + CD + AD.

We notice that c1 + c2 = c3. Also, it holds that

BE /∈ ⟨AB + BC + CD + AD⟩,
AD /∈ ⟨BC + CE + BE⟩.

Thus we conclude that

Z1(X) = ⟨AB + BC + CD + AD, BC + CE + BE⟩.

Now we want to determine the boundaries.

B2(X) = Im∂3 = 0,
B1(X) = Im∂2 = ⟨BC + CE + BE⟩,
B0(X) = Im∂1 = ⟨A + B, A + D, B + C, B + E, C + D, C + E⟩.

Notice that
(B + C) + (B + E) = C + E.

Hence,
(C + E) ∈ ⟨A + B, A + D, B + C, B + E, C + D⟩.

Similarly,
(A + B) + (B + C) + (C + D) = A + D

implies that
(A + D) ∈ ⟨A + B, B + C, B + E, C + D⟩.

Thus, B0(X) simplyfies to

B0(X) = ⟨A + B, B + C, B + E, C + D⟩.
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2.2. Homology

Now we are ready to compute the homology groups.

H2(X) = Z2(X)/B2(X) ∼= 0,
H1(X) = Z1(X)/B1(X)

= ⟨AB+BC+CD+AD,BC+CE+BE⟩/⟨BC+CE+BE⟩
∼= ⟨AB + BC + CD + AD⟩
∼= Z2,

H0(X) = Z0(X)/B0(X)

= ⟨A,B,C,D,E⟩/⟨A+B,B+C,B+E,C+D⟩
∼= Z2.

Furthermore, we are able to determine the Betti numbers.

β2 = rankH2 = rankZ2 − rankB2 = 0,
β1 = rankH1 = rankZ1 − rankB1 = 2 − 1 = 1,
β0 = rankH0 = rankZ0 − rankB0 = 5 − 4 = 1.

Note that ∀i ≥ 3 : Zi(X) = 0 = Bi(X), i.e. the homology groups are trivial, and
βi = 0.

In Section 3.4, we will provide an algorithm that can be used to determine
the homology groups.

Another important property we want to mention is the functoriality of the
homology groups. The functoriality property says that from every map of
abstract simplicial complexes f : X → Y we can obtain an induced linear
transformation Hn( f ) : Hn(X) → Hn(Y) by showing the following:

(1) There are linear transformations fi : Ci(X) → Ci(Y) which carry basis
elements τ of Ci(X) to basis elements f (τ) of Ci(Y).

(2) The boundary maps ∂i respect the maps fi in the sense that the following
diagram commutes:

Ci(X) Ci(Y)

Ci−1(X) Ci−1(Y)

fi

∂i ∂i

fi

(3) From (2) we conclude that fi carries Zi(X) into Zi(Y) and Bi(X) into
Bi(Y).

(4) From (3) it follows that there is an induced homomorphism

Hi(X) = Zi(X)/Bi(X)
Hi( f )−−−→ Zi(Y)/Bi(Y) = Hi(Y).
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Chapter 3

Persistent Homology

One goal of topological data analysis is to analyze a given dataset and get
information about its topological features. Consider, for instance, the dataset
from Figure 3.1. One can see that the set is sampled from a square. However,
applying homology to the space of data points is not very insightful. We can
only say that it is a space consisting of some points. In order to get more
information about the space we have to apply persistent homology.

Figure 3.1: Data sample of a square.

This section is based on Topological Data Analysis with Applications by Vejdemo-
Johansson and Carlson ([6]), on Classification of hepatic lesions using the matching
metric by Adcock, Rubin, Carlson ([1]), on Computational Topology for Data
Analysis by Dey and Wang ([9]), as well as on Carlsson’s Topological pattern
recognition for point cloud data ([5]).

3.1 Filtrations

In this section we define simplicial complexes on our data in order to investi-
gate it. We take a look at some examples that show how one can construct
such complexes on a given dataset. In the first example, the data is a finite
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subset of a metric space, while in the second one the data consists of black-
and-white images. Both examples will serve as a motivation for the terms
filtration and sublevel set filtration of a complex.

3.1.1 Construction of Simplicial Complexes on Point Clouds

Definition 3.1 A point cloud is a finite subset of a metric space.

Example 3.2 The sample from Figure 3.1 forms a point cloud in R2.

Typically, the metric space in which our data points lie is just the Euclidean
space Rn. Our goal is to construct simplicial complexes on this type of
dataset. One way to do this is by using nerves of coverings.

Definition 3.3 Let X be a topological space and U := {U1, . . . , Un} be a covering
of X, i.e. X = ∪n

i=1Ui. We define the nerve of U to be the simplicial complex
N(U ) := (VU , ΣU ), where the vertex set VU is given by VU = {x1, . . . , xn}, and
for {i0, i1, . . . , ik} ⊆ {1, . . . , n} we have that

{xi0 , xi1 , . . . , xik} ∈ ΣU ⇐⇒ Ui0 ∩ Ui1 ∩ · · · ∩ Uik ̸= ∅.

This notion is important in topological data analysis because from it one can
conclude on important topological features by the so-called Nerve Lemma.
The lemma roughly states that if U is a finite cover of the space X and every
non-empty intersection of the elements of the cover U is contractible, i.e. it
is homotopy equivalent to a point, then N(U ) is homotopy equivalent to X.
However, the lemma and its proof would go beyond the scope of this thesis
and therefore we refer the interested reader to [3].

Example 3.4 Let X ⊆ R2 be s space and U = {U1, U2, U3, U4} a covering of X,
as seen in Figure 3.2.

Figure 3.2: (a) A covering U of a space X and (b) its nerve N(U ).
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3.1. Filtrations

In the nerve N(U ) each vertex correspond to one element of the covering. Further-
more, we have the following non empty intersection of the elements U1, . . . , U4:

U1, U2, U3, U4,
U1 ∩ U2, U1 ∩ U3, U2 ∩ U3, U2 ∩ U4, U3 ∩ U4,
U1 ∩ U2 ∩ U3.

Hence the set of simplices of N(U ) is given by

ΣU = {x1, x2, x3, x4, x1x2, x1x3, x2x3, x2x4, x3x4, x1x2x3}.

This idea of using a covering of a topological space to get a simplicial complex
can now be used to get a simplicial complex on a point cloud. In the case of
the Čech complex we use closed balls around the data points to get a covering.

Definition 3.5 Let (M, d) be a metric space, where M is a set and d is a metric on
M. Let X ⊆ M be a finite subset of M. For a fixed r ∈ R>0 we define the Čech
complex Č(r, X) to be the nerve of the covering U = {B(x, r)}x∈X, where

B(x, r) = {y ∈ M | d(x, y) ≤ r}

is the closed ball of radius r and center x ∈ X.

Hence, for a given point cloud X ⊂ Rn and given r > 0, we get a simplicial
complex the by the following procedure:

• Every data point x ∈ X corresponds to a vertex in Č(r, X). By abuse of
notation, we will write x for both the data point and the corresponding
vertex.

• Around every data point x ∈ X, draw a closed ball of radius r, i.e.
B(x, r).

• If B(x0, r) ∩ B(x1, r) ∩ · · · ∩ B(xk, r) ̸= ∅, then the k-simplex x0x1 . . . xk
is included in the complex Č(r, X).

It is important to point out that different values of r > 0 give rise to different
Čech complexes as the following example illustrates:

Example 3.6 Consider the point cloud X ⊆ R2 given by

X = {(0, 0), (1, 0), (1, 1)} =: {x1, x2, x3},

i.e. the vertices of a rectangular triangle. As we can see in Figure 3.3, for r = 1
4 < 1

2
none of the balls will intersect, i.e. ∀r < 1

2 the Čech complex Č(r, X) consists only of
the vertices x1, x2, x3 and no other simplices. At r = 1

2 the balls B(x1, 1
2 ), B(x2, 1

2 )

and B(x2, 1
2 ), B(x3, 1

2 ) each intersect in one point, thus for all 1
2 ≤ r <

√
2 we
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x2 = (1,0) x3 = (1,1)

x1 = (0,0)

r = 1
4 r = 1

2

Č(1
2, X )

r =p
2

Č(
p

2, X )Č(1
4, X )

Figure 3.3: Different Čech complexes for different radii r.

include the 1-simplices x1x2 and x2x3 in the complex Č(r, X). At r =
√

2 all
balls will intersect at one point, thus we get additionally the 1-simplex x1x3 as well
as the 2-simplex x1x2x3. Since no other intersection is possible, we conclude that
∀r ≥

√
2 : Č(r, X) = Č(

√
2, X).

