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Abstract

Homology is an invariant in algebraic topology that captures the ‘shape’
of geometric objects, such as the number of loops, cavities, etc. Persis-
tent homology is an adaptation of homology that measures how topol-
ogy of a nested family of spaces changes with the parameter.
In this thesis, I present an application of cubical persistent homology to
satellite images of hurricanes, in particular to quantify the diurnal cycle
of hurricanes. Cubical homology as opposed to simplicial homology is
built on cubical sets, which are finite unions of cubes with vertices in
an integer lattice and can be thought of as a representation of the pixels
of the image.
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Chapter 1

Introduction

Tools to analyze and understand large and complex data sets are becoming
more and more important in today’s world. One approach to analyzing data
is using topological methods. Topology is a branch of mathematics that is
concerned with the properties of geometric objects which are unaffected by
continuous deformations, such as twisting, stretching or bending. In other
words, topology studies the underlying ‘shape’ of geometric objects.
In algebraic topology, the ‘shape’ can be captured using homology, which,
intuitively speaking, gives the number of loops, cavities, etc. of a space. Con-
sider the example of an annulus, whose difference to a disc is the hole in the
middle, or, in other words, the loop in the space. For a topological space, we
have infinitely many homology groups. To each homology group, we can
assign a betti number. The kth betti number βk is the dimension of the kth
homology group and also gives the number of (k + 1)-dimensional holes:
β0 gives the number of connected components, the β1 gives the number of
loops, β2 gives the number of cavities, etc. So, the first betti number β1 for
the annulus is 1, whereas β1 for the disc is 0. The other betti numbers are
all the same for both topological spaces.

Figure 1.1: Left: annulus; right: disc.

Persistent homology is an adaptation of homology that measures how topol-
ogy of a nested family of spaces changes with the parameter. In the case of
images, this family consists of cubical complexes, which are finite unions of
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1. Introduction

cubes with vertices in an integer lattice. A 0-cube is just a vertex, a 1-cube is
an interval, a 2-cube is a square, etc. To convert in image to a cubical com-
plex, we first assign the greyscale value to the corresponding pixel. We can
then filter out the squares with an assigned greyscale value over a certain
threshold. In Figure 1.2, a greyscale image of a ring-like shape is depicted.
We can also consider this image as a cubical set with 8× 8 squares and all
of their edges and vertices, with the greyscale value assigned to each square,
like in Figure 1.3. In Figure 1.4, one can see a filtration of this complex con-
sisting of 4 nested cubical complexes corresponding to different thresholds.
As the threshold increases, the ring-like structure gets visible. For the maxi-
mal threshold, the ring disappears and we only have white squares.

Figure 1.2: A 8× 8-greyscale image Figure 1.3: The cubical set corresponding with
the image with the greyscale values assigned to
each square

This framework can be used to analyze satellite images of hurricanes [5],
more specifically, to examine ‘diurnal’ cycles of hurricanes. One of these
image can be seen in Figure 1.5.

Figure 1.4: filtration of the image on the right with four different thresholds

The diurnal cycle has been described in previous studies [2] and has been ob-
served in infrared satellite imagery as cyclical pulses in the cloud field that
propagate radially outward. These pulses form in the core of the hurricane
around the time of the local sunset, reach the periphery of the hurricane
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in the early afternoon of the next day and, because they appear to propa-
gate through a deep layer of the hurricane’s environment, they may have
implications for the structure and intensity of the hurricane.

Figure 1.5: Original satellite imagery from the hurricane Felix in 2007

This daily cycle is not yet fully understood and lacks quantitative research.
In ‘Using persistent homology to quantify a diurnal cycle in hurricanes’, Ty-
mochko et al. were able to provide a consistent ‘method of automatically
detecting and quantifying the circular structure in satellite imagery’ [5] us-
ing topology. In particular, cubical persistent homology was used to analyze
infrared images of the hurricanes Felix in 2007 and Ivan in 2004, which were
taken hourly. It was established that the frequency is approximately 1 cycle
per day.
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Chapter 2

Cubical Homology

In this chapter, we introduce cubical homology and cubical sets, which are
sets based on vertices in an integer lattice. We will closely follow the text-
book ‘Computational Homology’ by Tomasz Kazynski, et al. ([3], p.39-63).

2.1 Cubical Sets

Definition 2.1 An elementary interval is a closed interval I ⊂ R of the form

I = [l, l + 1] or I = [l]

for some l ∈ Z. To simplify the notation, we write [l] = [l, l] for an interval that
contains only one point. Elementary intervals that consist of a single point are
degenerate, while those of length 1 are nondegenerate.

Example 2.2 [14] and [2, 3] are elementary intervals. [ 2
3 ] is not an elementary

interval because 2
3 /∈ Z. [7, 9] is not an elementary interval because the length of

the interval is greater than 1.

Definition 2.3 An elementary cube Q is a finite product of elementary intervals,
that is,

Q = I1 × I2 × · · · × Id ∈ Rd,

where each Ii is an elementary interval. The set of all elementary cubes in Rd is
denoted by Kd. The set of all elementary cubes is denoted by K, namely

K :=
∞⋃

d=1

Kd

Example 2.4 Figure 2.1 depicts some examples of elementary cubes. The cubes
[6]× [2, 3] and [7, 8]× [2] have one degenerate and one non-degenerate component,
whereas [7, 8]× [2, 3] has to non-degenerate components.
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2. Cubical Homology

Figure 2.1: Examples of elementary cubes in R2.

Definition 2.5 Let Q = I1 × I2 × · · · × Id ∈ Rd be an elementary cube. The
embedding number of Q is denoted by emb Q and is defined to be d since Q ⊂ Rd.
The interval Ii is referred to as the i-th component of Q and is written as Ii(Q).
The dimension of Q is defined to be the number of nondegenerate components on Q
and is denoted by dim Q.
Observe that if emb Q = d, then Q ∈ Kd. We also let

Kk := {Q ∈ K | dim Q = k}

and
Kd

k := Kk ∩Kd.

Example 2.6 The embedding number of Q1 = [2, 3]× [7, 8]× [1] is emb Q1 = 3.
The dimension of Q1 is dim Q1 = 2, because Q1 has 2 nondegenerate elementary
intervals. For the elementary cube in Figure 2.1, we get the following embedding
numbers and dimensions:

emb [6]× [2, 3] = emb [7, 8]× [2] = emb [7, 8]× [2, 3] = 2
dim [6]× [2, 3] = dim [7, 8]× [2] = 1

dim [7, 8]× [2, 3] = 2.

Proposition 2.7 Let Q ∈ Kd
k and P ∈ Kd′

k′ . Then

Q× P ∈ Kd+d′
k+k′ .

Proof Because Q ∈ Kd, it can be written as the product of d elementary
intervals:

Q = I1 × I2 × ...× Id.
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2.1. Cubical Sets

Similarly,
P = J1 × J2 × ...× Jd′ ,

where each Ji is an elementary interval. Hence,

Q× P = I1 × I2 × ...× Id × J1 × J2 × ...× Jd′ ,

which is a product of d + d′ elementary intervals. The dimension, or rather
the number of nondegenerate components of Q, is k and k′ is the dimension
of P. Then the product Q× P has (k + k′) nondegenerate components, thus
dim(Q× P) = dim Q + dim P. �

Definition 2.8 Let Q, P ∈ K. If Q ⊂ P, then Q is a face of P. This is denoted by
Q � P. If Q � P and Q 6= P, then Q is a proper face of P, which is written as
Q ≺ P. Q is a primary face of P if Q is a face of P and dim Q = dim P− 1.

Figure 2.2: The elementary cube Q = [0, 1]× [0, 1]× [0, 1]

Example 2.9 A primary face of Q = [0, 1] × [0, 1] × [0, 1] would be the two-
dimensional cube [0, 1]× [0]× [0, 1], which is also marked grey in figure 2.2. Any
vertex of Q is also a face of Q.

Definition 2.10 A set X ⊂ Rd is cubical if X can be written as a finite union of
elementary cubes. If X ⊂ Rd is a cubical set, then we adopt the following notation:

K(X) := {Q ∈ K | Q ⊂ X}

and
Kk(X) := {Q ∈ K(X) | dim Q = k}.

Observe that if Q ⊂ X and Q ∈ K, then dim Q = d, since X ⊂ Rd. This in
turn implies that Q ∈ Kd, so to use the notation Kd(X) is somewhat redundant,
but it serves to remind us that X ⊂ Rd. Therefore, when it is convenient, we will
write Kd(X) and also Kd

k (X) := Kd(X) ∩Kk(X). In analogy with graphs, the
elements of K0(X) are the vertices and the elements of K1(X) are the edges of X.
More generally, the elements of Kk(X) are the k-cubes of X.

