
Topological Clustering Algorithm
ToMATo

Bachelor Thesis

Daniel Hostettler

July 19, 2024

Advisors: Dr. Sara Kališnik Hintz

Department of Mathematics, ETH Zürich

Abstract

In the age of big data, the ability to analyse large and complex data sets
has become a critical component of technological advancement and decision-
making across many segments of society. One major technique in this context
is clustering. This is a method that involves grouping a set of objects such
that those within the same group are more similar to each other than to those
in other groups. Clustering schemes like k-means clustering, spectral clustering,
mean shift clustering and hierarchical clustering are some examples of distinct
clustering approaches. Recently, topological ideas have been introduced in
clustering. One example of a topological clustering algorithm is the topological
mode analysis tool ToMATo. It is a mode seeking algorithm with a cluster
merging phase which uses topological persistence theory to guide merges
between clusters. In this thesis, we start by introducing clustering. We define
the concept of complexes and homology. As an extension of homology to point
clouds, we introduce persistent homology. We state and prove the structure
theorem used to classify persistent homology, which we visually describe in
the form of a two-dimensional scatter plot, called a persistence diagram. Last
but not least, we describe the ToMATo clustering scheme and present a couple
applications of ToMATo.

Acknowledgements

I would like to express my gratitude to Dr. Sara Kališnik Hintz for supervising
my thesis. I am especially grateful for her patience and giving detailed
feedback on my drafts. Her commitment and support whenever I faced
challenges made this whole journey enjoyable and rewarding for me.

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Clustering 7
2.1 k-means Clustering . 7
2.2 Spectral Clustering . 9
2.3 Mean Shift Clustering . 15
2.4 Hierarchical Clustering . 18

3 Simplicial Complexes and Homology 23
3.1 Simplicial Complexes . 23
3.2 Homology . 24

4 Persistent Homology 31
4.1 Construction of Different Complexes 31
4.2 Persistence Vector Spaces and Structure Theorem 35
4.3 Bottleneck Distance and Stability Theorem 44
4.4 Computing Persistent Homology . 46

5 Topological Mode Analysis Tool 55
5.1 Continuous Setting . 55
5.2 ToMATo Algorithm . 59
5.3 Experimental Result . 63

iv CONTENTS

5.3.1 Synthetic Data . 64
5.3.2 Image Segmentation . 66

Bibliography 70

Chapter 1

Introduction

Clustering is a fundamental concept in data analysis. It involves grouping data
points into clusters in a way that data points within a cluster are more similar to
each other than to those in other clusters.

Some traditional clustering methods include k-means and hierarchical clustering.
The k-means algorithm is a clustering algorithm that partitions a dataset into k
distinct clusters, where each data point belongs to the cluster with the nearest mean.
More precisely, the algorithm iteratively adjusts the cluster centres and reassigns
data points to find the minimum of the sums of squared distances,

arg min
S1,...,Sk
µ1,...,µk

k

∑
l=1

∑
i∈Sl

∥xi − µl∥
2 .

Here, xi denote the data points, Sl denote the index sets of clusters and µl denote the
corresponding cluster centres for all i ∈ Sl and l ∈ {1, . . . , k}. Because Euclidean
open balls are convex, k-means clustering naturally produces convex clusters.
However, convex clusters are not necessarily suitable for accurately modeling the
underlying structure of every dataset.

Consider Figure 1.1. We see the k-means algorithm applied to two different data
sets. On the right, we see two clear clusters around two distinct centres. k-means
performs well on these kinds of convex data sets. On the left, we see circular data
around the same centre but with two separate radii. Clearly, the clustering does
not resemble the underlying structure of the data.

2

Figure 1.1: Two k-means clusterings applied to circular data and to two distinct
normally distributed blobs, respectively.

Recent approaches integrate topological theory to data analysis. Topology is a
branch of mathematics that deals with the properties of spaces that are preserved
under continuous transformations. A fundamental concept in topology is homology:
topological spaces are classified with homology groups, which we denote by Hn.
When we use a field for the coefficients, Hn is a vector space. The dimension of
Hn is called the n-th Betti number and is denoted by βn. Intuitively, βn captures the
number of n-dimensional ’holes‘ in a space. For β0 and β1, these holes correspond
to connected components and loops, respectively.

In Figure 1.2 the space X consists of two annuli that do not touch, and space
Y consists of two annuli that are merged in the middle. For X, there are two
connected components and two loops, thus β0 = β1 = 2. For Y, there is one
connected component, but there again are two loops, thus β0 = 1 and β1 = 2. Due
to the invariance of homology under continuous transformations, we can tell these
two spaces apart.

X Y

Figure 1.2: Spaces X and Y as examples of spaces with different homology groups.

Chapter 1. Introduction 3

Computing H0(X) on a data set X, which mathematically speaking is a finite
metric space, gives the 0-th Betti number β0 = |X|. One way of producing a more
interesting result is by viewing a data set X as a sample drawn from a space X for
some density function f : X→ R. The goal is to find a way to compute homology
groups that relate to X through the lens of f . For this, we consider superlevel-sets.
Superlevel-sets are the sets of the form Fα = f−1([α,+∞)), where the parameter α

decreases from +∞ to −∞. We call the collection of superlevel-sets {Fα}α∈R+
, such

that Fα ⊆ Fα′ for all α′ ≤ α a filtration. Intuitively, this filtration captures which
subsets of Ω have higher probability to be drawn than others. More precisely,
regions with higher density appear earlier in the filtration.

Consider a function f whose graph is drawn in Figure 1.3. The superlevel-sets of
the corresponding filtration can be distinguished by the colour gradient. Let q and
p be local maxima such that q > p. Let s be a local minimum between p and q. For
α ∈

[
f−1(q), f−1(p)

)
, Fα consists of one component Cα. For α ∈

[
f−1(p), f−1(s)

)
,

Fα consists of two components C1
α and C2

α. For α ∈
[

f−1(p), f−1(−∞)
)

again
consists of one component Cα. Each component C appears when a local maximum
of f is reached and two components get merged when a local minimum is reached.

q

p

Figure 1.3: Filtration of superlevel-sets of density function f with two peaks.

By computing the homology group of filtrations, we end up with a sequence of
homology groups called the persistent homology group, where the inclusion Fα ↪→ Fα′

for α′ ≤ α induces a linear map Hn(Fα) → Hn(Fα′). The name originates from

4

the fact that they capture the range of parameters over which the topological
features persist. This behaviour is summarized in a persistence diagram. Persistence
diagrams are scatter plots, where each point p represents a generator of a connected
component C in the homology groups of the filtration. The lifespan τ of a generator
is the duration between the time of appearance px and the time of disappearance
py. At py, C gets merged into another component generated by some higher peak
of f . The lifespan τ is an indicator of the prominence of C.

Since f is usually not provided, it must be estimated from the available sample
using pairwise distances within the data. This often leads to density estimations
with many non-prominent local peaks, as can be observed in Figure 1.4. Persistence
diagrams are provably stable, that is points that are further away from the diagonal
{(x, y) | x = y}, i.e. points with longer lifespans, describe more prominent features
of the underlying data, whereas points close to the diagonal, i.e. points with lower
lifespans, are often considered noise.

(a) (b)

τ

(c)

Figure 1.4: Evolution of the connectivity of the super-level sets of a function f on
the left and of an approximation f̃ in the middle. The corresponding persistence
diagram on the right.

Consider Figure 1.4. Assume we have a density function f : X → R as can
be seen on the left. Assume we have a density estimator f̃ in Figure 1.4(b). We
compute the persistent homology group H0(F̃α) = H0(f̃−1([α,+∞))) and plot the
persistence diagram in Figure 1.4(c). The points near the diagonal {(x, y) | x = y}
represent the small peaks in the middle plot. We see that f̃ has two prominent
peaks corresponding to the two prominent peaks of f , by the stability properties
of persistence diagrams. Note, the prominences τ = px − py of the components in

Chapter 1. Introduction 5

H0(Fα) correspond to the height of the components in the left plot.

One clustering scheme that makes use of these ideas is the Topological Mode
Analysis Tool (ToMATo). It provides a flexible and robust approach to clustering
high-dimensional and non-linear datasets by taking into account the changes in
the topology of the superlevel-sets. In particular, it analyses the zeroth persistent
homology groups H0(Fα) of the filtration of superlevel-sets. It achieves this by
mimicking gradient flow via iteratively moving points towards regions of higher
density, according to the gradient flow estimate of the density function. This
process results in points converging into clusters, effectively determining the basins
of attraction. Basins of attraction are areas in which points, when moved according
to the gradient flow, end up at the same peak, thus defining distinct segments
within the data.

As we have seen above, simply analyzing persistent homology of the superlevel-
sets could lead to an excessive number of clusters. The occurrence of noise in data
can amplify the situation. Thus in the ToMATo algorithm, two basins of attraction
get connected if exactly one component is of prominence at least τ > 0, for some
predefined threshold parameter τ. The component generated by the lower peak is
said to be merged into the one generated by the higher peak. The output of the
ToMATo algorithm is the collection of merged clusters whose prominence is larger
or equal to some threshold τ. In a first stage, the algorithm is run with τ = +∞
in order to compute the persistence diagram of f̃ . Then, the algorithm is re-run
with the value of τ defined by analysing the persistence diagram, in order to get
the desired clusters.

Figure 1.5: Halfmoons data set.

Let us now look at an example with highly non-linear synthetic data. The data

6

set is shown in Figure 1.5. We consider two Halfmoons in Euclidean space R2,
each containing 20, 000 points. Each Halfmoon follows a uniform distribution with
some Gaussian noise. To ensure that the Halfmoons are not completely disjoint, we
added some uniform background noise of 30, 000 points.

Looking at the persistence diagram in Figure 1.4(c), we can clearly see a gap
in the prominences. Therefore, we chose τ = 800 as threshold parameter. The
choice of τ is immediate in this example, but as we will see later, this choice will
not always be as clear. The resulting choice leaves us with the two most prominent
clusters that indeed correspond to the two Halfmoons.

τ

(a) (b) (c)

Figure 1.6: Halfmoons data set. (a) Persistence Diagram. Two points far off the
diagonal correspond to the two prominent peaks of f (b) Clustering for τ = +∞,
i.e. result for the basic clustering algorithm without a merging phase. (c) Clustering
for τ = 800, i.e. final result after merging the clusters of non-prominent peaks.

Chapter 2

Clustering

When we look at geometric objects, one of the simplest properties to study is its
number of connected components. A counterpart to connected components in the
context of point cloud data is clustering. Clustering is the concept of partitioning
data into groups, where we want to have high similarity within groups and low
similarity between groups. Clustering serves as a crucial tool for understanding
and interpreting patterns within data. Choosing a suitable algorithm is heavily
dependent on the underlying structure of the data. This chapter introduces four
popular clustering methods k-means clustering, spectral clustering, mean shift clustering
and hierarchical clustering.

2.1 k-means Clustering

k-means clustering is one of the most common clustering methods. It serves
as the foundation for numerous other clustering techniques. In this section, we
closely follow the book ’Data Clustering: Algorithms and Applications‘ by Charu
C. Aggarwal and Chandan K. Reddy [1].

Definition 2.1 (k-means) Let X = {x1, . . . , xn} be a finite subset of Rd. k-means aims
to partition the data set into k ≤ n pairwise disjoint clusters S1, . . . , Sk with centres
µ1, . . . , µk ∈ Rd such that the sums of squares distance to the centres is minimized:

arg min
S1,...,Sk
µ1,...,µk

k

∑
l=1

∑
i∈Sl

∥xi − µl∥
2 . (2.1)

8 2.1. k-means Clustering

A common algorithm to minimize Equation (2.1) is Lloyd’s algorithm, often called
the k-means algorithm. It is an iterative algorithm that starts by choosing k initial
points called centres. Each point then gets assigned to the closest initial centre
based on some proximity measure, thus leading to convex clusters for Euclidean
metric spaces. Once all points are assigned, the centres get updated. The algorithm
then iterates these two steps until the centres remain constant.

Algorithm 1 Lloyd’s Algorithm

Input: Data points x1, . . . , xn.
1: Select k initial centres µ1, . . . , µk of the corresponding clusters S1, . . . , Sk
2: Classify the clusters by identifying each point xi to the nearest centre µl of the

cluster Sl ,

l = min
j=1,...,k

∥∥∥xi − µj

∥∥∥ ;

3: Update the centres µl =
1
|Sl | ∑i∈Sl

xi;
4: Repeat 2. and 3. until the centres do not change;

Lloyd’s algorithm is a greedy algorithm which is guaranteed to converge to a
local minimum of the sums of squares from Equation (2.1). The algorithm performs
well if the dataset has spherical clusters. A great feature of the algorithm is that it
is not hard to implement. However, if the data has a more complicated underlying
geometric structure, it performs badly.

The minimization of the sums of squares is known to be NP-hard, which is why
most practical attempts and algorithms to minimize Equation (2.1) converge to a
local minimum. A proof of the convergence can be found in the article ’k-means-
type algorithms: A generalized convergence theorem and characterization of local
optimality‘ by Shokri Z. Selim and M. A. Ismail [2].

Intuitively, it is not clear how to optimally choose the number of clusters k. Just
optimizing the sums of squares in Equation 2.1 to find a suitable number of clusters
would not lead to a satisfying result, since choosing k to be the number of points n
in our dataset would lead to the sums of squares to equal zero, as all the points
would lie in their own singleton cluster. Another problem arises in how to choose
the initial centres. We could choose them at random, but then we could get a bad
run time for the k-means algorithm. Several methods for initializing centres and
estimating k can be found in [1].

Chapter 2. Clustering 9

Figure 2.1: Two k-means clusterings. Left k-means is applied with the Euclidean
distance measure on circular data, and right on data with two distinct normally
distributed clusters. The left plot visually illustrates the bad performance on non-
convex data sets. One can clearly see that k-means results in convex clusters.

2.2 Spectral Clustering

Before presenting spectral clustering, we have to first introduce a few mathematical
objects. The spectral clustering algorithm requires similarity graphs and graph
Laplacians. For the entire section, we closely follow the article ’A Tutorial on
Spectral Clustering‘ by Ulrike von Luxburg [3].

Assume we have a set of data points x1, . . . , xn and some measure of similarity
sij = sji ≥ 0 between all pairs of data points xi and xj. If there is no additional
information than the measure of similarity, one way of representing the data is
in the form of a weighted graph G = (V, E). V is the vertex set, where each vertex
represents a data point and E is the set of edges, where each weighted undirected
edge between vertices vi and vj has weight wij. When the weights wij resemble
some measure of similarity sij such that wij = sij if it is larger than some predefined
threshold and zero otherwise, are called similarity graphs. The goal of clustering the
data can then be reformulated in terms of partitioning the corresponding similarity
graph. An example of a similarity graph can be seen in Figure 2.2. The graph
depicted is called the butterfly graph. Each edge has a given weight, which denotes
the similarity between the vertices it connects. The larger the value, the more
similar the vertices are.

