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Abstract

In this thesis I introduce persistent homology, a variant of homology
adapted to the setting of finite metric spaces. Intuitively speaking,
persistent homology counts the occurrence of holes and higher dimen-
sional cavities in a data set. I also discuss an application of persistent
homology to viral evolution. For a long time, the tree structure was the
best way to represent processes in evolution of phenotypic attributes.
however, horizontal events such as recombination and reassortment in
viruses cannot be captured in a tree as they generate holes. Persistent
homology can ”count” these holes. I mainly follow the main paper
written by Joseph Minhow Chan, Gunnar Carlsson and Raul Rabadan
called Topology of viral evolution [5].
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Chapter 1

Introduction

The goal of this thesis is to show how persistent homology can be applied
to viral evolution. Persistent homology is a tool that measures the shape of
a point cloud or a finite metric space. In the simplest setting, the idea is to
take the point cloud and thicken the points by a radius r and then track the
appearance of holes and higher dimensional cavities as we vary r. Look at
the topology of Figure 1.1. In the fist step we see four connected components,
in the second step all points are connected with its two neighbours but there
is still a hole in the middle, because the distance between the diagonal points
is smaller than the radius. In the third step there is no longer a hole in
the middle. The geometric structure is captured by the so-called simplicial
complexes. A 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron and so on.

Figure 1.1: Point cloud data thickened by various r. The simplicial complexes modelling the
spaces in the topology are depicted.
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1. Introduction

For a long time, evolution was modelled by phylogenetic trees. A phyloge-
netic tree is a tree that tries to reconstruct evolutionary relationships between
species. Figure 1.2 shows an example of a phylogenetic tree and indicates
the phenotypic (concerning observable traits) splitting reason between the
species. We will see that phylogenetic trees are still the best way to model

Figure 1.2: Phylogenetic tree of angel fish, frog, crocodile, platypus, kangaroo and elephant [1].

evolutionary processes that contain only vertical events, but they are not
convenient to model horizontal events. We now apply this idea of thickening
point clouds to genomic data with the goal of giving a criterion for how
non-tree-like the evolution of viruses is. The distance between the data points
is the genetic distance, which we will measure with the Hamming distance.
The Hamming distance considers two genetic sequences of the same length
and counts the number of positions at which their corresponding characters
differ. So the Hamming distance between ”cloud” and ”proud” is 2. De-
tected holes at some genetic distance correspond to horizontal evolutionary
processes.

All processes in viral evolution that have no reassortment or recombination in
it can be modelled as a phylogenetic tree. One of the main results about trees
discussed in this thesis is that for a tree-like metric space there are no holes
and higher dimensional cavities in the Vietoris-Rips complex for any given
radius. This theorem is stated and proved in Section 3.2 and topological
obstruction to phylogeny in Section 4.3.

Using tree-like metric spaces and persistent homology we can now study the
evolution of viruses and can decide whether it has a underlying phylogenetic
tree structure or a more complex structure with horizontal evolutionary
events.
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Chapter 2

Persistent homology

In this chapter we define persistent homology. We first look at abstract
simplicial complexes and homology and then discuss persistence vector
spaces and the main theorem in this chapter, the Decomposition Theorem.
We refer the reader to [10] for basic homology theory and for notation and
contents of the following sections we follow [4].

2.1 Abstract simplicial complexes

Definition 2.1 A set of points X = {x0, x1, . . . , xn} as a subset of Euclidean space
Rm is called affinely independent if it is not contained in an affine hyperplane of
Rm that has smaller dimension than n for m > n.

Definition 2.2 A n-simplex σ in a Euclidean space Rm is defined as the convex
hull of the set X = {x0, x1, . . . , xn} of n affinely independent points. The xi s are
called vertices and the simplices spanned by Y ⊆ X, where |Y| = i are called
i-faces. 1-simplices are called edges.

Definition 2.3 A geometric simplicial complex is a finite collection X of sim-
plices in a Euclidean space, such that:

• For a simplex σ of X all the faces of σ are also in X .

• For two simplices σ and τ of X σ ∩ τ is a simplex of X and a face of σ and τ.

Example 2.4 In Figure 2.1 we see a geometric simplicial complex. Figures b)
and c) are not geometric simplicial complexes. In b) there are intersections
of edges, that are not vertices (marked green) so the second condition for a
geometric simplicial complex is violated. In c) we have a green 2-simplex but
not all of its faces are in the drawn structure so the first condition is violated.

Definition 2.5 An abstract simplicial complex X is a pair (V(X), Σ(X)), where
V(X) is the is the vertex set of X and Σ(X) is a set of subsets of the collection of non-
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2. Persistent homology

a) b) c)

Figure 2.1: a) A geometric simplicial complex, b) and c) are no geometric simplicial complexes.

empty subsets of V(X), satisfying the condition that for σ ∈ Σ(X) and 0 ̸= τ ⊆ σ
it holds that τ ∈ Σ(X). Σ(X) is called the set of simplices.

A special case of an abstract simplicial complex is a graph.

Definition 2.6 A graph is a pair (V, E), where V denotes the set of vertices and E
the set of edges between these vertices.

Definition 2.7 An additive graph is a graph Γ where each edge (v, v′) gets a
positive length assigned, which is denoted by λΓ(v, v′).

v0

v1

v2
v3
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64
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5

4

8

5

a) b)

Figure 2.2: a) A graph with vertices V = {v0, . . . , v5} and edges E = {e0. . . . , e6}, b) an additive
graph.

Note that we can derive an abstract simplicial complex from a given geometric
simplicial complex X by choosing the vertex set V(X ) as the set of all vertices
of simplices of X and by letting a subset of V(X ) be in Σ(X ) if and only if
the set is the set of vertices of some simplex of X .

Definition 2.8 For abstract simplicial complexes X and Y, a map of abstract
simplicial complexes f : X → Y is a function of sets fV : V(X) → V(Y), such
that for all simplices σ ∈ Σ(X), the subset fV(σ) ∈ Σ(Y).

Example 2.9 Let X = (V(X), Σ(X)) with

V(X) = {x1, x2, x3},
Σ(X) = {{x1}, {x2}, {x3}, {x1, x2}, {x2, x3}, {x1, x3}}
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2.1. Abstract simplicial complexes

and Y = (V(Y), Σ(Y)) with

V(Y) = {y1, y2, y3},
Σ(Y) = {{y1}, {y2}, {y3}, {y1, y2}, {y2, y3}, {y1, y3}, {y1, y2, y3}}.

We define f : V(X) → V(Y) with

f ({x1}) = {y2}, f ({x2}) = {y2} and f ({x3}) = {y1}.

It follows that

f ({x1, x2}) = {y2}, f ({x2, x3}) = {y1, y2} and f ({x1, x3}) = {y1, y2}.

All these images are simplices in Y. Illustration of the associated geometric
simplicial complexes of this example is shown in 2.3.

x1

x2

x3 y1

y2

y3

f

f

f

X Y

Figure 2.3: A map between simplices is determined by the images of its vertices.

Definition 2.10 A geometric simplicial complex X in Rm is called a geometric
realization of an abstract simplicial complex X′ if and only if there is an embedding
e : V(X′) → Rm that takes every i-simplex {v0, . . . , vi} in X′ to a i-simplex in X
that is the convex hull of e(v0), . . . , e(vi). We denote this by |X|.

Note that the geometric realization construction is functorial in the sense that
every map of abstract simplicial complexes f : X → Y induces a map on the
corresponding geometric realizations | f | : |X| → |Y|, such that |idX| = id|X|
and | f ◦ g| = | f | ◦ |g|.

Remark 2.11 One can determine a geometric simplicial complex up to home-
omorphism from an abstract simplicial complex, in the sense that a geometric
simplicial complex is homeomorphic to the geometric realisation of its asso-
ciated abstract simplicial complex.
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2. Persistent homology

Example 2.12 In Figure 2.4 we see the geometric realizations of two abstract
simplicial complexes X1 and X2, where

V(X1) = {1, 2, 3},
Σ(X1) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}},
V(X2) = {1, 2, 3, 4},
Σ(X2) = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}, {3, 4}}.

X3 with

V(X3) = {1, 2, 3} and
Σ(X3) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

is not an abstract simplicial complex, because {1, 3} ⊆ {1, 2, 3} but
{1, 3} /∈ Σ(X3).

1

2

3

1

2

3

4

|X1| |X2|

Figure 2.4: Geometric realizations |X1| and |X2| of abstract simplicial complexes in Example
2.12

Definition 2.13 A filtered simplicial complex (or a filtration) of a set X is a
family (Sa|a ∈ R) of subcomplexes of some fixed simplicial complex S̄ with vertex
set X such that Sa ⊆ Sb for any a ≤ b.