Example 2.11 Let X = [0, 1]× [0, 1]× [0, 1] ⊂ R3. X is an elementary cube and
hence a cubical set. The k-cubes for k = 0, 1, 2 are
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2. Cubical Homology

• K2(X) = {[0]× [0, 1]× [0, 1], [1]× [0, 1]× [0, 1], [0, 1]× [0]× [0, 1],
[0, 1]× [1]× [0, 1], [0, 1]× [0, 1]× [0], [0, 1]× [0, 1]× [0]}

• K1(X) = {[0]× [0]× [0, 1], [1]× [0]× [0, 1], [0]× [1]× [0, 1],
[1]× [1]× [0, 1], [0]× [0, 1]× [0], [1]× [0, 1]× [0],
[0]× [0, 1]× [1], [1]× [0, 1]× [1], [0, 1]× [0]× [0],
[0, 1]× [0]× [1], [0, 1]× [1]× [0], [0, 1]× [1]× [1]}

• K0(X) = {[0]× [0]× [0], [0]× [0]× [1], [0]× [1]× [0], [1]× [0]× [0],
[0]× [1]× [1], [1]× [0]× [1], [1]× [1]× [0], [1]× [1]× [1]}.

Proposition 2.12 If X ⊂ Rd is cubical, then X is closed and bounded.

Proof By definition a cubical set is a finite union of elementary cubes. Ele-
mentary cubes are a finite product of elementary intervals, which are closed.
One can show by induction on d that the product of elementary intervals
I1, .., Id ⊂ R is a closed subset of Rd. Moreover, the finite union of closed
sets is closed.
To show that X is bounded, it is sufficient to prove that for some R > 0,

X ⊂ B0(0, R), (2.1)

where B0(0, R) denotes the ball around the origin in the supremum norm.
Let Q ∈ K(X). Then Q = I1 × ...× Id, where Ii = [li] or Ii = [li, li + 1]. Let

ρ(Q) = max
{i=1,...,d}

{|li|+ 1}

Taking R := max{Q∈K(X)} ρ(Q), one can verify 2.1. �

2.2 The Algebra of Cubical Sets

Now that we have build the actual geometric cubical sets, we want to give
the formal definitions needed to define cubical homology. So, we move on
to viewing elementary cubes as algebraic objects and to do mathematical
operations with them.

2.2.1 Cubical Chains

Definition 2.13 With each elementary k-cube Q ∈ Kd
k , we associate an algebraic

object Q̂ called an elementary k-chain of Rd. The set of all elementary k-chains of
Rd is denoted by

K̂d
k := {Q̂|Q ∈ Kd

k }.
Given any finite collection {Q̂1, ..., Q̂m} ⊂ Kd

k of k-dimensional elementary chains,
we are allowed to consider sums of the form

c = α1Q̂1 + α2Q̂2 + ... + αmQ̂m,
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2.2. The Algebra of Cubical Sets

where αi are arbitrary integers. If all the αi = 0, then we let c = 0. These can
be thought of as our k-chains, the set of which is denoted by Cd

k . The addition of
k-chains is naturally defines by

∑ αiQ̂i + ∑ βiQ̂i := ∑(αi + βi)Q̂i

Observe that given an arbitrary k-chain c = ∑m
i=0 αiQ̂i, there is an inverse element

−c = ∑m
i=0(−αi)Q̂i with the property that c + (−c) = 0. Therefore, Cd

k is an
abelian group and, in fact, it is a free abelian group with basis K̂d

k .

Another prescription for using a set to generate a free abelian group involves
viewing the chains as functions from Kd

k to Z. In particular, for each Q ∈ Kd
k ,

define Q̂ : Kd
k → Z by

Q̂(P) :=

{
1 if P = Q
0 otherwise.

Definition 2.14 The group Cd
k of k-dimensional chains of Rd is the free abelian

group generated by the elementary chains of Kd
k . Thus the elements of Cd

k are
functions c : Kd

k → Z such that c(Q) = 0 for all but a finite number of Q ∈ Kd
k .

In particular, K̂d
k is a basis for Cd

k (in other notation: Cd
k = Z(Kd

k )). If c ∈ Cd
k ,

then dim c := k.

Obviously, since the elementary cubes are contained in Rd, for k ≤ 0 and
k ≥ d, the set Kk = ∅ and the corresponding group of k-chains is Cd

k = 0.

Proposition 2.15 The map ϕ : Kd
k → K̂d

k given by ϕ(Q) = Q̂ is a bijection.

Proof Because K̂d
k is defined to be the image of ϕ, it is obvious that ϕ is

surjective. To prove injectivity, assume that P, Q ∈ Kd
k and P̂ = Q̂. This

implies that 1 = P̂(P) = Q̂(P) and hence that P = Q. �

Definition 2.16 Let c ∈ Cd
k . The support of the chain c is the cubical set

|c| :=
⋃
{Q ∈ Kd

k |c(Q) 6= 0}.

Example 2.17 As an example, take again Q = [0, 1]× [0, 1]× [0, 1] and the chain

c = 2[0]× [0, 1]× [0, 1]− [0, 1]× [0, 1]× [0] + [1]× [0, 1]× [0, 1] + [0, 1]× [0, 1]× [1].

Then the support of c is the set

|c| = {[0]× [0, 1]× [0, 1], [0, 1]× [0, 1]× [0], [1]× [0, 1]× [0, 1], [0, 1]× [0, 1]× [1]},

which is also marked grey in figure 2.3.
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2. Cubical Homology

Figure 2.3: The elementary cube Q = [0, 1]× [0, 1]× [0, 1]

The support has several convenient geometric features.

Proposition 2.18 The support satisfies the following properties:

(i) |c| = ∅ iff c = 0.

(ii) Let α ∈ Z and c ∈ Cd
k . Then

|αc| =
{

∅ if α = 0
|c| if α 6= 0.

(iii) If Q ∈ K, then |Q̂| = Q.

(iv) If c1, c2 ∈ Cd
k , then |c1 + c2| ⊂ |c1| ∪ c2|.

Proof (i) In the case of the 0-chain for every Q ∈ Kd
k the value 0(Q) = 0.

Therefore, |c| = ∅. On the other hand, if |c| = ∅, then there is no Q
such that c(Q) 6= 0. Therefore, c = 0.

(ii) This follows directly from the defintion of the support and (i).

(iii) This follows from the definition of elementary chains.

(iv) Let x ∈ |c1 + c2|. Then x ∈ Q for some Q ∈ Kd
k such that

(c1 + c2)(Q) = c1(Q) + c2(Q) 6= 0.

It follows that either c1(Q) 6= 0 or c2(Q) 6= 0, hence x ∈ |c1| or x ∈ |c2|.
�

Definition 2.19 Consider c1, c2 ∈ Cd
k , where c1 = ∑m

i=1 αiQ̂i and c2 = ∑m
i=1 βiQ̂i.

The scalar product of the chains c1 and c2 is defined as

〈c1, c2〉 :=
m

∑
i=1

αiβi
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2.2. The Algebra of Cubical Sets

Proposition 2.20 The scalar product defines a mapping

〈·, ·〉 : Cd
k × Cd

k → Z

(c1, c2) 7→ 〈c1, c2〉

Proof We need to show that the map is bilinear, symmetric and positive
definite. Additivity, symmetry and positive definiteness follow directly from
the definition. What is left to show is 〈αc1 + βc2, c3〉 = α〈c1, c3〉+ β〈c2, c3〉
and 〈c1, αc2 + βc3〉 = α〈c1, c2〉+ β〈c1, c3〉. For j = 1, 2, 3, let

cj =
m

∑
i=1

γj,iQ̂i

Then

〈αc1 + βc2, c3〉 = 〈α
m

∑
i=1

γ1,iQ̂i + β
m

∑
i=1

γ2,iQ̂i,
m

∑
i=1

γ3,iQ̂i〉

= 〈
m

∑
i=1

(αγ1,i + βγ2,i)Q̂i,
m

∑
i=1

γ3,iQ̂i〉

=
m

∑
i=1

(αγ1,i + βγ2,i)γ3,i

= α
m

∑
i=1

γ1,iγ3,i + β
m

∑
i=1

γ2,iγ3,i

= α〈
m

∑
i=1

γ1,iQ̂i,
m

∑
i=1

γ3,iQ̂i〉+ β〈
m

∑
i=1

γ2,iQ̂i,
m

∑
i=1

γ3,iQ̂i〉

= α〈c1, c3〉+ β〈c2, c3〉.

The proof of the other equality 〈c1, αc2 + βc3〉 = α〈c1, c2〉+ β〈c1, c3〉 is analo-
gous. �

Definition 2.21 Given two elementary cubes P ∈ Kd
k and Q ∈ Kd′

k′ set

P̂ � Q̂ := P̂×Q.

This definition extends to arbitrary chains c1 ∈ Cd
k and c2 ∈ Cd′

k′ by

c1 � c2 := ∑
P∈Kk ,Q∈Kk′

〈c1, P̂〉〈c2, Q̂〉P̂×Q.

The chain c1 � c2 ∈ Cd+d′
k+k′ is called the cubical product of c1 and c2.

Example 2.22 The cubical product is not commutative, e.g. take the elementary
cubes P1 = [0, 1], P2 = [1, 2] and Q1 = [0, 1] × [1], Q2 = [1] × [0, 1] and the
chains c1 = P̂1 + P̂2, c2 = Q̂1 + Q̂2. Then

c1 � c2 = 〈c1, P̂1〉〈c2, Q̂1〉P̂1 ×Q1 + ... + 〈c1, P̂2〉〈c2, Q̂2〉P̂2 ×Q2

= P̂1 ×Q1 + P̂1 ×Q2 + P̂2 ×Q1 + P̂2 ×Q2

11



2. Cubical Homology

and
c1 � c2 = Q̂1 × P1 + Q̂1 × P2 + Q̂2 × P1 + Q̂2 × P2.