Definition 2.2 (Adjacency Matrix) The adjacency matrix of a weighted graph G is the
matrix W = (wij)1≤i,j≤n where wij are the non-negative weights from above.

10 2.2. Spectral Clustering

3

4

5

2

1

6

Figure 2.2: Butterfly graph

If wij = 0 the vertices vi and vj are not connected by an edge. Since we assume
G to be an undirected graph, the adjacency matrix W is symmetric, i.e. wij = wji.

Definition 2.3 (Degree of a Vertex) The degree of a vertex vi is the sum over the
weighted edges connected to vi

di =
n

∑
j=1

wij.

Definition 2.4 (Degree Matrix) The degree matrix D = diag(d1 . . . , dn) is defined as
the diagonal n× n matrix, where n is the number of vertices. D has the vertex degrees on
the diagonal and zero entries otherwise.

Definition 2.5 (Indicator Vector) Let A ⊂ V be a subset of vertices. The indicator
vector is 1A = (1v1∈A, . . . , 1vn∈A)

T ∈ Rn where 1v1∈A = 1 if vi ∈ A and 1v1∈A = 0
otherwise.

Definition 2.6 We say a subset A ⊂ V is connected if for all pairs of vertices vi, vj ∈ A
there exists a path in A connecting vi and vj. A ⊂ V is a connected component if it is
connected and there exists no edge between A and A = V \ A.

A priori, it is not clear how to construct a graph G, just knowing the data set and
the pairwise distances. We now give a few popular graph constructions given data
points x1 . . . , xn and pairwise similarities sij or distances dij. For this, let G = (V, E)
be an undirected graph with V = {v1, . . . , vn} where v1, . . . , vn represent the data
points x1 . . . , xn ∈ Rd:

– ε-neighbourhood graph: For this graph, we connect two vertices vi, vj if
d(vi, vj) ≤ ε. Since all the distances between connected vertices are bounded
by ε, this graph is usually considered an unweighted graph.

– k-nearest neighbour graph: We want to connect vi with vj if vj is among
the k-nearest neighbours of vi. But since this relation is not symmetric, this
would give a directed graph. There are two ways to get an undirected graph.

Chapter 2. Clustering 11

Firstly, we could ignore the direction and connect vi and vj if one vertex is
among the k-nearest neighbours of the other vertex. We usually refer to this
to be the k-nearest neighbour graph. Secondly, we could connect vi and vj if
both are among the k-nearest neighbours of each other. We usually refer to
this to be the mutual k-nearest neighbour graph. In both cases, the weights of
the edges correspond to the similarity sij of the respective vertices.

– Fully connected graph: Here we connect all the vertices with positive simi-
larity with each other and weigh them accordingly. This construction only
makes sense if the similarity models local relationships. One could use the
Gaussian similarity function s(xi, xj) = exp(−

∥∥xi − xj
∥∥2 /(2σ2)), where σ

controls the width of the neighbourhoods.

An important tool for spectral clustering are graph Laplacian matrices. We now
define the unnormalized graph Laplacian matrix and look at a few properties. For
the following, assume that we have an undirected weighted graph G = (V, E) with
adjacency matrix W where wij = wji ≥ 0 and the corresponding degree matrix D.
We assume that the eigenvalues are always ordered in an increasing order, and that
eigenvectors are not necessarily normalized.

Definition 2.7 (Unnormalized Graph Laplacian) The unnormalized graph Laplacian
matrix L is defined as

L = D−W.

where D = diag(d1, . . . , dn) is the degree matrix and W is the adjacency matrix.

Note, the unnormalized graph Laplacian does not depend on diagonal entries
wii of W since they also appear in di exactly once. This means that two graphs
G and G′, that have the same adjacency matrix up to self-edges, have the same
unnormalized graph Laplacian L.

Proposition 2.8 The unnormalized graph Laplacian matrix L satisfies the following
properties:

1. For every vector f ∈ Rn,

f T L f =
1
2

n

∑
i,j=1

wij(fi − f j)
2. (2.2)

2. L is symmetric and positive semi-definite.

12 2.2. Spectral Clustering

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the indicator vector
1 = (1, . . . , 1)T.

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λn.

Proof. 1. Since di = ∑n
j=1 wij it follows that

f T L f = f TD f − f TW f =
n

∑
i=1

di f 2
i −

n

∑
i,j=1

fi f jwij

=
1
2
(

n

∑
i=1

di f 2
i − 2

n

∑
i,j=1

fi f jwij +
n

∑
j=1

dj f 2
j)

=
1
2
(

n

∑
i=1

n

∑
j=1

wij f 2
i − 2

n

∑
i,j=1

wij fi f j +
n

∑
j=1

n

∑
i=1

wij f 2
j)

=
1
2

n

∑
i,j=1

wij(fi − f j)
2.

2. The symmetry follows directly from the symmetry of W and D. The positive
semi-definiteness follows from Equation 2.2.

3. Plugging in the indicator vector f = 1 in Equation 2.2 gives us the zero, thus
1 is an eigenvector with eigenvalue λ1 = 0.

4. That L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λn follows
from the positive semi-definiteness of L and the fact that all n× n symmetric
matrices have n eigenvalues when counted with multiplicity.

Proposition 2.9 Let G be an undirected graph with non-negative weights and let k be
the number of connected components. Then the multiplicity of the eigenvalue 0 equals the
number of connected components A1, . . . , Ak in G. 1A1 , . . . , 1Ak span the eigenspace of the
eigenvalue 0.

Proof. We prove this using induction over k. Let k = 1, i.e. G is connected. Assume
that f is an eigenvector with eigenvalue 0. From Proposition 2.8 we know

0 = f T L f =
1
2

n

∑
i,j=1

wij(fi − f j)
2.

We know that since G is connected, we get wij > 0. Because wij(fi − f j)
2 vanishes,

we get that fi = f j. Moreover, as all vertices of a connected component in an

Chapter 2. Clustering 13

undirected graph can be connected by a path, f needs to be constant on the whole
connected component. We can conclude that we only have the indicator vector 1

as eigenvector with eigenvalue 0, and this is obviously the indicator vector of the
connected component.

Let us now consider the case of k connected components. Without loss of
generality, we assume that the vertices are ordered according to the connected
components they belong to. In this case, the adjacency matrix W has block diagonal
form, thus the unnormalized graph Laplacian has block diagonal form too

L =


L1

. . .

Lk

 .

Note that each block Li is a proper unnormalized graph Laplacian correspond-
ing to the connected component Ai. For block diagonal matrices, we know the
eigenvectors of L are the eigenvectors of Li embedded in the corresponding higher
dimensional vector space, i.e. filled with 0 at the position of the other blocks. Using
that each Ai has only one connected component, we get that the eigenvector of Li

with eigenvalue 0 is 1, we conclude that for L the eigenvalue 0 has multiplicity k
and 1A1 , . . . , 1Ak span the eigenspace of the eigenvalue 0.

Let us now consider a set of data points x1, . . . , xn, which can be arbitrary
objects, and their pairwise similarities sij = s(xi, xj) by some symmetric, non-
negative similarity function. Let S = (sij)1≤i,j≤n be the similarity matrix and k be
the number of clusters we want to construct. The unnormalized spectral clustering
algorithm works as follows.

Algorithm 2 Unnormalized Spectral Clustering Algorithm

Input: Data points x1, . . . , xn, n× n similarity matrix S.
1: Construct a similarity graph G = (V, E). Let W be its weighted adjacency

matrix;
2: Compute the unnormalized graph Laplacian L;
3: Compute the first k eigenvectors u1, . . . , uk of L;
4: Let U = (u1, . . . , uk) ∈ Rn×k the matrix containing the first k eigenvectors;
5: For i = 1, . . . , n let yi ∈ Rk the vector corresponding to the i-th row of U;
6: Cluster the points y1, . . . , yn, representing x1, . . . , xn, using k-means;

14 2.2. Spectral Clustering

Intuitively, the unnormalized spectral clustering algorithm attempts to partition
the similarity graph to have high similarity within groups and low similarity
between groups using properties of Propositions 2.8 and 2.9.

Remark 2.10 Instead of using the unnormalized graph Laplacian, there are spectral
clustering algorithms using a version of a normalized graph Laplacian. It comes with
many advantages like stronger convergence results for increasingly bigger data sets and
robustness.

Figure 2.3: Spectral clustering. In the top plots we can see circular data and in
the bottom plots we can see normally distributed data that is centred around two
different centroids. On the top left is the similarity graph using the Gaussian
similarity with σ = 0.5 and threshold 0.1 and on the bottom left with σ = 1 and
threshold 0.1. Right is the corresponding clustering.

Spectral clustering can be applied to a wide range of data types, including
graphs and non-Euclidean data. This makes it versatile for various applications

Chapter 2. Clustering 15

beyond standard vector-based data. There are many ways to choose similarity
measures, the number of clusters and which graph Laplacian to use. However, a
priori, it is not clear which suits a given data set. One can read further into it in [3].

2.3 Mean Shift Clustering

Density based clustering methods make the assumption that the given data points
follow some underlying probability distribution with unknown density function
f . Clustering then becomes a problem of understanding the empirical density of
f , estimated from the sample. A widely used method called mode-seeking involves
identifying the local peaks, the so-called modes, of f to serve as cluster centres and
then partitioning the data based on their respective basins of attraction. Mean shift is
a popular mode-seeking clustering procedure. In this section, we closely follow
the article ’Mean shift: A robust approach toward feature space analysis‘ by Dorin
Comaniciu [4].

The idea of mean shift clustering is to treat the points as a sample from some
absolutely continuous distribution. Dense regions correspond to the local maxima
of the density function. First one estimates the density function using a multivariate
kernel density estimate and then performs gradient ascent to determine the local
maxima, the so-called mode. The basins of attraction serve as the clusters, and the
modes function as attraction points.

Definition 2.11 (Univariate Kernel) A univariate kernel is a non-negative real valued
integrable function K. K is considered symmetric if in addition K(−x) = K(x) for all
values x.

Definition 2.12 (Radially Symmetric Kernel) A radially symmetric kernel k generated
from a symmetric univariate kernel K by rotating K(x) in Rd is defined as,

k(x) = ckK(∥x∥2).

where K is a real-valued non-negative integrable function and cK is a normalization constant
such that ∫

Rd
cKK(∥x∥2) dx = 1.

Since we are only interested in these types of kernels, we refer to radially
symmetric kernels as kernels in Definition 2.12.

16 2.3. Mean Shift Clustering

Figure 2.4: The left kernel is a Gaussian kernel and is described by the function
KGaussian(x) = 1√

2π
e−

1
2 x2

. Another popular kernel is the Epanechnikov kernel on

the right, that is described by the function KEpanechnikov(x) = 3
4 (1− x2) for |x| ≤ 1

and zero otherwise. By rotating these functions around x = 0, we get radially
symmetric kernels.

Definition 2.13 (Multivariate Kernel Density Estimate) Let x1, . . . , xn ∈ Rd, the
multivariate kernel density estimate with a radially symmetric kernel k(x) and a bandwidth
h, is given by

f̂k(x) =
1

nhd

n

∑
i=1

k
(

x− xi

h

)
.

Intuitively, the bandwidth gives a measure of the radius we want our kernel to
be applied on. Thus, it indirectly determines the number of clusters we want our
data set to be divided in. There are many ways to select the bandwidth parameter,
which are further discussed in [4].

The multivariate kernel density estimate estimates the underlying density
function of a given data set x1, . . . , xn ∈ Rd. The constant 1

nhd is necessary to
normalize the estimator f̂k to ensure that it defines a probability density. Calculating
the gradient of the multivariate kernel density estimate, we get

∇ f̂k(x) = −
2cK

nhd+2

[
n

∑
i=1

K′
(∥∥∥∥x− xi

h

∥∥∥∥2
)]∑n

i=1 xiK′
(∥∥ x−xi

h

∥∥2
)

∑n
i=1 K′

(∥∥ x−xi
h

∥∥2
) − x

. (2.3)

Chapter 2. Clustering 17

Definition 2.14 (Mean Shift Vector) The second term in the above expression is called
the mean shift vector

m(x) =

∑n
i=1 xiK′

(∥∥ x−xi
h

∥∥2
)

∑n
i=1 K′

(∥∥ x−xi
h

∥∥2
) − x

.

Proposition 2.15 The mean shift vector is a scalar multiple of the gradient of the multi-
variate kernel density estimator,

m(x) =
1
2

h2∇ f̂k(x)
f̂k̃(x)

.

Proof. The first term in Equation 2.3 is proportional to the density estimate for the
kernel k̃ = ck̃K′(∥x∥), that is

f̂k̃(x) =
cK

nhd

[
n

∑
i=1

K′
(∥∥∥∥x− xi

h

∥∥∥∥2
)]

.

Thus, the mean shift vector can be written as a scalar multiple of the gradient
of the multivariate kernel density estimate of f̂k.

The mean shift vector points towards the closest local maximum of the density
estimator, i.e. in the direction of greatest ascent. Intuitively, it shifts the local mean
of our data set toward the closest region with the most points. The mean shift
clustering algorithm then works as follows. For every data point xt

i in our data
set, we calculate the corresponding mean shift vector m(xt

i) and shift our data
point towards the closest mode, xt+1

i = xt
i + m(xt

i). We repeat this until we reach
∇ f (xt+1

i) = 0. Every data point xi then belongs to the cluster Sj corresponding to
the mode where xt

i converged to.

Algorithm 3 Mean Shift Algorithm

Input: Data points x1, . . . , xn, mean shift vector m.
1: Compute the mean shift vector m(xt

i);
2: Translate toward the mode: xt+1

i = xt
i + m(xt

i);
3: Repeat 1. and 2. until ∇ f (xt+1

i) = 0, i.e. xt+1
i has reached a local maximum;

4: The data points xi that converged to the same local maximum belong to the
same cluster;

A proof of convergence for the Algorithm 3 mean shift algorithm can be found
in [4].

18 2.4. Hierarchical Clustering

Mean shift clustering does not make any strong model assumptions on the
underlying data. Using a probabilistic approach, it is robust towards outliers, and
can also be applied on complex structures with non-convex shapes. However, we
cannot directly control the number of clusters. Another drawback is its sensitivity
to noise. Every mode is in one to one correspondence with a cluster. Peaks that are
non-prominent can be seen as nonsensible peaks, since they are often caused by
noise and thus should not be clustered separately.