2.2 Homology

Homology is an approach to study shapes of topological spaces and to
characterize them through occurring patterns. The idea is to count holes or
higher dimensional cavities in a space. To study homology we only consider
coefficients over Z2.

Definition 2.14 For a field k and a finite set X, the free k-vector space on X
Vk(X) is defined as the k-span of the set of elements of X.

Definition 2.15 The set of i-dimensional simplices of X is the set of subsets of
the vertex set V(X) that have cardinality i + 1. We will denote this set by Σi(X).
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2.2. Homology

Example 2.16 In Figure 2.5 we can see an example of the associated geometric
simplicial complex of an abstract simplicial complex X with

V(X) = {1, 2, 3, 4},
Σ(X) = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 4}, {2, 4}, {2, 3, 4}}

and its sets of i-dimensional simplices for i = 0, 1, 2.

Σ0(X) Σ1(X) Σ2(X)X

1

2 3

4 1

2 3

4

Figure 2.5: The geometric simplicial complex X and the sets of its i-simplices.

For the following definitions we follow [8] and [10].

Definition 2.17 Let X be an abstract simplicial complex and i a dimension. A
i-chain is a sum of i-simplices in X. We write c = ∑ ajσj, where the aj s are
coefficients and the σj s are i-simplices.

Definition 2.18 The group of i-chains Ci(X) is the i-chains together with the
addition operation defined through c + c′ = ∑(aj + a′j)σj.

Definition 2.19 For a simplex σ spanned by {v0, v1, . . . , vi} the boundary is
defined by

∂i(σ) =
i

∑
j=0

(−1)jσ|[v0,...,v̂j,...,vi ].

We see that the boundary takes a i-chain to a i − 1-chain and can therefore
write ∂i : Ci → Ci−1. Notice that ∂i(c + c′) = ∂i(c) + ∂i(c′) which is the
defining property of a homomorphism. We call ∂i therefore boundary map.

Definition 2.20 The chain complex is the sequence of chain groups connected by
boundary maps

· · · ∂i+2−−→ Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1
∂i−1−−→ · · · (2.1)

Definition 2.21 A i-cycle is a i-chain c such that ∂c = 0. The group of i-cycles is
denoted by Zi.

Notice that Zi = Ker(∂i).

Definition 2.22 A i-boundary is a i-chain c such that c = ∂d for d ∈ Ci+1. The
group of i-boundaries is denoted by Bi.

7



2. Persistent homology

Notice that Bi = Im(∂i+1).

Definition 2.23 The i-th homology group is Hi = Zi/Bi.

Definition 2.24 The i-th Betti number βi is the dimension of the i-th homology
group, βi = dim(Hi).

Definition 2.25 A topological space X is called acyclic if it is connected and
Hi(X) = 0 for all i ≥ 1.

Example 2.26 A circle is not acyclic, because H1(S1) = Z ̸= 0. But a disk,
for example, is acyclic.

Definition 2.27 The boundary matrix ∂i is defined to be the matrix, that has a
one-to-one correspondence between the columns and Σi(X) and one between the
rows and Σi−1(X). So if you look at the entry eτ′,τ in the column corresponding to
some i-simplex τ and the row corresponding to some (i − 1)-simplex τ′, we have
that

eτ′,τ =

{
1, τ′ ⊆ τ (as set of vertices)
0, otherwise.

(2.2)

Example 2.28 We take the same abstract simplicial complex as in Example
2.16. The corresponding boundary matrices ∂1 and ∂2 are the following:

∂1 =



{1, 2} {2, 3} {3, 4} {1, 4} {2, 4}

{1} 1 0 0 1 0

{2} 1 1 0 0 1

{3} 0 1 1 0 0

{4} 0 0 1 1 1


, ∂2 =



{2, 3, 4}

{1, 2} 0

{2, 3} 1

{3, 4} 1

{1, 4} 0

{2, 4} 1


An important result for boundary matrices is the following proposition.

Proposition 2.29 The matrix product ∂i−1 · ∂i is equal to the zero matrix over Z2.
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2.3. Persistent vector spaces

Example 2.30 Again we take the same complex as in Example 2.16 and
compute the matrix product ∂1 · ∂2 with the matrices from Example 2.28:



1 0 0 1 0

1 1 0 0 1

0 1 1 0 0

0 0 1 1 1


·



0

1

1

0

1


=



0

2

2

2


, which is equal to



0

0

0

0


over Z2.

Definition 2.31 For a finite metric space M = (M, d), the Vietoris-Rips com-
plexes V(M, r) of M are defined as follows. M is the vertex set of V(M, r) and a
k-tuple {m0, m1, . . . , mk} spans a k-simplex of V(M, r) if and only if d(mi, mj) ≤ r
for all 0 ≤ i, j ≤ r.

Example 2.32 In Figure 2.6 we see three Vietoris-Rips complexes on the same
finite metric space with three points and varying radii ri for i ∈ {1, 2, 3}.

4
4

6

6
r1 r2 r3

Figure 2.6: Example of three Vietoris-Rips complexes with 2 ≤ r1 < 3 ≤ r2 < 4 ≤ r3.

2.3 Persistent vector spaces

Definition 2.33 Let k be a field. A persistence vector space over k is a family of
k-vector spaces {Vr}r∈R together with linear transformations LV(r, r′) : Vr → Vr′

for r ≤ r′, such that LV(r′, r′′) · LV(r, r′) = LV(r, r′′) for all r ≤ r′ ≤ r′′.

Definition 2.34 A sub-persistent vector space of {Vr}r is {Ur}r with all Ur ⊆
Vr for r ∈ [0, ∞), such that LV(r, r′)(Ur) ⊆ Ur′ for all r ≤ r′.

Definition 2.35 A linear transformation f between persistence vector spaces
{Vr} and {Wr} is a family of linear transformations fr : Vr → Wr, such that for all
r ≤ r′ it holds that

fr′ ◦ LV(r, r′) = LW(r, r′) ◦ fr. (2.3)

9



2. Persistent homology

This means in particular that the following diagram commutes:

Vr Vr
′

Wr Wr
′

LV (r, r′)

LW (r, r′)

f
r′

fr

Definition 2.36 The quotient space of a persistence vector space {Vr} and one
of its sub-persistent vector spaces {Ur}, where {Ur} ⊆ {Vr}, is defined as the pair
{Vr/Ur} together with the linear transformation LV/U(r, r′) : : Vr/Ur → Vr′/Ur′ ,
given by [v] 7→ [LV(r, r′)(v)] for all v ∈ Vr.

Definition 2.37 Let X be a set and ρ : X → [0, ∞) a function. Then (X, ρ) is
called an R+-filtered set.

Definition 2.38 The free persistence vector space on the pair (X, ρ), is the
vector space {Vk(X, ρ)r} with Vk(X, ρ)r ⊆ Vk(X), which is equal to the k-linear
span of the set X[r] = {x ∈ X | ρ(x) ≤ r} ⊆ X. A persistence vector space {Vr}
is called free if there exists an isomorphism, such that {Vr} ∼= {Vk(X, ρ)r} for some
pair (X, ρ).

Lemma 2.39 A linear combination of the form ∑x axx ∈ Vk(X) lies in Vk(X, ρ)r if
and only if ax = 0 for all x, such that ρ(x) > r. [4]

Example 2.40 We will observe the filtration F in Figure 2.7 of simplicial
complexes. We can see that all the vertices appear at time 0. At time 1 the
edge {a, b} appears and so on. So our persistence vector space of 0-chains is

(C0(F))r = ⟨a, b, c⟩ for r ∈ [0, ∞). (2.4)

Similarly for the 1-chains we get

(C1(F))r =


0 for r ∈ [0, 1)
⟨{a, b}⟩ for r ∈ [1, 2)
⟨{a, c}⟩ for r ∈ [2, 3)
⟨{b, c}⟩ for r ∈ [3, ∞)

(2.5)

and for the 2-chains

(C2(F))r =

{
0 for r ∈ [0, 4)
⟨{a, b, c}⟩ for r ∈ [4, ∞)

(2.6)

We can define persistence linear maps from {(Ci(F))ρ} to {(Ci−1(F))ρ} a
family

(∂i)ρ : (Ci(F))ρ → (Ci−1(F))ρ (2.7)

of boundary maps, where ρ ∈ [0, ∞).
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2.3. Persistent vector spaces

a

b c

a

b c

a

b c

a

b c

a

b c

Figure 2.7: A Filtration of the chain complex on the right.