Definition 3.7 Let X = (V(X), Σ(X)) be a simplicial complex. Let {Xr}r∈R be a
sequence of subcomplexes such that

• |R| is finite,

• ∀r, r′ ∈ R, r < r′ : Xr ⊆ Xr′ ,

• ∃r ∈ R : Xr = X.

Then {Xr}r∈R is called a filtration of the complex X.

Example 3.8 Since for 0 < r < r′ and x, y ∈ X we have that

B(x, r) ∩ B(y, r) ̸= ∅ =⇒ B(x, r′) ∩ B(y, r′) ̸= ∅,

we immediately see that every simplex σ ∈ Č(r, X) is also included in the complex
Č(r′, X). In particular, we have the inclusion

Č(r, X) ⊆ Č(r′, X).

Hence, for a finite subset R ⊆ R, we get that {Č(r, X)}r∈R is a filtration.

3.1.2 Image Filtrations

We want to define simplicial complexes on data sets consisting of images.
With the help of the complexes, as well as the notion of R-filtered sets, we
are able to look for similarities among images and classify them.
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3.1. Filtrations

First of all, we restrict ourselves to black-and-white images. Each image I
in our dataset can be considered as a two-dimensional collection of pixels,
each of which endowed with a value, the so-called grayscale or intensity
value of the pixel. We denote I := (P, g), where P is the set of pixels of I and
g : P → R is the function that assigns to each pixel p ∈ P its grayscale value
g(p) ∈ R. We call g the grayscale function of the image I. Next we define a
simplicial complex on the set of pixels.

Definition 3.9 We define the pixel complex K := (V(K), Σ(K)) of a given image
I = (P, g) to be the complex which is derived as follows:

• Each pixel in p ∈ P corresponds to a vertex xp ∈ V(K).

• If two pixels p1, p2 ∈ P are adjacent in I (where we treat diagonal pixels as
adjacent), we add the 1-simplex xp1 xp2 to the complex, i.e. xp1 xp2 ∈ Σ(K).
Similarly, if three pixels p1, p2, p3 ∈ P are adjacent in I, then we add the
2-simplex xp1 xp2 xp3 to the list of simplices.

Remark 3.10 We emphasise that we do not include r-simplices with r ≥ 3. In par-
ticular, if p1, p2, p3, p4 ∈ P are adjacent in I, we do not add the simplex xp1 xp2 xp3 xp4

to Σ(K).

Example 3.11 In Figure 3.4 one can see the image I and next to it the image
together with the constructed pixel complex. Note that the pixel complex does not
depend on the grayscale values.

Figure 3.4: The image I on the left and its pixel complex on the right.

The pixel complex is a very regular complex, which does not contain much
information. Indeed, if P1, P2 are two different pixel complexes, the only
variation between them is given by the boundary shape of the corresponding
image. In order to make any use of this construction we have to consider a
filtration of the complex.

Definition 3.12 Let X be any set, equipped with a function ρ : X → R. Then we
call ρ a filtration function and the pair (X, ρ) an R-filtered set.
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3. Persistent Homology

Example 3.13 A grayscale function g of an image I = (P, g) is an example for a
filtration function, hence an image is a R-filtered set.

Definition 3.14 Let X = (V(X), Σ(X)) be a simplicial complex and f : V(X) → R

be a filtration function on the vertex set. Let fmin := min{ f (v) | v ∈ V(X)} and
fmax := max{ f (v) | v ∈ V(X)}. Furthermore, for i ∈ R let X f ,i ⊆ X be a
subcomplex, given by X f ,i = (V(X), Σ f ,i(X)), where

Σ f ,i(X) := {S ∈ Σ(X) | ∀v ∈ S : f (v) ≤ i}.

Let i1 < i2 < . . . be an increasing sequence of positive real values. Then we define
the sublevel set filtration of the complex X to be the sequence

X f , fmin ⊆ X f , fmin+i1 ⊆ X f , fmin+i2 ⊆ · · · ⊆ X f , fmax = X.

Remark 3.15 It is also possible to reverse the inequality in Definition 3.14, i.e.

Σ f ,i(X) := {S ∈ Σ(X) | ∀v ∈ S : f (v) ≥ i}

We would end up with an equally valid filtration

X f , fmax ⊆ X f , fmax−i1 ⊆ X f , fmax−i2 ⊆ · · · ⊆ X f , fmin = X.

If we define Σ f ,i(X) as in Definition 3.14 we will also refer to it as an increasing
sublevel set filtration, in the case where we defined it with the reversed inequality
we will call it a decreasing sublevel set filtration.

Hence, a given filtration function will decide when a specific simplex of the
initial complex will appear (or disappear) in our filtration. Since we want
to analyze images one obvious candidate as our filter function of our pixel
complex K is the grayscale function g of the corresponding image I.

Definition 3.16 Let I = (P, g) be an image and K = (V(X), Σ(K)) its pixel
complex. For a given increasing sequence of real values i1 < i2 < . . . we define the
intensity filtration to be the sequence

Kg,gmin ⊆ Kg,gmin+i1 ⊆ Kg,gmin+i2 ⊆ · · · ⊆ Kg,gmax = K,

where Kg,i = (V(K), Σg,i(K)) with Σg,i(K) = {S ∈ K | ∀v ∈ V(K) : g(v) ≤ i}.

Example 3.17 In Figure 3.5, one can see an example of the intensity filtration of an
image I = (P, g), where the function g : P → R takes only values in {1, 2, 3}. We
wrote inside each pixel the respective grayscale value. We will then get a filtration

Kg,1 ⊆ Kg,1 ⊆ Kg,3 = K,

where K denotes the pixel complex of I.
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Figure 3.5: Intensity filtration of an image I = (P, g).

3.2 Persistent Homology

We have already seen in Section 3.1.1 that it is possible to define a simplicial
complex on a given point cloud. Moreover, with the notion of homology,
we are able to investigate the features, more precisely the holes, of a given
complex. Thus, by computing the homology groups of a simplicial complex
of a point cloud, we might be able to draw conclusion on some topological
features of our dataset. However, some problems might occur while con-
structing and analyzing these complexes, as the following two examples will
show: In the first one, we will see that it can be hard to construct a complex
that properly captures the topological features of the object our data sample
is sampled from, while in the second example we will see how errors in a
data sample might affect the analysis.

Example 3.18 Assume the space X we want to investigate is the boundary of a
square and the sample of X is given by the four corners, as seen in Figure 3.6. We
want to reconstruct the space X with the help of the Čech complex. If we choose the
radii of the balls too small, the Čech complex consists only of four vertices. If we
enlarge the radius such that each closed ball intersects with exactly two other balls,
the corresponding complex consists of four vertices, each of which is connected to

25



3. Persistent Homology

Data sample

Figure 3.6: Data sample from a square.

exactly two other vertices by an edge. Hence, the resulting complex corresponds to the
original space. But as soon as the radius is too big, we get additional simplices which
might even fill the square in. In particular, this space would then be contractible,
i.e. homotopy equivalent to a point, but the original space X is not. Examples of
different Čech complexes for different parameter values r are depicted in Figure 3.7.

Č(r0, X) Č(r1, X) Č(r2, X)

Figure 3.7: Attempts to reconstruct the square out of the data sample.

Example 3.19 Sometimes it can happen that while getting a sample, one includes
measuring errors, often called noise. Consider again the space X which is given by
the boundary of a square. This time, our sample the of the space X includes a point e
that does not lie on the original square, as seen in Figure 3.8. We set r1 such that
each closed ball around the corner vertices intersects exactly two other balls around
the corners. Unlike in the previous example, we do not get a space that resembles
the square anymore. Instead, we get one that consists of a square and a triangle,
caused by the intersection of the ball around the noise point e with the balls around
the vertices that correspond to the corners of the square. But, if we choose the radius
smartly, as done in Figure 3.9 with r3, we can get a Čech complex such that the
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Data sample

e

Figure 3.8: Data sampling of a square with noise point e.

triangle is filled in by a simplex, but the square is still not. This might be interesting
from a topological point of view, since this filled-in triangle would be contractible.
I.e. if we contract the triangle, the complex Č(r3, X) could be deformed in one with
only one (non-contractible) 2-dimensional hole, like in the original space X.

Č(r1, X) Č(r3, X)

Figure 3.9: Attempts to reconstruct the square out of the data sampling with noise.

What both examples show is that it is hard to find the “right” value r (if it
even exists) for a complex that captures best the “true” shape of the dataset X.
If the value is too small, some topological features might not have appeared
yet, whereas if we choose it too large, we might have already lost information.
Persistent homology tackles these issues by considering a filtration of a given
complex and keeping track of when some topological feature (holes) appear
and when they disappear, with the interpretation that the longer a certain
feature “lives”, i.e. the hole is not filled in, the more likely it is that the
original space also has this feature.
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3.2.1 Persistent Vector Spaces

Definition 3.20 Let k be any field. A persistent vector space over k is a family of
k-vector spaces {Vr}r∈R together with linear transformations LV(r, r′) : Vr → Vr′ ,
where r ≤ r′, such that

LV(r′, r′′) · LV(r, r′) = LV(r, r′′) ∀r ≤ r′ ≤ r′′.

