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Abstract

In this thesis we will investigate the application of topological data
analysis (TDA) to time series data. The focus will be on the method
sliding windows and persistence. By converting time series data into
point clouds, we can use persistent homology to detect underlying
periodicity and geometric patterns. To ensure the robustness of this
method, we introduce and prove the approximation and stability theo-
rem. We will see that changing the embedding dimension and window
size has an impact on the geometric properties and structure of the
sliding window. The higher the embedding dimension, the higher the
level of detail we can capture through the embedding. When the win-
dow size corresponds to the underlying frequency of the signal, then
maximum persistence functions as a level of roundness of the point
cloud. This thesis is concerned with highlighting the advantages of a
topological analysis of time series data compared to classical techniques.
We mainly follow the paper by Jose A. Perea and John Harer named
Sliding Windows and Persistence: An Application of Topological Methods to
Signal Analysis [25].
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Chapter 1

Introduction

In this thesis, the goal is to topologically analyze time series data. A time
series is a set of observations xt, where every xt is recorded at a specific time
t. With real world data, we always have a finite number of time points for a
time series, so we can write it as

{xt|t = 0, . . . , T}.

We also use the notation x(t) for time series. Time series can be found in
many different fields. Here are some examples of real world time series:

• Weather data: Temperature recorded every hour. Here xt is the temper-
ature at time t.

• Financial data: Monthly inflation rates.

• Physical data: Voltage levels in an electrical circuit over time.

• Economic data: Daily traffic flow on a highway.

Another example, on which we demonstrate how topological methods
work, are heart rate measurements from a patient, for example EKG signals.
For the background in EKG signals, we follow an article by Accardi et al. [1]
and one by Becker [2]. An EKG measures the electrical activity of the heart
muscle fibers and is quasi-periodic. This means that the signal never perfectly
repeats as when it was periodic, but it still has a structured, oscillatory nature.
The analysis of EKG signals helps predicting whether an individual is likely
to suffer from a disease in the future and it helps detect the worsening of a
patient’s health condition from heart rate data.

The EKG data is distorted by noise. This noise can be caused by physio-
logical differences or measurement inaccuracies in the devices, among other
things. Although classic Fourier-based methods can estimate the average
heart rate, they fail to recognize small variations in the signal. Time series
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1. Introduction

analysis is particularly important and efficient when we want to filter out
significant properties from complex, noisy or non-linear signals.

Let us take a look at any EKG time series and label it x(t). This time series
represents the measured voltage of the electrical activity of the heart over
time. Depolarization is a process in which a rapid change in electrical charge
occurs. A typical EKG wave has the following three main components:

• P waves represent the depolarization of the atrium1.

• QRS complexes (characterized by a sharp peak) represent ventricular2

depolarization.

• T waves (characterized by a broader peak) represent ventricular depo-
larization.

An EKG time series signal is quasi-periodic. This means that although the
rough waveform is repeated, fluctuations occur from beat to beat, for example
due to cardiac abnormalities.

A classical Fourier transform would extract the dominant frequency com-
ponent, corresponding to the heart rate. However, it ignores the geometric
structure of the waveform and cannot distinguish between normal and ab-
normal beats based on shape alone. Instead, we apply the sliding window
embedding to reconstruct the topological structure of the EKG signal in
a higher-dimensional space. Given the time series x(t), the embedding is
defined as:

SWM,τx(t) =


x(t)

x(t + τ)
...

x(t + Mτ)

 ∈ RM+1,

where M is the embedding dimension and τ is the delay parameter. For
an EKG signal with a heart beat of 60 beats per minute (bpm), the typical
period is T ≈ 1 second. We generate a synthetic EKG-like time series, that is
displayed in Figure 1.1. Choosing the dimension to be M = 2 and the delay
parameter to be τ = 50 ms yields a 3-dimensional representation of the EKG
waveform:

SW2,50x(t) =

 x(t)
x(t + 50ms)
x(t + 100ms)

 ∈ R3,

see Figure 1.2.

To study this point cloud topologically, we build a family of Vietoris-Rips
complexes on it. Simplicial complexes are combinatorial objects build of

1The upper two chambers of the heart.
2Refers to the ventricles, the lower two chambers of the heart.
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Figure 1.1: Synthetic EKG signal.

Figure 1.2: 3-dimensional sliding window embedding.

simplices. A 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron and so on. We now get a simplicial
complex by gluing simplices of different dimensions along common faces.
The Vietoris-Rips complex is defined the following way: For some point
cloud X and some radius r, k + 1 points in our point cloud form a k-simplex
if and only if the pairwise distances between the points are smaller than a
given radius r. The collection of all these simplices is called the Vietoris-Rips
complex.

To demonstrate how this works, we look at the 2-dimensional projection
of the sliding window point cloud and build the Vietoris-Rips complex on it,
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1. Introduction

see Figure 1.3. We now have a topologically interpretable object, that forms

Figure 1.3: Vietoris-Rips complexes for different values of r.

a closed trajectory. The resulting 3-dimensional trajectory is a geometric
representation of the heartbeat cycle:

• EKG signals form a closed trajectory that represents the periodicity of
the heart cycles.

• With real world data, there are often small distortions of the data,
for example due to arrhythmia beats, which lead to a distortion of the
trajectory. These anomalies can be recognized with persistent homology.

We quantify these features, with persistent homology and display it in
Figure 1.4. Intuitively, a persistence diagram keeps track of loops and
higher dimensional cavities in the family of Rips-complexes. The persistence
diagram reveals a dominant 1-dimensional feature (a loop) corresponding to
the cardiac cycle. For real world data, there would be additional transient
features that may indicate irregular beats, skipped beats, or arrhythmias.

The code for Figures 1.1, 1.2 and 1.4 can be found in the Appendix, Figure
A.1, the one for Figure 1.3 in Appendix, Figure A.2.

In this thesis we investigate how changes in the window size Mτ, the
embedding dimension M and the delay parameter τ, when we apply sliding
windows to a signal, affect the topological structure of the embedded signal.
We will establish and prove the stability theorem (Theorem 2.35), which gives
us the guarantee that small perturbations in the signal do not significantly
change the persistence diagram. This is very important because real world
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Figure 1.4: Persistence diagram for the sliding window of the EKG time series. The x-axis
shows the birth time and the y-axis the death time. So the upper left orange dot represents a 1-
dimensional structure, for example a loop, that births at time 0 and dies at time 0.6 approximately.

data, such as EKG data, often contains small deviations, such as noise. By
proving stability, as discussed in the stability theorem, we see that persistent
homology is reliable in analyzing time series data. This is in the sense that it
is not overly sensitive to small fluctuations. By proving the approximation
theorem (Theorem 5.5), we can show that the topological features of the
trajectory obtained by sliding windows capture the periodicity of a signal
more robustly than classical methods. This is particularly important because
traditional methods may have problems analyzing irregularly sampled or non-
linear time series. By adopting topological approaches, this thesis provides a
method to recognize periodic structures well even in complex signals.
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Chapter 2

Persistent Homology

Persistent homology, a core tool in topological data analysis (TDA), provides
a way to quantify features such as connected components, loops, and higher
dimensional cavities in a dataset. For general background in homology we
refer the reader to the book ”Algebraic Topology“ by A. Hatcher [15]. For
this chapter we follow our main reference [25] and two articles by Carlsson
[5], [6].

2.1 Simplices and Simplicial Complexes

The goal of this section is to represent complex datasets in a structured way,
enabling the study of their topological features. In TDA, we analyze data
points in relation to their neighbors. Simplices provide a way to encode these
relationships by generalizing the notion of connectivity.

Definition 2.1 Let X = {x0, x1, . . . , xn} a subset of an Euclidean space Rk. This
set is in general position if it is not contained in an affine hyperplane of Rk of
dimension m such that m < n.

Definition 2.2 For a set X in general position, we define the n-simplex σ to be
the convex hull of X. Note that the xi are called vertices and the simplices that are
spanned by a subset Y ⊆ X for |Y| = i are called i-faces.

Definition 2.3 A geometric simplicial complex is a finite collection X of sim-
plices in an Euclidean space, such that the following two conditions are satisfied:

• For any face f in a simplex σ of X , it holds that f ∈ X .

• For any two simplices σ and τ of X , σ ∩ τ is a simplex of X and a face of
both, σ and τ.

Definition 2.4 An abstract simplicial complex is a pair (V, Σ), where V denotes
some finite set and Σ is a collection of non-empty subsets of V, such that for a simplex
σ ∈ Σ and some τ ⊆ σ, it holds that τ ∈ Σ.

7



2. Persistent Homology

Figure 2.1: Here we have a covering of the sphere S1 by three open sets U1 (green), U2 (blue)
and U3 (violet). So for the construction of the nerve we have three vertices v0 (green), v1 (blue)
and v3 (violet). The three open sets overlap pairwise, so our vertices form three 1-simplices,
displayed at the right.

2.2 Nerves, Čech and Vietoris-Rips Complexes

Given a dataset as a set of points X in a metric or topological space, a primary
challenge is defining a simplicial complex that captures the underlying
topological structure of the data. This section introduces key constructions:
nerve, Čech, and Vietoris-Rips complexes, that allow for systematic ways of
building these complexes.

Let now X be any topological space and U = {Ui}i∈I be a covering of X.
For this part we follow a paper by Carlsson [5].

Definition 2.5 The nerve of U , denoted by N(U ), is the simplicial complex with
vertices I and where a set of k + 1 vertices {i0, . . . ik} span a k-simplex if and only if
Ui0 ∩ . . . ∩ Uik ̸= ∅.

To see that the so defined nerve N(U ) is homotopy equivalent to the under-
lying space X, we need the so-called Nerve Theorem [5].

Theorem 2.6 Suppose that the covering U of X consists of open sets and is numer-
able. Suppose further that if ∅ ̸= J ⊆ I, then

⋂
j∈J Uj is contractible or empty. Then

N(U ) is homotopy equivalent to X.

Example 2.7 We see from Figure 2.1 that the nerve in our example is indeed
homotopy equivalent to our underlying space S1.

We now want to look at two different methods to generate coverings, so
that we get new complexes. Suppose now that X is a metric space. Then
we can construct a covering by placing small balls around every x ∈ X;
Br(X) = {Br(x)}x∈X, where r is the radius > 0.

Definition 2.8 Let Y ⊆ X, such that X =
⋃

y∈Y Br(y). The Čech complex of X
attached to Y and r, denoted by Č(Y, r), is the nerve of the covering {Br(y)}y∈Y.

Example 2.9 In Figure 2.2 we see a Čech complex on n = 17 vertices. With
increasing radius we see three holes appear and disappear.
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2.3. Persistence Objects and Classification Theorem

Figure 2.2: Growing union of balls and the corresponding Čech complex.

Figure 2.3: left: covering, middle: Čech complex, right: Vietoris-Rips complex

The construction of the Čech complex comes with high computational
costs, because it needs to store the information of simplices of various
dimensions. One way to solve this problem is a variant of the Čech complex,
the Vietoris-Rips complex. This construction only uses the information
from the edges. We again take X to be a metric space and denote by d the
corresponding metric.

Definition 2.10 The Vietoris-Rips complex, VR(X, r), is the simplicial complex
on the vertex set X and where a set of k + 1 vertices {x0, . . . , xk} span a k-simplex
if and only if d(xi, xj) ≤ r for all i, j between 0 and k.

Example 2.11 We want to illustrate the differences between the Čech complex and
the Vietoris-Rips complex. For that, look at Figure 2.3. In the left, we see a covering
of some space. In the middle is the corresponding Čech complex, which is also the
nerve of the covering and on the right we see the Vietoris-Rips complex, a 2-simplex.