Definition 2.41 A persistence vector space as in Definition 2.38 is finitely gener-
ated, if X can be taken to be finite.

Definition 2.42 A persistence vector space {Vr} over k is called finitely presented,
if there exists an isomorphism, such that {Vr} ∼= {Wr}/Im( f ) for a linear transfor-
mation f between the two finitely generated free persistence vector spaces {Vr} and
{Wr}. Note that {Wr}/Im( f ) is also a persistence vector space.

Definition 2.43 For two finite sets X, Y and a field k, the (X, Y)-matrix is given
by an array [axy] where the axy’s are elements in k. For two R+-filtered sets (X, ρ)
and (Y, σ), a (X, Y)-matrix A( f ) is called (ρ, σ)-adapted if

axy = 0 for ρ(x) > σ(y). (2.8)

For a finite set X we can see that for a finitely generated free persistence vector
space {Vr} = {Vk(X, ρ)r} and big enough r we have that Vk(X, ρ) = Vk(X).
Therefore we can conclude that any persistent linear map between finitely
generated free persistence vector spaces f : {Vk(Y, σ)r} → {Vk(X, ρ)r} gives
a linear map f∞ : Vk(Y) → Vk(X) between finite dimensional vector spaces
over k, where we have a label for every generator. By using the bases {φx}
of Vk(X) and {φy} of Vk(Y) we can determine an (X, Y)-matrix A( f ) = [axy]
with entries in k.

Lemma 2.44 Suppose we have two R+-filtered sets (X, ρ) and (Y, σ). Then all
matrices A = [axy] satisfying 2.8 determine a persistence vector space in the
following way:

θ : A → Vk(X, ρ)/Im( fA), (2.9)

where the linear transformation fA : {Vk(Y, σ)r} → {Vk(X, ρ)r} between persis-
tence vector spaces is uniquely determined by the (X, Y)-matrix A.

Remark 2.45 For A as above, θ(A) is finitely presented.
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2. Persistent homology

Example 2.46 We now want to write out the boundary matrices from Exam-
ple 2.40.

(∂1)∞ =



(ab, 1) (ac, 2) (bc, 3)

(a, 0) 1 1 0

(b, 0) 1 0 1

(c, 0) 0 1 1



(∂2)∞ =



((a, b, c), 4)

(ab, 1) 1

(ac, 2) 1

(bc, 3) 1


At the left of (∂1)∞ we see that ρ(x) is 0 everywhere so the condition ρ(x) > σ(y)

is never given. Therefore the matrix is (ρ, σ)-adapted. Similar for (∂2)∞ we have
that 1, 2, 3 < 4 and this matrix is also (ρ, σ)-adapted.

Definition 2.47 An interval persistent vector space P(a, b) for a ∈ R+,
b ∈ R+ ∪ {∞} and a < b is defined by

P(a, b)r =

{
k, r ∈ [a, b)
0, r /∈ [a, b)

(2.10)

and where L(r, r′) = idk for r, r′ ∈ [a, b).

Remark 2.48 This definition is obvious to interpret in the case where b = ∞.
Note that P(a, b) is finitely presented. In the case where b < ∞ we have
the following: Let (X, ρ) and (Y, σ) be two R+-filtered sets and X = {x},
Y = {y}. Furthermore we have ρ(x) = a and σ(y) = b. Then it follows that
the (1 × 1)-matrix (1) is (ρ, σ)-adapted and P(a, b) ∼= θ((1)). When b = ∞
we get the isomorphism P(a, b) ∼= Vk(X, ρ) and we can write P(a, b) = θ(0),
where 0 is the zero linear transformation from the persistence vector space 0.

Proposition 2.49 The matrix A( f ) satisfies 2.8 and (X, Y)-matrix A satisfying
these conditions uniquely determines a linear transformation between the two per-
sistence vector spaces {Vk(Y, σ)r} and {Vk(X, ρ)r}, which we will denote by fA.
Moreover the linear correspondence f → A( f ) and the matrix correspondence
A → fA are inverses to one another.

12



2.4. The Decomposition Theorem

2.4 The Decomposition Theorem

Theorem 2.50 (Decomposition Theorem) Every finitely presented persistence
vector space {Vr} over k is isomorphic to a finite direct sum of the form

{Vr} ∼=
⊕
i∈I

P(ai, bi), (2.11)

where I is a finite set, ai ∈ [0, ∞), bi ∈ [0, ∞] and ai < bi for all i. Moreover, this
decomposition is unique in the sense that the collection of pairs {(ai, bi)}i is unique
up to the ordering of the factors.

We will not proof this theorem here, but we will state all the propositions
that are needed for the proof. A complete proof is written in [4]. We already
used a result from the following proposition in Lemma 2.44. Now we want
to state and proof it to derive another proposition that is important for the
Decomposition Theorem.

Proposition 2.51 For an R+-filtered set (X, ρ) the isomorphisms

Vk(X, ρ) → Vk(X, ρ)

are identified with the group of invertible (ρ, ρ)-adapted (X, X)-matrices under the
correspondences stated in Proposition 2.44.

Proposition 2.52 Take R+-filtered sets (X, ρ), (Y, σ) and a (ρ, σ)-adapted (X, Y)-
matrix A. Let now B be a (ρ, ρ)-adapted (X, X)-matrix and C be a (σ, σ)-adapted
(Y, Y)-matrix. Then BAC is (ρ, σ)-adapted and θ(A) ∼= θ(BAC), for θ as in 2.9.

This proposition allows us to define adapted row- and column operations and
we want to give an intuition to from where they come. In an (X, Y)-matrix
we write r(X) for the row corresponding to x ∈ X and c(y) for the column
corresponding to y ∈ Y. Let now A be a (ρ, σ)-adapted (X, Y)-matrix for two
R+-filtered sets (X, ρ) and (Y, σ). We can now define adapted row and column
operations as follows:

• Additions of a multiple of r(X) to r(x′) whenever ρ(x) ≥ ρ(x′);

• Additions of a multiple of c(y) to c(y′) whenever σ(y) ≤ σ(y′);

• Multiplications of 0 ̸= a ∈ k to a row or a column, where k is the field.

These operations are important for the proof of the first section of Theorem
2.50. With all these propositions it is possible to prove the Decomposition
Theorem. In particular, the proof gives us an algorithm to compute persistent
homology using the adapted row and column operations. We give an example
below. Before we start with the example, we want to look at the allowed
operations on the set of two matrices in this setting. We need a pair of
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2. Persistent homology

matrices because for computing homology we always need two boundary
matrices. We name the left matrix in the set of two matrices A and the right
one B. We will use the matrix on the left to find Ker(A) and the one on the
right to find Im(B). To get the kernel and the image in consistant bases, we
perform operations on both matrices simultaneously.

• Any adapted row operation on the left matrix A;

• Any adapted column operation on the right matrix B;

• A combination of an adapted column operation on A and an adapted
row operation on B in one of the following pairs of operations:

– Multiplication of the i-th column with 0 ̸= a ∈ k and multiplication
of the i-th row of B with a−1.

– Transposition of the i-th column with the j-th column in A and
transposition of the i-th row with the j-th row in B.

– Addition of a times the i-th column to the j-th column in A and
substraction of a times the j-th row from the i-th row in B.

Each isomorphism class of finitely presented persistence vector spaces has
a direct correspondence with a subset of {(a, b)|a ∈ [0, ∞), b ∈ [0, ∞], a < b}.
We have two ways of interpreting this visually:

• As a collection of intervals {[x, y]|x ≥ 0, y > x} in the upper right quad-
rant of R2; R+ = {(x, y)|x ≥ 0, y ≥ 0}, called a barcode,

• As a collection of points in {(x, y)|x ≥ 0, y > x} as a subset of the
plane, called a persistence diagram.

So we can now replace the concept of Betti numbers as the dimension of
the homology groups in singular homology by the barcodes for persistent
homology.

Example 2.53 Recall from Example 2.40 that

(C0(F))r = ⟨a, b, c⟩ for r ∈ [0, ∞). (2.12)

(C1(F))r =


0 for r ∈ [0, 1)
⟨{a, b}⟩ for r ∈ [1, 2)
⟨{a, c}⟩ for r ∈ [2, 3)
⟨{b, c}⟩ for r ∈ [3, ∞)

(2.13)

(C2(F))r =

{
0 for r ∈ [0, 4)
⟨{a, b, c}⟩ for r ∈ [4, ∞)

(2.14)

We now want to compute the 1-dimensional persistent homology group. So
we write down the pair of adapted matrices and perform adapted row and

14



2.4. The Decomposition Theorem

0 1 2 3 4 0 1 2 3 4

1

2

3

4

a) barcode b) persistence diagram

Figure 2.8: We can represent a persistence vector space as barcodes where each bar represents
the lifetime a hole or cavity or as persistence diagram where the x-coordinates are the birthtime
of a cavity and the y-coordinates is the deathtime.

column operations on it. Remember that we are in Z2.