A sub-persistence vector space of {Vr}r∈R is a family {Ur}r∈R of k-subspaces
Ur ⊆ Vr such that

LV(r, r′)(Ur) ⊆ Ur′ ∀r ≤ r′.

Example 3.21 Consider {Č(r, X)}r∈R, where we set Č(r, X) = 0, ∀r < 0. By
Example 3.8 we have that

Č(r, X) ⊆ Č(r′, X), whenever r ≤ r′.

Let i ∈ N. By applying the i-th homology group Hi to the family {Č(r, X)}r∈R, we
obtain a family {Hi(Č(r, X))}r∈R of vector spaces, which by the functoriality of ho-
mology has the structure of a persistent vector space, where the linear transformations
LV(r, r′) are induced by the inclusion maps Č(r, X) ↪→ Č(r′, X).

Definition 3.22 A linear transformation f : {Vr}r∈R → {Wr}r∈R of persis-
tent vector spaces {Vr}r∈R, {Wr}r∈R over k is a family of linear transformations
fr : Vr → Wr with the property that for all pairs (r, r′) such that r ≤ r′, the diagrams

Vr Vr′

Wr Wr′

LV(r,r′)

fr fr′

LW(r,r′)

commute, meaning
fr′ ◦ LV(r, r′) = LW(r, r′) ◦ fr.

Definition 3.23 If f : {Vr}r∈R → {Wr}r∈R is a linear transformation of persistent
vector spaces, the image of f, denoted by im( f ), is the sub-persistent vector space
{im( f )r}r∈R. Moreover, we call f an isomorphism if it admits a two-sided inverse.

It is possible to extend the notion of quotient spaces to persistent vector
spaces:

Definition 3.24 Let {Ur}r∈R be a sub-persistence vector space of {Vr}r∈R. Then
we can form the quotient space of the persistent vector space {Vr/Ur}r∈R,
where the linear transformations LV/U(r, r′) : Vr/Ur → Vr′/Ur′ , for r ≤ r′, are given
by sending [v] ∈ Vr/Ur to the equivalence class [LV(r, r′)(v)] ∈ Vr′/Ur′ , ∀v ∈ Vr.
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Next we extend the notion of a free vector space to persistent vector spaces:

Definition 3.25 By the free persistent vector space on the pair (X, ρ), where
X is a set and ρ : X → R is a filtration function, we mean the persistent vector
space {Vk(X, ρ)r}r∈R, where Vk(X, ρ)r ⊆ Vk(X) is the k-linear span of the set
{x ∈ X | ρ(x) ≤ r}. We say that a persistent vector is free if it is isomorphic to
one of the form Vk(X, ρ) for some (X, ρ). Moreover, if X is finite, we say Vk(X) is
finitely generated.

Remark 3.26 If X is finite, we can find some sufficiently large r ∈ R such that
Vk(X, ρ)r = Vk(X). For instance, take r = max

x∈X
ρ(x).

Remark 3.27 It often happens that one wants to restrict the function ρ to the
non-negative real numbers R≥0 = [0, ∞). In this case, we can still work with the
definition above by simply setting Vk(X, ρ)r = 0, ∀r < 0.

Proposition 3.28 A linear combination ∑x∈X axx ∈ Vk(X) lies in Vk(X, ρ)r if and
only if ax = 0 ∀x ∈ X with ρ(x) > 0.

Proof Let W := ∑x∈X axx be some linear combination in Vk(X) and r ∈ R

fixed. First assume there exists an x ∈ X with ρ(x) > r and ax ̸= 0. Then,
since x does not lie in the span of the set {x ∈ X | ρ(x) ≤ r}, the linear
combination W cannot lie in Vk(X, ρ)r. Conversely, if for every x ∈ X with
ρ(x) > r it holds that ax = 0, we can rewrite W as:

∑
x∈X

axx = ∑
x∈X

ρ(x)≤r

axx.

Since in the last sum we are only summing over elements which lie in the
span of {x ∈ X | ρ(x) ≤ r}, we conclude that W ⊆ Vk(X, ρ)r. □

Example 3.29 We construct a filtration that does arise from a finite metric space.
For this, consider the simplical complex X = (V(X), Σ(X)) with the set of vertices
V(X) = {a, b, c, d} and the set of simplices

Σ(X) = {a, b, c, d, ab, ac, ad, bc, ad, abc}.

We filter the complex X as given in Figure 3.10. At time T0 = 0, we only have
the 0-simplices a and b. At time T1, we add the 0-simplices c and d, as well as the
1-simplices ab and bc, and so on. We want to compute the persistent vector spaces
consisting of families of the i-chains Ci(X):
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Figure 3.10: Filtration of the complex X from Example 3.29 at times T0, T1, . . . , T4.

C0(X)r =


{0}, if r < T0

< a, b >, if T0 ≤ r < T1,
< a, b, c, d >, if T1 ≤ r,

C1(X)r =


{0}, if r < T1,
< ab, bc >, if T1 ≤ r < T2,
< ab, bc, ad, cd >, if T2 ≤ r < T3,
< ab, bc, ad, cd, ac >, if T3 ≤ r,

C2(X)r =

{
{0}, if r < T4,
< abc >, if T4 ≤ r.

Definition 3.30 A persistent vector space is finitely presented if it is isomorphic
to a persistent vector space of the form {Wr}r∈R/im( f ) for some linear transformation
f : {Vr}r∈R → {Wr}r∈R between finitely generated free persistent vector spaces
{Vr}r∈R and {Wr}r∈R.

The choice of a basis of two vector spaces V, W allows us to represent
linear transformations f : V → W by matrices. We wish to have a similar
representation of linear transformations between persistent vector spaces:

Definition 3.31 Let (X, Y) be a pair of finite sets and k be a field. A (X, Y)-matrix
is an array [axy] of elements axy ∈ k, indexed by the elements x ∈ X, y ∈ Y.

Definition 3.32 Consider two R-filtered finite sets (X, ρ), (Y, σ) and the field k.
We say that a (X, Y)-matrix A = [axy] with entries axy ∈ k is (ρ, σ)-adapted if
axy = 0 whenever ρ(x) > σ(y).

Example 3.33 Consider the filtered simplicial complex from Example 3.29. We set
ρ : Σ(X) → R such that ρ(σ) = i if σ appears in the filtration at time Ti. We
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compute the boundary matrices of X:

∂1 =

BC AB AD CD AC


C 1 0 0 1 1
D 0 0 1 1 0
B 1 1 0 0 0
A 0 1 1 0 1

, ∂2 =

ABC


BC 1
AB 1
AD 0
CD 0
AC 1

.

Note that if the simplex τ is in the boundary simplex σ, τ must appear no later
than σ in the filtration, i.e. ρ(τ) ≤ ρ(σ). Hence, ∂1 is (ρ0, ρ1)-adapted and ∂2 is
(ρ1, ρ2)-adapted, where ρi denotes the restriction of ρ to the set of i-simplices of X.

We consider an (X, Y)-matrix for X, Y finite and denote the row correspond-
ing to x ∈ X by r(x) and the column corresponding to y ∈ Y by c(y).
For the finitely generated free persistent vector spaces {Vk(X, ρ)r}r∈R and
{Vk(Y, σ)r}r∈R, where ρ : X → R and σ : Y → R, we know by Remark 3.26
that we can find an r ∈ R sufficiently large such that Vk(X, ρ)r = Vk(X) and
Vk(Y, σ)r = Vk(Y). Thus, for any linear transformation f from {Vk(Y, σ)r}r∈R

to {Vk(X, ρ)r}r∈R, we can obtain a linear transformation f∞ : Vk(Y) → Vk(X)
between finite-dimensional vector spaces over k. By fixing the bases {x}x∈X
of Vk(X) and {y}y∈Y of Vk(Y), we can represent f as an (X, Y)-matrix
A( f ) = [axy] with entries in k.

Proposition 3.34 The (X, Y)-matrix A( f ) is (ρ, σ)-adapted and any (X, Y)-matrix
A which is (ρ, σ)-adapted uniquely determines a linear transformation of persistent
vector spaces

fA : {Vk(Y, σ)r}r∈R → {Vk(X, ρ)r}r∈R.

In particular the correspondences f → A( f ) and A → fA are inverse to each other.