Figure 2.5: A density function with peaks p and q.

Example 2.16 Assume we have a data set x1, . . . , xn ∈ R that is a sample of some
distribution function. Let f be the estimated density depicted in Figure 2.5. We get that
the local maxima of the density estimator are p and q and the local minimum in s. Since
∇ f (x) points in the direction of greatest ascent, applying the mean shift algorithm gives
that all the data points left of s converge to the cluster belonging to p and all the data points
right of s converge to the cluster belonging to q. Since the gradient ∇ f (s) = 0, a data
point at the point s will not converge using the mean shift algorithm, thus will not belong
to any cluster.

2.4 Hierarchical Clustering

Until now, the methods discussed formed disjoint clusters. One would say that the
data description is flat or partitional based. However, often clusters have sub-clusters,
which then have sub-sub-clusters and so on. Hierarchical clustering algorithms were

Chapter 2. Clustering 19

developed to lead to representations that are more hierarchical rather than flat.
In this section, we closely follow the book ’Data Clustering: Algorithms and
Applications‘ by Charu C. Aggarwal and Chandan K. Reddy [1] and the book
’Pattern Classification‘ by Richard O. Duda, Peter E. Hart and David G. Stork [5].

Definition 2.17 (Hierarchical Clustering) Consider a sequence of length n of partitions
of data points x1, . . . , xn into c clusters, where the l-th partition in the sequence has
c = n− l + 1 clusters. We then say we are at level l. Given two subsamples of our data set
Si and Sj, if they are in the same cluster at some level, then they are in the same cluster in
all higher levels. We call such a sequence hierarchical clustering.

Remark 2.18 Notice the first partition groups the data points into n clusters containing
one point each, namely the singleton clusters. The next is a partition into n− 1 clusters.
This continues iteratively until the n-th partition forms one cluster, containing all data
points.

Hierarchical methods can be categorized into agglomerative and divisive clustering
methods. Agglomerative methods are bottom up methods and start by taking each
data point as a singleton cluster. They then continue by merging two clusters at
a time using some proximity rule. Divisive methods are top down methods and
start with all the data points in one cluster and partitions it continuously into two
groups. We will mainly discuss agglomerative clustering.

Definition 2.19 (Dendrogram) A dendrogram is a diagram, which resembles a tree. In
the case of clustering, it shows how clusters are merged. Every level corresponds to how the
data is clustered.

Remark 2.20 The most natural representation of hierarchical clustering is a dendrogram.
In the case of agglomerative clustering, all the levels are represented by the current depth in
the tree. Level 1 shows all the singleton clusters. The following levels then group clusters
together to get a lower number of clusters than in the previous level. The last level consists
of one cluster containing all the data points.

Definition 2.21 Given a partition of our data set into clusters S1, . . . , Sc, the dissimilarity
matrix D = (dij)1≤i,j≤c contains in each entry dij the measure of proximity between the
two clusters Si and Sj for some given proximity measure.

Commonly used proximity measures are the minimal or the maximal Euclidean
distance between the points in two clusters, that is

20 2.4. Hierarchical Clustering

x1 x2 x3 x4 x5
Level 1
Level 2

Level 3

Level 4

Level 5

Figure 2.6: This dendrogram shows on the horizontal axis the singleton clusters
x1, . . . , x5 at the first level and the merged clusters on the higher levels. The vertical
axis corresponds to the levels. Here x3 and x4 are the most similar, because their
singleton clusters merged first.

dmin(Si, Sj) = min
x∈Si
x′∈Sj

∥∥x− x′
∥∥ ,

or

dmax(Si, Sj) = max
x∈Si
x′∈Sj

∥∥x− x′
∥∥ .

The agglomerative hierarchical clustering algorithm then works as follows. First,
we start with all the data points represented in the form of singleton clusters. They
are shown at the bottom of the dendrogram. Then the closest pair of clusters with
respect to the dissimilarity matrix, is merged at each level, and the dissimilarity
matrix is updated correspondingly. This agglomerative merging process is repeated
until the sequence arrives at the cluster containing all the data points. This is
represented as the apex of the dendrogram. Different kinds of proximity measures
provide for different clustering methods.

Algorithm 4 Agglomerative Hierarchical Clustering Algorithm

Input: Data points x1, . . . , xn.
1: Compute the dissimilarity matrix;
2: Merge the closest clusters according to the dissimilarity matrix giving

Sa∪b = Sa ∪ Sb;
3: Update the dissimilarity matrix. Replace the rows and columns of Sa and Sb

with a new row and column containing the distances between the new cluster
Sa∪b and the remaining clusters;

4: Repeat 2. and 3. until there is only one cluster left;

Chapter 2. Clustering 21

One of the most popular agglomerative clustering methods is single linkage
clustering, also called nearest neighbour clustering. In single linkage clustering, the
dissimilarity of two clusters is the dissimilarity between the two most similar
points.

Definition 2.22 (Single Linkage Clustering) The single linkage clustering algorithm
is the hierarchical clustering algorithm applied using a dissimilarity matrix of the form
D = [dmin(Si, Sj)]i,j for

dmin(Si, Sj) = min
x∈Si
x′∈Sj

∥∥x− x′
∥∥ ,

where Si and Sj are clusters in the corresponding level.

Intuitively, this method looks at the local structure of the data and ignores the
underlying global structure. It gives more weight to regions where clusters are close.
Due to the strong local behaviour, single linkage performs well on non-elliptical,
elongated data sets. It is very simple to implement and can be solved efficiently by
standard linear algebra methods. The main drawback is its sensitivity to noise and
outliers.

Example 2.23 For this example, we revisit the dendrogram from Figure 2.6. Let us
consider data points x1 = 0, x2 = 0.6, x3 = 1.6, x4 = 1.8, x5 = 2.2 in R. First, all the
data points belong to their corresponding singleton clusters S1, . . . , S5 on level 1. Now we
construct a dissimilarity matrix D using the Euclidean distance.

D =

Sx1 Sx2 Sx3 Sx4 Sx5


Sx1 0.0 0.6 1.6 1.8 2.2
Sx2 0.6 0.0 1.0 1.2 1.6
Sx3 1.6 1.0 0.0 0.2 0.6
Sx4 1.8 1.2 0.2 0.0 0.4
Sx5 2.2 1.6 0.6 0.4 0.0

.

Notice that D is symmetric. We see that dmin(Si, Sj) = d34 = d43 = 0.2 is the
smallest distance between all the singleton clusters, thus we merge S3 and S4 and update
the dissimilarity matrix. We now get

22 2.4. Hierarchical Clustering

Sx1 Sx2 Sx3∪x4 Sx5


Sx1 0.0 0.6 1.6 2.2
Sx2 0.6 0.0 1.0 1.6

Sx3∪x4 1.6 1.0 0.0 0.4
Sx5 2.2 1.6 0.4 0.0

.

We repeat this until we get the cluster Sx1∪...∪x5 at level 5. We then get a dendrogram
as in Figure 2.7. The grey dashed lines represent the levels.

x1 x2 x3 x4 x5

si
m

ila
ri

ty

di
st

an
ce

0.0
0.2

0.4

0.6

0.8

1.0

Figure 2.7: Dendrogram for single linkage clustering of the data set x1 = 0, x2 = 0.6,
x3 = 1.6, x4 = 1.8, x5 = 2.2.

Instead of using dmin(Si, Sj) for the dissimilarity matrix D one could also use
the maximal distance between two clusters to get complete linkage clustering, the
distance between two centroids to get centroid agglomerative clustering or the average
distance between all the points in set two clusters to get average linkage clustering.
For details we refer the reader to [1].

Chapter 3

Simplicial Complexes and Homology

Homology is a fundamental concept in algebraic topology. It provides a powerful
framework to classify and understand the structure of spaces by counting the
number of ’holes‘ in each dimension. We only focus on homology over the finite
field k = F2 with two elements. However, one can develop a theory for general
coefficients. In this chapter we introduce simplicial complexes, define homology and
state some useful results. This chapter is based on the book ’Topological pattern
recognition for point cloud data‘ by Gunnar Carlsson [6].

3.1 Simplicial Complexes

Simplicial complexes provide a geometric framework to study topological prop-
erties of spaces. It enables the decomposition of shapes into simpler building
blocks like points, line segments, triangles, and higher-dimensional simplices. This
approach is useful for the computation and understanding of homology groups.

Definition 3.1 (General Position) Let S = {x0, . . . , xn} ⊆ Rd. Then S is said to be in
general position, if it is not contained in any affine hyperplane of Rd of dimension less than
n.

Definition 3.2 (Simplex) Let S = {x0, . . . , xn} ⊆ Rd be in general position. The
n-simplex spanned by S is the convex hull σ = σ(S) ⊆ Rd. The points xi are called
vertices. The simplices σ(T) for any non-empty T ⊆ S are called faces of σ.

Definition 3.3 (Simplicial Complex) A (finite) simplicial complex X is a collection of
simplices in Euclidean space such that:

24 3.2. Homology

1. For any simplex σ of X , all faces of σ are contained in X .

2. For any two simplices σ, τ ∈ X , the intersection σ ∩ τ is a face of both σ and τ and
is contained in X .

Simplicial complexes rely on specific geometric embeddings into Euclidean
space. A more flexible and combinatorial approach to studying topological spaces
are abstract simplicial complexes.

Definition 3.4 (Abstract Simplicial Complex) Let X = (V(X), Σ(X)) be a pair,
where the vertices V(X) denote a finite set of X and the simplices Σ(X) are a non-empty
subset of P(V(X)), where P denotes the power set. X is called an abstract simplicial
complex if for σ ∈ Σ(X) and ∅ ̸= τ ⊆ σ, called faces, τ ∈ Σ(X). Simplices consisting of
exactly two vertices are called edges. Moreover, let Σi(X) denote the set of i-dimensional
simplices.

Note that a simplicial complex X determines an abstract simplicial complex
where V(X) consists of all vertices of all simplices of X and Σ(X) contains all
vertices and all their faces. With some abuse of notation, we will write n-simplices
{{x0}, . . . , {xn}} as {x0 . . . xn}.

Example 3.5 Consider the abstract simplicial complex X in Figure 3.1. X consists of the
vertices

V(X) = {A, B, C, D}

and the simplices

Σ(X) = {ABC, AB, AC, BC, BD, CD, A, B, C, D}.

The 0-simplices Σ0(X) = {A, B, C, D} coincide with the vertices. The 1-simplices
Σ1(X) = {AB, AC, BC, BD, CD} are the edges that connect the vertices. The 2-simplex
Σ2(X) = {ABC} corresponds to the grey triangle.

3.2 Homology

Homology provides information about n-dimensional features. That involves
connectivity in dimension 0, loops in dimension 1, voids in dimension 2 and so on.
We derive this information by building algebraic objects called chain complexes on
abstract simplicial complexes.

Chapter 3. Simplicial Complexes and Homology 25

A B

C D

Figure 3.1: Abstract simplicial complex X

Definition 3.6 (Free k-Vector Space on X) Let k be a field and X be a finite set. Then
a free k-vector space on X is the vector space Vk(X) spanned by the elements of X, with
pointwise sum and scalar multiplication.

Note that Vk(X) has a basis Bk(X) consisting of all the elements of X. In
particular, the dimension of the vector space Vk(X) is |X|. Recall, Σi(X) denote the
set of i-dimensional simplices of the abstract simplicial complex X.

Definition 3.7 (Boundary Map) Let Vk(Σi(X)), called the space of i-chains, be a free
k-vector space on the i-simplices and let σ ∈ Σi(X) be an i-simplex. Then the boundary map
is defined by ∂i : Vk(Σi(X))→ Vk(Σi−1(X)), with ∂i(σ) = ∑i∈I τi, where I is the index
set of all (i− 1)-dimensional faces of σ. In addition, we define ∂0 : Vk(Σ0(X))→ {0} to
be the zero map.

As a map of finite dimensional free vector spaces, ∂i can be written in the form
of a matrix, where columns correspond to the i-dimensional simplices in Σi(X) and
the rows correspond to the (i− 1)-dimensional simplices in Σi−1(X).

Example 3.8 Let X be the abstract simplicial complex depicted in Figure 3.2. We have the
following setup: X = (V(X), Σ(X)) with

V(X) = {A, B, C, D}

and

Σ(X) = {A, B, C, D, AB, AC, BC, BD, CD, ABC}.

The 0-simplices Σ0(X) = {A, B, C, D} coincide with the vertices. The 1-simplices are
Σ1(X) = {AB, AC, BC, BD, CD} and the 2-simplex is Σ2(X) = {ABC}. The space of

26 3.2. Homology

0-chains Vk(Σ0(X)) is the free k-vector space with basis Σ0(X), as elements of Vk(Σ0(X)).
Analogue for Vk(Σ1(X)) and Vk(Σ2(X)). The boundary maps can be described by

∂1 =

AB AC BC BD CD


A 1 1 0 0 0
B 1 0 1 1 0
C 0 1 1 0 1
D 0 0 0 1 1

, ∂2 =

ABC


AB 1
AC 1
BC 1
BD 0
CD 0

.

We see that the boundary map ∂1 : Vk(Σ1(X)) → Vk(Σ0(X)) has rank (∂1) = 3, thus
the kernel has dim(ker(∂1)) = 5− rank (∂1) = 2. A basis for the kernel is given by the
elements BC + BD + CD and BC + AB + AC.

The map ∂2 : Vk(Σ2(X)) → Vk(Σ1(X)) sends the only 2-simplex ABC to the sum of its
faces AB + AC + BC.

A

C D

B

X
A

C D

B

Σ0(X) Σ1(X) Σ2(X)

Figure 3.2: Abstract simplicial complex X and the sets of its i-simplices.

Proposition 3.9 The composition of two consecutive boundary maps vanishes, that is
∂i−1 · ∂i ≡ 0.

Proof. The columns of ∂i−1 · ∂i correspond to the i-dimensional simplices in Σi(X)

and the rows correspond to the (i − 2)-dimensional simplices in Σi−2(X). The
entry in the row of τ′′ ∈ Σi−2(X) and the column of τ ∈ Σi(X) equals the number
of τ′ ∈ Σi−1(X) such that τ′′ ⊆ τ′ ⊆ τ. If τ′′ ̸⊂ τ then there is no τ′ satisfying
the condition. Finally, if τ′′ ⊂ τ then there are always two τ′1, τ′2 satisfying the
condition, because any two (i− 1)-simplices in τ share exactly one (i− 2)-simplex
as a face.