(ab, 1) (ac, 2) (bc, 3)

(0) 1 1 0

(0) 1 0 1

(0) 0 1 1

 ,



(abc, 4)

(ab, 1) 1

(ac, 2) 1

(bc, 3) 1




→

Adding the first row to the second row in the left matrix yields:



(ab, 1) (ac, 2) (bc, 3)

(0) 1 1 0

(0) 0 1 1

(0) 0 1 1

 ,



(abc, 4)

(ab, 1) 1

(ac, 2) 1

(bc, 3) 1




→

Now we add the first column to the second column in the left matrix and we

15



2. Persistent homology

add the second row to the first row in the right matrix.



(ab, 1) (ab + ac, 2) (bc, 3)

(0) 1 0 0

(0) 0 1 1

(0) 0 1 1

 ,



(abc, 4)

(ab, 1) 0

(ac, 2) 1

(bc, 3) 1




→

We now add the second row to the third row in the left matrix.



(ab, 1) (ab + ac, 2) (bc, 3)

(0) 1 0 0

(0) 0 1 1

(0) 0 0 0

 ,



(abc, 4)

(ab, 1) 0

(ac, 2) 1

(bc, 3) 1




→

Finally we add the second column to the third column in the left matrix and
we add the third row to the second row in the right matrix.



(ab, 1) (ab + ac, 2) (ab + ac + bc, 3)

(0) 1 0 0

(0) 0 1 0

(0) 0 0 0

 ,



(abc, 4)

(ab, 1) 0

(ac, 2) 0

(bc, 3) 1




We can see from the left matrix that Ker(∂1) is isomorphic to (X, ρ), where
X = {∂(abc)} and ρ(∂(abc)) = 3. We now look at the persistence linear
map (∂2)r : (C2(F))r → (Ker(∂1))r, r ∈ [0, ∞). We get the following adapted
matrix:

((abc, 4)

(∂(abc), 3) 1
)
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2.4. The Decomposition Theorem

So the persistent homology group in dimension 1 is isomorphic to P(3, 4). In
the resulting adapted matrix, the appearence time of ∂(abc) is 3. this is the
first enty in P(a, b). The second one is the appearence time of abc which is 4.

We want to study the degree to which the barcode changes when we have
small changes in the data. To formalize the understanding of small changes,
we will now define three metrics we will need to state the theorem below.
For these definitions and the proof of the following theorem we will follow
[6].

Definition 2.54 For two compact subsets X, Y of a metric space (Z, dZ) the Haus-
dorff distance is defined as follows:

dZ
H(X, Y) = max{max

x∈X
min
y∈Y

dZ(x, y), max
y∈Y

min
x∈X

dZ(x, y)}. (2.15)

The Gromov-Hausdorff distance can be defined in different ways but we will
need the following to state Theorem 2.57.

Definition 2.55 The Gromov-Hausdorff distance between two compact metric
spaces (X, dX) and (Y, dY) is defined as:

dGH((X, dX), (Y, dY)) = inf
Z,γX ,γY

{dZ
H(γX(X), γY(Y))}, (2.16)

where γX and γY are isometric embeddings from X, Y into the space (Z, dZ).

Definition 2.56 The Bottleneck distance between two diagrams A, B ∈ (R
2, ℓ∞)

is defined as:
d∞

B (A, B) = min
γ

max
a∈A

∥ a − γ(a) ∥∞, (2.17)

where γ goes over all bijections from A to B.

Let M f in be the family of finite metric spaces and B the family of persistence
barcodes. For k ≥ 0 an integer, we have an assignment between finite metric
spaces and persistence barcodes Hk : M f in → B. The following theorem,
known as the stability theorem, guarantees that the Bottleneck distance
between the homology groups of two spaces is smaller or equal to the
Gromov-Hausdorff distance between the underlying spaces.

Theorem 2.57 (Stability Theorem) For two compact metric spaces X, Y, we have

dB(Hk(X), Hk(Y)) ≤ dGH(X, Y), (2.18)

which means that each of the assignments is non-increasing.
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2. Persistent homology
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Figure 2.9: The bottleneck distance between two persistence diagrams [2].
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Chapter 3

Tree-like spaces

In this chapter we will look at trees, tree-like finite metric spaces and their
homology to derive an important result discussed in 3.2. It states that for
all radii r ≥ 0, the complex V(M, r) is a disjoint union of acyclic complexes.
We need these structures because evolution is often modelled with trees. In
general, we are following the Appendix of our main paper [5]. Some other
references are [3] for the theorem over the isometric embedding of a finite
metric space into the metric space of vertices of an additive tree and [9] for
the four-point condition.

3.1 Definitions

Definition 3.1 A simple cycle in a graph is a cycle where every edge and every
vertex appears only once.

Definition 3.2 A tree T is a finite connected one-dimensional simplicial complex
which has no simple cycles. An additive tree (T, λT) is a tree T equipped with
a (real valued) weight function λT on the edges, which maps to the positive real
numbers.

Example 3.3 In Figure 3.1a) we see a simple cycle. b) and c) do not contain
any cycles. In b) we see a tree and we get the additive tree in c) from b) by
placing values on the edges.

Definition 3.4 The set of leaves of a graph Γ is the set of vertices which occur in
exactly one edge.

Definition 3.5 An edge path in a tree T is a sequence with k vertices {v0, . . . , vk}
such that for every two vi, vi+1 it holds that (vi, vi+1) is an edge in T. For an additive
tree, the length of an edge path is the sum over all weights of the edges that are in
the edge path. The edge path distance between two vertices in an additive tree is
the length of the shortest edge path that connects the two vertices.
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3. Tree-like spaces

a) b) c)

2

4 1

1

3 7

v1

v0

Figure 3.1: a) A simple cycle, b) a tree, c) an additive tree, where the green vertices are leaves
and the red edges denote an edge path.

Example 3.6 The red edges in Figure 3.1b) and 3.1c) are edge paths with 3
vertices. The length of the edge path in 3.1c) is 4 + 2 = 6, which is also the
edge path distance between v0 and v1.

Note that not all finite metric spaces come from additive trees, but we name
those finite metric spaces that do come from additive trees tree-like. We get
a metric space from an additive tree in the following way.

Definition 3.7 Let the distance between two vertices v and w be the minimum
min {∑i λ(vi, vi+1)} over the set of all edge paths {(v0, v1), (v1, v2), . . . , (vn−1, vn)}
where v0 = v and vn = w. Since different edge paths have different lengths the n
can vary over the set of all edge paths. The metric obtaind from this distance is the
associated edge path metric and will be denoted by dλ. The corresponding metric
space will be denoted by M(Γ) = (V(T), dλ) for some additive tree T = (T, λT).

We want to use persistent homology to develop a measure to see how close
any finite metric space is to a tree-like space.

Lemma 3.8 If Γ is a tree, then dΓ satisfies the four point condition

dΓ(x, y) + dΓ(z, t) ≤ max{dΓ(x, z) + dΓ(y, t), dΓ(x, t) + dΓ(y, z)}, (3.1)

where x, y, z and t are vertices in Γ.

To prove this Lemma we need Proposition 0.21 and Corollary 0.20 from [9]:

Proposition 3.9 (Proposition 0.21) For G a tree and x, y, z and t are vertices in
G, let v0, v1, . . . , vg be path from x to y. Let i, j be elements in {0, 1, . . . , g} such
that d(z, vi) and d(t, vj) are minimal.

If i ≤ j then d(x, t) + d(y, z) ≥ d(x, y) + d(z, t). (3.2)

If i ≥ j then d(x, z) + d(y, t) ≥ d(x, y) + d(z, t). (3.3)

Corollary 3.10 (Corollary 0.20) For G a tree and x, y, z and t are vertices in G,
let v0, v1, . . . , vg be path from x to y. Let i be the element in {0, 1, . . . , g} such that
d(z, vi) is minimal and let h = d(z, vi). Then we have:
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3.1. Definitions

• d(x, z) = i + h,

• d(y, z) = g − i + h,

• If y ∈ {0, 1, . . . , g} is such that i ≤ j, then d(z, vj) = j − i + h.

In the proof of Lemma 3.8 we will write d instead of dΓ for simplicity.