Proof Note that basis vector y ∈ Y lies in Vk(Y, σ)σ(y). On the other hand we
have that

f (y) = ∑
x∈X

axyx.

Using proposition 3.28 we can see that ∑x∈X axyx lies in Vk(X, ρ)σ(y) if and
only if all coefficients axy = 0 if ρ(x) > σ(y), i.e. if the matrix A = [axy] is
(ρ, σ)-adapted. □

Proposition 3.35 Let X, Y be finite and the pairs (X, ρ), (Y, σ) be R-filtered sets.
Let A = [axy] be a (ρ, σ)-adapted (X, Y)-matrix. Then A determines a persistent
vector space via the correspondence

A θ−→ {(Vk(X,ρ)//im( fA))r}r∈R,

where fA is the uniquely determined transformation of vector spaces from Proposition
3.34. Moreover, this space is finitely presented.
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Proof This follows immediately from the correspondence between linear
transformations and matrices as seen in Proposition 3.34. □

Remark 3.36 We often just write θ(A) = {θ(A)r}r∈R for the quotient space
{(Vk(X,ρ)//im( fA))r}r∈R.

The next statement will give us a criterion for when θ(A) will be equal
to θ(A′), where A, A′ are two matrices. This turns out to be very useful,
especially when proving the main statement in the next section.

Proposition 3.37 Let (X, ρ) and (Y, σ) be R-filtered sets, and A be a (ρ, σ)-
adapted (X, Y)-matrix, with entries in a field k. Let B be a (ρ, ρ)-adapted (X, X)-
matrix, and C be a (σ, σ)-adapted (Y, Y)-matrix, both matrices with entries in k.
Then the matrix BAC is (ρ, σ)-adapted, and the persistent vector space θ(A) is
isomorphic to θ(BAC).

Proof First we want to show that the matrix AC is (ρ, σ)-adapted. Write
A = [axy], where x ∈ X, y ∈ Y, and C = [cyỹ], where y, ỹ ∈ Y. Note that the
rows of AC = [dxy] correspond to the elements of X, and the columns to the
elements of Y. Furthermore, we have

dxy = ∑̃
y∈Y

axỹcỹy.

Since A is (ρ, σ)-adapted, we have that axỹ = 0, whenever ρ(x) > σ(ỹ).
Similarly, cỹy = 0 whenever σ(ỹ) > σ(y). In particular, we can write

dxy = ∑̃
y∈Y

ρ(x)≤σ(ỹ)≤σ(y)

axỹcỹy.

From this, one can immediately see that dxy = 0 whenever ρ(x) > σ(y), thus
the matrix AC is (ρ, σ)-adapted. Analogously one can show that the matrix
BAC is (ρ, σ)-adapted.

We are left to show that θ(A) ∼= θ(BAC). First note, since ( fBAC)r is induced
by matrices, we have that ( fBAC)r = ( fB)r · ( fA)r · ( fC)r, for all r ∈ R, denoted
as fBAC = fB · fA · fc. Furthermore, the maps ( fB)r and ( fC)r define isomor-
phisms on Vk(X, ρ)r and Vk(Y, σ)r respectively. Now we fix some r ∈ R and
consider θ(A)r = (Vk(X,σ)/im( fA))r and θ(BAC)r = (Vk(X,σ)/im( fBAC))r. Consider
the map

θ̃r : (Vk(X,ρ)/im( fA))r → (Vk(X,ρ)/im( fBAC))r,

which maps the equivalence class [x] ∈ (Vk(X,ρ)/im( fA))r to the equivalence
class [( fB)r(x)] ∈ (Vk(X,ρ)/im( fBAC))r. Consider now some x ∈ Vk(X, ρ)r and
some y ∈ im(( fA)r), i.e. ∃z ∈ Vk(Y, σ)r such that ( fA)r(z) = y. Using the
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linearity of ( fB)r we get

( fB)r(x + y) = ( fB)r(x) + ( fB)r(y)
= ( fB)r(x) + ( fB)r · ( fA)r(z)

= ( fB)r(x) + ( fB)r · ( fA)r · ( fC)r · ( fC)
−1
r (z)

= ( fB)r(x) + ( fB)r · ( fA)r · ( fC)r(w),

where we used in the last step that ( fC)r is an isomorphism, therefore we
can find some w ∈ Vk(Y, σ)r such that ( fC)r(w) = z. In particular, we can see
from this equation that the equivalence classes will be preserved under θ̃, i.e.

θ̃r([x]) = [x].

Thus, since the ( fB)r are isomorphisms, we have that θ̃ = {θ̃r}r∈R is a family
of well defined isomorphisms. In particular, we have that

θ(A) ∼= θ(BAC). □

In order to perform matrix operations on adapted matrices, we need to clarify
which operations are allowed, i.e. if a matrix is (ρ, σ)-adapted we only want
to allow operations that conserve the (ρ, σ)-adapted property.

Definition 3.38 Let (X, ρ), (Y, σ) be two R-filtered sets and A be a (ρ, σ)-adapted
matrix. We define an adapted row operation to be an operation that adds multiples
of r(x) to r(x′) whenever ρ(x) ≥ ρ(x′), where x, x′ ∈ X. Similarly, we define an
adapted column operation to be an operation which adds multiples of c(y) to
c(y′), whenever σ(y) ≤ σ(y′) where y, y′ ∈ Y.

Remark 3.39 The matrix B from Proposition 3.37 corresponds to adapted row
operations applied to the matrix A. Similarly, the matrix C corresponds to adapted
column operations.

3.3 Structure Theorem for Persistent Vector Spaces

In this section, we will present a result that enables us to classify all finitely
presented persistent vector spaces up to isomorphism. We will later make
use of it while introducing the notion of barcodes and persistent diagrams.

Definition 3.40 Let k be a field. Choose a ∈ R and b ∈ R ∪ {+∞} such that
a < b. Let P(a, b) = {P(a, b)r}r∈R be the persistent vector space defined by

P(a, b)r =

{
k, if r ∈ [a, b),
{0}, if r /∈ [a, b),
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where the linear transformations LP(a,b)(r, r′), with r < r′, are given by

LP(a,b)(r, r′) =

{
idk, if r, r′ ∈ [a, b),
0, otherwise.

We call P(a, b) the interval persistence vector space of the pair (a, b).

Note that P(a, b) is finitely presented. The next example underlines the basic
concept of the upcoming proof.

Example 3.41 Let a, b be as in Definition 3.40. Assume b is finite, i.e. b ̸= ∞.
Let (X, ρ) and (Y, σ) be R-filtered sets, where the sets X and Y consist only of
one element, i.e. X = {x}, Y = {y}, with ρ(x) = a, σ(y) = b. Consider the
(1 × 1)-matrix

A =
(y,b)

( )(x,a) 1

One can think of A as the matrix, that maps the element y ∈ Y, which appears at
σ(y) = b, to the value x ∈ X, which appears at ρ(x) = a. Note that this matrix is a
(ρ, σ)-adapted (X, Y)-matrix, since a ≤ b. Next we want to determine the persistent
vector spaces {Vk(X)r}r∈R.

Vk(X)r =

{
{0} if r < a,
k if r ≥ a.

Moreover, we have for the image of the corresponding linear map fA that

im( fA)r =

{
0, if r < b,
k, if r ≥ b.

In conclusion, we get that

θ((1))r = θ(A)r = (Vk(X)/im( fa))r =

{
k, if r ∈ [a, b),
{0}, if r /∈ [a, b),

Hence, θ((1)) is isomorphic to P(a, b). Now assume that b = ∞. Then we have that
the image of the map fA is given by

im( fA)r = 0, ∀r ∈ R.

Hence we have that θ(A) is isomorphic to V(X, ρ). But also P(a, b) is in that case
isomorphic to V(X, ρ). In total we get that

∀a ∈ R, b ∈ R ∪ { +∞} : θ(A) ∼= P(a, b).
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We are now ready to state the main theorem of this section.

Lemma 3.42 (Structure Theorem) Every finitely presented vector space {Vr}r∈R

over a field k is isomorphic to a finite sum of the form

n⊕
i=1

P(ai, bi) = P(a1, b1)⊕ P(a2, b2)⊕ · · · ⊕ P(an, bn), (3.1)

where ai ∈ R, bi ∈ R ∪ {+∞} and ai < bi for all i = 1, 2, . . . , n.