Chapter 3. Simplicial Complexes and Homology 27

The boundary maps can be regarded as linear transformations. Considering
the following diagram,

· · · ∂i+1−−→ Vk (Σi(X))
∂i−→ Vk (Σi−1(X))

∂i−1−−→ · · · ∂1−→ Vk (Σ0(X))
∂0−→ {0}, (3.1)

where the composition of two consecutive maps is the zero map, motivates the
following definition.

Definition 3.10 (Chain Complex) A chain complex C is defined as k-vector spaces Ci

for i ≥ 0, together with linear transformations ∂i+1 : Ci+1 → Ci such that ∂i · ∂i+1 ≡ 0.
The chain complex C(X) (or just C if the complex is clear from the context) of an abstract
simplicial complex X, is then defined as the sequence of free k-vector spaces on Σi(X) with
the corresponding boundary maps.

As we are only interested in chain complexes of abstract simplicial complexes,
from now on C(X) denotes the chain complex on the i-chains Vk(Σi(X)) and ∂i

denotes the boundary map ∂i : Vk(Σi(X))→ Vk(Σi−1(X)).

Definition 3.11 (Boundary and Cycles) For all i ≥ 0 define the boundaries as Bi =

im(∂i+1) and the cycles as Zi = ker(∂i).

Example 3.12 Note that we have the inclusion Bi ⊆ Zi. This follows directly from
Proposition 3.9, since ∂i · ∂i+1 ≡ 0 implies that im(∂i+1) ⊆ ker(∂i).

Definition 3.13 (Homology Group) Let C(X) be as in Diagram 3.1. For i ≥ 0, the i-th
homology group of the abstract simplicial complex X is the quotient

Hi(X) = Zi/Bi = ker(∂i)/ im(∂i+1).

A

C D

B

X
A

C D

B

Σ0(X) Σ1(X)

Figure 3.3: Abstract simplicial complex X and the sets of its i-simplices.

28 3.2. Homology

Example 3.14 Let X be the abstract simplicial complex depicted in Figure 3.3. Let
X = (V(X), Σ(X)) with V(X) = {A, B, C, D} and Σ(X) = {A, B, C, D, AB, AC, BC}.
The 0-simplices are Σ0(X) = {A, B, C, D}. The 1-simplices are Σ1(X) = {AB, AC, BC}.
The boundary map ∂1 : Vk(Σ1(X))→ Vk(Σ0(X)) can be described by

∂1 =

AB AC BC A 1 1 0
B 1 0 1
C 0 1 1

,

whereas ∂2 : Vk(Σ2(X)) → Vk(Σ1(X)) and ∂0 : Vk(Σ0(X)) → {0} are both zero maps.
We compute the cycles Z0 = ker(∂0) = ⟨A, B, C, D⟩ and the boundaries B0 = im(∂1)

= ⟨A + B, A + C, B + C⟩ = ⟨A + B, A + C⟩. Thus, H0 = Z0/B0 ∼= ⟨B, D⟩. Intuitively,
we identify all the vertices that are connected through edges. Furthermore, those vertices
that are not connected through edges are not identified. It follows that the dimension of
H0(X) is the number of connected components of X.

Analogously, we compute H1 = ⟨AB + AC + BC⟩. As to before, we can understand
the dimension of H1(X) as the number of 1-dimensional holes (loops) and, more generally,
the dimension of Hn(X) as the number of n-dimensional holes in X.

Homology is functorial, i.e. it does not only assign vector spaces to complexes
but maps to maps as well.

Proposition 3.15 (Functoriality) Let f : X → Y be a map of abstract simplicial
complexes, then:

1. There are linear transformations Vk(Σn(f)) : Vk(Σn(X))→ Vk(Σn(Y)).

2. The boundary maps ∂n and Vk(Σn(f)) are homomorphisms such that the following
diagram commutes.

· · · Vk(Σn(X)) Vk(Σn−1(X)) · · ·

· · · Vk(Σn(Y)) Vk(Σn−1(Y)) · · ·

∂n

Vk(Σn(f)) Vk(Σn−1(f))

∂n

3. Vk(Σn(f)) maps boundaries Bn(X) to boundaries Bn(Y) and cycles Zn(X) to cycles
Zn(Y).

Chapter 3. Simplicial Complexes and Homology 29

4. There is an induced homomorphism Hn(f) : Hn(X)→ Hn(Y).

Proof. This proof is inspired by Chapter 2, Homotopy Invariance [7]. Let σi ∈ Σn(X)

and τj ∈ Σn(Y) for i ∈ I and j ∈ J be bases. Let Σn(f) be a map where an element
σi gets mapped to τj. Write σ = ∑i σi ∈ Vk(Σn(X)) and τ = ∑j τj ∈ Vk(Σn(Y)). Let
Vk(Σn(f)) be the map where a basis element σi ∈ Vk(Σn(X)) get mapped to a basis
element τj ∈ Vk(Σn(Y)). As a map between bases, we extend Vk(Σn(f)) linearly,

Vk(Σn(f))(∑
i

σi) = ∑
i

Vk(Σn(f))(σi).

We know the boundary map sends a simplex σi to the sum of all its faces ∑j σ′j .
Because a map of abstract simplicial complexes maps faces to faces,

Vk (Σn−1(f)) (∂n(σi)) = Vk (Σn−1(f)) (∑
j

σ′j)

= ∑
j

Vk (Σn−1(f)) (σ′j) = ∂n(Vk (Σn(f)) (σi)).

Thus Vk (Σ(f)) ◦ ∂ = ∂ ◦Vk (Σ(f)).

Point 2. implies that cycles get mapped to cycles since

(Vk(Σ(f)) ◦ ∂)(Z) = 0 = (∂ ◦Vk(Σ(f)))(Z).

Also, boundaries get mapped to boundaries, as they are the image of the boundary
map, (Vk(Σ(f)) ◦ ∂)(B) = (∂ ◦Vk(Σ(f)))(B). This implies that (Vk(Σ(f)) induces
a homomorphism Hn(f) : Hn(X) = Zn(X)/Bn(X)→ Hn(Y) = Zn(Y)/Bn(Y).

Homology groups are invariant under certain deformations of spaces, including
homotopy equivalences. To formalize this, let us define homotopy and homotopy
equivalence.

Definition 3.16 Let f , g : X → Y be two maps of topological spaces. We say f and g are
homotopic, denoted as f ≃ g, if there is a continuous map H : X× [0, 1]→ Y such that
H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X.

The relation of being homotopic is an equivalence relation. Intuitively, two
maps are homotopic if they are the same up to continuous deformation.

Example 3.17 In Rd the identity map on any connected subspace is homotopic to the zero
map. In particular, H(x, t) = (1− t)x is the homotopy between idRd and the constant zero
map.

30 3.2. Homology

Definition 3.18 (Homotopy Equivalence [7]) Two spaces X and Y are said to be
homotopy equivalent if there are maps f : X → Y and g : Y → X such that f ◦ g ≃ idY

and g ◦ f ≃ idX. The maps f and g are called homotopy equivalences.

Remark 3.19 Note that homotopy equivalence is an equivalence relation and that two
homeomorphic spaces are also homotopy equivalent.

An important property [7] is that, if we have a homotopy equivalence f : X → Y,
the induced maps Hn(f) : Hn(X)→ Hn(Y) are isomorphisms for all n. Using this,
we can differentiate between spaces up to homotopy equivalence by computing
and analysing their respective homology groups.

Chapter 4

Persistent Homology

Persistent homology theory extends classical homology to point cloud data. By
tracking topological features as a proximity parameter between points varies, it
provides a description of the data’s underlying geometric properties. We present
constructions of different complexes on which we can construct filtrations on, state
and prove the structure theorem and show a concrete example. This chapter is
based on the book ’Topological pattern recognition for point cloud data‘ by Gunnar
Carlsson [6].

4.1 Construction of Different Complexes

If we have point cloud data, it is not immediately clear how to construct a complex
that accurately represents the underlying structure. We look at constructions such
as Nerve, Rips, α-, and witness complexes. In addition to [6], we also use results from
’Computational Topology for Data Analysis‘ by Tamal Krishna Dey [8].

Figure 4.1: Dataset.

Consider the data set in Figure 4.1. To capture the shape of the point cloud, we
replace points with open sets that contain them, leading to the nerve construction.

32 4.1. Construction of Different Complexes

Definition 4.1 (Nerve [8]) Let U = {Ux}x∈X be a finite collection of sets within a
Euclidean space. The nerve N(U) is the abstract simplicial complex whose vertex set is the
index set X, and a subset {x0, . . . , xn} ⊆ X is a n-simplex if

Ux0 ∩ . . . ∩Uxn ̸= ∅.

Example 4.2 Consider the two data sets given in Figure 4.2. On the left is the nerve
complex N(U1), constructed using the open balls Br(x) with radius r around each point
x. On the right is the nerve N(U2) using arbitrary open neighbourhoods for each point x.
When two sets coincide, we construct a 1-simplex consisting of the corresponding points,
i.e. an edge. If three sets coincide, we construct a 2-simplex consisting of the corresponding
points, i.e. a triangle. We do this for all dimensions n. Note that the dimension of the
simplices can be as big as |X| − 1.

Figure 4.2: Nerve N(U) for open balls and some arbitrary open sets.

While the nerve complex captures the structure of overlapping sets, choosing
different sets can lead to different complexes on the same data. There are sufficient
conditions on the open cover U of a topological space X for the nerve theorem [9]
that guarantee Hn(N(U)) ∼= Hn(X). To provide an alternative to the nerve complex,
we introduce the Rips complex, which simplifies the construction by considering
simplices formed from pairwise distances.

Definition 4.3 (Vietoris-Rips Complex) Let (X, d) be a finite metric space and R ≥ 0.
We then define the Vietoris-Rips complex or just Rips complex VR(X, R), as the abstract
simplicial complex such that any subset {x0, . . . , xn} ⊆ X is a simplex if

d(xi, xj) ≤ R for all i, j ∈ {0, . . . , n}.

In Euclidean space, the 1-simplices of VR(X, R) coincides with the 1-simplices
of the nerve N(U) with U =

{
BR/2(xi)

}
xi∈X

. For R = 0, the Rips complex consists

Chapter 4. Persistent Homology 33

of the points of the metric space (X, d). By increasing the radius R, the Rips
complex then consists of sufficiently close points in a given neighbourhood as
higher dimensional simplices.

Example 4.4 Let us look at the Rips complexes in Figure 4.3. X = {A, B, C, D} consists of
four points, where A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1). For R ∈ [0, 1) none of
the points have distance d(xi, xj) ≤ R, thus VR(X, R) = {A, B, C, D}. For R ∈ [1,

√
2)

we add all the edges {AB, BC, CD, AD}. Lastly, for R ∈ [
√

2, ∞), VR(X, R) consists of
the simplex ABCD and all its faces.

R ∈ [0, 1) R ∈ [1,
√

2) R ∈ [
√

2, ∞)

Figure 4.3: Family of Rips complexes for increasing R.

Though nerve and Rips complexes are useful and intuitive constructions, they
are often large. The α-complex is an example of a sparse complex. The construction
of α-complexes is performed on a metric space X which is a subspace of a metric
space Y. Typically, Y is Euclidean space RN . Most often N is small, that is,
N ∈ {2, 3, 4}.

Definition 4.5 (Voronoi Cell) Let (X, d) be a finite metric space and X ⊆ Y be a
subspace of a larger metric space (Y, d) (typically chosen as Rd, for a small d). The Voronoi
cell V(x) of the point x ∈ X is given by

V(x) = {y ∈ Y | d(x, y) ≤ d(x′, y) for all x′ ∈ X}.

The collection of all Voronoi cells of X in the Euclidean space Rd is called a Voronoi diagram.

Definition 4.6 (α-Complex) We define an α cell together with a scale parameter ε as
Aε(x) = Bε(x) ∩ V(x). The α-complex with scale parameter ε is the nerve N(A) with
A = {Aε(x)}x∈X.

34 4.1. Construction of Different Complexes

Figure 4.4: Voronoi diagram and α-complex.

Example 4.7 Consider the data set X in Figure 4.4. On the left we see the Voronoi diagram
given the points X. On the right we see the corresponding α-complex for a given scale
parameter ε. If two Voronoi cells share an edge, we can construct a 1-simplex with the two
points x and x′ when Bε(x) ∩ Bε(x′) ̸= ∅. The same holds for higher dimensions. Note
that all simplices are of dimension ≤ d for Y = Rd.

Another construction that yields smaller complexes is the witness complex in
its various forms. The idea is to use a version of the Voronoi diagram on the data
set X itself, rather than on a space in which X is embedded. The vertex set of the
complex constructed is smaller than X, consisting of a set of landmark points within
X. This means, we may select the size of the complex we are willing to work with.

Definition 4.8 (Strong Witness Complex) Let (X, d) be a metric space and suppose
L ⊆ X is a finite set of points called the landmark set and let ε > 0. Denote mx as
the (minimal) distance from a point x ∈ X to the landmark set L. We define the strong
witness complex Ws(X,L, ε) as the abstract simplicial complex with vertex set L, where
{l0, . . . , ln} ⊆ L spans a n-simplex if there is a point x ∈ X, the witness, such that
d(x, li) ≤ mx + ε for all i ∈ {0, . . . , n}.

Definition 4.9 (Weak Witness Complex) Let (X, d),L and ε be as above. A point
x ∈ X is called a weak witness for Λ = {l0, . . . , ln} ⊆ L if d(x, l) ≥ d(x, li) for all
i ∈ {0, . . . , n} and all l ̸∈ Λ, and it is called a ε-weak witness if d(x, l) + ε ≥ d(x, li) for
all i ∈ {0, . . . , n} and all l ̸∈ Λ. We then define a weak witness complex Ww(X,L, ε) to
be the abstract simplicial complex with vertex set L where Λ spans a n-simplex if Λ and
all its faces admit an ε-weak witness.

Chapter 4. Persistent Homology 35

Figure 4.5: Left is a strong witness complex and right a weak witness complex.

Example 4.10 In Figure 4.5 we can see a strong witness complex on the left and a weak
witness complex on the right. Landmarks are depicted as black points and the rest of the
metric space X as blue points. The strong witness complex can be accomplished by choosing
ε to be the distance from the smallest dashed circle to the landmark in the middle. In the left
setup, we would not end up with the complex depicted for the same ε, when constructing a
strong witness complex. The complex depicted is a weak witness complex.