Proof (Lemma 3.8) We suppose that the converse is true, i.e.

d(x, y) + d(z, t) > max{d(x, z) + d(y, t), d(x, t) + d(y, z)}. (3.4)

It follows directly that

d(x, y) + d(z, t) > max{d(x, z) + d(y, t), d(x, t) + d(y, z)} ≥ d(x, z) + d(y, t)
(3.5)

and

d(x, y) + d(z, t) > max{d(x, z) + d(y, t), d(x, t) + d(y, z)} ≥ d(x, t) + d(y, z).
(3.6)

Since Γ is a tree, it is connected and there exists at least one path from x to
y. We fix one of these paths and denote it as v0, v1, . . . , vg, where v0 = x and
vg = y. We now take the indices i, j ∈ {0, 1, . . . , g}, such that the distances
d(z, vi) and d(t, vj) are minimized. We have to check two cases:
i ≤ j: With Proposition 3.9 and Corollary 3.10 from [9] we know that

d(x, t) + d(y, z) ≥ d(x, y) + d(z, t), (3.7)

which is a contradiction to the inequality in 3.6.
i ≥ j: Again with the Proposition and Corollary mentioned above, we know
that

d(x, z) + d(y, t) ≥ d(x, y) + d(z, t), (3.8)

which is a contradiction to the inequality in 3.5.
Since we get a contradiction in both cases, our first assumption 3.4 was false
and we are done. □

Example 3.11 In Figure 3.2 we see an example of a tree where we have an
equality in the four point condition 3.1 and one example, where the four
point condition 3.1 is strict. All the edges have length 1.

Theorem 3.12 Any finite metric space that satisfies the four point condition can be
embedded isometrically in the metric space of vertices on an additive tree. [3]

Definition 3.13 A finite metric space is called tree-like if it satisfies the four point
condition 3.1.

Remark 3.14 An equivalent definition of a tree-like finite metric space is that
it can be embedded isometrically in M(T) for some additive tree T = (T, λT).
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Figure 3.2: Examples for the four point condition.

Remark 3.15 For r ≤ r′ there exists a natural inclusion ι : V(M, r) ↪→ V(M, r′)
where ι is the identity on the vertex set.

Definition 3.16 An r-path from x to x′ in a finite metric space X is a sequence
of elements x0, x1, . . . , xs ∈ X such that x0 = x, xs = x′ and d(xi, xi+1) ≤ r for
i = 0, 1, . . . , s − 1. A finite metric space is called r-connected if every pair of points
in X can be connected by an r-path.

Note that an r-path is the correspondence to an edge path from x to x′ in
V(X, r).

Definition 3.17 A vertex is called linear, if it is contained in exactly two edges. A
vertex is called a junction, if it is not linear.

In the case where there is at least one junction in a tree, there exists a unique
nearest junction j(v) for every leaf v. In the case without any junctions in the
tree, the graph is a line by definition of a junction.

Definition 3.18 For a tree T and a pair (v, e) of a vertex v in the tree and an
edge e containing v, we define the branch of T through v and e to be the subtree
containing all vertices v′, such that the unique shortest edge path from v′ to v
contains e. We will denote this by Br(e, v).
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3.2. Homology of tree-like finite metric spaces

Example 3.19 We take a tree as in Figure 3.3. The red path is a 4-path, but
the tree is not 4-connected, because the distance between the green leave v
and its neighbour is 7 > 4. But since 7 is the biggest distance between two
vertices, the tree is 7-connected. All the blue vertices are linear and all the
green ones are junctions.

4

1

7

2

3

1

v

Figure 3.3: An additive tree with red 4-path, blue linear vertices and green junctions.

3.2 Homology of tree-like finite metric spaces

The goal of this section is to show that Hi(V(M, r)) = 0 for all i ≥ 1 for a
tree-like metric space M. This means that for all r ≥ 0, the complex V(M, r)
is a disjoint union of acyclic complexes.

Lemma 3.20 For an additive tree T the tree-like finite metric space M can be
isometrically embedded in M(T), such that all the leaves of T are included in the
image of M, contained in the vertex set of T.

Proof Let T be an additive tree, and i : M → V(T) be the isometric embed-
ding in the vertex set of T, which exists by Theorem 3.12. Let x be any
leaf which is not contained in the image of i, i.e. x ∈ V(T)\i(M). Then
M is included in T\{x} and any minimal edge path from m0 to m1, for
m0, m1 ∈ M, will not include x. This is shown by the fact that if (y, x) is the
unique edge containing x, then any occurrence of x in an edge path in T is
of the form . . . (y, x)(x, y) . . . and can be deleted. So we see that M embeds
isometrically in M(T\{x}, λ). Now we can continue eliminating leaves and
the edges attached to them from the tree until we get to the setting where all
leaves are contained in the image of M. □

The following proposition describes the relationship between the edge path
metrics on additive trees and the edge path metrics on additive subtrees.

Proposition 3.21 Let T be an additive tree and suppose that T′ ⊆ T is a sub-
additive tree which we get by removing a set of leaves {x1, . . . , xn}. Then we have
the equality

dT′ = dT
∣∣
V(T′)×V(T′)

. (3.9)

So M(T′) is a metric subspace of M(T) in the sense that the distance function on
M(T′) is just the restriction of the distance function on M(T).
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3. Tree-like spaces

Proof We first prove the case where one leaf is removed and then complete
the proof by induction. Let x be the one removed leaf, such that the attached
edge is also removed and v0, v1 be any vertices in T′. Let y be the unique
vertex of T such that (x, y) is an edge in T. All the edge paths between v0
and v1 containing x are of the form . . . (y, x)(x, y) . . . and can be shortened
by removing (y, x)(x, y). So the edge path of minimal length from v0 to v1
does not contain x. Now suppose that we already proved the case for n
removed leaves. Let T′ be the tree with n + 1 leaves {x1, . . . , xn+1} removed.
Then we know that for all edge paths from v0 to v1, not containing xn+1 the
proposition holds. Consider an edge path containing xn+1. Then we can
prove the case exactly as in the case n = 1. □

We need two more propositions to prove our goal. The fist one allows us
to perform an induction on the number of points in a tree-like space. The
second one is an important homological result.

Proposition 3.22 Let M be a finite metric space and m0, m1 ∈ M two points
such that d(m0, m1) ≥ d(m, m′) for any m, m′ ∈ M. Let M0 = M\{m0} and
M1 = M\{m1}, regarded as metric subspaces. Then for all r < d(m0, m1), we have
that

V(M, r) = V(M0, r) ∪ V(M1, r) (3.10)

and V(M0, r) ∩ V(M1, r) = V(M0 ∩ M1, r) since M0 ∩ M1 = M\{m0, m1}.

Proof By definition of the Vietoris-Rips complexes it holds for r < d(m0, m1)
that m0 and m1 do not span a 2-simplex of V(M, r). So no simplex of
V(M, r) contains both m0 and m1 and V(M, r) can be covered by V(M0, r)
and V(M1, r). □

Example 3.23 (Proposition 3.22) We look at the finite metric space with three
points, where the two points m0 and m1 have maximal distance from each
other. The proposition only makes a statement for r < d(m0, m1), so Figure
3.4 only shows these cases.

Proposition 3.24 Let X be a simplicial complex with two subcomplexes U and V
such that X = U ∪V. If all three U, V and U ∩V are acyclic, then X is also acyclic.

Proof To prove this we write out the reduced Mayer-Vietoris sequence [10,
p. 149] for this scenario:

· · · → Hi(U ∩V) → Hi(U)⊕ Hi(V) → Hi(X) → Hi−1(U ∩V) → · · · (3.11)

Since U, V and U ∩ V are acyclic their homology groups vanish for i ≥ 1. We
get

· · · → 0 → 0 → Hi(X) → 0 → 0 → · · · (3.12)

and therefore Hi(X) also vanishes for i ≥ 1. □

24



3.2. Homology of tree-like finite metric spaces

M = M0 = M1 =

m0

m1 m1

m0

V (M, r) =

m0

m1

m0

m1

m0

m1, ,

V (M0, r) ∪ V (M1, r) = m1

m0

∪ =

m0

m1 ,

m1

m0 m0

m1 m1

m0 m0

m1,∪ ∪= =

Figure 3.4: Example for Proposition 3.22.

Example 3.25 We want to illustrate the Proposition 3.24 with the example of
a simplicial complex X with three vertices and two edges, that looks like in
Figure 3.5. Clearly, A, B and A ∩ B are acyclic, because they are all homotopy

BAX A ∩ B

Figure 3.5: A simplicial complex X with subcomplexes A, B and A ∩ B.

equivalent to the one-point space and so is X.

Now we get to our main theorem from this section.