2.3 Persistence Objects and Classification Theorem

This section introduces the concept of persistence objects within the frame-
work of category theory and explores persistence in the context of simplicial

9



2. Persistent Homology

complexes and homology. A key part of the section is the Classification
Theorem for finitely generated F[t]-modules.

In the following let now X be a subspace of Rn. We suppose that there is
a method to sample points from X. These sampled points may contain noise.
Let X be such a sample. When constructing complexes like Čech or Vietoris-
Rips complexes, it may not be clear what radius r we should use. Different
r can lead to different topological features and it might not have a single
”right” r. So instead we take 1-parameter families of simplicial complexes,
that are indexed by r. This is formalized in a concept named persistence
objects. To define these let C be a category and P a partially ordered set. We
can look at P as a category by setting the object set ob(P) = P and a unique
morphism m : x → y if x ≤ y.

Definition 2.12 A P-persistence object in C is a functor Φ : P → C. So it is a
family of objects of C, {cx}x∈P , together with morphisms ϕxy : cx → cy for x ≤ y,
such that ϕyz ◦ ϕxy = ϕxz. We denote the category of P-persistence objects in C
by Ppers(C).

When analyzing data using homology, not all topological features are
equally important. Some persist over a wide range of time, while others
appear only briefly and can be attributed to noise. Persistent homology
assigns a birth and death time to each feature, providing a systematic way to
quantify its significance.

Let S be some simplicial complex gained from a point cloud and let p
denote a prime number. We work over Fp.

Definition 2.13 A subcomplex of a simplicial complex S is a subset of its simplices,
that is closed under the face relation.

Definition 2.14 Let S be some simplicial complex. A filtration of S is a sequence
of several subcomplexes Si, where the first one is the empty set and the last one is S,
of the form

∅ = S0 ⊆ S1 ⊆ . . . ⊆ Sm = S.

Example 2.15 Filtrations are an example for persistence objects. When applied
to a Čech complex we get a Čech filtration and similarly when we apply it to a
Vietoris-Rips complex, we get a Rips filtration.

Applying homology with coefficients in some field F to all the subcomplexes
gives us the following sequence of maps, induced by the inclusion maps

0 = Hk(S0) → Hk(S1) → · · · → Hk(Sm) = Hk(S).

For a solid background in homology, we refer the reader to a book by
Allen Hatcher [15].
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2.3. Persistence Objects and Classification Theorem

Remark 2.16 If f : P → Q is a partial order preserving map, then we can get
an evident functor f ∗ : Qpers(C) → Ppers(C), which is defined by f ∗(ψ) = ψ ◦ f ,
where f : P → Q.

Let R and N be the partially ordered sets of the real numbers and the
natural numbers respectively. We can do the constructions from the previous
sections analogously and get an R-persistence simplicial complex attached
to X. Using this to construct chain complexes and homology groups, we
get R- chain complexes and R-persistent homology groups. Homology is
very useful to distinguish topological spaces, because there is a classification
theorem for finitely generated abelian groups. If we had a similar theorem
for R-persistent abelian groups, then it would tell us about the behavior of
the homology of all complexes Č(X, r). But we do not have such a theorem.
However, there is a similar statement for a subcategory of the category of
N-persistence F-vector spaces for a field F. N-persistence abelian groups
can easily be viewed as graded modules over graded rings. This association
works as follows. Suppose we have a N-persistence abelian group {Gn}.
Now we define a graded module associated to this abelian group.

Definition 2.17 Let Z[t] be the graded polynomial ring. The graded module
associated to {Gn} is

θ({Gn}) =
⊕
s≥0

Gs, (2.1)

where the nth graded part is the group Gn.

The action of t, which generates Z[t], is defined as

t · {αn} = {βn}, where βn = ψn−1,n(αn−1). (2.2)

Here the morphisms ψa,b are given by multiplication with tb−a. Let now F
be any field, then we can state a classification theorem for finitely generated
F[t]-modules.

Theorem 2.18 (Classification Theorem) Let M∗ be a finitely generated non-
negatively graded F[t]-module. Then there exist three tuples of integers {i1, . . . , im},
{j1, . . . , jn}, {k1, . . . , kn} and an isomorphism

M∗ ∼=
m⊕

s=1

F[t](is)⊕
n⊕

t=1

(
F[t]
tkt

)(jt). (2.3)

This decomposition is unique up to permutation of factors.

Here we use the following notation; M∗(s)k = Nk−s, which is an upward
dimension shift.

Definition 2.19 An N-persistence F-vector space {Vn}n is called tame, if the
following two conditions hold:

11



2. Persistent Homology

• Vn is finite dimensional for all n,

• ψn,n+1 : Vn → Vn+1 is an isomorphism for large enough n.

As a corollary from this statement for N-persistence F-vector spaces, we have
the following.

Proposition 2.20 θ({Vn}n) is a finitely generated F[t]-module if and only if {Vn}n
is tame.

Proof First we prove the implication θ({Vn}n) is a finitely generated F[t]-
module =⇒ {Vn}n is tame.
If θ({Vn}n) is a finitely generated F[t]-module, then Theorem 2.18 implies
that it decomposes as follows

θ({Vn}n) ∼=
m⊕

s=1

F[t](is)⊕
n⊕

t=1

(
F[t]
tkt

)(jt), (2.4)

where the first summand corresponds to free F[t]-modules and the second
summand corresponds to torsion F[t]-modules. From this decomposition,
we have that for sufficiently large n, {Vn}n stabilizes, so ψn,n+1 is an isomor-
phism. This follows directly from the fact that the torsion modules F[t]

tkt
(jt) are

finitely supported and the free modules F[t](is) correspond to shifts in stable
dimensions (dimension of vs remains constant). Moreover, since the graded
components of θ({Vn}n) are finite-dimensional, Vn is finite dimensional for
all n. Therefore {Vn}n satisfies all conditions for being tame.

Now onto the second implication; {Vn}n is tame =⇒ θ({Vn}n) is
a finitely generated F[t]-module. By definition we know that ψn,n+1 is
an isomorphism for large enough n, say for n ≥ N and that Vn is finite-
dimensional for all n. Define now

W =
N⊕

n=0

Vn. (2.5)

Note that for n ≥ N, the structure of θ({Vn}n) is determined by the sta-
bilization of ψn,n+1. Moreover, the module θ({Vn}n) is generated by the
components V0, V1, . . . , VN , since any Vn for n ≥ N is reached through stabi-
lization. Therefore, θ({Vn}n) is finitely generated as an F[t]-module. □

We can now easily translate our classification result in Theorem 2.18. For that
we define an N-persistence F-vector space U(a, b) with 0 ≤ a ≤ b by setting

U(a, b)t = 0, for t < a and t > b,
U(a, b)t = F, for a ≤ t ≤ b,

ψs,t = idF, for a ≤ s ≤ t ≤ b.

12



2.3. Persistence Objects and Classification Theorem

Proposition 2.21 A tame N-persistence F-vector space {Vn}n can be decomposed
as

{Vn}n ∼=
N⊕

i=0

U(ai, bi), (2.6)

where the ai are non-negative integers and the bi are non-negative integers or ∞.
This decomposition is unique.

Remark 2.22 The fact that the decomposition is unique is to be understood in the
sense that the collection {(ai, bi)}i is unique up to the ordering of the factors.

Proof (Proof of Proposition 2.21) With Theorem 2.18 and Proposition 2.20,
we get that θ({Vn}n) decomposes as in Equation (2.4). Here, the free modules,
F[t](is) correspond to the summands U(ai, ∞), as they persist infinitely. And
the torsion modules F[t]

tkt
correspond to the summands U(ai, bi) with finite

intervals. We now want to find a way to get from the decomposition of
θ({Vn}n) to the decomposition of {Vn}n. Observe that

1. F[t](is) corresponds to a sequence {F}n≥is , where the vector space exists
at all indices n ≥ is.

2. F[t]
tkt

(jt) corresponds to a sequence {F}it≤n≤it+kt−1, where the vector
space only exists in a finite range.

We will now look closer at these two correspondences.

1. F[t](is) means that the module has a copy of F in all degrees n ≥ is,
with no upper bounds on persistence. So this corresponds to U(aj, ∞), where
aj = is and we have

U(aj, ∞)n =

{
F if n ≥ a,
0 otherwise.

(2.7)

The morphisms ψs,t are identity maps for t ≥ s ≥ a, reflecting the persistence
of this feature.

2. F[t]
tkt

(jt) means the modules is supported in degrees jt ≤ n ≤ jt + k,
with no module elements outside this range. So this corresponds to U(ai, bi),
where ai = jt, bi = jt + kt − 1 and

U(ai, bi)n =

{
F if a ≤ n ≤ b,
0 otherwise.

(2.8)

Combining these, we can get a decomposition of {Vn}n into summands of the
form U(ai, bi), where ai is either is or jt and where bi = ∞ for free modules
and bi = it + kt − 1 for torsion modules.

For uniqueness we use the uniqueness from Theorem 2.18 and the fact
that θ is a functor and therefore preserves the structure. □

13



2. Persistent Homology

Figure 2.4: At the left we see the barcode and at the right the persistence diagram from Example
2.25.

2.4 Barcodes, Persistence Diagrams and Maximum Per-
sistence

Definition 2.23 [3] A barcode is a multiset of intervals of the form [i, j), where i
stands for birth of a homology class at Si and j stands for death of a homology class
at Sj.

An other way to visualize these birth and death times are the persistence
diagrams.

Definition 2.24 The k-th persistence diagram is now generated by plotting every
point (i, j), denoting birth at Si and death at Sj of a homology class, with multiplicity
µ

i,j
k . We name this diagram dgm(k).

Example 2.25 For a simplicial complex with birth times of homology classes at
{0, 0, 0.5, 1, 3} and corresponding death times {3, 2, 1.5, 4, 3.5} the barcode and
persistence diagram are displayed in Figure 2.4.

Note that in the diagram, all persistent classes are represented by dots, where
the dots denote the birth and death times of topological features. To simplify
notation we will write dgm instead of dgm(k). To every diagram, we adjoin
the diagonal ∆ = {(x, x)|x ≥ 0} and endow each point on the diagonal with
countable multiplicity.

Definition 2.26 The persistence is the vertical distance from a point to the diago-
nal.

To actually compute and plot these persistence diagrams there is a function
called ”ripsDiag” in the R-TDA package. More on that can be found in a
paper by Fasy et al. [12].

14
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When discussing persistent homology it is interesting to look at the
lifetime of the most persistent feature in a dataset. Therefore, we define a
notion of the maximum persistence of some persistence diagram.

Definition 2.27 Let (x, y) ∈ dgm and define

pers(x, y) =

{
y − x for (x, y) ∈ R2,
∞ otherwise.

(2.9)

Then we define the maximum persistence of dgm to be

mp(dgm) = max
x∈dgm

pers(x). (2.10)

Definition 2.28 For two persistence diagrams dgm1 and dgm2 the Bottleneck
distance dB(dgm1, dgm2) is defined as

dB(dgm1, dgm2) = inf
f
{ sup

x∈dgm1

{∥x − f (x)∥∞}}, (2.11)

where f ranges over all bijections from dgm1 to dgm2.

Example 2.29 Let dgm1 = {(1, 3), (2, 5)} and dgm2 = {(1.2, 3.1), (2.5, 4.8)}
be two persistence diagrams. Each point represents the birth and death of a feature in
persistent homology. Pairing the closest points yields

• (1, 3) pairs with (1.2, 3.1), so the distance is max(|1 − 1.2|, |3 − 3.1|) = 0.2.

• (2, 5) pairs with (2.5, 4.8), so the distance is max(|2 − 2.5|, |5 − 4.8|) = 0.5.

Taking the maximum over all pairs, we get dB(dgm1, dgm2) = 0.5. This example
is illustrated in Figure 2.5.