So we have c1 � c2 6= c2 � c1.

Proposition 2.23 Let c1, c2, c3 be any chains.

(i) c1 � 0 = 0 � c1 = 0.

(ii) c1 � (c2 + c3) = c1 � c2 + c1 � c3, provided c2, c3 ∈ Cd
k .

(iii) (c1 � c2) � c3 = c1 � (c2 � c3).

(iv) If c1 � c2 = 0, then c1 = 0 or c2 = 0.

(v) |c1 � c2| = |c1| × |c2|.

Proof (i) and (ii) follow immediately from the definition.

(iii) The proof is straightforward.

(iv) Assume that c1 = ∑m
i=1 αi P̂i and c2 = ∑n

j=1 β jQ̂j. Then

m

∑
i=1

n

∑
j=1

αiβ jP̂i � Q̂j = 0,

that is, αiβ j = 0 for any i = 1, 2, ..., m and j = 1, 2, ..., n. It follows that

0 =
m

∑
i=1

n

∑
j=1

(αiβ j)
2 = (

m

∑
i=1

α2
i )(

n

∑
j=1

β2
j ),

hence, ∑m
i=1 α2

i = 0 or ∑n
j=1 β2

j = 0. Consequently, c1 = 0 or c2 = 0.

(v) Let c1 ∈ Cd
k and c2 ∈ Cd′

k′ . We use the definitions of the support and of
the cubical product c1 � c2:

|c1 � c2| =
⋃
{P×Q ∈ Kk+k′ |c1 � c2(P×Q) 6= 0}

=
⋃
{P×Q ∈ Kk+k′ | ∑

P∈Kk ,Q∈Kk′

〈c1, P̂〉〈c2, Q̂〉P×Q 6= 0}

=
⋃
{P×Q ∈ Kk+k′ |c1(P) 6= 0∧ c2(Q) 6= 0}

=
⋃
{P ∈ Kk|c1(P) 6= 0} ×

⋃
{Q ∈ Kk′ |c2(Q) 6= 0}

= |c1| × |c2|. �

Proposition 2.24 Let Q̂ be an elementary cubical chain of Rd with d > 1. Then
there exist unique elementary cubical chains Î and P̂ with the embedding numbers
emb I = 1 and emb P = d− 1 such that

Q̂ = Î � P̂.
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2.2. The Algebra of Cubical Sets

Proof Since Q̂ is an elementary cubical chain, Q is an elementary cube,
namely Q = I1 × ...× Id. Set I := I1 and P := I2 × ...× Id. Then, Q̂ = Î � P̂.
We still need to prove that this is the unique decomposition. If Q̂ = Ĵ � P̂′

for some J ∈ K1 and P′ ∈ Kd−1, then Î1 × P = Ĵ × P′ and from Proposition
2.15 we obtain I1 × P = J × P′. Since I1, J ⊂ R, it follows that I1 = J and
P = P′. �

2.2.2 Cubical Chains in Cubical Sets

Now, since we have discussed cubical chains in general, we can move on to
study them in the context of cubical sets.

Definition 2.25 Let X ⊂ Rd be a cubical set. Let K̂k(X) := {Q̂|Q ∈ Kk(X)}.
Ck(X) is the cubical subgroup of Cd

k generated by the elements of K̂k(X) and is
referred to as the set of k-chains of X. In other words,

Ck(X) = {c ∈ Cd
k | |c| ⊂ X}. (2.2)

Since we know that X ⊂ Rd, it is not necessary to write a superscript d in K̂k(X)
and Ck(X).
K̂k(X) is a basis of Ck(X). Moreover, since for any cubical set X the family
Kk(X) is finite, Ck(X) is a finite-dimensional free abelian group. Finally given
any c ∈ Ck(X), we have the decomposition

c = ∑
Qi∈Kk(X)

αiQ̂i,

where αi := c(Qi). An equivalent fomula using the scalar product would be

c = ∑
Q∈Kk(X)

〈c, Q̂〉Q̂.

Definition 2.26 Given k ∈ Z, the cubical boundary operator or cubical boundary
map

∂ : Cd
k → Cd

k−1

is a homomorphism of free abelian groups, which is defined for an elementary chain
Q̂ ∈ K̂d

k by induction on the embedding number d as follows:
Consider first the case d = 1. Then Q is an elementary interval and hence
Q = [l] ∈ K1

0 or Q = [l, l + 1] ∈ K1
1 for some l ∈ Z. Define

∂kQ̂ :=

{
0 if Q = [l],

[̂l + 1]− [̂l] if Q = [l, l + 1].

Now assume that d > 1. Let I = I1(Q) and P = I2(Q)× ...× Id(Q). Then by
Proposition 2.24, Q̂ = Î × P̂. Define

∂kQ̂ := ∂k1 Î � P̂ + (−1)dim I Î � ∂k2 P̂,

13



2. Cubical Homology

where k1 = dim I and k2 = dim P.
Finally, we extend the definition to all chains by linearity: If

c = α1Q̂1 + α2Q̂2 + ... + αmQ̂m,

then
∂kc := α1∂kQ̂1 + α1∂kQ̂1 + ... + αm∂kQ̂m.

Example 2.27 The cubical boundary of the square [0, 1]× [0, 1] is

∂2( ̂[0, 1]× [0, 1]) = ∂1 [̂0, 1] � [̂0, 1] + (−1)dim [0,1] [̂0, 1] � ∂1 [̂0, 1]

= ([1̂]− [0̂]) � [̂0, 1]− [̂0, 1] � ([1̂]− [0̂])

= ̂[1]× [0, 1]− ̂[0]× [0, 1]− ̂[0, 1]× [1] + ̂[0, 1]× [0].

Usually, we omit the subscript of the boundary map ∂k, because k is usually
clear from the context.

Proposition 2.28 ∂ ◦ ∂ = 0.

Proof Because ∂ is a linear operator it suffices to show this property for el-
ementary cubical chains. We proceed by induction on the embedding num-
ber.
Let Q be an elementary interval. If Q = [l], then by definition ∂Q̂ = 0, so
∂(∂Q̂) = 0. If Q = [l, l + 1], then

∂(∂Q̂) = ∂(∂ ̂[l, l + 1])

= ∂( ̂[l, l + 1]− [̂l])

= ∂ ̂[l, l + 1]− ∂[̂l]
= 0− 0.

Now assume that Q ∈ Kd for d > 1. Then Q = I × P, where I = I1(Q) and
P = I2(Q)× ...× Id(Q). So, by Proposition 2.24,

∂(∂Q̂) = ∂(∂( Î × P))

= ∂(∂( Î × P̂))

= ∂(∂ Î � P̂ + (−1)dim Î Î � ∂P̂)

= ∂(∂ Î � P̂) + (−1)dim Î∂( Î � ∂P̂)

= ∂∂ Î � P̂ + (−1)dim ∂ Î∂ Î � ∂P̂ + (−1)dim Î∂( Î � ∂P̂)

= (−1)dim ∂ Î∂ Î � ∂P̂ + (−1)dim Î(∂ Î � ∂P̂ + (−1)dim Î Î � ∂∂P̂)

= (−1)dim ∂ Î∂ Î � ∂P̂ + (−1)dim Î∂ Î � ∂P̂.
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The last step uses the induction hypothesis that the proposition is true is the
embedding number is less than d.
Observe that if dim Î = 0, then ∂ Î = 0, in which case we have that each term
in the sum is 0 and hence ∂∂Q̂ = 0. On the other hand, if dim Î = 1, then
dim ∂ Î = 0 and hence the two terms cancel each other, giving the desired
result. �

Proposition 2.29 For any chain c ∈ Cd
k ,

|∂c| ⊂ |c|.

Moreover, |∂c| is contained in the union of (k− 1)-dimensional faces of |c|.

Proof First consider the case when c = Q̂, where Q is given by the product
Q = I1(Q)× I2(Q)× ...× Ik(Q) ∈ Kk. The boundary of Q̂ is given by

∂Q̂ = ∂ Î � P̂ + (−1)dim I Î � ∂P̂.

One can see that the support of each nonzero term of the sum is the union
of two parallel (k− 1)-dimensional faces of Q. Thus,

|∂Q̂| ⊂
⋃

Kk−1(Q) ⊂ Q = |Q̂|.

If c is arbitrary, then c = ∑i αiQ̂i for some αi 6= 0 and

|∂c| = |∑
i

αi∂Q̂i| ⊂
⋃

i

|∂Q̂i| ⊂
⋃

i

|Q̂i| = |c|. �

Proposition 2.30 Let X ∈ Rd be a cubical set. Then ∂k(Ck(X)) ⊂ Ck−1(X).

Proof Let c ∈ Ck(X). Then by equation 2.29, |c| ⊂ X, and by Proposi-
tion 2.28, |∂k(c)| ⊂ |c| ⊂ X. Therefore, ∂k(c) ∈ Ck−1(X). �

From proposition 2.30, it follows directly that the restriction of the boundary
operator ∂ to chains in X, which we write as ∂X

k : Ck(X) → Ck−1(X), is well
defined.