Theorem 3.26 Let M be a tree-like finite metric space and let r ≥ 0. Then the com-
plex V(M, r) is a disjoint union of acyclic complexes. In particular, Hi(V(M, r)) = 0
for i ≥ 1.

Before we start with the proof of this theorem, we look at an example.
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3. Tree-like spaces

Example 3.27 In Figure 3.6a) we see a tree and our M will be the tree-like
finite metric space coming from this additive tree. In 3.6b) we see the Vietoris-
Rips complex V(M, r) for r = 1.5 of M. In 3.6c) we chose two subcomplexes
A and B. They are acyclic and we see that V(M, 1.5)) is the disjoint union of
these two acyclic complexes. In particular, we have that Hi(V(M, 1.5)) = 0
for i ≥ 1.

4

1

2
3

A

B

a) b) c)

Figure 3.6: a) An additive tree T, b) Vietoris-Rips complex of the metric space obtained from T,
c) disjoint subsets A and B of b).

Proof (of Theorem 3.26) We will show this theorem by induction on the
cardinality of M. Let ≃r be the equivalence relation that is defined by
m ∼r m′ if and only if d(m, m′) ≤ r. So in each equivalence class Mα all the
elements have distance smaller equal r to each other. For equivalence classes
Mα we get that our metric space M =

⊔
α Mα under ≃r, and it is clear that

M =
⊔
α

V(Mα, dM
∣∣

Mα×Mα
, r). (3.13)

This follows from the definition of Vietoris-Rips complexes in the following
way. Look at the V(Mα, dM

∣∣
Mα×Mα

, r) s. We know from the definition that
each k-tuple of elements in Mα spans a k-simplex, because we defined m ∼r
m′ if and only if d(m, m′) ≤ r. The union of all these gives us back our space
M. Since M was tree-like, each of the metric spaces (Mα, dM

∣∣
Mα×Mα

) is also
tree-like. For the induction step we suppose that the theorem holds for all
metric spaces with cardinality < n. We can assume that V(M, r) is connected,
since otherwise it would be a disjoint union of acyclic complexes by the
induction hypothesis. According to Lemma 3.20 we can suppose that M is
isometrically embedded as a metric subspace of M(T), where all the leaves
are included in the image of M.
Now we select the two points in M which have maximal distance from each
other and call them m0 and m1. Suppose that m0 and m1 are not leaves.
Now take any leaf that has minimal distance to m0 and name it l0. Do
the same for m1 and name it l1. These leaves can not be contained in the
maximal path between m0 and m1. So we get can construct a path from l0
to l1 containing the maximal path between m0 and m1. the resulting path is
clearly longer than the original which is a contradiction to our assumption.
We can therefore assume that m0 and m1 are leaves. Looking at the results
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3.2. Homology of tree-like finite metric spaces

from Proposition 3.22 we see that it suffices to prove that the three spaces
M\{m0}, M\{m1} and M\{m0, m1} have acyclic Vietoris-Rips complexes.
By induction on the cardinality and using Proposition 3.21 it suffices to show
that these metric spaces are connected.
We have seen that for a tree-like space with cardinality n we may assume
in the induction over n that M is r-connected. Now it suffices to show that
M\{m0}, M\{m1} and M\{m0, m1} are r-connected.
To prove the theorem for the case where there are no junctions in the tree,
we look at m0 and m1. These are clearly the two leaves of the line-graph, we
will denote as L. With our assumption from above that L is r-connected, we
know that d(m0, m1) ≤ r. Name the vertex that is connected to m0, m′

0 and
the one connected to m1, m′

1. Then it is obvious that the distance between m′
0

and m′
1 is also less or equal than r. Thus L\{m0}, L\{m1} and L\{m0, m1}

are r-connected, which shows the theorem for the line-case.
Now we can assume that there exists a junction in our graph. Now consider
the set of nodes {v0, . . . , vn} such that {j(m0), vi} is an edge in T for every
i, and construct all branches Bi = Br(j(m0), {j(m0), vi}). The Bi’s cover all
of T and we may assume that mi ∈ Bi for i = 0, 1. Notice that B0 is a linear
tree that starts in j(m0) and ends in m0.
We now assume for a contradiction that d(v, j(m0)) > d(m0, j(m0)) for a
vertex v ∈ Bi and i ≥ 2. This implies d(m1, v) = d(m1, j(m0)) + d(j(m0), v) >
d(m1, j(m0)) + d(j(m0), m0) = d(m1, m0). But this contradicts the maximality
of d(m0, m1) and we can conclude that

d(v, j(m0)) ≤ d(m0, j(m0)). (3.14)

For v ∈ Bi (i ≥ 2) and w ∈ Bi (i ≥ 1) it follows that

d(w, m0) ≥ d(w, v). (3.15)

We now prove the connectivity of V(M\{m0}, r). Suppose that we have
m, m′ ∈ M\{m0}. Because M is r-connected there exists an r-path v0, v1, . . . , vk
from m to m′ in M. Recall from the definition of an r-path that v0 = m,
vk = m′ and d(vl , vl+1) ≤ r for l = 0, 1, . . . , k − 1. In the case where vl ̸= m0
for all l, the r-path lies completely in M\{m0}. So we can assume that
vl = m0 for some vl . We get d(vl−1, m0) ≤ r and d(m0, vl+1) ≤ r. We have to
check the following two cases:
M ∩ (B0\{m0}) is non-empty: Let m̄ be the point in M ∩ (B0\{m0}) which
is the nearest to m0. Now we can replace the segment vl−1m0vl+1 in the r-path
by the segment vl−1m̄vl+1. This gives us an r-path from m to m′ without m0
in it.
M ∩ (B0\{m0}) is empty: For i ≥ 2 we select a leaf m∗ in Bi. Since vl−1 and
vl+1 are elements of Bi for some i ≥ 1 we can conclude from 3.15 that we can
replace vl−1m0vl+1 with vl−1m∗vl+1 to get an r-path from m to m′ without m0
in it.
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3. Tree-like spaces

We have now replaced our r-path with one that has a smaller count of occur-
rences of m0 and proceeding this way, we get an r-path lying completely in
M\{m0}, which shows that V(M\{m0}, r) is connected. The same result for
M\{m1} follows identically. Since m0 is never replaced by m1 and m1 never
by m0, the result follows also for M\{m0, m1}, because we can remove the
occurrences of m0 and m1 independently. □
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Chapter 4

Application to viral evolution

Equipped with all the theory about tree-like spaces and persistent homology
we can now discuss their application to detect horizontal events in viral
evolution as in Topology of viral evolution [5]. Another book we will look at for
this section is called Topological Data Analysis for Genomics and Evolution [12].
For the biological definitions we refer to [14, Chapter 6], [7, Chapter 1 and 2]
and [13].

4.1 Structures to describe viral evolution

Charles Darwin first introduced the idea of modelling evolution of pheno-
typic attributes with phylogenetic trees in his book On the Origin of the Species
in 1859. Phylogenetics is the study of evolutionary relationships by inferring
or estimating the evolutionary past among biological entities, that can be
for example organisms, species or genes. Phylogeny, on the other hand,
is the evolution of a genetically related group of organisms via the study
of protein or gene evolution by involving the comparison of homologous
sequences. Phylogeny is often modelled by a tree. A phylogenetic tree is a
kind of molecular archaeology that tries to reconstruct possible evolutionary
relationships by extrapolating backward from a small dataset from surviving
organisms. So it is a tree that explains how different species evolved over
time, how they are related with each other and how they came to their
present form. Species or individuals that share specific derived characters
are grouped more closely together than those who do not. The groups are
called clades; each clade consists of an ancestor and all of its descendants.
While phylogenetic trees are great to capture clonal or vertical evolution, they
cannot capture any reticulate or horizontal evolutionary events. These retic-
ulate events occur whenever different clades merge together and produce
a new lineage. Figure 4.2 shows the difference of a phylogenetic tree with
only clonal evolution (Figure 4.2a)) and a reticulate network that captures
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unique evolutionary history of T1

unique ancestor of T1

event lead to the split of T1 and T2

shared evolutionary history of T1 and T2

larger clade
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Figure 4.1: Example of a phylogenetic tree [7].

horizontal events (Figure 4.2b)).
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Figure 4.2: The clonal tree in a) gets compressed to a point, whereas the network in b) has
holes and therefore can be compressed to S1 ∨ S1.