Lemma 2.30 Let dgm∆ denote the diagram, where we only have the diagonal
∆ = {(c, c)|c ≥ 0} in the diagram and where every point is endowed with countable
multiplicity. Then we have that

mp(dgm) = 2dB(dgm, dgm∆). (2.12)

Proof First we prove that mp(dgm) ≤ 2dB(dgm, dgm∆). For that, we let
ϕ : dgm → dgm∆ be any bijection and let x ∈ dgm. Then the following
holds

∥x − ϕ(x)∥∞ = max
c∈R with ϕ(x)=(c,c)

{|x1 − c|, |x2 − c|}

= |x1 − c| ≥ 1
2
|x1 − x2| =

1
2

pers(x),

15



2. Persistent Homology

Figure 2.5: The violet dots represent dgm1 and the green dots represent dgm2 from Example
2.29.

where x = (x1, x2) and ϕ(x) = (c, c), because it lies on the diagonal and we
can assume without loss of generality that |x1 − c| ≥ |x2 − c|. We have an
equality in the case where ϕ(x1, x2) =

( x1+x2
2 , x1+x2

2

)
. Thus

max
x∈dgm

∥x − ϕ(x)∥ ≥ 1
2

mp(dgm)

and therefore

dB(dgm, dgm∆) = min
ϕ

max
x∈dgm

∥x − ϕ(x)∥ ≥ 1
2

mp(dgm).

For the second inequality, see that the map

(x1, x2) 7→
(

x1 + x2

2
,

x1 + x2

2

)
extends to a bijection of multisets ϕ0 : dgm → dgm∆, such that for all
x ∈ dgm we have ∥x − ϕ0(x)∥∞ = 1

2 pers(x). □

2.5 Stability Theorem, Completeness and Separability

This section discusses the robustness of persistent homology under small
perturbations. The key result is the Stability Theorem, which states that small
changes in input data lead to small changes in the persistence diagram.

To state this result on stability, we need the definitions of some distances.
For this part, we follow an article by Cohen-Steiner, Edelsbrunner and Harer
[9] and one by Carlsson [6].
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Definition 2.31 Let Z be any metric space and X and Y two compact subsets of Z.
The Hausdorff distance dH(X, Y) between X and Y is defined as follows.

dH(X, Y) = max{sup
x∈X

( inf
y∈Y

(dZ(x, y))), sup
y∈Y

( inf
x∈X

(dZ(x, y)))}, (2.13)

Example 2.32 Let us take two sets in the Euclidean plane, X = {(0, 0), (1, 1)}
and Y = {(0, 1), (1, 2)}. We compute infy∈Y d(x, y) = 1 for (0, 0) and (1, 1) and
similar for infx∈X. Therefore dH(X, Y) = 1.

Definition 2.33 Let now X and Y be any two metric spaces and let IX,Y be the
family of all simultaneous isometric embeddings of X and Y. An element of IX,Y is
of the form (Z, iX, iY) for a metric space Z and isometric embeddings iX : X ↪−→ Z,
iY : Y ↪−→ Z. The Gromov-Hausdorff distance dGH(X, Y) is defined by

dGH(X, Y) = inf
IX,Y

{dH(iX(X), iY(Y)}. (2.14)

Example 2.34 The Gromov-Hausdorff distance compares metric spaces, not just
subsets of a common space. It finds the smallest Hausdorff distance after embedding
both spaces into a larger space. Consider the two metric spaces X = {0, 2} and
Y = {a, b} with Euclidean distance and where d(a, b) = 3. If we now embed
both into a common space, the real line R, the best embedding could be such that
iX(0) = 0, iX(2) = 2, iY(a) = 0.5 and iY(b) = 3.5. Then we have dGH(X, Y) = 1.

Theorem 2.35 (Stability Theorem) [7] Let X, Y be two point clouds in the same
Euclidean space. Then

dB(dgm(X), dgm(Y)) ≤ 2dGH(X, Y) ≤ dH(X, Y). (2.15)

For the rest of this chapter, we follow a paper by Mileyko [20] and one by
Blumberg [3].

Definition 2.36 The degree p total persistence of a persistence diagram dgm is
defined as

Persp(dgm) = 2p ∑
x∈dgm

(pers(x))p. (2.16)

We then define the space of persistence diagrams to be

Dp = {dgm | Persp(dgm) < ∞}. (2.17)

Define the Wasserstein metric

Wp(dgm, dgm∆)
p = ∑

x∈dgm
pers(x)p. (2.18)

Recall that a barcode {Iα} is a multiset of intervals. We now want to define a
metric on the set of barcodes.
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Definition 2.37 Let I1 = [a1, b1) and I2 = [a2, b2) be two non-empty intervals in
the barcode. We define the Bottleneck distance between them to be

d∞(I1, I2) = ∥(a1, b1)− (a2, b2)∥∞ = max(|a1 − a2|, |b1 − b2|). (2.19)

To be able to prove some convergence results on persistence diagrams in
Chapter 7 we have to ensure that the space of persistence diagrams behaves
well as a metric space, namely that it is complete and separable with respect
to the Wasserstein and Bottleneck distance. We need both of these distances,
because

• Working with the Bottleneck distance ensures theoretical stability, but
it is not accurate enough for detailed comparisons.

• And working with the Wasserstein distance ensures that we can do
precise comparisons of persistence diagrams, but it has not as strong a
stability guarantee as the Bottleneck distance.

We have the following proposition with the Definition 2.36:

Proposition 2.38 [20] Dp is complete in the metric Wp.

The set of barcodes B is the set of multi-sets of intervals A such that
|A| < ∞. We now let BN denote the set of multi-sets of intervals A with
|A| ≤ N for N ≥ 0. These sets are complete and separable under the
Bottleneck metric, whereas the space B =

⋃BN is not complete under the
Bottleneck metric. We therefore introduce a new set.

Definition 2.39 Let B be the space of multi-sets A of intervals with the property
that the cardinality of the multi-sets of A of those intervals of length more than ε has
finite cardinality, for all ε > 0.

We can now state the following theorem:

Theorem 2.40 B is the completion of B =
⋃BN in the Bottleneck metric. In

particular it is complete and separable.

This theorem establishes that the space of persistence diagrams can be com-
pleted by allowing diagrams with countably many points of at most countable
multiplicity, satisfying a natural finiteness condition.
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Chapter 3

Time Series and their Transformation

In this chapter we will define the notion of time series and we will look at
how we can transform time series data into point clouds, so that it can be
analyzed using persistent homology.

3.1 Time Series Data

For the background in time series, we follow a book by Brockwell and Davis
[4].

Definition 3.1 Let Rn be an Euclidean space. A dynamical system in Rn is a
continuous ϕ : Rn → Rn (for discrete time) or a vector field X on Rn (for continuous
time).

Example 3.2 An example of a dynamical system is the Lotka-Volterra system that
can take, for example, the following form:

dx
dt

= 0.8x − 0.4xy

dy
dt

= −y + 0.6xy.

We will now look into why this is in fact a dynamical system by defining the vector
field X on R2, because the Lotka-Volterra is continuous valued. The vector field X is
given by

X(x, y) = (0.8x − 0.4xy,−y + 0.6xy),

where x and y are the populations of prey and predator species. This vector field
assigns to each point (x, y) a velocity, describing how the populations evolve over
time according to the given differential equations.

Definition 3.3 A numerical time series is a set of observations xt, where every xt
is recorded at a specific time t from a dynamical system.
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3. Time Series and their Transformation

Example 3.4 An example for a numerical time series is the measured temperature
over a day. Say, we measure the temperature every hour. Then we have T = 24
and our time series is of the form {x0 = 5, x1 = 4, x2 = 2, . . . , x7 = 4, . . . , x12 =
13, . . . , x15 = 18, . . . , x18 = 15, . . . , x21 = 11, . . . , x24 = 7}. Here the index
represents the time, on which the temperature was measured.

Definition 3.5 A time series is called continuous if the observations are recorded
continuously over some time interval and discrete if the set of times is discrete.

In real world cases, we always have a finite number of observations and
therefore the time series can be written as

{xt|t = 0, . . . , T}. (3.1)

But this can not be analyzed with persistent homology directly, so we need a
way to transform this data into point clouds. Before we motivate, how we
can transform our data, we want to look at an other form of time series and
then make a concrete example.

Definition 3.6 Categorical-valued time series are characterized by taking values
on a qualitative range consisting of a finite number of categories, which is referred to
as ordinal range, if the categories exhibit a natural ordering, or nominal range,
otherwise.[29]

Example 3.7 (Chen et al. [8]) We want to study activity-travel data. There are
three possibilities for an individual’s travel activity; 1) activity at home, 2) activity
outside of home and 3) traveling. For a total of N individuals and an observation
period of T minutes, we create a categorical-valued time series with three categories
as follows. Let n = 1, . . . , N be the individuals and t = 1, . . . , T be the minutes, we
define

xn,t =


0 if respondent is at Home
1 if respondent is on Travel
2 if respondent is Out of Home

. (3.2)

The survey was taken during several years and in Figure 3.1 we can see the
proportions of the three categories measured. The survey was taken over a time period
of 24 hours, therefore the Home-category has the highest proportion in the beginning
and end. We can also look at the activity-travel profile of some individuals during the
day, see Figure 3.2. The x-axis shows the time in minutes and the y-axis shows the
three different categories. For example, the corresponding time series for individual 3
would be x3,t = {0, . . . , 0, 3, . . . , 3, 0, . . . , 0}, where 3 first appears approximately at
t = 970.

In the remainder of this thesis we will work with numerical time series.
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3.1. Time Series Data

Figure 3.1: Three categories of the activity-travel survey.[8]

Figure 3.2: Activity-travel of nine individuals.[8]
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3. Time Series and their Transformation

3.2 Transformation of Data

3.2.1 Taken’s Embedding

One way to transform numerical time series data into point clouds in Eu-
clidean space, is the Taken Embedding Theorem [27]. We will present another
embedding with sliding windows in the next chapter.

Theorem 3.8 (Taken’s Embedding Theorem) Let M be a compact manifold of
dimension m. For pairs (ϕ, y), where ϕ : M → M is a smooth (at least C2)
diffeomorphism and y : M → R a smooth function, called observable, we have the
following generic property: The map Φϕ,y : M → R2m+1, defined by

Φϕ,y(x) = (y(x), y(ϕ(x)), . . . , y(ϕ2m(x))) (3.3)

is an embedding.

So let us look again at our time series {xt|t = 1, . . . T}. Taken’s em-
bedding transforms this data into a point cloud consisting of the points
vi = (xi, xi+τ, . . . , xi+(d−1)τ). The parameter d is the dimension of the points
in our cloud and τ is the delay parameter. There are several approaches to
determine τ and d.

Example 3.9 We want to make an example of a dynamical system and apply the
Taken’s embedding to it. Therefore we take the following Lotka-Volterra system,
already used in Example 3.2,

dx
dt

= 0.8x − 0.4xy

dy
dt

= −y + 0.6xy.

Note that here, x represents the population of a prey species and y represents the one
of a predator species. We assume, that in the beginning there are 10 individuals of the
prey species and 5 individuals of the predator species. The evolution of the population
of this system is modeled in Figure 3.3a, the phase-plane plot in Figure 3.3b. In
steps of distance 3, we take samples from the data of the prey species population to
construct a time series, displayed in Figure 3.4a. From there we apply the Taken’s
embedding and get the new phase plane in Figure 3.4b. With the risper package
in python, we compute a Vietoris-Rips filtration and plot the persistence diagrams,
see Figure 3.5. The code for all the diagrams in this example can be found in the
Appendix, Figure A.3.
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3.2. Transformation of Data

(a) Population of prey and predator species
over time.