Definition 2.31 The cubical chain complex for the cubical set X ∈ Rd is

C(X) := {Ck(X), ∂X
k }k∈Z,

Where Ck(X) are the groups of cubical k-chains generated by Kk(X) and ∂X
k is as

defined above.
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2. Cubical Homology

2.3 Homology of Cubical Sets

We can now give the most important definition of this chapter, which is the
definition of homology groups.

Definition 2.32 Let X ⊂ Rd be a cubical set and C(X) the corresponding chain
complex. A k-chain z ∈ Ck(X) is called a cycle in X if ∂z = 0. Because the kernel of
a linear map is a subgroup of the domain, the set of all k-cycles in X ker ∂X

k , which
is denoted by Zk(X), forms a subgroup of Ck(X).
A k-chain z ∈ Ck(X) is a boundary in X if there exists c ∈ Ck+1(X), such that
∂c = z. Thus the set of boundary elements in Ck(X), which is denoted by Bk(X),
consists of the image of ∂X

k+1. Since ∂X
k+1 is a homomorphism, Bk(X) is a subgroup

of Ck(X).
By proposition 2.28, ∂c = z implies ∂z = ∂2c = 0. Hence every boundary is a
cycle and Bk(X) is a subgroup of Zk(X). We are interested in cycles that are not
boundaries and thus want to treat cycles that are boundaries as trivial. Thus we
define the k-th cubical homology group of X to be the quotient group

Hk(X) := ker ∂X
k /im ∂X

k+1 = Zk(X)/Bk(X).

Example 2.33 We want to compute the homology groups of the set

X = [0]× [0, 1] ∪ [0, 1]× [0] ∪ [1]× [0, 1] ∪ [0, 1]× [1].

The elementary cubes of X are

K̂0(X) = { ̂[0]× [0], ̂[0]× [1], ̂[1]× [0], ̂[1]× [1]}

K̂1(X) = { ̂[0]× [0, 1], ̂[1]× [0, 1], ̂[0, 1]× [0], ̂[0, 1]× [1]}.

Now we can compute the boundaries of the elementary cubes.

∂1( ̂[0]× [0, 1]) = ̂[0]× [1]− ̂[0]× [0]

∂1( ̂[1]× [0, 1]) = ̂[1]× [1]− ̂[1]× [0]

∂1( ̂[0, 1]× [0]) = ̂[1]× [0]− ̂[0]× [0]

∂1( ̂[0, 1]× [1]) = ̂[1]× [1]− ̂[0]× [1].

The image of ∂0 is 0 for all Q ∈ K0(X).
Remember that Q̂× P = Q̂ � P̂. We can put the boundary map ∂1 in form of a
matrix


[0̂] � [̂0, 1] [1̂] � [̂0, 1] [̂0, 1] � [0̂] [̂0, 1] � [1̂]

[0̂] � [0̂] −1 0 −1 0
[0̂] � [1̂] 1 0 0 −1
[1̂] � [0̂] 0 −1 1 0
[1̂] � [1̂] 0 1 0 1

 .
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To find the 1-cycles of X, we have to solve the following equation:
−1 0 −1 0
1 0 0 −1
0 −1 1 0
0 1 0 1

 ·


a
b
c
d

 =


0
0
0
0

 ,

which gives


−a− c
a− d
−b + c
b + d

 =


0
0
0
0

 .

Thus, we get the solution a = −b = −c = d, which gives

Z1(X) = {a(1,−1,−1, 1)t|a ∈ Z}.

That means, Z1(X) is generated by

[0̂] � [0̂, 1]− [1̂] � [0̂, 1]− [0̂, 1] � [0̂] + [0̂, 1] � [1̂].

Since there are no 2-cubes in X, it follows that C2(X) = 0 and consequently,
B1(X) = 0. Hence,

H1(X) = Z1(X) ∼= Z.

2.4 The Zeroth Homology Group

In this section, we will take a closer look at the zeroth homology group and
its topological implications. We will prove that H0(X) of a topological space
X is given by the number of connected components ccX(x) of X, where
x ∈ X.

Proposition 2.34 A cubical set can have only a finite number of connected compo-
nents.

Proof Every connected component of a cubical set is a connected component
of one of its vertices, and a cubical set has only a finite number of vertices.
bla �

Definition 2.35 A sequence of vertices v0, v1, ...vn ∈ K0(X) is an edge path in X
if there exist edges e1, e2, ..., en ∈ K1(X) such that vi, vi−1 are the two faces of ei
for i = 1, 2, ..., n. For v, v′ ∈ K0(X), we write v ∼X v′ if there exists an edge
path v0, v1, ..., vn ∈ K0(X) in X such that v = v0 and v′ = vn. We say that X is
edge-connected if v ∼X v′ for any v, v′ ∈ K0(X). It can be shown easily that ∼X
is an equivalence relation.

17



2. Cubical Homology

Figure 2.4: An edge path on the union of three elementary cubes

Example 2.36 In figure 2.4, one can see a cubical set, which is the union of three
elementary cubes, and an edge path from the bottom right to the top left v0, v1, v2,
v3, v4, v5. The vertices vi, vi−1 are the faces of the edge ei for i = 1, 2, 3, 4, 5.

Proposition 2.37 (i) Every elementary cube is edge-connected.

(ii) If X and Y are edge-connected cubical sets and X ∪ Y 6= ∅, then X ∪ Y is
edge-connected.

Proof (i) Let X ∈ Kk for some k ∈ N ∪ {0}. If k = 0, then X is
just one vertex, which is edge-connected. For k ≥ 1, we know that
K0(X) ⊂ K1(X). Thus, for every pair of vertices we can find an edge
path connecting them.

(ii) It suffices to show that there exists an edge path from vx ∈ X to
vy ∈ Y, where vx and vy are vertices in X and Y respectively. Be-
cause X ∪Y 6= ∅, there exists at least one vertex v in the intersection.
Therefore, vx ∼X v and vy ∼X v. An edge-path from vx to vy is given
by the composition of the edge-paths vx, ..., v and v, .., vy.
bla �

Example 2.38 In Figure 2.5, the union of two edge-connected cubical sets X and
Y is depicted.

Proposition 2.39 Assume that v ∼X v′ for some v, v′ ∈ K0(X). Then there exists
a chain c ∈ C1(X) such that |c| is connected and ∂c = v̂′ − v̂.

Proof Let v0, v1, ..., vn ∈ K0(X) be an edge path from v = v0 to v′ = vn
and let e1, e2, ..., en ∈ K1(X) be the corresponding edges. Without loss of

18
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Figure 2.5: The union of two edge-connected cubical sets X and Y

generality, we may assume that the edge path is minimal. Then any two
edges as well as any two vertices in the path are different. We will show
that for some coefficients αi ∈ {−1, 1} the chain

c :=
n

∑
i=1

αi êi

satisfies the conclusions of the proposition. We do so by induction on n.
If n = 1, then ∂e1 = ±(v̂1 − v̂0). Taking c = α1ê1 with an appropriate
coefficient α1 ∈ {−1, 1}, we get ∂c = v̂1 − v̂0. Since |c| = |α1e1| = e1, it is
connected.
Consider in turn the second step of the induction argument. Let

c′ :=
n−1

∑
i=1

αi êi

with coefficients chosen so that ∂c′ = v̂n−1− v̂0 and |c′| is connected. Choose
αn such that ∂(αnen) = v̂n − v̂n−1. Then obviously ∂c = v̂n − v̂0. Since
|c| = |c′| ∪ en and |c′| ∩ en 6= ∅, it follows that |c| is connected.
bla �

Example 2.40 A chain for the cubical set X and the edge path in figure 2.4 that ful-
fills the conditions in proposition 2.39 would be c = e1 + e2 + e3 + e4 + e5 ∈ C1(X).
It is clear that |c| is connected and ∂c = v5 − v4 + v4 − ...− v1 + v1 − v0 = v5 − v0.

For x ∈ X we define the edge-connected component of x in X as the union of
all edge-connected cubical sets of X that contain x. We denote it by eccX(x).

Theorem 2.41 A cubical set X is connected iff it is edge-connected.

Proof Assume first that X is edge-connected. Let v ∈ X be a vertex. It
is enough to show that ccX(v) = X, because ccX(v) is connected. Since
ccX(v) ⊆ X, we only need to show the opposite inclusion. Thus let x ∈ X.
Select another vertex w ∈ X such that x ∈ ccX(x) = ccX(w). By proposition
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2.39, there exists a chain c ∈ C1(X) such that ∂c = v̂− ŵ and |c| is connected.
Since v, w ∈ |c|, it follows that ccX(w) = ccX(v). Therefore, x ∈ ccX(v),
which we needed to prove.
To prove the opposite implication, assume that X is not edge-connected.
Then there exist vertices v0, v1 ∈ K0(X) such that eccX(v0) ∪ eccX(v1) = ∅.
Let X0 := eccX(v0) and

X1 :=
⋃
{eccX(v)|v ∈ K0(X) and eccX(v) ∪ eccX(v0) = ∅}.