For viruses these reticulate merges are better known as recombination and
reassortment. Genetic recombination is the process where a DNA segment
moves from one DNA molecule to another DNA molecule. Reassortment is
the process where different viruses exchange genomic material in the form
of gene segments. Nowadays there are different methods to detect reticulate
events in evolution. The phylogenetic methods search for discrepancies in
the tree structure of phylogenetic trees. Nonphylogenetic methods look for
shared character traits that occur independently in different lineages, called
homoplasies. Although these methods detect the reticulate events in viral
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4.1. Structures to describe viral evolution

Figure 4.3: Reticulate structure representing the reassortment of three parental strains. The
reassortment stain results from merging the three phylogenetic trees at the left [5].

evolution, they do not provide a simple way to represent the evolutionary
processes. Phylogenetic networks may be the best way to illustrate reticulate
events in evolution. But we have the problem that all implementations we
have to this point only give one phylogenetic network structure even though
the structure is not unique.
So we need a structure to study the patterns of evolutionary processes that
captures vertical events as well as horizontal events. We already introduced
the main ideas of persistent homology and this is exactly the structure we
will use. The big advantage of persistent homology over trees or networks is
that it captures all possible topologies and their relations over the space of
genetic distance. Not only can persistent homology detect horizontal evolu-
tion between two individuals but also more complex exchanges of genomic
data and statistical patterns of cosegregation. Cosegregation is the name
for the circumstance that two or more genes are more likely to be passed to
the next generation as a set. Phenotypic means concerning the phenotype,
which are all observable traits of an individual. Exemplary for a phenotype
are eye color, height and weight. When discussing evolution we have to look
at the component of DNA and RNA. DNA and RNA are constructed out of
four nucleotides each. The four nucleotides for DNA have the bases adenin
(A), cytosine (C), guanine (G) and thymine (T). And for RNA the thymine is
replaced by uracil (C).
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4. Application to viral evolution

4.2 Persistent homology in evolution

Definition 4.1 The hamming distance is a distance measure between two genetic
sequences of the same length and is defined by the number of positions in the two
nucleotide strings at which their corresponding characters are different.

Example 4.2 The hamming distance for letters between the words “cake”
and “take” is 1 and the hamming distance between “fly” and ”try” is 2.

In Figure 4.2 we see an example of a tree deforming to a point and a reticulate
network deforming to the wedge product of two circles. As the figure
suggests, the presence of holes in the compressed structure corresponds to
the reticulate events. So to study the reticulate events we want to compute the
number of holes and higher dimensional cavities in a evolutionary network.
In the language of persistent homology this means that we want to find
irreducible cycles, which are cycles in dimension k, that are not a boundary
of a (k + 1)-dimensional simplex. Our correspondence is now the following;
the homology group Hk contains all the holes in dimension k and the Betti
number bk counts the holes. As mentioned before the persistent analogue
of Betti numbers are barcodes. To link biological expressions to persistent
homology terms we provide a table of correspondences as in [5], see 4.1.

Persistent homology Viral evolution

Filtration value ρ Genetic distance

0-dimensional Betti number at filtration value ρ Number of clusters at scale ρ

Generators of 0-dimensional Betti number homology A representative element of the cluster

Hierarchical relationship among generators of
0-dimensional Betti number homology

Hierarchical clustering

1-dimensional Betti number Number of reticulate events

Generators of 1-dimensional homology Reticulate events

Generators of 2-dimensional homology Complex reticulate genomic exchanges

Non-zero higher dimensional homology No phylogenetic representation

Number of higher dimensional generators over time
(irreducible cycle rate)

Lower bound on rate of reticulate events

Table 4.1: Dictionary between persistent homology and evolutionary concepts.

We saw the definition of a barcode earlier and want to give the genetic
intuition behind it. For different values of the genetic distance ρ we get
different simplicial complexes and therefore also different irreducible cycles.
So if we have an irreducible cycle C that is present over a filtration, we
denote the ”birth” of C aC and its ”death” bC. we have therefore an interval
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4.2. Persistent homology in evolution

[aC, bC] over which C ”lives”. When we then compute the homology groups
of dimension k at all scales ρ, we get a barcode plot as in 2.8a).
So we take a set of genomes and calculate the genomic distance between each
pair of points and the corresponding distance matrix. Then we can construct
a phylogenetic tree out of the matrix, if it exists. To construct the tree we use
the neighbor-joining method. It starts with a star-like tree. Then, a pair of
sequences is chosen at random, gets removed from the star, and attached to
a second internal node which is connected by a branch to the center of the
star-like pattern. The branch lengths are calculated. These two sequences are
then returned to their original positions and another pair is selected to repeat
the same procedure. The goal is to check all possible pairs to find out the
combination of neighbors that minimizes the total length of the phylogenetic
tree [7], page 213. We will give an example of this process in Figure 4.4. We
can compute the homology groups for different ρ’s in different dimensions.
We can now assume that 0-dimensional homology gives us information over
vertical evolution in the sense that we can for example compute the number
of distinct subclades in our dataset. 1-dimensional homology provides
information over reticulate events, because these structures contain loops, see
4.2b). The distance metric we use is the Hamming distance, which we will
define as in [15] adapted to our genomic environment.

Example 4.3 We want to look at an example where four genetic sequences
yield a distance matrix and finally a phylogenetic tree, see Figure 4.4.
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Data Distance matrix Phylogenetic tree

Figure 4.4: In a) we apply the hamming distance to get a distance matrix. In b) we construct a
phylogenetic tree out of the distance matrix.

We mentioned above that we can construct a phylogenetic tree from the
distance matrix, if one exists. In the case where there is no such tree we can
use topology to represent the structure behind evolutionary processes. In
Example 4.5 we will see how persistent homology can detect recombination
and reassortment events in evolution.
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4. Application to viral evolution

4.3 Topological obstruction to phylogeny

We want to formalize the role of phylogeny in our framework of persistent
homology. First notice, that a tree can not contain holes and that it is there-
fore not possible to place a phylogenetic structure on a simplicial complex
coming from genomic data with distance parameter ρ that contains higher
dimensional irreducible cycles. That is what we proved in Theorem 3.26.
Given some genomic data and the fact that there is a Betti number bi ̸= 0 for
some i > 0 we know that there is a deviation from a tree metric. To measure
this deviation, we define the topological obstruction to phylogeny or shorter TOP.
To define this we take a distribution BK on the lengths of the persistent bars
in a barcode for k-dimensional cycles and k > 0.

Definition 4.4 TOP is the L∞-norm, or maximum of the lengths of the bars in the
barcode.

For a filtration with non-zero TOP there exists no additive tree that can
represent the underlying data. In a set of data one always has some kind
of statistical noise, sequencing errors or incomplete samplings. But TOP is
stable and bounded by the Gromov-Hausdorff distance to the additive tree
according to Theorem 2.57. Since higher dimensional homology vanishes in
additive trees, small deviations generate only small bars in the barcode. We
want to give an example to illustrate how irreducible cycles correspond with
reticulate events.

Example 4.5 In Figure 4.5 with graphics and data from [5] we see how
persistent homology can detect reticulate events in evolution. In a) we have
the reticulate network, where the yellow dots are the genetic sequence we
look at as subspace of a bigger sample, whose pairwise genetic distances are
illustrated in b). All these yellow samples have a common ancestor through
clonal evolution (turquoise lines) or reticulate evolution (dotted red lines).
We apply persistent homology to the whole sample and we see three different
filtrations in c). Computing the barcode yields us d) and we see that the red
bar around 0.15 corresponds to the red cycle of our five yellow data points.
It is a recombination event involving our selected sequences. The length of
the bar corresponding to this reticulate event is ρ = [0.13, 0.16] Hamming
distance. So we can conclude that this is the genetic distance between the
parents of the recombinant.

We now want to consider the L0-norm instead of the L∞-norm. It is simply
the count of the number of the higher dimensional bars and it is proportional
to the horizontal evolution rate r. To approximate r more closely we define
the follwing.

Definition 4.6 The irreducible cycle rate (ICR) is the total number of 1-dimensio-
nal bars for all values ρ per a specific time frame.
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Figure 4.5: a) A reticulate network, b) dataset modelled by their genetic distance, c) three
different filtrations of the dataset, d) barcode plot of the dataset [12].

Simulations have shown that ICR is proportional to the recombination/ reas-
sortment rate and moreover yields a lower bound for it.
Since, as we mentioned earlier, persistent homology can give us informa-
tion on the obstruction to tree-like metrics caused through recombination,
reassortment, homoplasies or other horizontal genomic exchanges, we can
study the cycles that generate higher dimensional homology to conclude
what horizontal event precludes the tree-like structure. To specify the type of
these horizontal evolutionary events one can look at the size of the barcodes
in non-zero homology. So when looking at the generators of different bars,
one can distinguish between two underlying reassortment processes. The
mixing of closely related viruses generates smaller bars while the mixing of
more distant viruses, not from the same subtype, generates longer barcodes.