(b) Phase-plane plot of the Lotka-Volterra
system.

Figure 3.3: Plots of the raw system of Example 3.9.

(a) Time series sampled from the prey popu-
lation.

(b) Phase plane plot after applying Taken’s
embedding with parameters d = 2 and τ = 5.

Figure 3.4: Time series and its Phase plane plot, gained from the prey population of 3.9.
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3. Time Series and their Transformation

Figure 3.5: Persistence diagrams in dimension 0 and 1 of the phase plane after applying Taken’s
embedding.
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Chapter 4

The Sliding Window Embedding

Using Taken’s Theorem is one way to convert time series data into a point
cloud. Another way is using the Sliding Windows and 1-Persistence Scoring
(SW1PerS) method as introduced in a paper by Perea et al. [23], which we
will follow in this section.

4.1 Sliding Window Embedding

This method converts time series into a point cloud (a high-dimensional set
of points) and interprets the periodicity of the time series as ”circularity” of
the point cloud.

Let g be a function defined on some interval I ⊆ R. Now we choose some
integer M and a real number τ, both greater than 0.

Definition 4.1 The sliding window embedding of g at t ∈ R into RM+1 is
defined as follows

SWM,τg(t) =


g(t)

g(t + τ)
...

g(t + Mτ)

 (4.1)

Definition 4.2 The sliding window point cloud for g is the collection of several
sliding window embeddings for different values of t. The parameter Mτ is called the
window size.

Let {xt|t = 0, . . . , T} be a given, denoised time series. By mapping the
interval [0, T] linearly to [0, 2π] and applying an interpolation technique
called cubic splining [28], we get some continuous function

g : [0, 2π] → R, such that g(0) = x0 and g(2π) = xT. (4.2)

25



4. The Sliding Window Embedding

(a) g along with a window of length w start-
ing at t ∈ [0, 2π − w]

(b) Arrangements of snippets according to
similarity

Figure 4.1: Example sliding windows [23].

For a fixed window size 0 < w < 2π and for every time t ∈ [0, 2π − w], we
look at the plot of the function g when restricted to [t, t + w]. To understand
the sliding process more profoundly, we will look at the same example,
displayed in Figure 4.1 as used in our reference paper by Perea et al. [23]. In
the Figure 4.1a we see a prototypical function g with a window of length w.

Definition 4.3 Sliding this window means that we let t go from 0 to 2π − w.

This yields a snippet of g for each t ∈ [0, 2π − w]. If we now arrange these
snippets according to their degree of similarity, then we get something as in
Figure 4.1b. The degree of similarity between two windows is the percentage,
where they coincide. If a pattern in the plot is repeated, then it corresponds
to one circle in the similarity arrangement. The distinctiveness of the pattern
is pictured by the size of the hole in the middle of the arrangement.

Definition 4.4 The period length of a function is the smallest parameter ℓ, such
that the pattern of the functions repeats when shifted by ℓ.

Example 4.5 Let g(t) = sin(nt), where n ∈ N. By definition of the sliding
window, we get

SWM,τ sin(nt) =


sin(nt)

sin(nt + nτ)
...

sin(nt + nMτ)



=


sin(nt)

cos(nτ) sin(nt) + cos(nt) sin(nτ)
...

cos(nMτ) sin(nt) + cos(nt) sin(nMτ)


(4.3)
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4.1. Sliding Window Embedding

= sin(nt)


1

cos(nτ)
...

cos(nMτ)

+ cos(nt)


0

sin(nτ)
...

sin(nMτ)


= sin(nt)u + cos(nt)v.

Here we used that sin(x + y) = cos(y) sin(x) + cos(x) sin(y) and denoted

u =


1

cos(nτ)
...

cos(nMτ)

 and v =


0

sin(nτ)
...

sin(nMτ)

 .

Notice that the map t 7→ SWM,τ sin(nt) represents a planar curve in RM+1 with
winding number n, when the vectors u and v are linearly independent. We want to
now look at the way the shape of this curve changes when changing the parameters
M, n and τ. Changes in the curve can be measured through the eigenvalues of the
shape matrix:

A =

[
∥u∥2 ⟨u, v⟩
⟨u, v⟩ ∥v∥2

]
. (4.4)

The eigenvalues of A determine the axes lengths of the ellipse traced by the sliding
window embedding. We compute the components using again the identity above and
the fact that cos(x)2 − sin(x)2 = cos(2x).

⟨u, v⟩ =
M

∑
m=0

cos(nmτ) sin(nmτ) =
1
2

M

∑
m=0

sin(2nmτ)

=
sin((M + 1)nτ) sin(nMτ)

2 sin(nτ)

∥u∥2 − ∥v∥2 =
M

∑
m=0

(cos(nmτ)2 − sin(nmτ)2) =
M

∑
m=0

cos(2nmτ)

=
sin((M + 1)nτ) cos(nMτ)

sin(nτ)
.

(4.5)

Finally with the identity cos(x)2 + sin(x)2 = 1 we get

∥u∥2 + ∥v∥2 =
M

∑
m=0

(cos(nmτ)2 + sin(nmτ)2) =
M

∑
m=0

1 = M + 1.

From these calculation, we see directly that A is positive semi-definite. So the
eigenvalues of A are non-negative real numbers λ1, λ2 and there exists a 2 × 2
orthogonal matrix B such that

A = BTΛ2B, where Λ =

[√
λ1 0
0

√
λ2

]
and B =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
.
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4. The Sliding Window Embedding

We set x(t) =
[
sin(nt) cos(nt)

]T and calculate

∥SWM,τ sin(nt)∥2 =

∥∥∥∥∥∥
 | |

u v
| |

 x(t)

∥∥∥∥∥∥
2

= ∥u∥2 sin(nt)2 + 2⟨u, v⟩ cos(nt) sin(nt) + ∥v∥2 cos(nt)2

= ⟨x(t), Ax(t)⟩
= ⟨x(t), BTΛ2Bx(t)⟩
= ⟨ΛBx(t), ΛBx(t)⟩.

(4.6)

In summary, this step provides a bridge between the algebraic manipulation of the
sliding window embedding and its geometric interpretation as an ellipse. This insight
is essential for analyzing how the embedding behaves as the parameters M, n and τ
change. With ϕ the angle by which the matrix B rotates, we see that the map

SWM,τ sin(nt) 7→
[√

λ1 sin(nt + ϕ)√
λ2 cos(nt + ϕ)

]
(4.7)

is an isometry. So our sliding window embedding of g(t) = sin(nt) is an ellipse on
the plane spanned by u and v. The exact shape of the ellipse is mainly determined by
the square root of the eigenvalues of A. With the values from above, we can compute
these to be

λ1,2 =
M + 1 ±

∣∣∣ sin((M+1)nτ)
sin(nτ)

∣∣∣
2

. (4.8)

The ellipse is most similar to a cycle when λ2 is maximal. This is the case if and only
if (M + 1)nτ ≡ 0 mod π. This is the case for example for Mτ = ( M

M+1 )
2π
n . Here,

the window size comes close to the length of the period 2π
n of g(t). So the sliding

window point cloud for g(t) = sin(nt) is the roundest when the window size is
close to the frequency.

Example 4.6 We will now look at an example for explicit values of n, M and τ,
where we also show how we compute the eigenvalues of A. Let us take n = 2, M = 2
and τ = 1. So our window size is 2. By plugging in these values, we see from
Equation (4.3) that

u =

 1
cos(2)
cos(4)

 , v =

 0
sin(2)
sin(4)

 . (4.9)
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4.1. Sliding Window Embedding

So to figure out, what the values of the matrix A are, we compute the following

∥u∥2 + ∥v∥2 = M + 1 = 3,

∥u∥2 − ∥v∥2 =
sin((M + 1)nτ) cos(nMτ)

sin(nτ)

=
sin((2 + 1) · 2 · 1) cos(2 · 2 · 1)

sin(2 · 1)
=

sin(6) cos(4)
sin(2)

,

⟨u, v⟩ = sin((M + 1)nτ) sin(nMτ)

2 sin(nτ)

=
sin((2 + 1) · 2 · 1) sin(2 · 2 · 1)

2 sin(2 · 1)
=

sin(6) sin(4)
2 sin(2)

.

(4.10)

By computing ∥u∥2 = 1
2 ((∥u∥2 + ∥v∥2) + (∥u∥2 − ∥v∥2)) and also computing

∥v∥2 = 1
2 ((∥u∥2 + ∥v∥2)− (∥u∥2 − ∥v∥2)), we get

∥u∥2 =
3 + sin(6) cos(4)

sin(2)

2
,

∥v∥2 =
3 − sin(6) cos(4)

sin(2)

2
.

(4.11)

Now onto the determinant of A, det(A) = ∥u∥2∥v∥2 − ⟨u, v⟩2. By plugging in
the results from above, we get

det(A) =
3 + sin(6) cos(4)

sin(2)

2
·

3 − sin(6) cos(4)
sin(2)

2
−
(

sin(6) sin(4)
2 sin(2)

)2

. (4.12)

Now using the fact that (a + b)(a − b) = a2 − b2, we have

9 −
(

sin(6) cos(4)
sin(2)

)2

4
− sin(6)2 sin(4)2

4 sin(2)2 . (4.13)

We are now ready to compute the eigenvalues:

λ1,2 =
Tr(A)±

√
Tr(A)2 − 4 det(A)

2
. (4.14)

First we compute the trace of A.

Tr(A) = ∥u∥2 + ∥v∥2 = M + 1 = 3. (4.15)

We simplify:

Tr(A)2 − 4 det(A) = 9 − 4 det(A)

= 9 − 4

9 −
(

sin(6) cos(4)
sin(2)

)2

4
− sin(6)2 sin(4)2

4 sin(2)2


=

(
sin(6) cos(4)

sin(2)

)2

+
sin(6)2 sin(4)2

sin(2)2 .

(4.16)
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4. The Sliding Window Embedding

Figure 4.2: The plotted ellipse from Example 4.6. Here the x-axis represents the cosine component
and the y-axis the sine component. For the code, see Appendix, Figure A.4.

And therefore we get the following for the eigenvalues

λ1 =
3 +

√(
sin(6) cos(4)

sin(2)

)2
+ sin(6)2 sin(4)2

sin(2)2

2
,

λ2 =
3 −

√(
sin(6) cos(4)

sin(2)

)2
+ sin(6)2 sin(4)2

sin(2)2

2
.

(4.17)

In the following chapters we explore the relationship between period length
and window size Mτ. Moreover, the maximal persistence of a 1-dimensional
persistence diagram of the Vietoris-Rips filtration of a finite sample is a
measure of roundness of the sliding window point cloud.
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Chapter 5

The Approximation Theorem

In Example 4.5 we saw that we can compute the sliding window of sin(nt)
relatively easily. The same holds for cos(nt). We now want to study the
sliding window and persistence of any function f ∈ L2(T), where T =
R/(2πZ). For that we use the Fourier series approximation of f . Using
the Fourier series, we can reformulate SWM,τ f through SWM,τ sin(nt) and
SWM,τ cos(nt). To do this, we need to show that SWM,τ behaves well under
approximations as with Fourier series and that these approximations work
in the framework of stability for persistence diagrams.

In this context we will state and prove an important result called the
Approximation Theorem 5.5. It shows that, in the limit, the persistent
homology of the point cloud generated by SWM,τ f for f ∈ Ck(T, R) can be
effectively analyzed through the persistent homology of its truncated Fourier
series.

Let now C(X, Y) be the set of continuous functions X → Y, with the sup
norm. The sliding window embedding induces a mapping

SWM,τ : C(T, R) → C(T, RM+1). (5.1)

This map has the following property.

Proposition 5.1 For all M ∈ N and τ > 0, the map SWM,τ is a bounded linear
operator with norm ∥SWM,τ∥ ≤

√
M + 1.