Proof By the correspondence between finitely presented persistent vector
spaces and adapted matrices (Proposition 3.34) we will use the latter in order
to prove our statement. For this, first consider a (ρ, σ)-adapted (X, Y)-matrix
A such that every row and column has at most one non-zero entry, which is
equal to 1. Hence, w.l.o.g we can assume A is of the form

A =

(
In 0
0 0

)
,

where In denotes the identity matrix. Otherwise, we could switch rows and
columns of A, until it is in the desired form. Let (x1, y1), (x2, y2), . . . , (xn, yn)
be the pairs (xi, yi) such that axiyi = 1. We then obtain the following decom-
position

Vk(X,ρ)/im( fA) =
⊕
x∈X

Vk(x,ρ)/im( fA)

= Vk(x1,ρ)/im( fA)⊕ · · · ⊕ Vk(xn,ρ)/im( fA)⊕
⊕

x∈X\{x1,...,xn}

Vk(x,ρ)/im( fA)

= P(ρ(x1), σ(y1))⊕ · · · ⊕ P(ρ(xn), σ(yn))⊕
⊕

x∈X\{x1,...,xn}
P(ρ(x),+∞).

where the last equality follows from the fact that Vk(xi ,ρ)/im( fA) only de-
pends on the image of the values yi and from the computation from Ex-
ample 3.41. Now we consider some general finitely presented vector space
{Vr}r∈R = Vk(X,ρ)/im( fA), for some linear transformation f and A the corre-
sponding matrix from Proposition 3.34. If we are able to find a (ρ, ρ)-adapted
(X, X)-matrix B and a (σ, σ)-adapted (Y, Y)-matrix C such that BAC has the
property that each column and row have at most one non-zero entry, which
is one, we are done, since by Proposition 3.37, we have that θ(A) ∼= θ(BAC),
i.e. θ(A) would be isomorphic to the form described in the statement. To
find such matrices B and C, we will use adapted row and column operations.
Note that the (ρ, σ)-adapted operations consist of

• all possible multiplications of a row or a column by a non-zero element
of k,
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• all possible additions of a multiple of r(x) to r(x′) if ρ(x) ≥ ρ(x′),

• all possible additions of a multiple of c(y) to c(y′) if σ(y) ≤ σ(y′).

Now we look for a y ∈ Y such that c(y) has at least one non-zero entry and
the value σ(y) is minimized. Such a y can be found since Y is finite. Next we
find some x ∈ X such that axy ̸= 0 and ρ(x) is maximized. By the way we
have chosen our x we are able to add multiples of the row r(x) to the other
rows such that the entries of the column c(y) will be equal to zero, except
for the entry axy. Similarly, the way we have chosen y enables us to add
multiples of the column c(y) to the other columns until the row c(x) has only
zero-entries, except the entry axy. Last but not least, we multiply the row r(x)
by the value 1

axy
∈ k. The result is a matrix in which both r(x) and r(y) have

exactly one non-zero entry axy = 1. By deleting r(x) and c(y) we end up with
a (X \ {x}, Y \ {y})-matrix which is (ρ′, σ′)-adapted, where ρ′ and σ′ are the
restrictions of ρ and σ to the sets X \ {x} and Y \ {y} respectively. Now, we
repeat the whole process for the new (X \ {x}, Y \ {y})-matrix until there
is no non-zero entry left. Each of the required row and column operations
can been interpreted as a row or column operations on the original matrix
A, since the r(x) and c(y) will remain unaffected. The composition of all
used row operations will be represented by the (ρ, ρ)-adapted (X, X)-matrix
B, and all used column operations by the (σ, σ)-adapted (Y, Y)-matrix C. We
will end up with a matrix BAC, such that each row and column have exactly
one non-zero entry equal to 1, and thus the statement follows. □

In summary, we are able to identify finitely presented vector spaces as sums
of interval persistence vector spaces. The following statement shows, that the
persistence intervals in the sum are even unique to some extent.

Proposition 3.43 Let {Vr}r∈R be a finitely presented persistence vector space over
a field k. Suppose we have the two compositions

{Vr}r∈R
∼=

⊕
i∈I

P(ai, bi) and {Vr}r∈R
∼=

⊕
j∈J

P(cj, dj),

where I and J are finite sets and ai, cj ∈ R, bi, dj ∈ R ∪ {+∞} with ai < bi and
cj < dj for all i ∈ I, j ∈ J. Then |I| = |J|, i.e. I and J have the same cardinality,
and for all i ∈ I there exists an unique j ∈ J such that (ai, bi) = (cj, dj).

Proof First let amin and cmin be the smallest value of ai and cj respectively.
Note that we can express those values as amin = min {r ∈ R | Vr ̸= 0}. In
particular amin = cmin. Next we define bmin = min {bi | i ∈ I and ai = amin},
as well as dmin = min {dj | j ∈ J and cj = cmin}. Note that we characterize
them as bmin = min {r′ ∈ R | ker(L(r, r′)) ̸= {0}} = dmin, where L(r, r′)
is the linear transformation as given in Definition 3.20. This means that
P(amin, bmin) = P(cmin, dmin) appears in both decompositions. Moreover,
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P(amin, bmin) is isomorphic to some sub-persistent vector space {Wr}r∈R of
{Vr}r∈R, which can be characterized by the kernel of the linear transformation

L(r, bmin) |im(L(amin,r) : im(L(amin, r) → Vbmin .

This implies that the number of summands of the form P(amin, bmin) in both
compositions is the same, i.e. for I′ = {i ∈ I | ai = amin and bi = bmin} and
J′ = {j ∈ J | cj = cmin and dj = dmin} we have that |I′| = |J′|. By forming the
quotients, we get the decompositions

{Vr}r∈R/{Wr}r∈R
∼=

⊕
i∈I\I′

P(ai, bi) and {Vr}r∈R/{Wr}r∈R
∼=

⊕
j∈J\J′

P(cj, dj).

Repeating the whole procedure on the newly obtained quotient space, since
we have finitely many summands, will give us the desired result. □

Let us come back to the original problem: Let {Xρ,r}r∈R be a filtered simplicial
complex and ρ : X → R its filtration function. Recall that the i-th homology
group of X is defined as Zi(X)/Bi(X), where Zi = ker(∂i) and Bi = im(∂i+1), in
particular Hi(X) is finitely presented.

Definition 3.44 The persistent homology group {Hi(Xρ,r)}r∈R of a filtered
simplical complex {Xρ,r}r∈R is given by the finitely presented persistent vector space

{Hi(Xρ,r)}r∈R = {Zi(Xρ,r)/Bi(Xρ,r)}r∈R.

Thanks to all our preparatory work, we are able to apply all our results
for persistent vector spaces to the special case of persistent homology. As-
sume {Hi(Xρ,r)}r∈R is the persistent homology group of a filtered complex
{Xρ,r}r∈R which is defined on a dataset. Applying the structure theorem, we
are able to identify it with a sum of interval persistent vector spaces

{Hi(Xρ,r)}r∈R
∼=

n⊕
i=1

P(ai, bi).

The interpretation of that is that each summand P(ai, bi) corresponds to an
i-dimensional hole in the filtered complex {Xρ,r}r∈R, that appears at the time
ai and disappears at bi. The larger the difference between bi and ai, the longer
the corresponding hole exists and the more likely it is that it represents a true
feature of underlying topological space, i.e. the more relevant it is considered
to be.

3.4 Algorithm for Computing Persistent Homology

In this section, we will look at an algorithm that allows us to compute the
homology groups of persistent vector spaces where the vector spaces are
given as i-chains of a given simplicial complex.
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Recall that by the fundamental property of homology, the boundary matrices
satisfy ∂i · ∂i+1 = 0. In order to establish our algorithm, we first want to study
general pairs of matrices satisfying this property.

Definition 3.45 Let (X, ρ), (Y, σ), (Z, τ) be R-filtered sets. Furthermore, let A be
a (ρ, σ)-adapted (X, Y)-matrix and B be a (σ, τ)-adapted (Y, Z) matrix, both with
entries in the field k, such that

A · B = 0.

Then we define the admissible pair operations on the pair (A, B) to be the
following set of operations:

• Arbitrary adapted row operations on A,

• Arbitrary adapted column operations on B,

• Perform an adapted column operation and an adapted row operation on B
simultaneously as follows:

- If the adapted column operation on A is a multiplication of the i-th
column by non-zero constant α ∈ k, then the corresponding adapted row
operation on B is the multiplication of the i-th row by the constant α−1.

- If the adapted column operation on A is the transposition of the i-th and
the j-th column, the the corresponding adapted row operation on B is the
transposition of the i-th and the j-th row.

- Let α ∈ k. If the adapted column operation on A is the addition of α
times the i-th column to the j-th column, the corresponding adapted row
operation on B is the subtraction of α times the j-th row from the i-th
row.