The sets X0 and X1 are disjoint nonempty closed subsets of X. We will
show that X = X0 ∪ X1. Let x ∈ X. Let Q be an elementary cube such
that x ∈ Q̊. Then Q ∈ X. Let v ∈ K0(Q) by any vertex in Q. Since by
proposition 2.37, Q is edge-connected, Q ⊆ eccX(x) and Q ⊆ eccX(v). Now
if eccX(v) = eccX(v0) = X0, then x ∈ X0. Otherwise, x ∈ X1. This shows
that X = X0 ∪X1, which implies that X is not connected, by contradiction.�

Lemma 2.42 Assume X is a cubical set and X1, X2, ..., Xn are its connected compo-
nents. If ci ∈ Ck(Xi) are k-dimensional chains, then

|
n

∑
i=1

ci| =
n⋃

i=1

|ci|.

Proof The left-hand side is contained in the right-hand side by proposition
2.18 (iv). To show the opposite inclusion, take x ∈ ⋃n

i=1 |ci|. Then for some
i0 ∈ {1, 2, ..., n} there exists a Q ∈ Kk(Xi0) such that x ∈ Q and ci0(Q) 6= 0.
Since Q /∈ Kk(Xj) for j 6= i0. It follows that

(
n

∑
i=1

ci)(Q) = ci0(Q) 6= 0,

that is, x ∈ |∑n
i=1 ci| �

We can finally prove the main theorem of this section.

Theorem 2.43 Let X be a cubical set. Then H0(X) is a free abelian group. Fur-
thermore, if {Pi|i = 1, ..., n} is a collection of vertices in X constisting of one vertex
from each connected component of X, then

{[P̂i] ∈ H0(X)|i = 1, ..., n}

forms a basis for H0(X).

Proof Let Xi := ccX(Pi) and let c ∈ Z0(X). By proposition 2.39, [P̂] = [P̂i]
for any P ∈ K0(Xi). Since Z0(X) = C0(X), there exist integers αP such that

[c] = ∑
P∈K0(X)

αP[P̂] =
n

∑
i=1

∑
P∈K0(Xi)

αP[P̂] =
n

∑
i=1

( ∑
P∼X Pi

αP)[P̂i].
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This shows that the classes [P̂i] generate H0(X).
It remains to show that the generators are free, that

n

∑
i=1

αi[P̂i] = 0

implies that all αi = 0. To do so, put c := ∑n
i=1 αi P̂i. Since [c] = 0, we can

select a b ∈ C1(X) such that c = ∂b. Let b = ∑e∈K1(X) βe ê. Let

bi := ∑
e∈K1(Xi)

βe ê.

We have
n

∑
i=1

αi P̂i = c = ∂b =
n

∑
i=1

∂bi.

Therefore,

0 =
n

∑
i=1

(αi P̂i − ∂bi).

But
|αi P̂i − ∂bi| ⊆ Xi.

Therefore, by lemma 2.42,

∅ = |0| =
n⋃

i=1

|αi P̂i − ∂bi|,

which shows that |αi P̂i − ∂bi| 6= 0; that is, by proposition 2.18 (i), αi P̂i = ∂bi.
Let ε : C0(X) → Z be the group homomorphism defined by ε(P̂) = 1 for
every vertex P ∈ X. Let e be an elementary edge. Then ∂ê = v̂1 − v̂0, where
v0, v1 are vertices of e. Observe that

ε(∂ê) = ε(v̂1 − v̂0)

= ε(v̂1)− ε(v̂0)

= 1− 1
= 0.

This implies that ε(∂bi) = 0 and hence

0 = ε(∂bi) = ε(αi P̂i) = αiε(P̂i) = αi. �
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Figure 2.6: A cubical set with two connected components.

Example 2.44 The cubical set X in figure 2.6 has two connected components and
thus, H0(X) is generated by one vertex in each connected component. It follows
that H0(X) ∼= Z2.
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Chapter 3

Persistent Homology

In order to analyze images of hurricanes, we can represent the pixels by
cubes in integer lattices and apply cubical homology to find patterns in the
images. We filter the images by grayscale values to obtain a sequence of bi-
nary images, whose homology groups we can then examine using persistent
homology. This way, we can track changes in homology in a filtration. By
applying the cubical homology functor to a persistent cubical set, we get per-
sistence vector spaces, which we will define in this chapter. We will closely
follow the article [1].

Definition 3.1 A persistent set is a family of sets {Xr}r∈R together with maps

ϕr′
r : Xr → Xr′ for all r ≤ r′

so that
ϕr′′

r′ ϕr′
r = ϕr′′

r for all r ≤ r′ ≤ r′′.

Example 3.2 Let us observe the persistent set P in Figure 3.1.

Figure 3.1: The persistent set P.

At time 0, all of the 0-cubes are added. At time 1, the 1-cubes [0, 1]× [2], [1]× [1, 2]
and [1]× [0, 1] are added, etc. As in the image, we will continue to write the vertices
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as v1, v2, ..., v6, the edges as e1, e2, ..., e7 and the faces as f1 and f2 to simplify the
notation.

Now we can define persistence vector spaces, that contain within the infor-
mation about the homology of the cubical sets for every R, as well as the
behaviour of the linear transformations induced by the inclusion maps from
one cubical set to another.

Definition 3.3 Let K be any field. Then, by a persistence vector space over K, we
will mean a family of K-vector spaces {Vr}r∈R, together with linear transformations
LV(r, r′) : Vr → Vr′ for r ≤ r′, so that LV(r′, r′′) · LV(r, r′) = LV(r, r′′) for all
r ≤ r′ ≤ r′′.

Definition 3.4 A linear transformation f of persistence vector spaces over K
from {Vr} to {Wr} is a family of linear transformations fr : Vr → Wr, so that for
all r ≤ r′, all the diagrams

Vr Vr′

Wr Wr′

LV(r,r′)

fr fr′

LW(r,r′)

commute in the sense that fr′ ◦ LV(r, r′) = LW(r, r′) ◦ fr.
A sub-persistence vector space of {Vr} is a choice of K-subspaces Ur ⊆ Vr, for all
r ∈ [0,+∞), so that LV(r, r′)(Ur) ⊆ Ur′ for all r ≤ r′. If f : {Vr} → {Wr} is a
linear transformation, then the image of f , denoted by im f , is the sub-persistence
vector space {im fr}.

Example 3.5 To compute the homology groups of the persistent set in Example 3.2,
we define three persistence vector spaces, which have as a basis the i-chains for
i = 0, 1, 2, which we denote by (Ci(P))r. Generally, persistence vector spaces are
over the field Z2, so in computations, we always use Z2-coefficients.
We already saw that all of the vertices are added at time 0. Thus for (C0(P))r, all of
the vertices are a basis of the persistence vector space for all r ∈ [0, ∞):

(C0(P))r = 〈v1, v2, v3, v4, v5, v6〉.

We first define the linear maps on the vertices as inclusions and then extend the map
linearly to the entire vector space. For the other persistence vector spaces, we get

(C1(P))r =


0 for r ∈ [0, 1)
〈e3, e6, e7〉 for r ∈ [1, 2)
〈e1, e2, e3, e5, e6, e7〉 for r ∈ [2, 3)
〈e1, e2, e3, e4, e5, e6, e7〉 for r ∈ [3, ∞)
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and

(C2(P))r =


0 for r ∈ [0, 3)
〈 f1〉 for r ∈ [3, 4)
〈 f1, f2〉 for r ∈ [4, ∞).

We can also define a persistence linear map from {(Ci(P))r} to {(Ci−1(P))r} as a
family of cubical boundary maps for r ∈ [0, ∞):

(∂i)r : (Ci(P))r → (Ci−1(P))r.

The notion of a quotient space also extends to persistence vector spaces. If
{Ur} ⊆ {Vr} is a sub-persistence vector space, then we can form the per-
sistence vector space {Vr/Ur}, where LV/U(r, r′) is the linear transformation
from Vr/Ur to Vr′/Ur′ given by sending the equivalence class [v] to the equiv-
alence class [LV(r, r′)(v)] for any v ∈ Vr.
We extend the notion of a the free vector space on a set:

Definition 3.6 Let X be any set, equipped with a function ρ : X → [0,+∞). We
will refer to such pair as an R+-filtered set. Then, by the free persistence vector
space on the pair (X, ρ), we will mean the persistence vector space {Wr}, with Wr
equal to the K-linear span of the set X[r] ⊆ X[r′] when r ≤ r′, so there is an
inclusion Wr ⊆ Wr′ . Note that Wr is also contained in the K-linear span of all
elements of X, which we denote by VK(X).

Example 3.7 The persistence vector spaces C0(P)r, C1(P)r and C2(P)r are free
persistence vector spaces, because for r ≤ r′ and i = 0, 1, 2, we have an inclusion
Ci(P)r ⊆ Ci(P)r′ .

Thus, a linear combination ∑x axx ∈ VK(X) lies in Wr, iff a = 0 for all x with
ρ(X) > r.
We will write {VK(X, ρ)r} for this persistence vector space. We say a persis-
tence vector space is free if it is isomorphic to one of the form VK(X, ρ) for
some (X, ρ), and we say it is finitely generated if X can be taken to be finite.

Definition 3.8 A persistence vector space is finitely presented if it is isophormic
to a persistence vector space of the form {Wr}/im f for some linear transformation
f : {Vr} → {Wr} between finitely generated free persistence vector spaces {Vr}
and {Wr}.