4.2 Persistence Vector Spaces and Structure Theorem

We now apply Hn to families of complexes for increasing threshold parameter. In
the case of the Rips complex, we want to apply Hn to {VR(X, R)}R∈R to obtain the
family {Hn(VR(X, R))}R∈R of vector spaces. In the following, we define persistence
vector spaces and state and prove the structure theorem.

Definition 4.11 (Filtration) A family of complexes defined as {Xr}r such that Xr ⊆ Xr′

for r ≤ r′ is called a filtration.

Definition 4.12 (Persistence Vector Space) Let k be a field. A persistence vector
space over k is a family of k vector spaces {Vr}r∈R together with linear transformations
LV(r, r′) : Vr → Vr′ for r ≤ r′ such that LV(r′, r′′) · LV(r, r′) = LV(r, r′′) for all
r ≤ r′ ≤ r′′.

Example 4.13 The family of Rips complexes {VR(X, R)}R∈R defines a filtration. In fact,
all the complexes defined in Section 4.1 define filtrations for increasing scale parameter.

36 4.2. Persistence Vector Spaces and Structure Theorem

Definition 4.14 (Sub-Persistence Vector Space) Let Ur ⊆ Vr be a choice of k-subspaces
for all r ∈ R. It is called a sub-persistence vector space of {Vr}r if LV(r, r′)(Ur) ⊆ Ur′ for
all r ≤ r′.

Definition 4.15 (Linear Transformation) A linear transformation f of persistence vector
spaces over k from {Vr}r to {Wr}r is a family of linear transformations fr : Vr →Wr, such
that for all r ≤ r′ the diagram below commutes.

Vr Vr′

Wr Wr′

LV(r,r′)

fr fr′

LW(r,r′)

Example 4.16 For any linear transformation f of persistence vector spaces, the images
{im(f)}r denote a sub-persistence vector space.

Definition 4.17 (Quotient Space) Let {Ur}r ⊆ {Vr}r be a sub-persistence vector space.
The persistence vector space {Vr/Ur}r together with the induced linear transformation
LV/U(r, r′) : Vr/Ur → Vr′/Ur′ , given by [v] 7→ [LV(r, r′)(v)] for v ∈ Vr is called a
quotient space.

Definition 4.18 (R+-Filtered Set) Let X be a set and ρ : X → [0,+∞) be a positive map.
The pair (X, ρ) is called a R+-filtered set. The free persistence vector space {Vk(X, ρ)r}r is
then defined as Vk(X, ρ)r ⊆ Vk(X), where Vk(X, ρ)r is given by the k-linear span of the
set Xr := ρ−1([0, r]).

Remark 4.19 If X is finite, then for some large enough r we obtain Vk(X, ρ)r = Vk(X),
since Xr = X holds for r = max ρ(x).

Example 4.20 Let X = (V(X), Σ(X)) be an abstract simplicial complex with vertices
V(X) = {A, B, C, D} and simplices Σ(X) = {A, B, C, D, AB, AC, AD, BC, CD, ACD}
and let ρ : X → [0,+∞) be a map such that we get a filtration as in Figure 4.6. We now
compute the persistence vector spaces for the corresponding n-chains Cn(X):

Chapter 4. Persistent Homology 37

C0(X)r =


⟨A, B⟩ for r ∈ [0, 1)

⟨A, B, C⟩ for r ∈ [1, 2)

⟨A, B, C, D⟩ for r ∈ [2,+∞)

C1(X)r =



{0} for r ∈ [0, 1)

⟨AB⟩ for r ∈ [1, 2)

⟨AB, AC, AD, CD⟩ for r ∈ [2, 3)

⟨AB, AC, AD, BC, CD⟩ for r ∈ [3,+∞)

C2(X)r =

{0} for r ∈ [0, 4)

⟨ACD⟩ for r ∈ [4,+∞).

A B

CC

A B

CC

A B

CD

A B

CD

A B

CD

Figure 4.6: Filtration of the complex X for times r = 0, . . . , 4.

Definition 4.21 A persistence vector space {Vr}r is called free if it is isomorphic to a
free persistence vector space of the form {Vk(X, ρ)r}r. It is called finitely generated if X
can be chosen to be finite. It is called finitely presented if it is isomorphic to a persistence
vector space of the from {Wr}r/ im(f) for some linear transformation f : {Vr}r → {Wr}r

between finitely generated free persistence vector spaces.

Example 4.22 Recall the persistence vector spaces for the n-chains Cn(X) from Example
4.20. Since X is a R+-filtered set, the Cn(X) are free. Since X is a finite set, the Cn(X)

are finitely generated and since we can choose f to be the zero map, the Cn(X) are finitely
presented.

Example 4.23 (Interval Persistence Vector Space) Let k be a field, a ∈ R+ and
b ∈ R+ ∪ {+∞} with a < b. The persistence vector space P(a, b) = {P(a, b)r}r∈R+ with

P(a, b)r =

k for r ∈ [a, b)

{0} otherwise,

38 4.2. Persistence Vector Spaces and Structure Theorem

together with the linear transformations LP(a,b)(r, r′) for r ≤ r′ given by

LP(a,b)(r, r′) =

idk for r ≤ r′ ∈ [a, b)

0 otherwise ,

resembles a finitely presented persistence vector space. In particular,

P(a, b) ∼= {Vk(X, ρ)r}r/ im(f),

where X = {x}, ρ(x) = a and fr : Vk(X, ρ)r → Vk(X, ρ)r, x 7→ x for all r ∈ [b,+∞)

and x 7→ 0 otherwise.

Proposition 4.24 The linear combination ∑x axx ∈ Vk(X) lies in Vk(X, ρ)r if and only if
ax = 0 for all x with ρ(x) > r.

The proof follows directly from the definition of {Vk(X, ρ)r}r, as it is the k-linear
span of the persistence set Xr = ρ−1([0, r]).

The choice of a basis for vector spaces Vr and Wr allow us to represent linear
transformations from {Vr}r to {Wr}r by matrices. By choosing {Vr}r and {Wr}r to
be persistence vector spaces of the form {Vk(Y, σ)r}r and {Vk(X, ρ)r}r such matrices
can be described as follows.

Definition 4.25 ((ρ, σ)-Adapted) Let (X, Y) be a pair of finite sets and k a field. An
(X, Y)-matrix is given by an array [axy] over k. For two R+-filtered sets (X, ρ) and (Y, σ),
a (X, Y)-matrix is called (ρ, σ)-adapted if axy = 0 whenever ρ(x) > σ(y).

Example 4.26 Let us revisit the complex X from Example 4.20. Denote by ρi the restriction
of ρ to the i-simplices. The boundary maps of X to are,

∂1 =

AB AC AD BC CD


A 1 1 1 0 0
B 1 0 0 1 0
C 0 1 0 0 1
D 0 0 1 1 1

, ∂2 =

ACD


AB 0
AC 1
AD 1
CD 1
BC 0

.

Since an i-simplex τ can only appear after all of its faces have appeared in the filtration,
ρi(τ) ≥ ρi−1(τm) for all τm ⊂ τ. Thus, the boundary map ∂1 is (ρ0, ρ1)-adapted and ∂2 is
(ρ1, ρ2)-adapted. More generally, a boundary map ∂i is (ρi−1, ρi)-adapted for all i > 0.

Chapter 4. Persistent Homology 39

For any pair of finite sets (X, Y) over k and any (X, Y)-matrix, we denote the
row corresponding to the vertex x ∈ X by r(x) and the column corresponding to
the vertex y ∈ X by c(y). Assume we have finitely generated free persistence vector
spaces {Vk(X, ρ)r}r and {Vk(Y, σ)r}r. By Remark 4.19 we know that {Vk(X, ρ)r}r

and {Vk(Y, σ)r}r attain their maximum, i.e. for r = max{max ρ(x), max σ(y)}
we get that {Vk(X, ρ)r}r = Vk(X) and {Vk(Y, σ)r}r = Vk(Y). Thus, for any linear
transformation f : {Vk(Y, σ)r}r → {Vk(X, ρ)r}r of finitely generated free persistence
vector spaces, f gives a linear transformation f∞ : Vk(Y) → Vk(X) between finite
dimensional vector spaces, that sends the basis elements {x}x∈X to {y}y∈Y. The
linear transformation f can be represented by a (X, Y)-matrix A(f) = [axy].

Proposition 4.27 The (X, Y)-matrix A(f) is (ρ, σ)-adapted. Any (ρ, σ)-adapted (X, Y)-
matrix A uniquely determines a linear transformation of persistence vector spaces

fA : {Vk(Y, σ)r}r → {Vk(X, ρ)r}r.

In particular, the correspondences f 7→ A(f) and A 7→ fA are inverses to each other.

Proof. Notice that the basis vector y lies in Vk(Y, σ)σ(y). Write

f (y) = ∑
x∈X

axyx.

Using Proposition 4.24 we follow that f (y) lies in Vk(Y, σ)σ(y) if and only if axy = 0,
for all ρ(x) > σ(y), i.e. A(f) is (ρ, σ)-adapted.

Proposition 4.28 Let (X, ρ) and (Y, σ) be R+ filtered finite sets and let A be a (ρ, σ)-
adapted (X, Y)-matrix. Then A determines a finitely presented persistent vector space θ(A)

via the map A θ−→ Vk(X, ρ)/ im(fA).

Proof. This is an immediate consequence of Proposition 4.27 and the definition of
finitely generated persistence vector spaces.

Example 4.29 Let k be a field, a ∈ R+ and b ∈ R+ ∪ {+∞} with a < b. Let (X, ρ)

and (Y, σ) be R+-filtered sets where X = {x} and Y = {y} together with ρ(x) = a and
σ(y) = b < +∞. The persistence vector space of (X, ρ) is of the form {Vk(X, ρ)r}r with

Vk(X, ρ)r ∼=

k for r ≥ a

{0} otherwise.

40 4.2. Persistence Vector Spaces and Structure Theorem

We derive the (1× 1) (ρ, σ)-adapted (X, Y)-matrix

A =
(y, b)()

(x, a) 1 ,

where (x, a) denotes the row x appearing at time a and (y, b) denotes the column y
appearing at time b. The matrix A maps y ∈ Y that appears at time σ(y) = b > a to
x ∈ X that appears at time ρ(x) = a, thus we obtain

im(fA)r =

k for r ≥ b

{0} otherwise .

We follow that

θ(A)r = (Vk(X, ρ)/ im(fA))r =

k for r ∈ [a, b)

{0} otherwise.

Conclude that θ(A) ∼= P(a, b). If we assume that b = +∞ then im(fA)r = {0} for all r
and we get that θ(A) ∼= P(a, b) ∼= Vk(X, ρ).

The next statement is a criterion for when two finitely presented vector spaces
are isomorphic. This will be an essential result to determine the persistent homology
of filtrations.

Proposition 4.30 Let (X, ρ) and (Y, σ) be R+-filtered sets and let A be a (ρ, σ)-adapted
(X, Y)-matrix. Let B be a (ρ, ρ)-adapted invertible (X, X)-matrix and C be a (σ, σ)-adapted
invertible (Y, Y)-matrix. Then the matrix BAC is (ρ, σ)-adapted and the persistence vector
space θ(A) is isomorphic to θ(BAC).

Proof. For the (ρ, σ)-adaptedness, we just show that BA is (ρ, σ)-adapted. The rest
is calculated analogously. Let B = [bx′x] and A = [axy] for x, x′ ∈ X and y ∈ Y. The
matrix BA = [dx′y] has entries

dx′y = ∑
x∈X

bx′xaxy.

Since B is (ρ, ρ)-adapted and A is (ρ, σ)-adapted we have bx′x = 0 for ρ(x′) > ρ(x)
and axy = 0 for ρ(x) > σ(y). Let ρ(x′) > σ(y). Then ρ(x′) > ρ(x) or ρ(x) > σ(y),
thus bx′x = 0 or axy = 0. In particular, dx′y = 0 for ρ(x′) > σ(y). We conclude that
BA is (ρ, σ)-adapted.

Chapter 4. Persistent Homology 41

We now want to show that θ(A) ∼= θ(BAC). Write (fBAC)r = (fB)r · (fA)r · (fC)r

for all r ∈ R, or just fBAC = fB · fA · fC. Notice that (fB)r and (fC)r define
isomorphisms on Vk(X, ρ)r and Vk(Y, σ) respectively. Fix r ∈ R and consider the
vector space

θ(A)r = (Vk(X, ρ)/ im(fA))r,

and

θ(BAC)r = (Vk(X, ρ)/ im(fBAC))r.

Notice, it is enough to show that im((fA)r) ∼= im((fBAC)r), which holds since

im((fBAC)r) ∼= im((fB)r · (fA)r · (fC)r)

∼= im((fB)r · (fA)r) (1)
∼= im((fB)r | im((fA)r)

)

∼= im((fA)r). (2)

Isomorphism (1) holds since (fC)r defines an isomorphism. (2) holds since (fB)r

defines an isomorphism.

We now define operations that correspond to left-multiplication with matrices
like B and right-multiplication with matrices like C.

Definition 4.31 (Adapted Row and Column Operations) Let (X, ρ) and (Y, σ) be
R+-filtered sets and let A be a (ρ, σ)-adapted (X, Y)-matrix.

• For x, x′ ∈ X with x ̸= x′ an adapted row operation adds a multiple of row r(x)
to r(x′), when ρ(x) ≥ ρ(x′), multiplies a row by a non-zero element or exchanges
rows.

• For y, y′ ∈ Y with y ̸= y′ an adapted column operation adds a multiple of column
c(y) to c(y′), when σ(y) ≤ σ(y′), multiplies a column by a non-zero element or
exchanges columns.

The following two results are crucial to uniquely classify finitely presented
persistence vector spaces. They serve as a cornerstone in analyzing persistent
homology.

42 4.2. Persistence Vector Spaces and Structure Theorem

Theorem 4.32 (Structure Theorem) Every finitely presented persistence vector space
over k is isomorphic to a finite direct sum of the form

P(a1, b1)⊕ . . .⊕ P(an, bn)

for some choices of ai ∈ R+ and bi ∈ R+ ∪ {+∞} with ai < bi for all i ∈ {1, . . . , n}.

Proof. Let A be a (ρ, σ)-adapted (X, Y)-matrix such that every row and every
column has at most one non-zero element, which is equal to 1. Up to swapping
rows or columns, we can assume that A is of block diagonal form such that,

A =

(
In 0
0 0

)
.