Proof 1. The map SWM,τ is bounded: Let f ∈ C(T, R) and let t ∈ T. Then

∥SWM,τ f (t)∥2
RM+1 = | f (t)|2 + | f (t + τ)|2 + . . . + | f (t + Mτ)|2

≤ sup
t

| f (t)|2 + sup
t

| f (t)|2 + . . . + sup
t

| f (t)|2

= (M + 1)∥ f ∥2
∞.

(5.2)

2. The map SWM,τ is linear: Follows directly from the definition of the
sliding window embedding. □
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Example 5.2 (Example 4.6 continued) We check the computation in Equation (5.2)
for our example f (t) = sin(2t) with values M = 2 and τ = 1. The sliding window
is

SW2,1 sin(2t) =

 sin(2t)
sin(2(t + 1))
sin(2(t + 2))

 . (5.3)

So the norm is given by

∥SW2,1 sin(2t)∥2
R3 = | sin(2t)|2 + | sin(2(t + 1))|2 + | sin(2(t + 2))|2

≤ 1 + 1 + 1 = 3.
(5.4)

Where we used the fact that sin takes values between −1 and 1, so the absolute value
is smaller equal than 1.

We now want to look at the Fourier series of some function f and see how
the sliding window behaves in this context. Let

f (t) = SN f (t) + RN f (t), (5.5)

where SN f (t) is the Fourier expansion of f and RN f (t) is the remainder. The
remainder is the difference between f (t) and the Fourier expansion SN f (t).
The Fourier expansion is given by

SN f (t) =
N

∑
n=0

an cos(nt) + bn sin(nt) =
N

∑
n=−N

f̂ (n)eint, (5.6)

where

an =
1
π

∫ π

−π
f (t) cos(nt)dt

bn =
1
π

∫ π

−π
f (t) sin(nt)dt.

Here f̂ (n) is given by

f̂ (n) =


1
2 an − i

2 bn if n > 0,
1
2 a−n +

i
2 b−n if n < 0,

a0 if n = 0.

(5.7)

We recognize the function sin(nt) from our Example 4.5 and the function
cos(nt) can be treated similarly. By setting

un = SWM,τ cos(nt)|t=0 and vn = SWM,τ sin(nt)|t=0, (5.8)

32



we can compute the sliding window of f (t) using these notions:

SWM,τ f (t) = SWM,τSN f (t) + SWM,τRN f (t)

=
N

∑
n=0

(anSWM,τ cos(nt) + bnSWM,τ sin(nt)) + SWM,τRN f (t)

=
N

∑
n=o

(an(cos(nt)un + sin(nt)vn) + bn(cos(nt)vn − sin(nt)un))

=
N

∑
n=0

(cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn))

+ SWM,τRN f (t).
(5.9)

Note that the vectors un and vn form a basis. to simplify the notation, we
name the Fourier expansion term of the sliding window of f (t),

ϕτ(t) =
N

∑
n=0

(cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn)). (5.10)

If all the variables are clear from the context, we just write ϕτ = SWM,τSN f (t).

Example 5.3 (Example 4.6 continued) We will now look at our example from the
previous sections and compute the steps above for f (t) = sin(2t). First, observe
that

SN f (t) =
N

∑
n=−N

f̂ (n)eint, (5.11)

where f̂ (n) are the Fourier coefficients, that are calculated in the following way for
f (t) = sin(2t):

f̂ (n) =
1

2π

∫ π

−π
sin(2t)e−intdt. (5.12)

As our function is sinusoidal, only the values n = ±2 yield nonzero Fourier
coefficients.

f̂ (n) =


i
2 if n = −2,
− i

2 if n = 2,
0 otherwise.

(5.13)

We can now plug these values into the remaining equations above, to see what the
sliding window is.

Now that we expressed the Fourier expansion part through well-known
functions, we are interested in studying the remainder term SWM,τ f (t).
With the proposition below, we find bounds for each derivative f (k) = dk f

dtk ,
whenever the derivatives exist and are continuous.
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5. The Approximation Theorem

Proposition 5.4 Let k ∈ N. For some f ∈ Ck(T, R) and for all t ∈ T we have

∥SWM,τ f (t)− ϕτ(t)∥RM+1 ≤
√

4k − 2
∥∥∥RN f (k)

∥∥∥
2
·

√
M + 1

(N + 1)k− 1
2

. (5.14)

Proof Note that by applying integration by parts k-times to f (k), we obtain
the following relationship between the Fourier coefficients of a function and
its derivatives.

| f̂ (k)(n)| = |n|k| f̂ (n)|, for all n ∈ Z. (5.15)

For our computations, we need the Cauchy-Schwarz inequality, Young’s
inequality and Parseval’s Theorem. Let us have a look at them. The Cauchy-
Schwarz inequality states, that for two sequences an and bn, we have(

∑
n

anbn

)2

≤
(

∑
n

a2
n

)(
∑
n

b2
n

)
. (5.16)

Taking squares leaves us with

∑
n

anbn ≤
(

∑
n

a2
n

)1/2(
∑
n

b2
n

)1/2

. (5.17)

Young’s inequality states that for p, q with 1
p +

1
q = 1, we have

|ab| ≤ ap

p
+

bq

q
. (5.18)

And the Parseval Theorem relates the L2-norm of a function f to the ℓ2-norm
of its Fourier coefficients:

∥ f ∥2
2 = ∑

n∈Z

| f̂ (n)|2. (5.19)

Similarly, we get the following for the k-th derivative

∥ f (k)∥2
2 = ∑

n∈Z

| f̂ (k)(n)|2. (5.20)

We compute

|RN f (t)| ≤
∞

∑
n=N+1

| f̂ (k)(n)|+ | f̂ (k)(−n)|
nk

≤
(

∞

∑
n=N+1

(
| f̂ (k)(n)|+ | f̂ (k)(−n)|

)2
)1/2

·
(

∞

∑
n=N+1

1
n2k

)1/2

≤
(

2 ∑
|n|≥N+1

| f̂ (k)(n)|2
)1/2

·
(∫ ∞

N+1

1
x2k dx

)1/2

=
√

2
∥∥∥RN f (k)

∥∥∥
2
·

√
2k − 1

(N + 1)k− 1
2

.

(5.21)
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The second line is obtained by applying the Cauchy-Schwarz inequality. For
the third line, we simplify the first term using absolute values and convert
the second term using Young’s inequality implicitly. In the last step, we used
Parseval’s Theorem and computed the integral from the second term. So
with Proposition 5.1 we see that

∥SWM,τ f (t)− ϕτ(t)∥RM+1 ≤
√

M + 1∥RN f ∥∞

≤
√

4k − 2∥RN f (k)∥2 ·
√

M + 1

(N + 1)k− 1
2

.
(5.22)

□

All the results from this section can be summarized in the so-called
Approximation Theorem, that we will state and prove below.

Theorem 5.5 (Approximation Theorem) Let T ⊆ T, a function f ∈ Ck(T, R),
X = SWM,τ f (T) and Y = SWM,τSN f (T). Then we have the following three
statements:

1. dH(X, Y) ≤
√

4k − 2
∥∥∥Rn f (k)

∥∥∥
2

√
M+1

(N+1)k− 1
2

2. |mp(dgm(X))− mp(dgm(Y))| ≤ 2dB(dgm(X), dgm(Y))

3. dB(dgm(X), dgm(Y)) ≤ 2
√

4k − 2
∥∥∥Rn f (k)

∥∥∥
2

√
M+1

(N+1)k− 1
2

Proof The bounds we computed above directly lead to estimates for the
Hausdorff distance between the sliding window point clouds of f and SN f .
Let X be the image of some T ⊆ T under SWM,τ f and Y be the image of T
under ϕτ. If now our f ∈ Ck(T, R and

ε >
√

4k − 2∥RN f (k)∥2 ·
√

M + 1

(N + 1)k− 1
2

, (5.23)

then X ⊆ Yε and Y ⊆ Xε. And therefore we see that dH(X, Y) ≤ ε. By letting
ε go to its lower bound and using the Stability Theorem 2.35 that relates dH
to dB, we get

dB(dgm(X), dgm(Y)) ≤ 2
√

4k − 2∥RN f (k)∥2 ·
√

M + 1

(N + 1)k− 1
2

. (5.24)
□

It follows that in the limit we can describe the persistent homology of
the sliding window point cloud of a function f ∈ C(k)(T, R) in terms of
the persistent homology of the truncated Fourier series of f . As outlined in
the previous sections, the maximum persistence of dgm(X) will be used to
quantify the periodicity of f when analyzed using sliding windows of length
Mτ.
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5. The Approximation Theorem

Our calculations and results do not only hold for functions in C(k)(T, R),
but also for functions in the set of Hölder continuous functions with an
exponent α ∈ ( 1

2 , 1). For the definition of Hölder continuous function we
follow a book by Renato Fiorenza, see [13].

Definition 5.6 For a real number α ∈ (0, 1], we say that a function f is a Hölder
continuous function with exponent α in the set X, when there exists an H ≥ 0
such that | f (x1)− f (x2)| ≤ H|x1 − x2|, ∀x1, x2 ∈ X.

The above holds indeed, take such an f and consider the Fejér approximation

σn f (t) = ∑
|n|≤N

(
1 − |n|

N + 1

)
f̂ (n)eint, (5.25)

and consider the following Theorem from [26]:

Theorem 5.7 Suppose that f is Lipschitz continuous with constant K. Then

∥σn( f )− f ∥∞ ≤ C1K
log(n)

n
, (5.26)

where C is an absolute constant. More generally, we can say that if f satisfies a
Hölder condition with α < 1 and Hölder constant Kα, then

∥σn( f )− f ∥∞ ≤ CαKαn−α, (5.27)

where Cα is a constant depending solely on α.

We then get a new version of Proposition 5.4:

Proposition 5.8 (Proposition 5.4) For every t ∈ T, we have that

∥SWM,τ f (t)− SWM,τσN f (t)∥RM+1 ≤ CαKα

√
M + 1
Nα

. (5.28)

Similarly we can reformulate the Approximation Theorem 5.5.
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Chapter 6

The Geometric Structure of SWM,τSN f

In this chapter, we look at the geometric structure of the sliding window point
cloud when applied to the truncated Fourier series of a periodic function.
More precisely we analyze its dependence on τ, N and M.

In most related work, the window size Mτ is estimated using the au-
tocorrelation function, which measures how well a signal correlates with
itself at different time shifts. But this approach fails for nonlinear systems
[18]. Also M is mostly estimated using the method of false nearest neighbors
[17]. The idea behind this method is to identify points in the dataset that are
neighbors in the embedding space but should not be, as their future temporal
evolution differs significantly. The false nearest neighbors method detects
when increasing the embedding dimension reduces false neighbors, meaning
that points close in the embedding space remain close in the original system.

In contrast to these approaches, we propose a geometric approach to
estimating Mτ and M, based on the Structure Theorem 6.8, which formally
describes the geometric properties of the sliding window embedding.

6.1 Dimension of the Sliding Window Embedding

As seen in preceding chapters, the dimension of the sliding windows em-
bedding is M + 1. One interpretation of the dimension is as a level of detail
we hope to capture through the sliding window representation. On one
hand, we wish to have as large a dimension as possible, to get more detailed
information on the data. But on the other hand, regarding computational
costs and the fact that we want to compute the persistent homology of these
objects, we do not want the dimension to be too large. Especially because
otherwise the size of the Rips complex would be too big for our computa-
tional resources and the calculation of the persistent homology would be
impossible.
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6. The Geometric Structure of the Sliding Window

It is crucial to understand how much information is preserved given the
computational limitations on the embedding dimension. In our case, with
trigonometric polynomials we have the following statement:

Lemma 6.1 No information is lost if and only if the embedding dimension M + 1
is greater than twice the maximum frequency.