Example 3.9 P(a, b) is a persistence vector space for every pair (a, b), where we
have ∞ > a ∈ R+, b ∈ R+, a < b, with the obvious interpretation when b = ∞.
P(a, b) is defined by P(a, b)r = K for r ∈ [a, b), P(a, b) = {0} when r /∈ [a, b),
and where L(r, r′) = idK whenever r, r′ ∈ [a, b). We note that P(a, b) is finitely
presented. For, in the case where b is finite, let (X, ρ) and (Y, σ) denote two R+-
filtered sets, with the underlying sets consisting of single elements x and y, and with
ρ(x) = a and σ(y) = b. Then the (1× 1)(X, Y)-matrix [1] is (ρ, σ)-adapted since
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a ≤ b and it is clear that P(a, b) is isomorphic to θ([1]). When b = ∞, P(a, b)
is isomorphic to the persistence vector space Vk(X, ρ), and can therefore be written
as θ(0), where 0 denotes the zero linear transformation from the persistence vector
space {0}.

The choice of a basis for vector spaces V and W allow us to represent lin-
ear transformations from V to W by matrices. For any pair (X, Y) of finite
sets and field K, an (X, Y)-matrix is an array [axy] of elements of axy of K.
We write r(x) for the row corresponding to x and c(y) for the column cor-
responding to y. For any finitely generated free persistence vector space
{Vr} = {VK(X, ρ)r}, we observe that VK(X, ρ)r = VK(X) for r sufficiently
large, since X is finite.
Therefore, for any linear transformation f : {VK(Y, ρ)r} → {VK(X, ρ)r} of
finitely generated free persistence vector spaces, f gives a linear transforma-
tion f∞ : VK(X) → VK(Y) between finite-dimensional vector spaces over K,
and using the bases {ϕx}x∈X of VK(X) and {ϕy}y∈Y of VK(Y) determines
an (X, Y)-matrix A( f ) = [axy] with entries in K. So, labels for the rows and
columns play an important role, as they are the basis elements of VK(X) and
VK(Y).

Proposition 3.10 The (X, Y)-matrix A( f ) has the property that axy = 0 when-
ever ρ(x) > σ(y). Any (X, Y)-matrix A satisfying this condition uniquely deter-
mines a linear transformation of persistence vector spaces

fA : {VK(Y, σ)r} → {VK(X, ρ)r}

and the correspondences f → A( f ) and A→ fA are inverses to each other.

Proof The basis vector y lies in VK(Y, σ)σ(y). On the other hand,

f (ϕy) = ∑
x∈X

axy ϕx.

On the other hand, ∑x∈X axy ϕx only lies in VK(X, ρ)σ(y) if all coefficients axy,
for ρ(x) > σ(y), are zero.
bla �

Definition 3.11 An (X, Y)-matrix of a pair of R+-filtered finite sets (X, ρ) and
(Y, σ) which satisfies the condition in proposition 3.10, i.e. axy = 0 whenever
ρ(x) > σ(y), is (ρ, σ)-adapted.

Example 3.12 If we take a look at the persistent set of Example 3.2, we can write
down the (ρ, σ)-adapted matrices ∂1 and ∂2.
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(e1, 2) (e2, 2) (e3, 1) (e4, 3) (e5, 2) (e6, 1) (e7, 1)

(v1, 0) 1 1 0 0 0 0 0
(v2, 0) 1 0 1 0 0 0 0
(v3, 0) 0 1 0 1 1 0 0
(v4, 0) 0 0 1 1 0 1 0
(v5, 0) 0 0 0 0 1 0 1
(v6, 0) 0 0 0 0 0 1 1

 ,



( f1, 4) ( f2, 4)

(e1, 2) 0 1
(e2, 2) 0 1
(e3, 1) 0 1
(e4, 3) 1 1
(e5, 2) 1 0
(e6, 1) 1 0
(e7, 1) 1 0



A (ρ, σ)-adapted matrix A = [axy] determines a persistence vector space via
the correspondence

A θ−→ Vk(X, ρ)/im fA.

θ has the following properties:

Corollary 3.13 Let (X, ρ) and (Y, σ) be R+-filtered sets.

(i) θ(A) is a finitely presented vector space. Moreover, any finitely presented
persistent vector space is isomorphic to one of the form θ(A) for some matrix
A.

(ii) Under the matrix-linear-transformation correspondence, the automorphisms
of Vk(X, ρ) are identified with the group of all invertible (ρ, ρ)-adapted (X, X)-
matrices.

(iii) Let A be a (ρ, σ)-adapted, B be a (ρ, ρ)-adapted and C be a (σ, σ)-adapted
matrix. Then BAC is also (ρ, σ)-adapted, and the persistence vector space
θ(A) is isomorphic to θ(BAC).

We will use these results to classify up to isomorphism all finitely presenteed
persistence vector spaces.

Proposition 3.14 Every finitely presented persistence vector space over K is iso-
morphic to a finite direct sum of the form

P(a1, b1)⊕ P(a2, b2)⊕ ...⊕ P(an, bn)

for some choices ai ∈ [0,+∞), bi ∈ [0,+∞], and ai < bi for all i.

Proof It is clear that a (ρ, σ)-adapted (X, Y)-matrix A which has the property
that every row and column has at most one nozero element, which is equal
to 1, has the property that θ(A) is of the form described in the proposition.
For if we let {(x1, y1), (x2, y2), ..., (x2, y2)} be all the pairs (xi, yi), so that
axi ,yi = 1, then there is a decomposition

θ(A) ∼=
⊕

i

P(ρ(xi), σ(yi))⊕
⊕

x∈X−{x1,...,xn}
P(ρ(x),+∞). (3.1)
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So, it suffices to construct matrices B and C, that are (ρ, ρ)-adapted (respec-
tively (σ, σ)-adapted) (X, X)-matrices (respectively (Y, Y)-matrices), so that
BAC has the property that every row and column has at most one nonzero
element, which is 1. To see this, we define (ρ, σ)-adapted row and column
operations, which consist of:

(i) all possible multiplications of a row and column by a nonzero element,

(ii) all possible additions of a multiple of r(x) to r(x′) when ρ(x) ≥ ρ(x′),

(iii) all possible additions of a multiple of c(y) to c(y′) when σ(y) ≤ σ(y′).

Because we observe pairs of matrices (A, B) with A · B = 0 (in our case, these
will be two consecutive boundary maps), we have the following admissible
operations on such pair:

(i) An arbitrary adapted row operation on A,

(ii) An arbitrary column operation on B,

(iii) Perform an adapted column operation on A and an adapted row op-
eration on B simultaneously, with the operations realted as follows. If
the adapted column operation on A is the multiplication of the ith col-
umn by a nonzero constant a, then the adapted row operation on B is
the multiplication of the ith row by a−1. If the adapted column oper-
ation on A is the transposition of two columns, then the adapted row
operation on B is the transposition of the corresponding rows of B. FI-
nally, if the adapted column operation on A is the addition of x times
the ith column to the jth column, then the adapted row operation on
B is the subtraction of x times the jth row from the ith row.

Claim: By performing (ρ, σ)-adapted row and column operations, we can
arrive at a matrix with at most one nonzero entry in each row and column.
proof of claim: First find a y which minimizes σ(y) over the set of all y with
c(y) 6= 0. Next, find an x which maximizes ρ(x) over the set of all x for
which the entry axy 6= 0.
Because of the way x is chosen, we can add multiples of r(x) to all the other
rows so as to ‘zero out’ c(y) exept in the xy-entry. Because of the way y is
chosen, we can add multiples of c(y) to zero out r(x) except in the xy-entry,
without affecting c(y).
The result is a matrix in which the unique nonzero element in both r(x) and
c(y) is axy. By multiplying r(x) by 1

axy
, we can make the xy-entry in the trans-

formed matrix 1. By deleting r(x) and c(y), we obtain a (X− {x}, Y− {y})-
matrix which is (ρ|X−{x}, σ|Y−{y})-adapted.
We can now apply the process inductively to the matrix. Each of the row
and column operations required can be interpreted as row and column op-
erations on the original matrix, and will have no effect on r(x) or c(y).
The result is that by iterating this procedure, we will eventually arrive at a
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matrix with only zero entries, and it is clear that the transformed matrix has
at most one nonzero element in each row and column. The result follows by
(iii) of corollary 3.13. �

This proposition gives us an algorithm to compute the persistent homology
of a persistent vector space. It is only left to show that the decomposition
given in the propsition is unique.

Proposition 3.15 Suppose that {Vr} is a finitely presented persistence vector space
over K, and that we have two decompositions

{Vr} ∼=
⊕
i∈I

P(ai, bi) and {Vr} ∼=
⊕
j∈J

P(cj, dj),

where I and J are finite sets. Then #(I) = #(J), and the set of pairs (ai, bi) is, with
multiplicities, identical to the set of pairs (cj, dj).

Proof We let amin and cmin denote the smallest value of ai and cj, respectively.
amin can be characterized intrinsically as min{r|V 6= 0}, and it follows that
amin = cmin.
Next, let bmin denote min{bi|ai = amin}, and make the corresponding defi-
nition for dmin. bmin is also defined intrinsically as min{r′|N(L(r, r′)) 6= 0},
where N denotes the null space, so bmin = dmin as well. This means that
P(amin, bmin) appears in both decompositions.
For each decomposition, we consider the sum of all occurences of the sum-
mand P(amin, bmin). They are both sub-persistence vector spaces of {Vr}, and
can in fact be characterized intrinsically as the sub-persistence vector space
{Wr}, where Wr is the null space of the linear transformation

im L(amin, r)
L(r,bmin)|im L(amin ,r)−−−−−−−−−−→ Vbmin .