We observe the following useful property:

Proposition 3.46 Let (X, ρ), (Y, σ), (Z, τ) be R-filtered sets and let A be a (ρ, σ)-
adapted (X, Y)-matrix and B be a (σ, τ)-adapted (Y, Z) matrix, both with entries
in the field k, such that A · B = 0. Then we can perform admissible pair operations
on the pair (A, B) to obtain a pair (A′, B′) such that

(A′, B′) =

 In 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 Im

 (3.2)

where In and Im denote identity matrices. Moreover, the pair (A′, B′) is uniquely
determined by the pair (A, B).

Proof As in the proof of the structure theorem for persistent vector spaces
(Lemma 3.42), we use adapted row and column operations to obtain

(A, B)⇝

 In 0 0
0 0 0
0 0 0

 ,

 B′
11 B′

12 B′
13

B′
21 B′

22 B′
23

B′
31 B′

32 B′
33

 =: (A′, B̃)
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Where the matrix B̃ is the result of performing the corresponding operations
on the matrix B. By the condition A · B = 0, the same must hold for the pair
we get by performing admissible pair operations. In particular, this forces
B′

11 = B′
12 = B′

13 = 0. If B′
21 has s rows and B′

31 has r rows, then we perform
only adapted row operations involving the last s + r rows, since the upper
rows are already equal to 0. Each of these operations will have no effect on
the matrix A′, i.e. the corresponding operations will only affect the r + s
rightmost columns, which all have only 0 entries. Thus, we can use adapted
column and row operations on the matrix B̃, without affecting A′, such that
we achieve

(A′, B̃)⇝

 In 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 Im

 =: (A′, B′)

The uniqueness of this representation follows from the fact that n = rank(A)
and m = rank(B). □

Remark 3.47 Since the row and column operations on a matrix correspond to
isomorphisms, we have that ker(A) ∼= ker(A′) and im(A) ∼= im(A′).

Remark 3.48 To make the computation shorter and clearer, we order the rows of the
matrix A in the pair (A, B) by decreasing value of the function ρ and its columns
by increasing value of σ.

We will now look at an example to see how we can make use of this algorithm
in order to get the homology groups.

Example 3.49 (Persistent Homology Algorithm) We want to determine bound-
ary matrices of a filtered simplicial complex, which will be denoted by (∂i)∞. In order
to not lose any information, we have to attach an extra label to each simplex, such
that each label tells us when the respective simplex appears in the filtration: Consider
the filtered complex from Example 3.29, as seen in Figure 3.10. Each simplex is
labeled with i, where Ti marks the point where the simplex appears in the filtration.
The boundary matrices representing ∂1 and ∂2, as computed in Example 3.33, are

(∂1)∞ =

(BC,1) (AB, 1) (AD,2) (CD,2) (AC,3)


(C,1) 1 0 0 1 1
(D,1) 0 0 1 1 0
(B,0) 1 1 0 0 0
(A,0) 0 1 1 0 1

, (∂2)∞ =

(ABC, 4)


(BC,1) 1
(AB,1) 1
(AD,2) 0
(CD,2) 0
(AC,3) 1

.

Our goal is to bring the pair of matrices ((∂1)∞, (∂2)∞) into the form in Equation
(3.2), using admissible pair operations. Note that in the following we will only

39



3. Persistent Homology

keep the labels of the rows (i.e. we only track the values of the filtration function)
of the right matrix, since the corresponding elements will not be relevant for our
computation, and we will not keep track of the elements corresponding to the rows of
the right matrix, since they will be the same as the elements corresponding columns
of the left matrix, also with the same label. We consider

((∂1)∞, (∂2)∞) =



(BC,1) (AB, 1) (AD,2) (CD,2) (AC,3)


1 1 0 0 1 1
1 0 0 1 1 0
0 1 1 0 0 0
0 0 1 1 0 1

,

(ABC, 4)


1
1
0
0
1


,

We denote by r∂1(i) and c∂1(j) the current i-th row and j-th column of the left matrix.
Similarly, r∂2(j) and c∂2(k) denote the current j-th row and k-th column of the right
matrix. We proceed as follows: First we have to make sure to have the entry 1 at
the position (1, 1) of the left matrix. If not, we perform row and column switching
operations to get the desired entry there. Since we have already a 1 at the desired
position, we do not have to switch any columns or rows. We proceed by eliminating
all non-zero entries in the column c∂1(1) by performing adapted row operations (note
that here the matrix on the right remains unchanged while performing adapted row
operations).

r∂1(3) → r∂1(3) + r∂1(1)

⇒



(BC,1) (AB, 1) (AD,2) (CD,2) (AC,3)


1 1 0 0 1 1
1 0 0 1 1 0
0 0 1 0 1 1
0 0 1 1 0 1

,

(ABC, 4)


1
1
0
0
1

.


We continue like this until the left matrix is a upper triangular matrix with 1’s in
the upper left part of the diagonal entries

r∂1(2) ↔ r∂1(3)

⇒



(BC,1) (AB, 1) (AD,2) (CD,2) (AC,3)


1 1 0 0 1 1
0 0 1 0 1 1
1 0 0 1 1 0
0 0 1 1 0 1

,

(ABC, 4)


1
1
0
0
1
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r∂1(4) → r∂1(4) + r∂1(2)

⇒



(BC,1) (AB, 1) (AD,2) (CD,2) (AC,3)


1 1 0 0 1 1
0 0 1 0 1 1
1 0 0 1 1 0
0 0 0 1 1 0

,

(ABC, 4)


1
1
0
0
1


r∂1(4) → r∂1(4) + r∂1(3)

⇒



(BC,1) (AB, 1) (AD,2) (CD,2) (AC,3)


1 1 0 0 1 1
0 0 1 0 1 1
1 0 0 1 1 0
0 0 0 0 0 0

,

(ABC, 4)


1
1
0
0
1


Now, we want to get rid of all the 1’s which do not lie on the diagonal of the matrix.
For this, we need to perform column operations on the right matrix, and therefore the
corresponding row operations on the right matrix.

c∂1(4) → c∂1(4) + c∂1(1)
c∂1(5) → c∂1(5) + c∂1(1)
r∂2(1) → r∂2(1)− r∂2(4)− r∂2(5)

⇒



(BC,1) (AB, 1) (AD,2) (CD+BC,2) (AC+BC,3)


1 1 0 0 0 0
0 0 1 0 1 1
1 0 0 1 1 0
0 0 0 0 0 0

,

(ABC, 4)


0
1
0
0
1


c∂1(4) → c∂1(4) + c∂1(2)
c∂1(5) → c∂1(5) + c∂1(2)
r∂2(2) → r∂2(2)− r∂2(4)− r∂2(5)

⇒



(BC,1) (AB, 1) (AD,2) (CD+BC+AB,2) (AC+BC+AB,3)


1 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 1 0
0 0 0 0 0 0

,

(ABC, 4)


0
0
0
0
1
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3. Persistent Homology

c∂1(4) → c∂1(4) + c∂1(3)
r∂2(3) → r∂2(3)− r∂2(4)

⇒



(BC,1) (AB, 1) (AD,2) (CD+BC+AB+AD,2) (AC+BC+AB,3)


1 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 0 0

,

(ABC, 4)


0
0
0
0
1


So, we have arrived at the desired form. Now recall that ker(∂1)/im(∂2) determines
the 1st homology group. Similarly, we are able to read off the decomposition of the
persistent homology group by looking at the restriction of (∂2)∞ to ker((∂1)∞):

(ABC, 4)( )
(CD+BC+AB+AD,2) 0

(AC+BC+AB,3) 1

We can read from this that the 1-cycle CD + BC + AB + AD appears at time 2 and
never becomes a boundary of a 2-simplex, i.e. it never disappears. The corresponding
interval in the decomposition is therefore given by [2, ∞). On the other hand, the
1-cycle AC + BC + AB appears at time 3 and then, at time 4, it becomes a boundary
of the 2-simplex ABC, thus the corresponding interval is given by [3, 4). In total,
the persistent homology groups {Hi(Xρ,r)}r∈R can be represented by

{Hi(Xρ,r)}r∈R
∼= [2, ∞)⊕ [3, 4).

The cycles corresponding to the interval can be seen in Figure 3.11. The red cycle,
which appears at time T2, gets a bit smaller at T3 and never disappears, corresponds
to the interval [2, ∞), whereas the blue cycle that appears at T3 and gets filled in at
T4 corresponds to the interval [3, 4).

a

b

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

T1 T2 T3 T4T0

Figure 3.11: Filtered complex studied in Example 3.49.
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3.5 Barcodes and Persistent Diagrams

We have seen in the previous section that there is a one-to-one correspondence
between the isomorphism classes of finitely presented persistent vector spaces
and finite subsets of the form (a, b), where a ∈ R, b ∈ R ∪+∞ and a < b.
This allows us to give some visual representations for a finitely presented
persistent vector space. The first one does this via families of intervals in R:

Definition 3.50 Let {Vr}r∈R =
⊕n

i=1 P(ai, bi) be a finitely presented persistent
vector space. Then the barcode of {Vr}r∈R is given as the (disjoint) family of
intervals [ai, bi) ⊆ R, i = 1, . . . , n.