Here we see the link to the computations we made in Example 4.5 in Chapter
4.

Proof (of Lemma 6.1) Recall the linear decomposition from the sections
above:

SWM,τSN f (t) =
N

∑
n=0

cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn), (6.1)

where un and vn are given by

un = SWM,τ cos(nt)|t=0 , vn = SWM,τ sin(nt)|t=0 (6.2)

and the an, bn are defined as in Equation (5.7). In Example 4.5 we saw that
the angles between and the norms of un and vn can be computed using only
M and τ. Therefore SN f can be received from SWM,τSN f if the un and the
vn are linearly independent. Indeed, if un and vn are linearly independent
for all n, then we can uniquely determine the coefficients an and bn. This is
because for each n, we can solve the system

anun + bnvn and bnun − anvn

to obtain an and bn. Since Sn f (t) is expressed as

SN f (T) =
N

∑
n=0

an cos(nt) + bn sin(nt),

once we determine an and bn, we immediately recover SN f . And this is what
we mean, when we say, that no information is lost. □

These explanations result in the following Proposition.

Proposition 6.2 Let Mτ < 2π. Then we have that u0, u1, v1, . . . , uN , vN are
linearly independent if and only if M ≥ 2N.

Example 6.3 Going back to our Example 4.5 with M = 2 and τ = 1, we calculate
u0, u1, v1, so N = 1.

u0 = SWM,τ cos(0t)|t=0 = cos(0t)u|t=0 − sin(0t)v|t=0

=

 1
cos(0)

cos(2 · 0)

− 0 =

1
1
1

 ,
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6.1. Dimension of the Sliding Window Embedding

u1 = SWM,τ cos(t)|t=0 = cos(t)u|t=0 − sin(t)v|t=0

=

 1
cos(1)

cos(2 · 1)

− 0 =

 1
cos(1)
cos(2)

 ,

v1 = SWM,τ sin(t)|t=0 = sin(t)u|t=0 + cos(t)v|t=0

= 0 +

 0
sin(1)

sin(2 · 1)

 =

 0
sin(1)
sin(2)

 .

These three vectors are linearly independent and M = 2 ≥ 2 ∗ N = 2 is satisfied.

Proof (of Proposition 6.2) We begin with the ”if” direction and prove it
by contraposition. So we assume that our vectors u0, u1, v1, . . . , uN , vN are
linearly dependent. We want to show that from that it follows that 2N > M.
According to our assumption scalars γ0, δ0, . . . , γN , δN ∈ R exist, where
δ0 = 0 and not all are 0, such that

γ0u0 + γ1u1 . . . + γNuN + δNvN = 0.

With the definitions of u and v this translates to

0 =
N

∑
n=0

γn cos(nmτ) + δn sin(nmτ) = Re

(
N

∑
n=0

(γn − iδn)einmτ

)
.

Now let ξm = eimτ and define polynomials

p(z) =
N

∑
n=0

(γn + iδn)zn,

p̄(z) =
N

∑
n=0

(γn − iδn)zn and

q(z) = zN ·
(

p̄(z) + p(
1
z
)

)
.

We see that q(z) is a non-constant complex polynomial of degree ≤ 2N and
that for m = 0, . . . , M we have 0 = Re( p̄(ξm)). So we can compute

q(ξm) = (ξm)
N ·
(

p̄(ξm) + p
(

1
ξm

))
= (ξm)

N ·
(

p̄(ξm) + p
(
ξm
))

= (ξm)
N · 2Re ( p̄(ξm)) = 0.

Note that the second equality only holds because eimt is a unit and the
last equality holds by our conclusion from above. With q(ξm) = 0 we can
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6. The Geometric Structure of the Sliding Window

conclude that ξ0, . . . , ξM are the roots of q(z). With the fact that Mτ < 2π it
follows that ξ0, . . . , ξM are distinct and we have

M + 1 ≤ degree(q(z)) ≤ 2N

and therefore 2N > M as we wanted.
The ”only if” direction is much more easy. Assume that u0, u1, v1, . . . , uN , vN
are linearly independent. These are 2N + 1 vectors. It follows directly that
the dimension M ≥ 2N + 1, implying M ≥ 2N. □

In the remainder of this work, we will always assume that N ∈ N, that
M = 2N and that τ > 0 satisfies Mτ < 2π.

6.2 Window Size and Underlying Frequency

In this section we want to study the relation between the window size and
the frequency more profoundly to understand the structure of the sliding
window point cloud geometrically.

For that recall that we saw in the beginning of Chapter 4 that the sliding
window point cloud for sin(nt) describes a planar ellipse which is most
likely to a cycle when ∥u∥ − ∥v∥ = ⟨u, v⟩ = 0, or equivalently (M + 1)nτ ≡
0 (mod π). From this we get that the maximum persistence of the sliding
window point cloud of sin(nt) is largest when the window size Mτ is
proportional to the frequency 2π

n . The proportionality constant in this case is
M

M+1 .

Our goal for this section is to show that when looking at the truncated
Fourier series SN f of a periodic function f and if the same proportionality
relation between window size and underlying frequency holds, then the
expression

SWM,τSN f (t) =
N

∑
n=0

cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn) (6.3)

becomes a linear decomposition into pairwise orthogonal vectors. To start
our observations, we look at the case of the restriction to Span{un, vn}.

Proposition 6.4 Let n ≥ 1. Then ⟨un, vn⟩ = ∥un∥2 − ∥vn∥2 = 0 if and only if
(M + 1)nτ ≡ 0 (mod π).

Intuitively this proposition means:

• The orthogonality between un and vn ensures that the components in
the Fourier decomposition do not ”mix”.

• The condition (M + 1)nτ ≡ 0 (mod π) ensures that the relationship
between window size and frequency maintains this orthogonality.
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6.2. Window Size and Underlying Frequency

This is crucial because it guarantees that the structural analysis of the signal
remains geometrically and mathematically consistent, and therefore it avoids
distortions in the decomposition.

Proof (of Proposition 6.4) First we compute ⟨un, vn⟩ and ∥un∥2 − ∥vn∥2.

⟨un, vn⟩ =
M

∑
m=1

cos(nmτ) sin(nmτ) =
1
2

M

∑
m=1

sin(2nmτ)

=
1
2

Im

(
M

∑
m=1

zm
2nτ

)
, where zφ = eiφ

=
1
2

Im
(

z2nτ ·
1 − zM

2nτ

1 − z2nτ

)
=

1
2

Im

(
z2nτ − zM+1

2nτ

1 − z2nτ

)

=
1
2

Im

(
1 − zM+1

2nτ − (1 − z2nτ)

1 − z2nτ

)

=
1
2

Im
(1 − z2n(M+1)τ

1 − z2nτ
− 1
)
=

1
2

Im
(1 − z2n(M+1)τ

1 − z2nτ

)
,

∥un∥2 − ∥vn∥2 =
M

∑
m=0

cos(nmτ)2 − sin(nmτ)2 =
M

∑
m=0

cos(2nmτ)

= Re
(1 − z2n(M+1)τ

1 − z2nτ

)
,

where the last step follows similarly to the computations of ⟨un, vn⟩. These
two calculations imply that

4⟨un, vn⟩2 + (∥un∥2 − ∥vn∥2)2 =

∥∥∥∥1 − z2n(M+1)τ

1 − z2nτ

∥∥∥∥2

. (6.4)

In conclusion this means that ⟨un, vn⟩ = ∥un∥2 − ∥vn∥2 = 0 if and only if
z2n(M+1)τ = 1, which is if and only if n(M + 1)τ ≡ 0 (mod π). □

So we see that (M + 1)nτ ≡ 0 (mod π) implies that anun + bnvn is perpen-
dicular to bnun − anvn for all an, bn ∈ R. To be able to extend this result to
components from different harmonics, we need the following definition:

Definition 6.5 For L ∈ N, a function f is L-periodic on [0, 2π], if for all t we
have

f
(

t +
2π

L

)
= f (t). (6.5)

Lemma 6.6 Let f be an L-periodic function. Then an and bn are its n-th real Fourier
coefficients. We let an + ibn = rneiaαn , with αn = 0 when rn = 0. Then rn ̸= 0
implies n ≡ 0 (mod L).
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6. The Geometric Structure of the Sliding Window

Proof Let us look at the function g(t) = f (t/L). This is 1-periodic, because
g(t + 1) = f ( t+1

L ) = f ( t
L + 1

L ) with the L-periodicity of f this results in g(t)
again. The Fourier series expansion of g(t) is

g(t) =
∞

∑
r=0

a′r cos(rt) + b′r sin(rt).

So we compute

f (t) = g(tL) =
∞

∑
r=0

a′r cos(rLt) + B′
r sin(rLT) =

∞

∑
n=0

an cos(nt) + bn sin(nt)

for almost every t. With the uniqueness of the Fourier series expansion in
L2(T), our result follows. □

The following proposition makes it possible to make the potentially non-zero
terms in the linear decomposition of SWM,τSN f (Equation (6.3)) orthogonal
to one another. For that we have to choose the window size proportional to
the underlying frequency, with constant M

M+1 .

Proposition 6.7 Let the function f be L-periodic and let τ = 2π
L(M+1) . Then all

vectors in the set

{un, vn | 0 ≤ n ≤ N, n ≡ 0 (mod L)} (6.6)

are pairwise orthogonal, and ∥un∥ = ∥vn∥ =
√

M+1
2 for n ≡ 0 (mod L).

Proof We define k = pL and n = qL. For k = n and ⟨un, vn⟩ = 0 we see that,
due to orthogonality and symmetry,

∥un∥2 = ∥vn∥2 =
∥un∥2 + ∥vn∥2

2

=
1
2

M

∑
m=0

cos(nmτ)2 + sin(nmτ)2 =
M + 1

2
.

In the last equality we used that cos(x)2 + sin(x)2 = 1. Let us now assume
that p ̸= q. Note that if ⟨un, vn⟩ = 0, then cos(nMτ) sin(nMτ) = 0, which is
if and only if 1

2 sin(2nMτ) = 0
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6.2. Window Size and Underlying Frequency

If we again set zφ = eiφ for φ ∈ R, then

⟨un, uk⟩ =
M

∑
m=0

cos(nmτ) cos(kmτ)

=
1
2

M

∑
m=0

cos((n − k)mτ) + cos((n + k)mτ)

=
1
2

Re

(
1 − z(n−k)(M+1)τ

1 − z(n−k)τ
+

1 − z(n+k)(M+1)τ

1 − z(n+k)τ

)

=
1
2

Re

(
1 − z(q−p)2π

1 − z(n−k)τ
+

1 − z(q+p)2π

1 − z(n+k)τ

)
= 0.

The second equality follows because of the two trigonometric identities

cos(x + y) = cos(x) cos(y)− sin(x) sin(y)
cos(x − y) = cos(x) cos(y) + sin(x) sin(y),

that lead to cos(x) cos(y) = 1
2 (cos(x + y) + cos(x − y)). In the forth equality,

we simply compute

(n − k)(M + 1)τ = (q − p)L(M + 1)τ

= (q − p)L(M + 1)
2π

L(M + 1)
= (q − p)2π.

The others follow similarly. We want to check, which condition guarantees
that the denominators are never zero. We compute

1 − z(n−k)τ = 0 ⇐⇒ 1 − ei(n−k)τ = 0 ⇐⇒ 1 = ei(n−k)τ.

Similarly the other denominator vanishes if 1 = ei(n+k)τ. These imply
(n − k)τ = 2πℓ and (n + k)τ = 2πℓ for ℓ ∈ Z respectively. So we need
(n − k)τ ̸= 2πℓ and (n + k)τ ̸= 2πℓ.