Let {(x1, y1), . . . , (xn, yn)} be all the pairs such that axiyi = 1. We obtain

θ(A) = Vk(X, ρ)/ im(fA)

=
⊕

i∈{1,...,n}
Vk(xi, ρ)/ im(fA |⟨xi⟩)⊕

⊕
x∈X∖{x1,...,xn}

Vk(x, ρ)/ im(fA |⟨x⟩)

∼=
⊕

i∈{1,...,n}
P(ρ(xi), σ(yi))⊕

⊕
x∈X∖{x1,...,xn}

P(ρ(x),+∞),

where the last isomorphism follows from Example 4.29. Therefore, it suffices to
show that there exists a (ρ, ρ)-adapted invertible (X, X)-matrix B and a (σ, σ)-
adapted invertible (Y, Y)-matrix C such that BAC is a (ρ, σ)-adapted (X, Y)-matrix
such that every row and every column has at most one non-zero element, which is
equal to 1. For this, we apply adapted row and column operations on A. Recall
that adapted row and column operations consist of the following operations:

1. Multiply a row or a column by a non-zero element.

2. Add a multiple of row r(x) to r(x′) when ρ(x) ≥ ρ(x′) and x ̸= x′.

3. Add a multiple of column c(y) to c(y′) when σ(y) ≤ σ(y′) and y ̸= y′.

Over all y ∈ Y with at least one non-zero element in c(y), we now choose y such
that σ(y) is minimized. If there is no such y, we are already done. Next, over all
x ∈ X such that axy ̸= 0, we choose x such that ρ(x) is maximized. The way we
have chosen x, we can add multiples of r(x) to all other rows. We can perform
adapted row operations such that all entries in c(y) are zero except axy. The way
we have chosen y, we can add multiples of c(y) to all other columns, so that
all entries in r(x) are zero except axy. We now multiply r(x) (or c(x)) by a−1

xy to

Chapter 4. Persistent Homology 43

get that r(x) and c(y) has exactly one non-zero element 1. By deleting r(x) and
c(y), we obtain a (ρ′, σ′)-adapted (X∖{x}, Y∖{y})-matrix where ρ′ and σ′ are the
restrictions of ρ and σ to X∖{x} and Y∖{y}, respectively. By induction, we arrive
at a matrix with only zero entries. The composition of all the previous operations
gives us a (ρ, ρ)-adapted invertible (X, X)-matrix B and a (σ, σ)-adapted invertible
(Y, Y)-matrix C such that BAC is a (ρ, σ)-adapted (X, Y)-matrix such that ever row
and column has at most one non-zero element, which is equal to 1. We conclude
using Proposition 4.30.

Theorem 4.33 (Uniqueness) Suppose that {Vr} is a finitely presented persistence vector
space over k and that we have two decompositions

{Vr} ∼=
⊕
i∈I

P(ai, bi) ∼=
⊕
j∈J

P(cj, dj),

where |I|, |J| < +∞. Then |I| = |J| and the set of pairs (ai, bi) with multiplicities equal
the set of pairs (cj, dj) with multiplicities.

Proof. Let amin and cmin denote the smallest value of ai and ci, respectively. Notice,
we can write amin = min{r | Vr ̸= 0} = cmin. Thus amin = cmin. Now define
the minima bmin = min{bi | ai = amin} and dmin = min{di | ci = cmin}. Notice,
we can write bmin = min{r′ | ker(LV(r, r′)) ̸= 0} = dmin, thus bmin = dmin. This
means P(amin, bmin) = P(cmin, dmin) both appear in decompositions. They can be
characterized as the sub-persistence vector space {Wr} := ker

(
L(r, bmin)|L(amin,r)

)
where

L(r, bmin)|L(amin,r) : im(L(amin, r))→ Vbmin .

It now follows that the number of summands of the form P(amin, bmin) in both
decompositions are the same, that is for I′ := {i | ai = amin and bi = bmin} and
J′ := {i | ci = cmin and di = dmin} we have |I′| = |J′|. We then obtain the following
identification.

{Vr}/{Wr} ∼=
⊕

i∈I∖I′
P(ai, bi) ∼=

⊕
j∈J∖J′

P(cj, dj),

We conclude by induction.

The isomorphism classes of finitely presented persistence vector spaces can be
represented as barcodes, which are families of intervals in R and persistence diagrams,
which are generally represented as points in the plane R2 above the diagonal, that
is as points in {(x, y) | x ≥ 0 and y > x}.

44 4.3. Bottleneck Distance and Stability Theorem

Definition 4.34 (Barcode) Let {Vr} ∼=
⊕n

i=1 P(ai, bi) be a finitely presented persistence
vector space. The barcode on {Vr} is then defined by the family of disjoint intervals
[a1, b1), . . . [an, bn) ⊆ R.

Definition 4.35 (Persistence Diagram) Let {Vr} ∼=
⊕n

i=1 P(ai, bi) be a finitely pre-
sented persistence vector space. The persistence diagram on {Vr} is then defined by the
collection of points {(ai, bi) | i ∈ {i, . . . , n}}. Points with bi = +∞ are plotted above the
diagram.

Definition 4.36 (Persistent Homology Group) For n ≥ 0 the persistent homology
group of the filtration {Xρ,r}r, as a R+-filtered set with filtration function ρ : X → R+, is
the persistence quotient space

{Hn(Xρ,r)}r = {Zn(Xρ,r)/Bn(Xρ,r)}r,

where Zn(Xρ,r) = ker(∂n) and Bn(Xρ,r) = im(∂n+1).

Note that, for finite sets X, we now can apply the structure theorem to obtain a
unique identification

{Hn(Xρ,r)}r ∼=
⊕
i∈I

P(ai, bi) .

Intuitively, each summand P(ai, bi) represents a n-dimensional hole that persists in
the interval [ai, bi), meaning it appears at time ai and disappears at time bi.

Example 4.37 Consider the Rips complex from Figure 4.3. Computing the persistent
homology gives {H0(Xρ,r)}r ∼= P (0,+∞)⊕ P (0, 1)3, and {H1(Xρ,r)}r ∼= P

(
1,
√

2
)

.
The corresponding barcode and persistence diagram are plotted in Figure 4.7. We see that
there are three connected components that persist for R ∈ [0, 1) and one that persists for
R ∈ [0,+∞). We also see that there is one loop that persists for R ∈ [1,

√
2).

4.3 Bottleneck Distance and Stability Theorem

One important property to understand is how barcodes and persistence diagrams
change when we have small changes in the data. In order to quantify small changes
and the stability of barcodes, we define the bottleneck distance between barcodes
and state the stability theorem for tame functions.

For any pair of intervals I = [a1, b1] and J = [a2, b2], let ∆(·, ·) denote the
l∞-distance, i.e. ∆(I, J) = max (|a2 − a1| , |b2 − b1|). For a given interval I = [a, b],

Chapter 4. Persistent Homology 45

Figure 4.7: Left is the barcode and right the persistence diagram of the homology
groups computed for the complex in Figure 4.7. H0 is represented as black and H1
is represented as red.

let λ(I) = (b− a)/2. λ(I) is the l∞-distance to the closest interval of the form [c, c]
to I.

Definition 4.38 (Penalty and Bottleneck Distance) Given two families I = {Iα}α∈A

and J =
{

Jβ

}
β∈B of intervals, for finite sets A and B, and any bijection θ from a subset

A′ ⊆ A to B′ ⊆ B, the penalty of θ is

P(θ) = max
(

max
α∈A′

(
∆
(

Iα, Jθ(α)

))
, max

α∈A−A′
(λ (Iα)) , max

β∈B−B′

(
λ
(

Jβ

)))
and the bottleneck distance d∞(I ,J) is

min
θ

P(θ),

where the minimum is taken over all possible bijections from subsets of A to subsets of B.

Let X be a topological space, and let f : X → R be a real-valued function on
X. For every non-negative integer n, a ∈ R, and ε ∈ (0,+∞), we have the induced
map

j = jn,a,ε : Hn(f−1[a + ε,+∞))→ Hn(f−1[a− ε,+∞)).

46 4.4. Computing Persistent Homology

Definition 4.39 (Homological Critical Value and Tame) We say that a is a homological
critical value of f if there is a n such that jn,a,ε fails to be an isomorphism for all sufficiently
small ε. Further, we say that the function f is tame if it has a finite number of homological
critical values and the homology groups Hn(f−1[a,+∞)) are finite-dimensional for all
n ∈N and a ∈ R.

Theorem 4.40 (Stability Theorem for Tame Functions) Let X be any space homeo-
morphic to a simplicial complex, and suppose f , g : X → R are continuous tame functions.
Then the persistence vector spaces

{
Hn
(

f−1([a,+∞))
}

a and
{

Hn
(

g−1([a,+∞))
}

a are
finitely presented. We denote the barcodes as βn f and βng. Moreover, for any n ∈N, we
have that

d∞ (βn f , βng) ≤ ∥ f − g∥∞.

A proof can be found in ’Stability of Persistence Diagrams‘ by Cohen-Steiner et
al. [10].

4.4 Computing Persistent Homology

We now want to come back to the underlying problem of computing persistent
homology. In the following section, we give an algorithm that simultaneously
calculates {Zn(Xρ,r)}r = ker(∂n) and {Bn(Xρ,r)}r = im(∂n+1) and in addition
provides generators for the respective spaces to then compute persistent homology.

Definition 4.41 (Admissible Operations) Let (X, ρ), (Y, σ) and (Z, τ) be R+-filtered
sets. Let (A, B) be a pair of two matrices such that A is a (ρ, σ)-adapted (X, Y)-matrix,
B is a (σ, τ)-adapted (Y, Z)-matrix and A · B = 0. Then admissible operations on such a
pair consist of the following:

1. An arbitrary adapted row operation on A.

2. An arbitrary adapted column operation on B.

3. Perform a column operation on A and a row operation on B simultaneously, with the
operations related as follows.

• If the adapted column operation on A is a multiplication of the i-th column by
a non-zero constant a, then the row operation on B is a multiplication of the
i-th row by a−1.

Chapter 4. Persistent Homology 47

• If the adapted column operation on A is the transposition of two columns, then
the row operation on B is the transposition of the corresponding rows of B.

• If the adapted column operation on A is the addition of a times the i-th column
to the j-th column, then the adapted row operation on B is the subtraction of a
times the j-th row from the i-th row.

Proposition 4.42 Let (X, ρ), (Y, σ) and (Z, τ) be R+-filtered sets. Let (A, B) be a
pair of two matrices such that A is a (ρ, σ)-adapted (X, Y)-matrix, B is a (σ, τ)-adapted
(Y, Z)-matrix and A · B = 0. By performing admissible operations on (A, B) we can
obtain a pair (A′, B′) such that

(A′, B′) =


In 0 0

0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 0 Im


 ,

where there are n, l and m columns in the leftmost, middle, and rightmost blocks of columns
of A and consequently n, l and m rows in the top, middle, and bottom blocks of rows of B.

Proof. We first perform arbitrary adapted row and column operations to A, making
sure to apply the corresponding adapted row operations to B whenever an adapted
column operation is applied to A, to obtain a pair (A′, B′) of the form

(A′, B′) =


In 0 0

0 0 0
0 0 0

 ,

B′11 B′12 B′13

B′21 B′22 B′23

B′31 B′32 B′33


 .

Because of the condition A′ · B′ = 0, we follow that B′11 = B′12 = B′13 = 0. Write

B′ =

 0 0 0
B′21 B′22 B′23

B′31 B′32 B′33

 .

We perform only adapted row operations involving the last l + m rows, since
the upper n rows are identically zero. Each such adapted row operation has a
corresponding adapted column operation on the matrix A which affects only the
rightmost l + m columns, and therefore has no effect. We now perform adapted
operations to get a matrix of the form

B′′ =

0 0 0
0 0 0
0 0 Im

 .

48 4.4. Computing Persistent Homology

That this representation is unique is clear from the fact that n and m are the ranks
of the matrices A and B, respectively. We conclude.

If we now have A ≡ ∂i and B ≡ ∂i+1 and if there are n, l and m columns
in the leftmost, middle, and rightmost blocks of columns of A respectively and
consequently n, l and m rows in the top, middle, and bottom blocks of rows of B,
respectively, then the dimension of the homology is l, since Hi = ker(∂i)/ im(∂i+1).
Note that here we used that the row and column operations correspond to isomor-
phisms that imply ker(A) ∼= ker(A′) and im(B) ∼= im(B′).

Example 4.43 Let us consider the family of Rips complexes for increasing R, given by the
vertices A = (0, 0), B = (1

2 , 0), C = (1
2 , 1

2), D = (0, 1
2), similar to Figure 4.3.

A

D C

B

R ∈ [0, 1
2)

R ∈ [1
2 ,
√

2
2) R ∈ [

√
2

2 , ∞)

This means, we have the abstract simplicial complex X = (V(X), Σ(X)) with

V(X) = {A, B, C, D},
Σ(X) = {A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD},

and the persistence vector spaces of the i-chains

C0(X)r =
{
⟨A, B, C, D⟩ for r ∈ [0,+∞)

C1(X)r =


{0} for r ∈ [0, 1

2)

⟨AB, AD, BC, CD⟩ for r ∈ [1
2 ,
√

2
2)

⟨AB, AC, AD, BC, BD, CD⟩ for r ∈ [
√

2
2 ,+∞)

C2(X)r =

{0} for r ∈ [0,
√

2
2)

⟨ABC, ABD, ACD, BCD⟩ for r ∈ [
√

2
2 ,+∞)

C3(X)r =

{0} for r ∈ [0,
√

2
2)

⟨ABCD⟩ for r ∈ [
√

2
2 ,+∞).