4.4 Testing the detection of simulated reticulate events

Before we can look at some examples of genomic data of viruses, we have
to check that persistent homology is an appropriate method to study com-
plex processes in evolution. Therefore it was tested on simulated reticulate
events in [5] by modelling a population undergoing clonal evolution for 30
generations with random reassortment events at time step 15. Then per-
sistent homology was applied to this model. In the simulation were four
different scenarios: clonal evolution, population admixture, reassortment
and homologous recombination. The constant populations were observed
over several generations under a Wright-Fisher model defined as in [11]. We
use this specific model because the Wright-Fisher model ignores mutations
and recombinations to study distributions of alleles in a population. We first
need the definition of an allele.
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4. Application to viral evolution

Definition 4.7 An allele is a specific molecular variant at a locus. A locus is the
position in the genome where an allele resides.

Definition 4.8 The Wright-Fisher model describes a constant population where
the generations are discrete and non-overlapping. For each generation g = n an
allele is picked from a parent allele from generation g = n − 1. This process is
random. For a population of size N, the probability that an allele that is present in i
individuals at generation g = n is present in j individuals at generation g = n + 1
is

Pij =

(
N
j

)(
i
N

)j (
1 − i

N

)N−j

. (4.1)

We now introduce some parameters: the substitution rate µ, the recombina-
tion/ reassortment rate r and the number of reassorting segments S. For the
test with simulated reticulate events, evolution was considered over a range
for the values µ and r. Simulations have shown three interesting results:

• If r ̸= 0 we have nontrivial homology,

• 1-dimensional ICR increases proportionally to r,

• Complex recombination/ reassortment events can cause 2-dimensional
topology.

4.5 Viral evolution in different viruses

4.5.1 Influenza A

We now want to have a closer look at the influenza virus. Influenza is
a segmented single-stranded RNA in the family of orthomyxoviruses. It
is a virus that often reassorts and can be found in many different hosts.
These hosts are mostly birds but also humans, seals and pigs. In [5] they
applied persistent homology to influenza datasets from humans, birds and
pigs. Application of persistent homology on a single viral segment with
no reassortment history shows that higher dimensional homology groups
vanish as we would suppose. In this scenario the 0-dimensional homology
generates trees. In Figure 4.6 we see the reconstruction of a phylogeny from
persistent homology of avian influenza HA.

Remark 4.9 (Figure 4.6) For a given Hamming distance ρ each bar incorpo-
rates a connected simplex of sequences. If a bar ends at a given ρ it merges
with another one which is shown nicely in b). If two simplices of the same
subtype merge at ρ the corresponding bar is grey. For two simplices of
different subtype but same major clade merging together, the bars have only
one color. If two simplices of different major clade merge together, we have a
color gradient in the bars.
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(Nucleotides)

a)
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Figure 4.6: a) Barcode plot of all avian HA subtypes in dimension 0, where the only significant
homology occurs. b) Phylogeny of avian HA reconstructed from the barcode plot in a) showing
clustering. c) Neighbour-joining tree of avian HA showing the relation between HA subtypes
(from [5] and [12]).

If we look at several concatenated genes at once, higher dimensional homol-
ogy classes appear, which indicate reticulate events in the evolution. An
example for this circumstance is given below. Influenza viruses are classi-
fied through the antigentic properties of the proteins in the viral envelope
hemagglutinin (HA) and neuraminidase (NA). The properties range from H1
to H16 for HA and from N1 to N9 for NA.

Example 4.10 In Figure 4.7a) we see the persistence analysis of HA in avian
influenza. In b) it is the same but now for NA. In c) we see the analy-
sis for several concatenated segments and that there are non-zero higher
dimensional homology groups, that indicate reassortment.

For avian influenza the work of [5] calculated a rate of 22.16 reassortments
per year, whereas this rate is smaller than one for swine and human influenza.
Therefore the example of avian influenza is the most interesting to look at.
It was shown earlier that avian influenza has a high reassortment rate, but
it was not possible to study the patterns of the associated gene segments.
With persistent homology it is now possible to check whether there are gene
segments that cosegrate more than expected. In [5] it was found that the
following four gene segments of avian influenza cosegrate: polymerase basic
2 (PB2), polymerase basic 1, polymerase acidic (PA) and nucleoprotein (NP),
visualized in Figure 4.8.
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Figure 4.7: Persistence analysis of HA (a)), NA (b)) and several concatenated segments (c)) in
avian influenza [5].

PA
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Figure 4.8: Cosegregation of avian influenza segments. Thicker lines indicate a higher probability
for two segments to reassort together [5].
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4.5. Viral evolution in different viruses

4.5.2 HIV

The Human Immunodeficiency Virus, or HIV is famous for its high diversity
that comes not only through a high mutation rate but also through frequent
recombination leading for example to antiretroviral resistance. It is also
famous because more than one million people die every year as a consequence
to infection with HIV. HIV is a retrovirus. This type of virus has a positive
single-stranded RNA. When infecting a cell, a retrovirus releases its RNA
into the cytoplasm of the cell, where it generates a DNA strand out of the
RNA and implements this strand into the cell’s DNA. In this way the virus
gets access to the cell’s genomic machinery and can therefore replicate the
viral genome. The process of converting RNA to DNA is called reversed
transcription. The three largest genes in the genome of the HIV-1 retrovirus
are:

• gag: Codes for the proteins generating the shell of a viral particle.

• pol: Carries all the information about the enzymes that are needed for
replication and reverse transcription, integrating the viral DNA into the
genome of the host and cleaving viral polyproteins to activate them.

• env: Codes for the glycoproteins that bind to the T-cell’s receptors and
it enables the virus to get into the host cell.

Because the genome of HIV is not segmented there can not be a reassortment
and all the horizontal evolution is caused by recombination. Figure 4.9
is an illustration of a recombination of two HI viruses. In [5] persistent

Figure 4.9: Different recombination of two HI viruses [12].

homology was applied to the concatenated alignments of the three largest
genes mentioned above. It produced 1-dimensional homology, but so it did
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for the individual genes, see Figure 4.10. This indicates a horizontal event,
so recombination in the evolution of these genes as well as between the
individual genes. Persistent homology applied to the concatenation also
produced 2-dimensional homology, hence we have a complex recombination.
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Figure 4.10: Persistent homology suggests recombination within as well as between the genes
[12].

4.5.3 Flaviviruses

Flaviviruses are positive single-stranded RNA viruses. It has been debated
if they are able to perform homologous recombination through RNA poly-
merase template switching. Some flaviviruses are hepatitis C, dengue virus
and West Nile virus. In all of these there have been found sporadic recom-
binants, but for example for the dengue virus it has been shown that the
detected recombinants are a product of sequencing error. So if recombination
occurs in flaviviruses, it is rare. The persistent homology approach that was
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used to study reassortment in influenza A and recombination in HIV, was
now applied to recombination in flaviviruses. In particular it was applied
to hepatitis subtype 1, dengue subtypes 1-4 and West Nile virus. In [5] they
found high dimensional topology for hepatitis C virus , but little to no high
dimensional topology in dengue and no high dimensional topology in West
Nile virus. See Figure 4.11 for a comparison between the TOP (size of longest
bar) and ICR (number of bars per time) of different viruses.

Remark 4.11 In viruses with negative-sense RNA recombination is even
more rare. An example of such a virus is the Newcastle virus that has a low
ICR but a non-zero TOP, also shown in Figure 4.11.

Newcastle virus
Rabies

West Nile virus
Dengue 4
Dengue 3
Dengue 2
Dengue 1

Hepatitis C-1
HIV-1 pol
HIV-1 gag
HIV-1 env

HIV-1
H1N1pdm Influenza

H1N1 Swine Influenza
H3N2 Human Influenza

Avian Influenza NA
Avian Influenza HA

Avian Influenza

0 100 200 300 400 500

Newcastle virus
Rabies

West Nile virus
Dengue 4
Dengue 3
Dengue 2
Dengue 1

Hepatitis C-1
HIV-1 pol
HIV-1 gag
HIV-1 env

HIV-1
H1N1pdm Influenza

H1N1 Swine Influenza
H3N2 Human Influenza

Avian Influenza NA
Avian Influenza HA

Avian Influenza

0 5 10 15 20 25

TOP ICR

a) b)

Figure 4.11: a) TOP is calculated using the maximum barcode length in non-zero dimensions. b)
The ICR is the number of higher-dimensional barcodes normalized by the time span of sequence
collection (data from [5]).
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