• We ensure n − k, n + k ̸= 0 by setting 0 < min{|n − k|, |n + k|}.

• To ensure that (n − k)τ, (n + k)τ ̸= 2πℓ, observe that a key bound is
M < 2π

τ . Since M represents the maximum possible value of |n − k| or
|n + k7, and τ = 2π

L(M+1) , we know:

(n − k)τ < Mτ <
2π

L(M + 1)
· M < 2π.

Thus (n − k)τ and (n + k)τ are strictly less than 2π, ensuring they
cannot be an integer multiple.
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6. The Geometric Structure of the Sliding Window

• Setting max{|n− k|, |n+ k|} ≤ 2N ≤ M ensures that all possible values
of n − k and n + k remain bounded within the non-problematic region.

So our condition for the denominators not to be zero is the following:

0 < min{|n − k|, |n + k|} ≤ max{|n − k|, |n + k|} ≤ 2N ≤ M <
2π

τ
.

We check that the vectors in the set of Equation (6.6) are indeed orthogonal:

⟨un, vk⟩ =
M

∑
m=1

cos(nmτ) sin(kmτ)

=
1
2

M

∑
m=1

sin((n + k)mτ)− sin((n − k)mτ)

=
1
2

Im

(
1 − z(q+p)2π

1 − z(n+k)τ
−

1 − z(q−p)2π

1 − z(n−k)τ

)
= 0

⟨vn, uk⟩ =
1
2

Im

(
1 − z(p+q)2π

1 − z(k+n)τ
−

1 − z(p−q)2π

1 − z(k−n)τ

)
= 0

⟨vn, vk⟩ =
1
2

Im

(
1 − z(q−p)2π

1 − z(n−k)τ
−

1 − z(q+p)2π

1 − z(n+k)τ

)
= 0 □

We sometimes gain advantage in pointwise centering and normalizing
our data set in order to compute the persistent homology. We will look at a
theorem that shows the outcome of such operations on the sliding window
point cloud for SWM,τSN f for f L-periodic and for L(M + 1)τ = 2π. It is
called the Structure Theorem, because it gives us a clear geometric picture of
the centered and normalized point cloud.

Theorem 6.8 (Structure Theorem) Let C : RM+1 → RM+1 be the centering
map, for which holds

C(x) = x − ⟨x, 1⟩
∥1∥2 , where 1 =

1
...
1

 ∈ RM+1. (6.7)

If f is L-periodic, L(M + 1)τ = 2π and ϕτ = SWM,τSN f , then the following three
statements hold:

1. ϕτ(t) = f̂ (0) · 1 + C(ϕτ(t))

2. ∥C(ϕτ(t))∥ =
√

M + 1
(
∥SN f ∥2

2 − f̂ (0)2
)1/2
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6.2. Window Size and Underlying Frequency

3. There exists an orthogonal set

{x̃n, ỹn ∈ RM+1|1 ≤ n ≤ N, n ≡ 0 (mod L)}, (6.8)

such that

φτ :=
C(ϕτ(t))

∥C(ϕτ(t))∥
=

N

∑
n=1

n≡0 (mod L)

r̃n(cos(nt)x̃n + sin(nt)ỹn), (6.9)

where

r̃n =
2| f̂ (n)|√

∥SN f ∥2
2 − f̂ (0)2

. (6.10)

Proof 1. We know that ϕτ(t) = SWM,τSN f so

ϕτ(t) =


SN f (t)

SN( f + τ)
...

SN f (t + Mτ)

 . (6.11)

For the function SN f (t) we have the following:

SN f (t) = f̂ (0) +
N

∑
n=1

(
f̂ (n)eint + f̂ (−n)e−int

)
,

where the term f̂ (0) is the mean of SN f (t), while the rest are oscillatory
terms. Substituting this in Equation (6.11), we get

ϕτ(t) =


f̂ (0) + ∑(oscillatory terms)

f̂ (0) + ∑(oscillatory terms at t + τ)
...

f̂ (0) + ∑(oscillatory terms at t + Mτ)

 .

Applying the centering map C, removes the constant mean term and
we get

C(ϕτ(t)) = ϕτ(t)−
⟨ϕτ(t), 1⟩
∥1∥2 1.

Here we have that ⟨ϕτ(t), 1⟩ = (M + 1) f̂ (0), since the constant vector 1
aligns perfectly with the mean term f̂ (0). Furthermore, we have that
∥1∥2 = M + 1. Substituting these results, we get

C(ϕτ(t)) = ϕτ(t)− f̂ (0) · 1,

which leads to
ϕτ(t) = f̂ (0) · 1 + C(ϕτ(t)).
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6. The Geometric Structure of the Sliding Window

2. Notice that by the Pythagorean theorem, the norm of the centered
embedding C(ϕτ(t)) = ϕτ(t)− f̂ (0) · 1 satisfies

∥C(ϕτ(t))∥2 = ∥ϕτ(t)∥2 − ∥ f̂ (0) · 1∥2

= ∥SN f ∥2
2 − (M + 1) · f̂ (0)2,

which, taking the square roots, gives

∥C(ϕτ(t))∥ =
√

M + 1
(
∥SN f ∥2

2 − f̂ (0)2
)1/2

.

3. For the last statement we first look at the explicit Fourier decomposition
of ϕτ(t). Since we have an L-periodic function on [0, 2π] and know that
L(M + 1)τ = 2π, we can use Lemma 6.6 and Proposition 6.7 to show
that for all t ∈ R,

ϕτ(t) =
N

∑
n=0

n≡0 (mod L)

cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn)

=
N

∑
n=0

n≡0 (mod L)

rn(cos(nt)xn + sin(nt)yn)

is a linear combination of pairwise orthogonal vectors xn and yn,
where xn = cos(αn)un + sin(αn)vn and yn = sin(αn)un − cos(αn)vn,
and where αn is from Lemma 6.6. From Proposition 6.7, we see that

whenever n ≥ 1 is such that n ≡ 0 (mod L), then ∥xn∥ = ∥yn∥ =
√

M+1
2 .

We define the normalized vectors

x̃n =
xn

∥xn∥
, ỹn =

yn

∥yn∥
and compute

ϕτ(t) = (a0
√

M + 1)
1

∥1∥

+
N

∑
n=0

n≡0 (mod L)

√
M + 1

2
rn(cos(nt)x̃n + sin(nt)ỹn).

This is a linear decomposition of ϕτ(t) in terms of the orthonormal set{
1

∥1∥ , x̃n, ỹn | 1 ≤ n ≤ N, n ≡ 0 (mod L)
}

.

So we compute

C(ϕτ(t)) =
N

∑
n=0

n≡0 (mod L)

√
M + 1

2
rn(cos(nt)x̃n + sin(nt)ỹn)
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6.2. Window Size and Underlying Frequency

and therefore

φτ(t) :=
C(ϕτ(t))

∥C(ϕτ(t))∥

=
N

∑
n=0

n≡0 (mod L)

rn√
r2

1 + . . . + r2
N

(cos(nt)x̃n + sin(nt)ỹn),

which can be written as

φτ(t) =
N

∑
n=0

n≡0 (mod L)

r̃n(cos(nt)x̃n + sin(nt)ỹn) ,
N

∑
n=1

r̃2
n = 1.

This is exactly what we want considering the fact that
rn = 2| f̂ (n)| = | f̂ (n)|+ | f̂ (−n)| for n ≥ 1. □

The centered and normalized sliding window point cloud for SN f is given by
the expression in Equation (6.9). We want to check this with a small example
of the circle with radius r around zero, S1(r) ⊆ C.

Example 6.9 We look at the map t 7→ φτ(t), that then can be regarded as the curve
in the N-torus T = S1(r̃1)× . . . × S1(r̃N). If we now project this onto S1(r̃n) for
an r̃n > 0, it goes around n times at a constant speed. But if we project it with the
projection map

RN = R × . . . × R → (R/(r̃1Z))× . . . × (R/(r̃NZ)),

our image is the line segment in RN joining (0, 0, . . . , 0) and (r̃1, 2r̃2, . . . , Nr̃N).
Figure 6.1 shows the curve φτ(t) from Theorem 6.8 for this scenario inside the
3-torus T .
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6. The Geometric Structure of the Sliding Window

Figure 6.1: Curve φτ(t) when modeled in the coordinates (t, 2t, 3t) ∈ (R/(r̃1Z))× (R/(r̃2Z))×
(R/(r̃3Z)). In the bottom right, we see φτ(t) in its fundamental domain [0, r̃1)× [0, r̃2)× [0, r̃3).
The three other diagrams show φτ(t) as projection onto the xy-, xz- and yz-plane. [25]
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Chapter 7

The Persistent Homology of SWM,τ f
and φτ

With the background from our previous section over the structure of the
sliding window point cloud and our approximation results, we can now get
to the part of understanding the persistent homology of the image of φτ

more precisely. In fact we also will have a closer look at its relationship with
the persistent homology of SWM,τ f .

7.1 Theorems on Convergence of Persistence Diagrams

The goal of this section is to state and prove two important theorems dealing
with the convergence of different persistence diagrams. We will state them
here and then come back to them later.

Theorem 7.1 (1. Convergence Theorem) Let f ∈ C1(T) be an L-periodic func-
tion, N ∈ N, τN = 2π

L(2N+1) , T ⊆ T and YN be the set, that we get when pointwise
centering and normalizing the point cloud

SW2N,τN SN f (T) ⊆ R2N+1.

Furthermore let XN be the set, that we get when pointwise centering and normalizing
the point cloud

SW2N,τN f (T) ⊆ R2N+1.

Then for any field of coefficients, the sequence of persistence diagrams dgm(XN) is
a Cauchy sequence with respect to the Bottleneck distance dB, and

lim
N→∞

dgm(XN) = lim
N→∞

dgm(YN) = dgm∞( f , T, w), (7.1)

where dgm∞( f , T, w) denotes the limit in the Bottleneck distance of the sequence
dgm(YN) and w = 2π

L .
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7. The Persistent Homology of SW and Centered, Normalized SW

The idea behind the notation dgm∞( f , T, w) is that there exists a limiting
diagram from the sequence of pointwise centered and normalized versions
of SWM,τ f (T), when letting M go to infinity, and keeping the window size
Mτ = M

M+1 w ≈ w.

This first theorem ensures that for every choice of T in T, we get some
limiting persistence diagram dgm∞( f , T, w) by letting N go to ∞ in the
diagrams of either the sliding window point cloud of the function or the
sliding window point cloud of the Fourier series of the function. Furthermore
it validates the above interpretation of dgm( f , T, w).

Example 7.2 To demonstrate Theorem 7.1, we choose the 2π-periodic function
f (t) = sin(t), so L = 2π. Therefore τN = 1

2N+1 . The code for the following
computations and illustrations can be found in the Appendix, Figure A.5. We choose
T to consist of 100 points on T. We compute the point clouds SW2N,τN SN f (T) and
SW2N,τN f (T). Then we pointwise center and normalize these point clouds. We then
compute the persistence diagrams for different values of N, using the risper package
in python, to show convergence of the two diagrams, see Figure 7.1.

Figure 7.1: For N = 5 we see that the persistence diagrams differ significantly, but they are
getting closer as N increases and are nearly the same at N = 50.

Our second convergence theorem deals with the case where we let T go to T

and shows that there will also be a convergence in the persistence diagrams.