Chapter 4. Persistent Homology 49

In order to compute the persistent homology, we now perform admissible operations from
Definition 4.41 as in Proposition 4.42 and 4.32. We perform operations on the boundary
maps ∂i, by first bringing ∂i into block diagonal form diag(In, 0) and then bringing ∂i+1 to
block diagonal form diag(0, Im). Note that we only update the generators for the 1-simplices
on ∂1 and 2-simplices on ∂2, since for calculating the persistent homology, we are only
interested in them. But keep in mind that for getting the correct representation of our maps,
we would also have to update all the 0- and 1-simplices of both matrices. When referring
to the row of a 1-simplex, we mean the corresponding row of ∂2. The calculations work as
follows:

[∂1 , ∂2] =


(AB, 1

2) (AD, 1
2) (BC, 1

2) (CD, 1
2) (AC,

√
2

2) (BD,
√

2
2) (A) 1 1 0 0 1 0

(B) 1 0 1 0 0 1
(C) 0 0 1 1 1 0
(D) 0 1 0 1 0 1

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


1 1 0 0
0 1 1 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1


r(B)→r(B)+r(A)−−−−−−−−−→


(AB, 1

2) (AD, 1
2) (BC, 1

2) (CD, 1
2) (AC,

√
2

2) (BD,
√

2
2) 1 1 0 0 1 0

0 1 1 0 1 1
0 0 1 1 1 0
0 1 0 1 0 1

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


1 1 0 0
0 1 1 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1


c(AD)→c(AD)+c(AB)
c(AC)→c(AC)+c(AB)−−−−−−−−−−−−→

consequently
r(AB)→r(AD)+r(AC)

50 4.4. Computing Persistent Homology


(AB, 1

2) (AD + AB, 1
2) (BC, 1

2) (CD, 1
2) (AC + AB,

√
2

2) (BD,
√

2
2) 1 0 0 0 0 0

0 1 1 0 1 1
0 0 1 1 1 0
0 1 0 1 0 1

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


0 0 0 0
0 1 1 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1


r(D)→r(D)+r(B)−−−−−−−−−→


(AB, 1

2) (AD + AB, 1
2) (BC, 1

2) (CD, 1
2) (AC + AB,

√
2

2) (BD,
√

2
2) 1 0 0 0 0 0

0 1 1 0 1 1
0 0 1 1 1 0
0 0 1 1 1 0

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


0 0 0 0
0 1 1 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1



c(BC)→c(BC)+c(AD+AB)
c(AC+AB)→c(AC+AB)+c(AD+AB)

c(BD)→c(BD)+c(AD+AB)−−−−−−−−−−−−−−−−−−−−→
consequently

r(AD+AB)→r(AD+AB)+r(BC)
+r(AC+AB)+r(BD)

Define c0 := CD + BC + AD + AB, c1 := AC + BC + AB and c2 := BD + AD +

AB.
(AB, 1

2) (AD + AB, 1
2) (BC + AD + AB, 1

2) (CD, 1
2) (AC + AD,

√
2

2) (c2,
√

2
2) 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 0

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


0 0 0 0
0 0 0 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1


r(D)→r(D)+r(C)−−−−−−−−−→

Chapter 4. Persistent Homology 51


(AB, 1

2) (AD + AB, 1
2) (BC + AD + AB, 1

2) (CD, 1
2) (AC + AD,

√
2

2) (c2,
√

2
2) 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 0

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


0 0 0 0
0 0 0 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1



c(CD)→c(CD)+c(BC+AD+AB)
c(AC+AD)→c(AC+AD)

+c(BC+AD+AB)−−−−−−−−−−−−−−−−−−→
consequently

r(BC+AD+AB)→r(BC+AD+AB)
+r(CD)+r(AC+AD)


(AB, 1

2) (AD + AB, 1
2) (BC + AD + AB, 1

2) (c0, 1
2) (c1,

√
2

2) (c2,
√

2
2) 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

,

(ABC,
√

2
2) (ABD,

√
2

2) (ACD,
√

2
2) (BCD,

√
2

2)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1
1 0 1 0
0 1 0 1


rearrange columns

of ∂i+1−−−−−−−−−→

Now that ∂1 is of the desired form, we perform adapted operations on ∂i+1 that do not
change ∂i, apart from having to update generators of the kernel.

52 4.4. Computing Persistent Homology


(AB, 1

2) (AD + AB, 1
2) (BC + AD + AB, 1

2) (c0, 1
2) (c1,

√
2

2) (c2,
√

2
2) 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

,

(BCD,
√

2
2) (ACD,

√
2

2) (ABC,
√

2
2) (ABD,

√
2

2)


0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 1 1 0
1 0 0 1


c(BCD)→c(BCD)+c(ACD)+c(ABC)
+c(ABD)c(ACD)→c(ACD)+c(ABC)−−−−−−−−−−−−−−−−−−−−→

Define b0 := BCD + ACD + ABC + ABD


(AB, 1

2) (AD + AB, 1
2) (BC + AD + AB, 1

2) (c0, 1
2) (c1,

√
2

2) (c2,
√

2
2) 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

,

(b0,
√

2
2) (ACD + ABC,

√
2

2) (ABC,
√

2
2) (ABD,

√
2

2)


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

Recall that H1 = ker(∂1)/ im(∂2), thus, we can now read off the persistence vector
space of the first homology group of the Rips-filtration of X by looking at the restriction
∂2| ker(∂1

):

(b0,
√

2
2) (ACD + ABC,

√
2

2) (ABC,
√

2
2) (ABD,

√
2

2)()
(c0, 1

2) 0 1 0 0
(c1,

√
2

2) 0 0 1 0
(c2,

√
2

2) 0 0 0 1
.

Recall c0 := CD + BC + AD + AB, c1 := AC + BC + AB, c2 := BD + AD + AB
and b0 := BCD + ACD + ABC + ABD. Since we are only interested in the image of

Chapter 4. Persistent Homology 53

∂2| ker(∂1
), we can simply ignore the column corresponding to b0. We can now read off,

when the cycles in the kernel of ∂1 appear and when they disappear. The cycle c0 appears at
time 1

2 and corresponds to the sum of the edges of the square below. It disappears at time
√

2
2

as it gets filled in by the sum of the two 2-simplices ACD + ABC. The two other cycles c1

and c2 appear at the same time as they get filled in by ABC and ABD respectively.

A

D C

B

R ∈ [0, 1
2)

R ∈ [1
2 ,
√

2
2) R ∈ [

√
2

2 , ∞)

We conclude that

{H1(Xρ,r)}r ∼= P

(
1
2

,

√
2

2

)
.

Similarly, we can calculate that

{H0(Xρ,r)}r ∼= P (0,+∞)⊕
2⊕

i=0

P
(

0,
1
2

)
∼= P (0,+∞)⊕ P

(
0,

1
2

)3

,

and for n > 1

{Hn(Xρ,r)}r ∼= {0} .

54 4.4. Computing Persistent Homology

Figure 4.8: Left is the barcode and right the persistence diagram of the homology
groups computed in Example 4.43. H0 is represented as black and H1 is represented
as red.

Chapter 5

Topological Mode Analysis Tool

After looking at examples of clustering schemes and introducing persistent homol-
ogy, we now discuss a clustering scheme, called topological mode analysis tool, in short
ToMATo. It combines ideas from the previous chapters, as it is a graph-based hill-
climbing algorithm with a cluster merging step guided by persistence. This chapter
is based on ’Persistence-Based Clustering in Riemannian Manifolds‘ by Frédéric
Chazal, et al. [11]. The results we provide can be generalized from Euclidean spaces
to Riemannian manifolds, together with the corresponding Riemannian metric and
Hausdorff measure.

5.1 Continuous Setting

To give a better intuition, we first consider the continuous setting. Our goal is to
find a suitable partitioning of the space U (in the discrete setting a clustering), given
some density function f , that represents how likely it is that data points appear in
some region of our space U. Now, let f : U → R, with U ⊆ Rd be a C2-continuous
density function with non-degenerate critical points, that is, the Hessian

H f (x) :=
(

∂2 f
∂xi∂xj

(x)
)

1≤i,j≤d
,

is invertible at all critical points. Assume f has a finite number of critical points.
The goal now is to find a suitable partitioning of U that represents how we would
cluster points that are sampled by the distribution according to f .

Definition 5.1 (Ascending Region) The ascending region of a critical point mp, denoted
as A(mp) ⊆ U, is the subset of points in Euclidean space that reach mp by moving along

56 5.1. Continuous Setting

the flow induced by the gradient vector field of f . For all x ∈ A(mp), we call mp the root
of x, denoted as r(x) = mp.

Example 5.2 Revisiting Figure 2.5 the ascending regions are depicted with arrows,
indicating the flow induced by the gradient vector field to the roots p and q. Note that s
does not belong to any ascending region, since ∇ f (s) = 0. Assuming U does not have a
boundary yields that it can be covered by ascending regions up to a set with measure zero.

Definition 5.3 (Superlevel-Sets) The set Fα := f−1([α,+∞)) is called the superlevel-
set of index α ∈ R. For any x ∈ U and α ∈ R let C(x, α) ⊆ Fα denote the path-connected
component of Fα containing x.

Definition 5.4 (Superlevel-Set Filtration) We call the collection of superlevel-sets{
f−1([α,+∞))

}
α∈R+

a superlevel-set filtration.

Intuitively, this filtration captures which subsets of U have higher probability to
be drawn than others. More precisely, regions with higher density appear earlier in
the filtration. Note, in order for {Fα}α to resemble a filtration, we have to let α go
from +∞ to −∞. So for the scope of this chapter, we will let α flow backwards.

Example 5.5 In Figure 5.1 the superlevel-sets in the filtration can be distinguished by
different shades of grey. Let mp be the local maximum of f at point p and f (mp) = α1.
Looking at the homology group H0({Fα}α), that counts the number of path-connected
components, we observe that mp is a generator of C(mp, α1), which appears at time α1

Chapter 5. Topological Mode Analysis Tool 57

in the superlevel-set filtration {Fα}α. This component disappears when it gets connected
to another path-connected component, generated by the higher peak mq. This process
is called merging. More precisely, this merging process merges C(p, α) into C(q, α) for
α = f (s), while q still remains the generator, and p ceases to be a generator. Moreover, for
α ∈

[
f−1(q), f−1(p)

)
, Fα consists of one component C(q, α). For α ∈

[
f−1(p), f−1(s)

)
,

Fα consists of two components C(q, α) and C(p, α). For α ∈
[

f−1(p), f−1(−∞)
)

again
consists of one component C(q, α).

t0

t1

t2

τC(p,α)

Figure 5.1: Filtration of superlevel-sets of density function f with two peaks [11].

Definition 5.6 (Prominence) Assume we have a persistent homology group with the
decomposition arising from the superlevel-set filtration {H0(Fα)}α

∼=
⊕

i∈I P(ai, bi), where
P(ai, bi) that persists in the interval [ai, bi). The prominence τi of P(ai, bi) is given by
τ = bi − ai ≥ 0.

Example 5.7 Consider the persistence diagram from Figure 5.2. p = (px, py) represents
a persistence vector space P(px, py), the prominence is then given by τ = px − py > 0,
since we have an inverted flow of time. Equivalently, the prominence is the height of the
corresponding component as can be seen in Figure 5.1.

Figure 5.2: Persistence diagram of the filtration of superlevel-sets of density function
f from Figure 5.1 [11].

58 5.1. Continuous Setting

Example 5.8 Consider Figure 5.3. Assume we have a density function f : U → R as can
be seen on the left. Assume we have some estimator f̃ in the middle in blue, inducing the
filtration Fα =

{
f̃−1([α,+∞))

}
α
. We compute the persistent homology groups H0(Fα)

and H0(F̃α) and plot the overlapping persistence diagrams on the right. H0(Fα) is plotted
in red and H0(F̃α) is plotted in blue. The points near the diagonal {(x, y) | x = y}
represent the small peaks in the middle plot. We see that f̃ has two prominent peaks
corresponding to the two prominent peaks of f , by the stability properties of persistence
diagrams. Now, given a threshold parameter τ ≥ 0, we restrict our focus to the peaks x of f
of prominence at least τ, points right from the diagonal τ and consider peaks of prominence
lower than τ, left from the diagonal τ noise. Intuitively, the points of U attracted by mp are
the ones belonging to A(mp) and that are eventually merged into C(mp, α) before being
merged into the component of any other peak of prominence at least τ. This is illustrated in
Figure 5.4.

τ

Figure 5.3: Evolution of the connectivity of the super-level sets of a function f on
the left and of an approximation f̃ in the middle. The corresponding persistence
diagram on the right [11].

Definition 5.9 (Iterated Root Map) Let mq ∈ U be a point with C(mq, α) having
prominence less than τ. Let mp be the peak with C(mp, α) of prominence at least τ, such
that C(mq, α) gets merged into C(mp, α) before merging into any other component of
prominence at least τ. The iterated root map r∗τ is then given by mq 7→ r∗τ(mq) = mp.

Definition 5.10 (Basin of Attraction) The basin of attraction of the peak mp with
prominence at least τ, is given by

Bτ(mp) =
⋃

r∗τ(mq)=mp

A(mq).

Note that Bτ

(
mp
)

contains A
(
mp
)

since mp is a fixed point of r∗τ. More precisely,
we have A

(
mp
)
= B0

(
mp
)
⊆ Bτ

(
mp
)
. In addition, since the iterated root map

Chapter 5. Topological Mode Analysis Tool 59

mq 7→ r∗τ
(
mq
)

is uniquely defined, the basins of attraction form a partition of the
union of all ascending regions. These basins form our target clusters.

Example 5.11 In Figure 5.4 we can see the basins of attraction, with τ as in Figure 5.3,
indicated by arrows. Note that all the smaller peaks are merged into the two most prominent
peaks.

Figure 5.4: Basins of attraction for the estimator of f [11].

5.2 ToMATo Algorithm

The ToMATo algorithm is applied in a discrete setting given some point cloud
in Euclidean space. The goal is to find a suitable clustering using results from
persistent homology. We only look at the zeroth homology group H0, but the
algorithm can be adapted to study any Hn to identify and cluster based on the
n-dimensional features of the data set. We first provide a few definitions.

Definition 5.12 (Rips graph) Given a data set L = {x1, . . . , xn} in a metric space (X, d)
and a parameter δ > 0, the Rips graph Rδ(L) is the graph with a vertex set L, where the
edges are the 1-simplices of the Rips complex.

Note that the Rips graph can be viewed as an ε-neighbourhood graph introduced
in Section 2.2, Spectral Clustering, where we looked at the construction of similarity
graphs.

Definition 5.13 (Trace of a Superlevel-Set) Given a distribution function f : X → R

and a parameter α ∈ R,

Lα = L ∩Fα

60 5.2. ToMATo Algorithm

denotes the trace of the superlevel-set Fα over the data set L.

Example 5.14 Consider Figure 5.4. Lα corresponds to the points in L hat have density
f (l) ≥ α. If we choose α = f−1(p′) then Lα corresponds to the points with larger density
than p′.

Definition 5.15 (Upper-Star Rips Filtration) The upper star rips filtration R f
δ (L), is

the family Rips graphs

R f
δ (L) = {Rδ(Lα)}α∈R.

The name upper star rips filtration stems from the fact that, when a vertex
v ∈ L enters the filtration, the set of edges of Rδ(L) connecting v to other vertices
with higher function values, i.e. its upper star, enters at the same time. Observe
that, even though α ranges over the whole of R, L still is a finite data set and since
Lα ⊆ L, this will give a finite family of graphs Rδ(Lα).