It now follows that the number of summands of the form P(amin, bmin) is the
two decompositions are the same, and further that they correspond isomor-
phically under the decompositions.
Let I′ denote the subset of I obtained by removing all i so that ai = amin and
bi = bmin, and define J′ correspondingly. We can now form the quotient of
{Vr} by {Wr}, and observe that we obtain identifications

{Vr}/{Wr} ∼=
⊕
i∈I′

P(ai, bi)and{Vr}/{Wr} ∼=
⊕
j∈J′

P(cj, dj).

By induction on the number of summands in the decompositions, we obtain
the result.
bla �

Example 3.16 Using the algorithm given in the proof of proposition 3.14, we can
compute the persistent homology groups of the persistent set in Example 3.2 by
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3. Persistent Homology

applying (ρ, σ)-adapted row and column operations to the matrix (∂1, ∂2) to get a
pair of matrices which have diagonal blocks. First, we order the columns of ∂1 by
ascending σ(ei) for i = 1, ..., 7 and then sort the rows of ∂2 accordingly.





(e3, 1) (e6, 1) (e7, 1) (e1, 2) (e2, 2) (e5, 2) (e4, 3)
0 0 0 1 1 0 0
1 0 0 1 0 0 0
0 0 0 0 1 1 1
1 1 0 0 0 0 1
0 0 1 0 0 1 0
0 1 1 0 0 0 0

 ,



( f1, 4) ( f2, 4)
(e3, 1) 0 1
(e6, 1) 1 0
(e7, 1) 1 0
(e1, 2) 0 1
(e2, 2) 0 1
(e5, 2) 1 0
(e4, 3) 1 1




Next, we exchange r(1) and r(2) of ∂1 to get a 1 in the top-left entry.





(e3, 1) (e6, 1) (e7, 1) (e1, 2) (e2, 2) (e5, 2) (e4, 3)
1 0 0 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 1
1 1 0 0 0 0 1
0 0 1 0 0 1 0
0 1 1 0 0 0 0

 ,



( f1, 4) ( f2, 4)
(e3, 1) 0 1
(e6, 1) 1 0
(e7, 1) 1 0
(e1, 2) 0 1
(e2, 2) 0 1
(e5, 2) 1 0
(e4, 3) 1 1




In order to eliminate the other 1 in r(1) of ∂1, we add r(1) to r(4). Because the row
labels are all 0, we can add and subtract them as we wish.





(e3, 1) (e6, 1) (e7, 1) (e1, 2) (e2, 2) (e5, 2) (e4, 3)
1 0 0 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 1
0 1 0 1 0 0 1
0 0 1 0 0 1 0
0 1 1 0 0 0 0

 ,



( f1, 4) ( f2, 4)
(e3, 1) 0 1
(e6, 1) 1 0
(e7, 1) 1 0
(e1, 2) 0 1
(e2, 2) 0 1
(e5, 2) 1 0
(e4, 3) 1 1




To get rid of the other 1 in c(1) of ∂1, we add c(1) to c(4). Because we can only
apply adapted row and column operations, we have to add r(4) of ∂2 to r(1) and
adjust the labels of the columns of ∂1 and the rows of ∂2.





(e3, 1) (e6, 1) (e7, 1) (e1e3, 2) (e2, 2) (e5, 2) (e4, 3)
1 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 1
0 1 0 1 0 0 1
0 0 1 0 0 1 0
0 1 1 0 0 0 0

 ,



( f1, 4) ( f2, 4)
(e3, 1) 0 0
(e6, 1) 1 0
(e7, 1) 1 0

(e1e3, 2) 0 1
(e2, 2) 0 1
(e5, 2) 1 0
(e4, 3) 1 1




Now, the first row and column of ∂1 are in the desired form and we can apply the
same steps to the bottom-right 5× 6-submatrix and so on. After we put ∂1 in a
diagonal form, we can apply column operations to ∂2 to obtain a diagonal submatrix
in the bottom-right. In the end, we obtain





(e3, 1) (e6, 1) (e7, 1) (e1e3e6, 2) (e1e2e3e6, 2) (e1e2e3e5e6e7, 2) (e1e2e3e4, 3)
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

 ,



( f1 f2, 4) ( f2, 4)
(e3, 1) 0 0
(e6, 1) 0 0
(e7, 1) 0 0

(e1e3e6, 2) 0 0
(e1e2e3e6, 2) 0 0

(e1e2e3e5e6e7, 2) 1 0
(e1e2e3e4, 3) 0 1




.
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To shorten the notation, we omitted the plus sign in the labels. We observe that
∂( f1 + f2) = e1 + e2 + e3 + e5 + e6 + e7 and ∂( f2) = e1 + e2 + e3 + e4. From
the matrix on the left we can now read off that the persistence vector space ker ∂1
is isomorphic to (X, ρ), where X = {∂( f1 + f2), ∂( f2)} and ρ(∂( f1 + f2)) = 2,
ρ(∂( f2)) = 3. To get the 1-dimensional persistent homology group, we observe the
persistence linear map (∂2)r : (C2(P))r → (ker ∂1)r, r ∈ [0, ∞). This map is
represented by the following ({∂( f1 + f2), ∂( f2)}, { f1 + f2, f2})-adapted matrix

( ( f1 + f2, 4) ( f2, 4)

(∂( f1 + f2), 2) 1 0
(∂( f2), 3) 0 1

)
According to Proposition 3.14, the 1-dimensional persistent homology group is iso-
morphic to P(2, 4) ⊕ P(3, 4). Since we retained the information about how the
basis changed, we can read off what the cycles are: ∂( f1 + f2) persists over [2, 4)
and ∂( f2) persists over [3, 4).

The isomorphism classes of finitely presented persistence vector spaces are
in one-to-one correspondence with the set {(a, b)|a ∈ [0, ∞), b ∈ [0, ∞], a < b}.
Such sets can be represented visually in two distinct ways, one as families
of intervals on the non-negative real lines, and the other as a collection of
points in the subset {(x, y)|x ≥ 0 and y > x} of the first quadrant in the
(x, y)-plane. In the second case, one must place points with b = +∞ above
the whole diagram in a horizontal line indicating infinity. The first represen-
tation is calles a barcode, the second a persistence diagram.
Usually, the persistence barcodes consist of some ‘short’ intervals and some
‘long’ intervals. The short intervals are typically considered noisy, whereas
the long ones are considered to correspond to larger-scale geometric fea-
tures, which one would expect to have a correspondence with the features
of a space from which the metric is sampled.

Figure 3.2: (a) a barcode; (b) a persistence diagram

Definition 3.17 The lifetime of P(ai, bi) is bi − ai [5].
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In the persistence diagram, a long lifetime of P(ai, bi) would be represented
by a point far from the diagonal axis, whereas a short lifetime would by
represented by a point close to the diagonal axis.

Definition 3.18 The maximum persistence MaxPers (D) := max(ai ,bi)∈D(bi − ai)
for a given persistence diagram D measures the longest lifetime of a space P(ai, bi)
in the diagram.

Example 3.19 As an example, we take a look at Figure 3.3 1, which shows an
image of a circle. We first convert the image into a cubical complex: there are 8× 8
elementary 2-cubes, and to every 2-cube there is a value assigned to it, which can
be seen as the ‘time’ r, the 2-cube (and all its faces) appears in the persistence vector
space {Vr}r. This value is also the greyscale value of the color of the 2-cube. Because
the image is an image of a circle, persistent homology should yield the homology
groups of a circle (or a shape that is homotopy equivalent).

Figure 3.3: 8× 8 greyscale image of a circle

Now we apply persistent homology to compute the barcodes of the image. We want
to focus on computing H1 (Because H0 is just the number of path-connected compo-
nents). We recall from example 2.33, that H1

∼= Z.

Figure 3.4: The vector space Vr for different r’s

1https://scikit-learn.org/stable/auto examples/cluster/plot digits agglomeration.html#sphx-
glr-auto-examples-cluster-plot-digits-agglomeration-py; last access 19.06.2023
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In Figure 3.4, one can see the vector spaces V2, V5, V8 and V13. In V2, there are 4
path-connected components, but circle-like shape is not visible yet. In V5 the circle-
shape is visible for the first time and it continues to be visible until V15. The barcode
for H1 is depicted in figure 3.5.

Figure 3.5: The barcodes for H0 and H1
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Chapter 4

Topological Analysis of Tropical
Cyclones

Previous studies described that hurricanes have a diurnal cycle [2],[7], which
can be observed in infrared satellite imagery as distinct pulses that expand
radially outward. These pulses may influence the structure and intensity
of the hurricane. Thus understanding them better could help to improve
weather forecasting or security measures. Despite this, there is little quanti-
tative research available that concerns this phenomenon.
In [5], a method based on persistent homology is used to analyze the di-
urnal cycle of hurricanes. Because the aim is to capture cycles in the data,
the first homology group, which in this case should be non-trivial, plays an
important role.