Example 3.51 Assume we have a persistent vector space {Vr}r∈R which can be
identified with the sum

P(0, 1)⊕ P(0, 2)⊕ P(1, 4)⊕ P(3, 6)⊕ P(5, 7). (3.3)

Then the barcode of {Vr}r∈R is given by the intervals [0, 1), [0, 2), [1, 4), [3, 6), [5, 7),
as given in Figure 3.12a.

The next representation will represent {Vr}r∈R as points in the plane R2.

Definition 3.52 Let {Vr}r∈R =
⊕n

i=1 P(ai, bi) be a finitely presented persistent
vector space. Then the persistent diagram of {Vr}r∈R is given by the collection of
points (ai, bi) ∈ R2, i = 1, . . . , n.

Example 3.53 Let {Vr}r∈R be given as in Example 3.51, i.e. it can be identified
with the sum in Equation 3.3. Then the persistent diagram of {Vr}r∈R consists of
the points (0, 1), (0, 2), (1, 4), (3, 6), (5, 7), as seen in Figure 3.12b.

R

0 1 2 3 4 5 6 7 8

(a) Barcode

R

0 1 2 3 4 5 6 7 8

R

1

2

3

4

5

6

7

8

(b) Persistent Diagram

Figure 3.12: Barcode and persistent diagram of the persistent vector space (3.3).

Remark 3.54 In the context of persistent homology, long intervals in the barcode
correspond to longer existing holes. In the persistent diagram, the further a point
lies away from the line {(x, x) | x ∈ R}, the longer the corresponding hole exists.
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3.6 The Bottleneck Distance and the Matching Dis-
tance

We are able to associate to a dataset a barcode (or a persistence diagram).
One question that naturally comes up is how these barcodes (or persistence
diagrams) will change when we have “small” changes in our data. To answer
this, we first have to clarify how to “measure” differences between barcodes
(or persistence diagrams), by defining a metric on them.

Definition 3.55 Let I = [a1, b1] ⊆ R and J = [a2, b2] ⊆ R be two intervals. Then
we define the distance between the intervals I and J to be

∆(I, J) := max {| a2 − a1 |, | b2 − b1 |}.

Furthermore, we define the Lambda-Value of an interval I to be

λ(I) :=
b1 − a1

2
.

Remark 3.56 ∆(I, J) is the l∞-distance between the intervals, while λ(I) is the
l∞-distance between I and the closest point of the form (z, z) ∈ R2 to I.

With these two notions, we are ready to give a notion of distance between
barcodes, i.e. families of intervals.

Definition 3.57 Let {Iα}α∈A and {Jβ}β∈B be families of interval in R, where A, B
are finite sets. Let Φ : A′ → B′ be a bijection from a subset A′ ⊆ A to a subset
B′ ⊆ B. We define the penalty of the bijection Φ, denoted by P(Φ), to be

P(Φ) := max {max
α∈A′

∆(Iα, JΦ(α)), max
α∈A\A′

λ(Iα), max
β∈B\B′

λ(Jβ)},

where we set

max
α∈∅

∆(Iα, JΦ(α)) = max
α∈∅

λ(Iα) = max
β∈∅

λ(Jβ) = 0.

Then we define the bottleneck distance between {Iα}α∈A and {Jβ}β∈B, denoted
by d∞({Iα}α∈A, {Jβ}β∈B), to be given by

d∞({Iα}α∈A, {Jβ}β∈B) := min
Φ

P(Φ),

where the minimum runs over all possible bijections Φ between subsets of A and B.

Example 3.58 Consinder the two families I = {[0, 1], [2, 5]} and J = {[4, 6]}.
Our only options for bijections between subsets of them are given by

Φ1 : {[0, 1]} → {[4, 6]}, [0, 1] 7→ [4, 6],
Φ2 : {[2, 5]} → {[4, 6]}, [2, 5] 7→ [4, 6].
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3.6. The Bottleneck Distance and the Matching Distance

For the penalty of Φ1 we get

P(Φ1) = max{∆([0, 1], [4, 6]), λ([2, 5])}

= max{max{| 4 − 0 |, | 6 − 1 |},
5 − 2

2
}

= max{5,
3
2
}

= 5.

Similarly,

P(Φ2) = max{∆([2, 5], [4, 6]), λ([0, 1])}

= max{max{| 4 − 2 |, | 6 − 5 |},
1 − 0

2
}

= max{2,
1
2
}

= 2.

Hence, the bottleneck distance is

d∞(I, J) = min{P(Φ1), P(Φ2)} = 2.

One can think of the bottleneck distance as the penalty of “optimal” subsets
A′ ∈ A, B′ ∈ B and bijections between these, such that the values ∆(α, Φ(α)),
where α ∈ A′, as well as the Lambda-Values for the elements that not
contained in the subsets A′, B′ are as small as possible. In the context of
persistence diagrams, a “good” bijection Φ would match points such that
points are matched together if they are close to each other, and all the
unmatched points (i.e. the points in A \ A′, B \ B′) are as close as possible to
the set {(x, x) | x ∈ R}.

Moreover, d∞ is a special case of the p = ∞ version of the family of the so
called Wasserstein metric:,

Definition 3.59 The Wasserstein metric dp is defined by

Pp(Φ) := ∑
α∈A′

∆(Iα, JΦ(α))
p + ∑

α∈A\A′
λ(Iα)

d + ∑
β∈B\B′

λ(Jβ)
p,

where we set dp({Iα}α∈A, {Jβ}β∈B) := (minΦ Pp(Φ))
1
p .

Another metric, of which we will make use of in chapter 4, is the so called
matching distance.

Definition 3.60 Let B1 = {Ia}a∈A and B2 = {Jb}b∈B, where A, B are finite
index sets, be two barcodes. For two intervals I, J ⊆ R we define the symmetric
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difference δ(I, J) = µ((I ∪ J) \ (I ∩ J)), where µ is the Lebesgue-measure on
R ∪ {∞}. A matching M in B1, B2 is a set of intervals

M(B1, B2) ⊆ B1 × B2 = {(Ia, Jb) | a ∈ A, b ∈ B}

such that if (Ia, Jb) ∈ M(B1, B2) then (Ia, Jb′) /∈ M(B1, B2) ∀b′ ∈ B \ {b} and
(Ia′ , Jb) /∈ M(B1, B2) ∀a′ ∈ A \ {a}, i.e. each interval occurs in at most one pair
(Ia, Jb). Define NM to be the set of unmatched intervals, i.e.

NM := {Ia | a ∈ A and ∄b ∈ B : (Ia, Jb) ∈ M(B1, B2)}
∪ {Jb | b ∈ B and ∄a ∈ A : (Ia, Jb) ∈ M(B1, B2)}.

Then the matching distance is defined to be

D(B1, B2) := min
M

( ∑
(I,J)∈M(B1,B2)

δ(I, J) + ∑
L∈NM

µ(L)),

where the minimum runs over all possible matchings on B1, B2.

Example 3.61 Let us look again at the families I = {[0, 1], [2, 5]} and J = {[4, 6]}.
The only possible matchings between I and J are

M1(I, J) = {([0, 1], [4, 6])}, M2(I, J) = {([2, 5], [4, 6])}.

The corresponding sets of unmatched intervals are

N1 = {[2, 5]}, N2 = {[0, 1]}.

We compute

D1(I, J) = δ([0, 1], [4, 6]) + µ([2, 5])
= µ(([0, 1] ∪ [4, 6]) \ ([0, 1] ∩ [4, 6])) + µ([2, 5])
= µ(([0, 1] ∪ [4, 6])) + µ([2, 5])
= (1 + 2) + 3
= 6,

D2(I, J) = δ([2, 5], [4, 6]) + µ([0, 1])
= µ(([2, 5] ∪ [4, 6]) \ ([2, 5] ∩ [4, 6])) + µ([0, 1])
= µ([2, 6] \ [4, 5]) + µ([0, 1])
= (4 − 1) + 1
= 4.

Hence the matching distance is given by

D(I, J) = min{D1(I, J), D2(I, J)} = D2(I, J) = 4.

Remark 3.62 A matching can be viewed as a bijection between subsets B′
1 ⊆ B1

and B′
2 ⊆ B2, where each I ∈ B′

1 is assigned to a J ∈ B′
2.
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Chapter 4

Application: Classification of Liver
Lesions

After all the prior work, we now look at a concrete application of persistent
homology. In this chapter, we show how persistent homology can be used
in order to classify images of liver lesions and possibly detect cancerous
lesions. The approach and results appear in Classification of hepatic lesions
using matching metric by Adcock, Rubin and Carlsson ([1]).