Let L = {x1, . . . , xn} ⊂ Rd be n data points, f ∈ Rn be a n-dimensional vector,
D ∈ Rn×n be a symmetric matrix with non-negative real coefficients and δ, τ > 0
be two parameters. The dimension n represents the n data points, the vector f
represents the density estimator for each point in the corresponding coordinate, the
entries dij = dji of the matrix D represent the distance between the i-th and the j-th
data point, δ represents the parameter for the Rips graph Rδ(L) and τ represents
the parameter for our basins of attraction Bτ(·). Details on how these quantities
can be estimated are provided later in this section.

In a preprocessing step, the ToMATo algorithm computes the Rips graph Rδ(L)
from the input D and δ. The algorithm then mimics within the Rips graph the
construction of the basins of attraction of parameter τ described in the previous
section.

Clustering: First, we iterate over the points of L by decreasing function values
f (xi). At each vertex xi, we approximate the gradient of the underlying probability
density function by connecting xi to its neighbour in the graph Rδ(L) with the
highest function value. If all neighbours of xi have lower function values, then xi is
declared a peak of f with gradient ∇ f (xi) = 0. The collection of these gradients
forms a collection of spanning trees of the graph Rδ(L), where each tree can be
viewed as the analogue of the ascending region in the continuous setting. An
illustration of a clustered data set can be seen in 5.5(c).

Chapter 5. Topological Mode Analysis Tool 61

Algorithm 5 ToMATo Clustering

Input: n-dimensional vector f , n× n symmetric matrix D, parameters δ, τ > 0.
1: Sort the index set L so that f1 ≤ f2 ≤ · · · ≤ fn;
2: Initialize the union-find data structure U ;
3: for i = n to 1 do
4: compute the upper star Si = {(i, j1), · · · , (i, jk)} of vertex i in Rδ(L);
5: if Si = ∅ then {vertex i is a local maximum of f within Rδ(L)}
6: g(i)← null; {g(i) stores the approximate gradient at vertex i}
7: Create a new entry in U containing the tree {i};
8: else {vertex i is not a local maximum of f within Rδ(L)}
9: g(i)← arg maxj∈{j1,...,jk} f (j);

10: Attach vertex i to the tree t containing g(i);
11: U ← Merge(f ,U , i, Si, τ);
12: end if
13: end for

Output: The set of entries e of U satisfying fr(e) ≥ τ.

Merge: To manage merges between trees, we use a union find data structure [12],
where each entry corresponds to a union of trees of the spanning forest. We denote
the root of an entry e (element of the union find data structure, i.e. a collection of
spanning trees), or just r(e), as the vertex contained in e whose function value is
highest. By construction, r(e) is a peak of f in the Rips graph Rδ(L). The merge
of an entry in the union find data structure into another entry is the analogue
to the merge of a basin of attraction into another basin in the continuous setting.
Merges are performed in the order prescribed by persistence. More precisely, we
iterate once again over the vertices of Rδ(L) by decreasing order of function values,
considering at each vertex xi the edges of the upper star of xi in Rδ(L). Letting ei

be the entry of the union-find data structure containing xi, if any edge of the upper
star of xi connects ei to some other entry ej whose root r

(
ej
)

has lower function
value than the root r (ei), then the algorithm prescribes that ej be merged into ei.
We depart from this prescription and perform the merge only if the prominence of
r
(
ej
)
, viewed as a peak of f in the graph Rδ(L), is less than the threshold τ. This

condition comes down to checking whether fr(ej) − fi < τ. Once all non-prominent
neighbouring clusters have been merged into ei, we check whether ei itself should
be merged. Letting e be the neighbouring cluster with the highest root, we merge
ei into e if and only if the prominence of r (ei) is less than τ, i.e. if fr(ei) − fi < τ.
An illustration of merged clusters can be seen in 5.5(d).

The algorithm outputs the collection of entries of the union-find data structure,

62 5.2. ToMATo Algorithm

Algorithm 6 ToMATo Merge

Input: n-dimensional vector f , union find data structure U , integer i, integer
list S = {j1, . . . , jk}, parameter τ > 0.

1: Let ei be the entry of U containing i;
{find entries of U intersecting S whose roots are less than τ-prominent; merge those
into ei}

2: for j ∈ {j1, . . . , jk} do
3: Let ej be the entry of U containing j;
4: if ej ̸= ei and fr(ej) − fi < τ then
5: Remove entry ej from U and attach it to ei;
6: end if
7: end for
{find entry e of U intersecting S whose root is highest}

8: e← null
9: for j ∈ {j1, . . . , jk} do

10: Let ej be the entry of U containing j;
11: if e = null or fr(ej) > fr(e) then
12: e← ej;
13: end if
14: end for
15:
{merge ei into e if the prominence of the root of ei is less than τ}

16: if e ̸= ei and fr(ei) − fi < τ then
17: Remove entry ei from U and attach it to e;
18: end if

Output: updated union find data structure U .

which partitions the input point cloud L into clusters. It only outputs those entries
e whose root r(e) satisfies fr(e) ≥ τ. This additional filtering step is motivated by
the fact that some outliers in the point cloud L may form independent connected
components in the graph Rδ(L) that cannot be merged.

The merging step of the algorithm provides additional feedback in the form
of a collection of intervals, representing the lifespan of an entry in the union find
structure U . The endpoints of the intervals represent the points in the entry appears
and disappears. When the parameter τ is set to +∞, the merging step becomes
the standard persistence algorithm computing the persistent homology H0 of the
upper star filtration R f

δ (L), thus the output collection of intervals corresponds to
the 0-th persistence diagram of this filtration. An illustration of this can be seen in
5.5(b).

Chapter 5. Topological Mode Analysis Tool 63

(a)

τ

(b)

(c) (d)

Figure 5.5: Halfmoons data set. (a) Density estimation for underlying density f for
the Halfmoons data set. (b) Persistence Diagram. Two points far off the diagonal
correspond to the two prominent peaks of f (c) Clustering for τ = +∞, i.e. result
for the basic clustering algorithm without a merging phase. (d) Clustering for
τ = 800, i.e. final result after merging the clusters of non-prominent peaks.

5.3 Experimental Result

In this section we present results of ToMATo on different data sets. We discuss
experimental results on synthetic data in the form of regular clustering and on
images in the form of image segmentation. For this, we first introduce the estimators
we use and discuss how we choose the parameters.

A widely used density estimator is the truncated Gaussian estimator. The trun-
cated Gaussian estimator is given by

f (x) =
1
|L| ∑l∈L

K(d(x, pl)),

64 5.3. Experimental Result

where the summand is defined as

K(d(x, pl)) =

e
−d2(x,pl)

2h d(x, pl) ≤ h

0 otherwise.

where d(·, ·) is the Euclidean distance, which can also be used to compute the
matrix D.

Another estimator is the distance to measure to estimate the density. It computes
the root-mean-squared distance to the k nearest neighbours:

f (x) =

√√√√1
k

k

∑
i=1

d2(x, pi),

where pi denotes the i-th nearest neighbour of x among the point set L. In
contrast to the Gaussian estimator, it has fixed complexity, since we only consider
the nearest k neighbours. Note that the distance to measure is a distance rather
than a density, so we take (− f) as input for the algorithm.

To set δ, one can compute a single linkage clustering and chose a relevant scale
from the resulting dendrogram. In the synthetic data example, we used a k-nearest
neighbour graph as introduced in the Spectral Clustering section 2.2, instead of a
Rips graph. Then we ran the ToMATo algorithm with the precomputed k-nearest
neighbour graph (or the Rips graph with the chosen value for δ) and with τ = +∞,
to compute the persistence diagram of the estimated density, from which we chose
a relevant value for τ. A relevant value for τ can be chosen between the most
distant prominences in the persistence diagram, as we will see later. We then run
the ToMATo algorithm a second time with the chosen parameters to compute the
final clustering.

5.3.1 Synthetic Data

Let us now look at an example with synthetic data of four interlocked rings in
Euclidean space R3. The data set is shown in Figure 5.6. The clusters are highly
non-linear and non-seperable. The rings are samples of 10, 000 points each. Each
ring follows a circular uniform distribution with some Gaussian noise. Note that,
for the larger rings, the points are spaced farther apart, since we used the same
number of points in all four rings. Thus, the differences in lengths of the rings result

Chapter 5. Topological Mode Analysis Tool 65

in differences in sampling densities. To ensure that the rings are not completely
disjoint in space, or rather the resulting graph, we added some uniform background
noise of 50, 000 points.

(a) (b)

(c) (d)

Figure 5.6: Synthetic data set. (a) Four interlocked rings. (b) Data consisting of
four interlocked rings, as samples of 10, 000 points each from a circular uniform
distribution with some Gaussian noise. (c) Additional background noise of 50, 000
points as a sample from a uniform distribution. (d) Density estimate for the
synthetic data set in Figure 5.6(c).

We used a distance to measure density estimator with k = 100. Note, when
using distance to measure, the input to the algorithm is a vector of negative
numbers (− f), where the lager values, i.e. lower absolute value, resembles a higher
probability. The reason for this is that regions with higher density have more points
close to each other and thus

f (x) =

√√√√1
k

k

∑
i=1

d2(x, pi),

is small, and vice versa for sparser regions. Considering this fact, we end up with
the density estimate in Figure 5.6(d), where the colours range from light blue to

66 5.3. Experimental Result

violet. Instead of a Rips graph, we used a k-nearest neighbour graph with k = 100.
For this, we used the standard Euclidean metric.

τ

(a) (b) (c)

Figure 5.7: (a) Persistence diagram for the data set in 5.6(c). (b) Resulting clustering.
(c) Resulting clustering, ignoring points with low distance to measure.

Looking at the persistence diagram in Figure 5.7(a), we can clearly see a gap in
the prominences. Therefore, we chose τ = 400 as threshold parameter. The choice
of τ is immediate in this example, but as we will see for image segmentation, this
choice will not always be as clear. The resulting choice leaves us with the four
most prominent clusters that indeed correspond to the four interlocked rings. Note
that since there is only one infinitely persistent component, all the data points
are connected in the k-nearest neighbour graph. In particular, the four rings are
connected to each other. The four rings are recovered almost perfectly. In Figure
5.7(c) we removed all the background noise with high distance to measure, to see a
clearer picture of the clustering.

5.3.2 Image Segmentation

We perform image segmentation on a 512× 512 pixel picture of a mandrill by
projecting each pixel into Luv colour space. The experiments are run in two ways.
The first one is performed in the Luv colour space. In the second one, spatial
information is incorporated into the point cloud data to show how the spatial
context can influence the segmentation results. For the test image, we show the
original and the corresponding point cloud in Luv space, as well as the resulting
segmentation. Along with the histogram, we also show the persistence diagram in
the form of a barcode. In the following, we did not reconstruct any findings. All

Chapter 5. Topological Mode Analysis Tool 67

results, including all figures, can be found in [11].

Figure 5.8: Results of the ToMATo approach on the Mandrill data set [11].

In the first experiment, the points clouds are clustered in the three-dimensional
Luv space, ignoring any spacial information of the pixels in the image. Initially,
areas of uniform colour proved challenging because many points were in close
proximity in Luv space, producing many edges in the Rips graph. In order to
speed up computation, the following downsampling is done: We begin by making
all points unmarked. Considering each point p in order: if p is unmarked, then
we detect all the data points within Euclidean distance δ of p, and we create Rips
edges as usual. Then, we mark all the data points within a smaller distance δ/m of
p: these points are to be removed from the data set for the clustering phase. Their
cluster center will be the same as the one from p. Typically, we chose m between

68 5.3. Experimental Result

10 and 20 in our experiments. This downsampling procedure can be shown to
induce a small additive error (in the order of δ/m) on the persistence diagram
approximation, therefore it is provably safe.

The results are shown in Figure 5.8. We use both the distance to measure
estimator with k = 1000 and a truncated Gaussian estimator with bandwidth
parameter h = 25. In the case of the distance to measure, we show the result with 3
clusters. They can be clearly seen in the point cloud of Figure 5.8(f). In the original
image these clusters correspond to the nose, cheeks and the fur. Using the Gaussian
estimator, we see 5 clusters, where further features can be identified, including
the eyes and the yellow part of the fur. The 5th cluster corresponds to very dark
colours. It is barely visible in the point cloud of Figure 5.8(c). It is important to
note that in the Gaussian case, black is the third most prominent cluster, whereas
in the case of the distance to measure it is the fourth one.

(a) (b)

Figure 5.9: (a) Mandrill segmented with colour and spatial information. (b)
Persistence histogram for the mandrill. A persistence histogram is a histogram
of the prominences, that shows how many times prominences appear in the
persistence diagram. The arrow indicates the merging parameter.

Clustering in the Luv space allows pixels that are far apart in the image to end
up in the same cluster. Remove this requires to involve spatial information during
the clustering phase. The most naive way to do this is by appending the two pixel
coordinates to the three colour coordinates. This leaves us with a 5-dimensional
space. The disadvantage is that the colour and spatial coordinates may not be
balanced appropriately since the scales of the colour channels and the spatial
coordinates are unrelated. To avoid this, we consider the point clouds in the Luv

Chapter 5. Topological Mode Analysis Tool 69

space and compute the density estimates as in the first experiment. However, for
two data points to be connected in the Rips graph, we now require them to be
close both in the Luv space and in the image domain. This boils down to pruning
the Rips graph of the first experiment. In practice, we equivalently proceed the
opposite order. We first connect points that are close in the image domain, and
then prune out the edges whose vertices are far apart in the Luv space. The results
are shown in Figure 5.9. We are able to distinguish between the left cheek from
the right cheek and the left eye from the right eye. Dark pixels correspond to very
small clusters due to the texture of the fur. In the persistence histogram, we see a
clear gap, within which we chose the value of the merging parameter τ.

Bibliography

[1] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications.
Chapman & Hall/CRC, 2013, pp. 89–93, 100–107.

[2] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized con-
vergence theorem and characterization of local optimality,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 81–87, 1984.

[3] U. von Luxburg, A tutorial on spectral clustering, 2007.

[4] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 603–619, 2002.

[5] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2012, ch. 10,
pp. 37–41.

[6] G. Carlsson, “Topological pattern recognition for point cloud data,” Acta
Numerica, May 2014.

[7] A. Hatcher, Algebraic Topology (Algebraic Topology). Cambridge University
Press, 2002.

[8] T. Dey and Y. Wang, Computational Topology for Data Analysis. Cambridge
University Press, 2022.

[9] P. Gillespie, A homological nerve theorem for open covers, 2022.

[10] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence
diagrams,” Discrete and Computational Geometry - DCG, pp. 263–271, Jun. 2005.

[11] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba, “Persistence-Based Clus-
tering in Riemannian Manifolds,” Nov. 2013.

BIBLIOGRAPHY 71

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 4th edition. The MIT Press, 2001, ch. 21.