4.1 Tropical Cyclone Formation & Diurnal Cycles

The term tropical cyclone (TC) includes hurricanes, typhoons and cyclones.
Generally, tropical cyclones are called hurricanes if they are in the Atlantic,
typhoons if they are in the Pacific and cyclones if they are in the Indian
Ocean [7].
The main condition for the formation of a TC is a large, still and warm
ocean area with a surface temperature over 26 to 27 ◦C. As a consequence,
a body of warm air forms over the water, rises and forms clouds beyond
the condensation level. During that process, latent heat energy is released
which leads to a self-sustaining heat cycle. Due to the Coriolis effect currents
of air spiral aroung the center of the TC. Thus, they rotate anti-clockwise in
the northern hemisphere and clockwise in the southern hemisphere. The
pressure is lowest in the center of the TC and increases radially outward.

At this stage, the TC is matured and follows a pathway away from its source
driven by global wind circulation.
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4. Topological Analysis of Tropical Cyclones

Figure 4.1: Principal tropical cyclone paths and sea surface temperature during summer season
(for both hemispheres)(image taken from [7])

As the reader can derive from Figure 4.1, the latent energy distribution varies
with location, but also with season.

Previous research documented a diurnal cycle of tropical convection and the
tropical cyclone cirrus canopy, which are the upper-level clouds of the hur-
ricane. They found a distinct pulse in the investigated storms that begins
around the time of the local sunset, forms in the core of the TC and expands
outward radially, reaching the periphery of the hurricane in the early after-
noon [2], which can also be observed in satellite data. These pulses may
have implications for the structure and intensity of the TC, as they propa-
gate ‘through a deep layer of TC environment’ [5].
The cirrus canopy expands as well throughout the day, reaching the maxi-
mal area coverage in the early evening hours [5]. Moreover, convection such
as thunderstorms occur overnight and precipitation peaks near sunrise [5].
In general, research ‘suggests that the TC diurnal cycle favors storm intensi-
fication in the early hours of the morning and storm weakening in the late
afternoon and evening’ [4]. Also, this outward propagating pulse has been
found in 88 % of all hurricanes between 1982 and 2017 in the Atlantic ocean,
thus one can say that this is a ubiquituous phenomenon.
But it is not yet understood why there is a diurnal cycle, what the dynamical
mechanisms and what the impact to the storm structure and intensity are
[4]. It is suspected that the phenomenon may have something to do with
solar radiation [5],[2]. The main source of this thesis takes another apporach
to examine and quantify the diurnal cycle by using persistent homology.
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4.2 Analysis of Tropical Cyclones using Persistent Ho-
mology

Before we begin with the topological analysis of TCs, we need to take a
closer look at the discrete Fourier transform, which is used in the method
presented in [5]. I will refer to [6] and [5].
As with the continuous Fourier transformation, the discrete Fourier trans-
formation (DFT) is used to decompose a (discrete) function f into a sum
of sinuoids with different frequencies [5]. Let N be the number of sam-
ples, T be the time between the discrete samples and let tk = kT, where
k = 0, ..., N − 1.
The result of the transformation is a vector F = (F0, ..., FN−1) ∈ CN , where
the F0, ..., FN−1 are the Fourier coefficients. These are given by

Fn :=
N−1

∑
k=0

f (tk)e−2πink/N . (4.1)

The sum of the sinuoids, which have amplitude Fn for n = 0, ..., N− 1, gives
the original function f . Thus for the inverse DFT, we get the equation

f (tk) =
1
N

N−1

∑
j=0

Fje2πijk/N . (4.2)

The power in each frequency component represented by the DFT is |Fn|2 and
can be used to find the most dominant frequency in the function f .

Example 4.1 Let’s consider the following example: take

f (0) = 1, f (2) = 4, f (4) = 3, f (6) = 2.

Clearly, T = 2 and N = 4. We can now compute the Fourier coefficients with
equation 4.1.

F0 = f (0)e−2πi·0·0/4 + f (2)e−2πi·0·1/4 + f (4)e−2πi·0·2/4 + f (6)e−2πi·0·3/4

= 1 + 4 + 3 + 2 = 10

F1 = f (0)e−2πi·1·0/4 + f (2)e−2πi·1·1/4 + f (4)e−2πi·1·2/4 + f (6)e−2πi·1·3/4

= 1 + 4e−πi/2 + 3e−πi + 2e−3πi/2

= 1− 4i− 3 + 2i = −2− 2i

F2 = f (0)e−2πi·2·0/4 + f (2)e−2πi·2·1/4 + f (4)e−2πi·2·2/4 + f (6)e−2πi·2·3/4

= 1 + 4e−πi + 3e−2πi + 2e−3πi

= 1− 4 + 3− 2 = −2

F3 = f (0)e−2πi·3·0/4 + f (2)e−2πi·3·1/4 + f (4)e−2πi·3·2/4 + f (6)e−2πi·3·3/4

= 1 + 4e−3πi/2 + 3e−3πi + 2e−9πi/2

= 1 + 4i− 3− 2i = −2 + 2i
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The absolute value of the Fourier coefficients give us the amplitude of the correspond-
ing sinusoid and f is given by

f (tk) =
1
4
(10e2πi·0·k/4 − (2 + 2i)e2πi·1·k/4 − 2e2πi·2·k/4 − (2− 2i)e2πi·3·k/4)

=
1
4
(10− (2 + 2i)eπik/2 − 2eπik − (2− 2i)e3πik/2)

Thus, we see that the sinusoid corresponding to F0 has the biggest amplitude, which
is the constant function g(tk) = 10e2πi·0·k/4 = 10. Since the computation is very
tedious if done by hand, computers are used to compute the DFT.

Sarah Tymochko et al. used persistent homology to quantify the diurnal
cycle. All the images in the following section are taken from [5].
The data used was Geostationary Operational Environmental Satellite (GOES)
infrared (IR) satellite data, which can ‘detect clouds at all times of the day
and night and is ideal for tracing the evolution of the TC cloud fields’, for
the hurricanes Felix in 2007 and Ivan in 2004. The data was given in hourly
time increments, represented as a matrix for pixel values S(t) for time t,
similarly as in Example 3.19. One examplary satellite image can be seen in
Figure 4.2.

Figure 4.2: Original satellite imagery from the Felix data set

To detect the movement and changes in the brightness temperature, the
six-hour-differences M(t) = S(t + 6) − S(t) was considered for all times
t and a threshold µ was fixed to define M(t)µ, which is the subset of M(t)
with function value less than µ. Thus, M(t)µ[i, j] = 1 if M(t)[i, j] < µ and
M(t)µ[i, j] = 0 otherwise. Because M(t) is the difference of two images, the
threshold µ isolates all the pixels that increase by µ over the six hours.
After, the distance transform D(t) of M(t) was computed to create a greyscale
image that ‘maintains the visually apparent topological structure of the im-
age’. The distance transform is a matrix which is calculated componentwise:
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D(t)i,j = mini,j d∞(si,j, x), where si,j is the pixel at (i, j) and

d∞(si1,j1 , si2,j2) = max{|i2 − i1|, |j2 − j1|}

is the L∞-distance between si1,j1 and si2,j2 .

Figure 4.3: Top left: Example of six-hour-difference M(t) from the Felix data set; Top right:
thresholded subset M(t)µ with µ = 80; Bottom left: distance transform D(t); Bottom right:
corresponding persistence diagram

Then, the persistent homology of the cubical set on the function D(t) was
computed for every six-hour difference. In Figure 4.3, the process described
above, so one example of M(t), the thresholded subset M(t)µ, the distance
transform D(t) and the corresponding persistence diagram can be seen.
Subsequently, the maximum persistence was computed for every six-hour-
difference and was plotted over time, which can be seen in Figure 4.4. The
maximum persistence for a given persistence diagram D is a common mea-
sure, because it measures the longest lifetime of a space P(ai, bi) in the dia-
gram and it is especially useful when investigating a single circular structure
like a hurricane. Because the circular structure should be most prevalent
over time, there is probably a correlation with the maximum persistence [5].
The plot shows an oscillatory pattern, detecting the change in the diurnal
cycle throughout the day.
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Figure 4.4: Maximum persistence plotted over time for all data sets using µ = 80 in addition
to the reconstructed sinuoids using the inverse DFT

In order to analyze the periodicity of this pattern and to calculate the most
prominent frequency in the data, the discrete Fourier transform (DFT) Fn
was computed. The frequency of the most prominent signal is given by the
highest peak of the power spectrum |Fn|2, which can be used to calculate
the period of the oscillatory pattern. The power spectrum of the data sets
is shown in figure 4.5. Using the inverse discrete Fourier transform, the
corresponding sinusoid can be reconstructed and plotted over the original
data to verify that the detected signal matches the oscillatory pattern of the
maximum persistence.

Figure 4.5: Power spectrum for each data set

Finally, a frequency of 0.979 cycles per day for the data set of hurricane Fe-
lix and 1.0 cycles per day for for the data set of hurricane Ivan was found,
which gives that the cycle is repeating every 24.5 h for the Felix data set and
every 24.0 h for the Ivan data set.
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Thus, the approximately 24-h-patterns in the plots were also detected math-
ematically. In conclusion, the method presented in the paper provides a
‘mathematically advanced method for automatic detection and measurement’
and show one of the many applications of persistent homology.
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