First, we briefly introduce liver lesions and present types of lesions our
dataset contains. For this introduction we refer the reader to [4],[2] [8], [7],
[13] and [14]. After that, we describe the methods we use to analyze and
classify the dataset with the help of persistent homology. For the computation,
we need a machine learning tool called support vector machine ([12] and [11]).

4.1 Liver Lesions

Hepatic lesions, or liver lesions, are abnormal growths of liver cells. Most of
them can be categorized into benign lesions, which typically are no reason for
concern, or into liver cancer, which are less common but more serious. Hence,
classifying these liver lesions is of great interest.

The dataset we use consists of computed tomography (CT) scans of 132
hepatic (liver) lesions, together with diagnosis and semantic descriptors of
each lesion. The lesions in the set can be categorized into the following types:

• Cysts (45 lesions) are fluid-filled sacs, which might be already present
at birth, but can also develop later in life. Cysts are examples for benign
lesions, i.e. they are noncancerous.

• Metastases (45 lesions) are cancerous liver lesions which occur when
tumors from other parts of the body spread to the liver.
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4. Application: Classification of Liver Lesions

• Hemangiomas (18 lesions) consist of abnormal blood vessels. They are
the most common type of benign lesions and can be found in up to 5%
of adults.

• Hepatocellular carcinomas (HCC, 11 lesions) are the most common can-
cerous liver lesions. They develop in people with liver damage caused
by viral hepatitis or alcoholism.

• Focal codules (5 lesions) often occur in women and have a “scar-like
appearance”.

• Liver abscesses (3 lesions) are pus-filled pockets of fluid within the
liver. There are many causes of abscesses, such as infections or other
damages to the liver. Although they are noncancerous, they can be life-
threatening, where the risk for death is higher the more liver abscesses
a person has.

• Neuroendocrine neoplasms (NeN, 3 lesions) are rare types of cancerous
liver lesions.

• A single liver laceration, i.e. a liver injury caused by some trauma to the
liver.

• One single fat deposit.

An example of each can be seen in Figure 4.1.

Figure 4.1: Examples for lesion types in the dataset (Source [1]).
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In Ct image-based decision support system for categorization of liver metastases
into primary cancer sites: Initial results by Ben-Cohen et al. ([4]) it has been
proven useful to classify hepatic lesions by looking for visually identifiable
structures within the lesions, though it turned out to be quite challenging to
find quantitative measures of the structure. To illustrate this difficulty, let us
consider Figure 4.2. It shows three hemangiomas of the given dataset. The
structure of hemangiomas is typically given by a large dark center together
with dense white regions on the outer edge. But as we can see, for the
there hemangiomas in Figure 4.2 there is no rational orientation for the
hemangiomas. They have different numbers of the two regions and the
formations also differ in size and shape.

Figure 4.2: Images of hemangiomas in the dataset (Source [1]).

4.2 Classification of the Dataset via Persistent Homol-
ogy

Our goal is to classify the given lesion images with the help of persistent
homology. First, we need is a filtered complex defined on the dataset. We
want to make use of the intensity filtration we introduced in Section 3.1.2. In
order to get better classification results than by using the intensity filtration
alone we combined it with the so-called border filtration: For a given image
I one defines a filtration function b : P → R≥0, that associates to each pixel its
distance to the lesion border, such that increasing the border will produce an
“annulus” which eventually will fill out the lesion, or if one uses a decreasing
filtration, it delivers a “misshapen disc” which expands from the center of
the lesion.

Let Kg,i represent complexes from the intensity filtration, and Kb,j complexes
from the border filtration. At each filtration slice j of the border filtration,
we use the intensity filtration to determine the persistent homology of the
subcomplex Kb,j, so that we end up with the filtered complex

K(b,g),(j,gmin) = Kb,j ∩ Kg,gmin ⊆ · · · ⊆ Kb,j ∩ Kg,gmax K(b,g),(j,gmax).
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Thus, for each j we get a barcode, each of which can be considered as a
different measurement of the lesion. We proceed as follows: In order to take
into account that different image formatting or different CT scanners lead to
differences into the pixel scaling, we normalize the pixel range of each image
to the range from 0 to 1. We divide the range of the border filtration into 20
equally spaced slices. Together with the option of considering increasing and
decreasing filtrations for both the intensity and the border filtration, which
results in the barcodes β0 and β1 producing eight barcodes at each slice,
we ended up with 160 barcodes computed on each of the lesions. We stop
infinite barcodes at the value 1.1 so that two lesions were not immediately
separated by a different number of infinite bars.

In order to use machine learning tools to classify the images, we need to create
a vector of measurement for each lesion, also known as feature vector. Using
the matching distance from Section 3.6 we create a vector of measurement by
computing the matching distance between each lesion and all other lesions
(including itself). In other words, we use all 132 images in the dataset as a
comparison set to generate the feature vectors. We emphasize that we do
this even if only a smaller subset of lesions might be of interest, because that
way we can obtain information from lesion types which might be too small
for classification. Since the combination of intensity and border filtration
yields 160 barcodes for each lesion. We then sum up the 160 distances to
create a vector of size 132. This feature vector can then by used in machine
learning algorithms. As in [1], we use an implementation of the support
vector machine called LibSVM in order to test the classification results.

Figure 4.3: Example of SVM algorithm (Source [12]).

Support vector machines, or SVM for short, are machine learning algorithms
which are primarily used in classification problems. These algorithms seek
for the best line or decision boundary that separates the underlying space
into classes, so that each new data point can easily be assigned to one of
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the classes in the future. The best decision boundary is called hyperplane.
For this SVM chooses “extreme vectors” that help create these hyperplanes.
These “extreme vectors” are called support vectors. In Figure 4.3 one can
see an example where support vectors are used to define a hyperplane that
classifies two different categories. For further information on support vector
machines, we refer to [12].

4.3 Classification Results

For intuition, by using the feature vectors for classical multidimensional
scaling (CMDS) on the distance matrix, we produce 2D and 3D visualizations
of the lesions, which can be seen in Figure 4.4.

Figure 4.4: Visualization of the topological features of the lesions (Source [1]).

Since the number of representatives of a lesion class is quite unbalanced
in the dataset, for example there are more than 4 times as many images of
metastases than of hepatocellular carcinomas, we present the results for four
different subsets of the data. The first one is the full set. The second subset is
the set of HCCs, hemangiomas, cysts and metastases. This subset is denoted
by HcHeCM. The third subset, labeled by HeCM, consists of hemangiomas,
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cysts an metastases. Lastly, in the fourth subset, denoted by CM, only cysts
and metastases are considered. The results of the calculations are given in
Table 1.

Table 1: SVM Classification accuracies of 1D and 2D filtrations
Filtration Full (%) HcHeCM (%) HeCM (%) CM (%)
1D (intensity) 55.30 59.66 63.89 80.00
2D 66.67 72.27 80.56 85.56

In a next step, we make use of the Gaussian kernel e
σ||u−v||2

2 , where u and v
are feature vectors in combination with the SVM. Support Vector Machines
use kernel methods to transform the input data into a higher-dimensional
features space. In such a space, it is simpler to distinguish between the
different classes. For more details on this we refer to [11]. The classification
rates of each lesion type this method achieved are given in Table 2.

Table 2: HeCM % classification accuracy by lesion type
Filtration % of HeCM % of Heman. % of Cysts % of Metas.
1D 63.89 27.78 77.78 64.44
2D 80.56 72.22 88.89 75.56

Adcock et al. noticed while examining the misclassified lesions in [1] that
many of those lesions are significantly larger than the median lesion of the
dataset. Hence, we perform once again the analysis from before on the HeCM
subset, but this time we remove lesions with various pixel areas. The results
can been seen in Table 3.

Table 3: Classification by lesion size of HeCM
Lesion size
by area

% Accu. # of Heman. # of Cysts # of Metas.

All 80.56 18 45 45
<10,000 px 83.50 18 42 43
<5000 px 86.96 16 39 37
<2500 px 86.25 14 32 34
<1250 px 91.53 8 28 23

The interpretation of this is that larger lesions might have more potential
topological generators than smaller ones. Thus, because of unmatched bars,
the matching metric will tell us that a larger lesion is a great distance away
from a smaller one.

Nevertheless, the results demonstrate how powerful persistent homology
becomes if combined with geometry (i.e. the border filtration). It significantly
improves the accuracy of classification via barcodes. According to Adcock et
al. [1], this technique could be a powerful alternative to the classic machine
learning approaches.
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