Theorem 7.3 (2. Convergence Theorem) Let T, T′ ⊆ T be finite, and let a func-
tion f ∈ C1(T) be L-periodic with modulus of continuity ω : [0, ∞] → [0, ∞]1. If
we set the window size to be w = 2π

L , then

dB(dgm∞( f , T, w), dgm∞( f , T′, w)) ≤ 2
∥∥∥ f − f̂ (0)

∥∥∥
2

ω(dH(T, T′)),
1A function f has modulus of continuity ω, if | f (x)− f (y)| ≤ ω(|x − y|).
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7.1. Theorems on Convergence of Persistence Diagrams

and therefore there exists a persistence diagram dgm∞( f , w), such that

lim
T→T

dgm∞( f , T, w) = dgm∞( f , w). (7.2)

Example 7.4 To understand Theorem 7.3 more profoundly we will take again
f (t) = sin(t) as in Example 7.2. We follow the same steps, but only for the
sliding window point cloud of the function itself, because we already proved that the
diagrams converge. To approximate T, we let the size of T increase. Here we have
T = 10, 20, 500, 1000. We also run the code, displayed in the Appendix, Figure A.6,
for different values of N to demonstrate the convergence from Theorem 7.1.

(a) N = 20

(b) N = 200

(c) N = 2000

Figure 7.2: The persistence diagrams converge as the size of T increases.

We will have to do some prework to prove these theorems. Notice
that Proposition 5.4 gives an upper bound for the distance between ϕτ(T)
and SWM,τ f (T). If now N gets lagers and therefore also M = 2N, the
denominator grows faster and the distance gets smaller with respect to the
Hausdorff metric on subspaces of R∞.

51



7. The Persistent Homology of SW and Centered, Normalized SW

Definition 7.5 R∞ denotes the set of sequences x = (xk)k∈N, where xk ∈ R, such
that xn = 0 for all n ≥ N0 and some N0 = N0(x) ∈ N.

We want to be able to look at our sliding window embedding in this space.
Therefore, we endow R∞ with the L2-metric and define for t ∈ T

SWM,τ f (t) = ( f (t), f (t + τ), . . . , f (t + Mτ), 0, 0, . . .) ∈ R∞. (7.3)

Even though we get better approximations of the form

SWM,τSN f (T) ≈ SWM,τ f (T)

when increasing the sliding window embedding dimension M + 1, we also
have to deal with the fact that the approximated object, SWM,τ f (T) changes.
We cannot assume that this process of approximating converges or stabilizes,
because (R∞, ∥ · ∥2) is not complete and there are samplings at different
rates from the same window. Moreover, even though the metric completion
R∞ = ℓ2(R), the space of square-summable sequences, is well understood,
its vastness makes tracking global geometric features a nontrivial task. In
this kind of situations, the method of a persistence diagram, working as a
succinct and informative summary, is crucial.

However, the space of persistence diagrams is also not complete with
respect to the Bottleneck distance. To find a completion, we need some
extra work with two propositions from [20] and [3], done in Section 4, see
Proposition 2.38 and Theorem 2.40. So we see that the space of persistence
diagrams can be completed by allowing diagrams with countably many
points with at most countable multiplicity, satisfying a natural finiteness
condition. Furthermore, features like maximum persistence can be easily
tracked, with no ambiguity in comparing diagrams, such as those from
SWM,τ f (T) and SW3M, τ

3
f (T) that seem kind of similar.

The following proposition ensures that persistence diagrams from sliding
window embeddings remain consistent as embedding dimensions and reso-
lutions change, providing a bound on their differences in terms of Fourier
approximation error. This demonstrates the stability and robustness of per-
sistence diagrams, making them reliable for analyzing signals at varying
resolutions.

Proposition 7.6 Let f be an L-periodic function and choose N < N′, M = 2N,
M′ = 2N′ and

τ =
2π

L(M + 1)
, τ′ =

2π

L(M′ + 1)
.

If now T ⊆ T is finite, Y = SWM,τSN f (T) and Y′ = SWM′,τ′SN′ f (T), then we
get the following bound

dB

(
dgm(Y)√

M + 1
,

dgm(Y′)√
M′ + 1

)
≤ 2∥SN f − SN′ f ∥2, (7.4)
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where λ · dgm(A) := {(λx, λy)|(x, y) ∈ dgm(A)} for some λ ≥ 0.

Proof Remember that we defined un and vn in Equation (5.8). We simplify
our notation as follows: un = un(M, τ), vn = vn(M, τ), u′

n = un(M′, τ′) and
v′

n = vn(M′, τ′). We can now define two linear maps, that are well defined
by Proposition 6.2:

P : RM′+1 → RM′+1

N′

∑
n=0

xnu′
n + ynv′

n 7→
N

∑
n=0

xnu′
n + ynv′

n,

Q : Im(P) → RM+1

u′
n 7→

√
M′ + 1
M + 1

un

v′
n 7→

√
M′ + 1
M + 1

vn.

With Proposition 6.7, we see that P is an orthogonal projection that restricts
the higher-dimensional sliding window point cloud Y′ (with embedding
dimension M′ + 1) onto a subspace corresponding to the lower-dimensional
point cloud Y (with embedding dimension M + 1). The idea is to remove
contributions from Fourier terms of higher frequencies (> M) present in Y′,
which do not exist in Y. Q is a scaling map that adjusts the norms of the
basis vectors un and vn to ensure consistency between the embeddings of
SN f and SN′ f . Specifically, it rescales the vectors such that their norms are
proportional to the dimensions M + 1 and M′ + 1. Again with Proposition
6.7, we see that Q is an isometry on P(Y′). Notice that for y′ ∈ Y′, the
error introduced by projecting y′ onto the lower-dimensional space is entirely
due to the excluded Fourier terms. These terms contribute their respective
amplitudes r2

n, where rn is defined as in Lemma 6.6, scaled by M′+1
2 , to the

squared norm of y′ − P(y′). This leads to

∥y′ − P(y′)∥ =

√√√√M′ + 1
2

N′

∑
n=N+1

r2
n

and therefore

dH(Y′, P(Y′)) ≤

√√√√M′ + 1
2

N′

∑
n=N+1

r2
n.
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Since Q ◦ P(Y′) =
√

M′+1
M+1 Y and dgm(·) is invariant under isometries, we can

compute

√
M′ + 1 · dB

(
dgm(Y′)√

M′ + 1
,

dgm(Y)√
M + 1

)
= dB(dgm(Y′), dgm(Q ◦ P(Y′)))

= dB(dgm(Y′), dgm(P(Y′)))

≤ 2dh(Y′, P(Y′))

≤

√√√√2(M′ + 1)
N′

∑
n=N+1

r2
n.

This is equivalent to

dB

(
dgm(Y′)√

M′ + 1
,

dgm(Y)√
M + 1

)
≤

√√√√2
N′

∑
n=N+1

r2
n.

With the identity rn = 2| f̂ (n)| = | f̂ (n)| + | f̂ (−n)| for n ≥ 1, the result
follows. □

Taking this result, the Structure Theorem 6.8 and the fact that for N → ∞,
∥ f − SN f ∥2 → 0, we can state the following corollary.

Corollary 7.7 Let f ∈ L2(T) be L-periodic, N ∈ N, τN = 2π
L(2N+1) , T ⊆ T finite

and let YN be the set we get from pointwise centering and normalizing the point
cloud

SW2N,τN SN f (T) ⊆ R2N+1.

The the sequence dgm(YN) of persistence diagrams is Cauchy with respect to the
Bottleneck distance for every field of coefficients.

To be able to prove the first convergence Theorem 7.1, we need a statement
that allows us to use the Approximation Theorem 5.5 to bound the Bottleneck
distance between persistence diagrams at different resolutions. This is done
by the following proposition, that ensures that the norm of the sliding
window embedding stabilizes.

Proposition 7.8 Let f ∈ C(T) be L-periodic, N ∈ N and τN as in Corollary 7.7.
Then

lim
N→∞

∥C(SW2N,τN f (t)∥√
2N + 1

= ∥ f − f̂ (0)∥2 (7.5)

uniformly in t ∈ T.

Proof We first look at the easy case, where f is constant. Then the sliding
window embedding consists of one point, therefore the centered version
becomes the 0-vector. With that the scaled norm in the limit is 0, which
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agrees with the right hand side of the equation, because for a constant
function we have f − f̂ (0) = 0.

So let us assume that f ̸= f̂ (0) and let

g(t) =
f (t)− f̂ (0)
∥ f − f̂ (0)∥2

.

g ∈ C(T) is L-periodic, because f is and we have

ĝ(0) =
1

2π

∫ 2π

0
g(t)dt = 0 and ∥g∥2 =

1√
2π

(∫ 2π

0
|g(t)|2dt

)1/2

= 1.

Using the Riemann sum argument L(2N + 1)τN = 2π, and the fact that g is
L-periodic, it follows that if

cN(t) =
1

2N + 1

2N

∑
m=0

g(t + mτN),

then for all t ∈ T

lim
N→∞

cN(t) = lim
τN→0

L
2π

2N

∑
m=0

τN g(t + mτN)

=
L

2π

∫ t+ 2π
L

t
g(r)dr

=
1

2π

∫ 2π

0
g(r)dr

= 0.

The uniform convergence of cn(t) → 0 follows from the periodicity and
uniform continuity of g(t). Since g(t) is continuous and τN → 0, the spac-
ing between sampled points in the Riemann sum becomes arbitrarily small,
ensuring that the sum converges uniformly to the integral, which is zero.
Moreover, the fact that g is uniformly continuous implies that cN(t) is uni-
formly equicontinuous. This means that for every ε > 0, there exists a δ > 0,
that is independent of N, such that for every t, t′ ∈ T and all N ∈ N

|t − t′| < δ =⇒ |cN(t)− cN(t′)| <
ε

2
.

For some t ∈ T, let Nt ∈ N such that N ≥ Nt implies that |cN(t)| < ε
2 . So we

can conclude with these two inequalities that if N ≥ Nt and |t − t′| < δ, then
|cN(t′)| < ε.

To conclude to proof, we have to show that the convergence cN(t) → 0 is
uniform and that the Equation (7.5) also is uniformly. Let us choose a finite
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open cover of [0, 2π] with intervals of length δ and let N0 := max{Nt}, where
the maximum is taken corresponding to their centers. We get that N ≥ N0
implies |cN(t)| < ε for all t ∈ T. This shows that the convergence cN(t) → 0
is uniform.

Similarly we compute that

lim
N→∞

∥C(SW2N,τN f (t)∥2

2N + 1
= lim

τN→0

L
2π

2N

∑
m=0

τN(g(t + mτN)− cN(t))2

=
1

2π

∫ 2π

0
g(r)2dr = 1

converges uniformly in t ∈ T. Replacing g by f (t)− f̂ (0)
∥ f− f̂ (0)∥2

, yields the desired
result. □

With these results now stated, we can go on and prove the convergence
theorems.

Proof (Proof of Theorem 7.1) We will prove this theorem by using the Ap-
proximation Theorem 5.5 to show that

lim
N→∞

dB
(
dgm(XN), dgm(YN)

)
= 0.

Then we can use Corollary 7.7 to conclude the desired result.

Without loss of generality, we can assume that f satisfies f̂ (0) = 0,
meaning the average value of f over its domain is zero and assume that
∥ f ∥2 = 1, meaning f has been normalized in the L2 sense. Now consider XN
as the set of points obtained from pointwise centering the sliding window
embedding of f , SW2N,τN f (T) and YN as the set obtained similarly but using
the truncated Fourier function SN f , so SW2N,τN SN f (T). Thus XN and YN
represent point clouds derived from the original function f and its truncated
Fourier approximation SN f respectively. From the uniform convergence
result in Proposition 7.8, we obtain

lim
N→∞

dH

(
XN ,

XN√
2N + 1

)
= 0.

Here the scaling factor
√

2N + 1 normalizes XN in a way that makes it
converge in shape. Since XN scales with denominator

√
2N + 1, the point

cloud shrinks as N → ∞, ensuring that the Hausdorff distance between the
centered version and its rescaled form vanishes.

Additionally, we use the fact that

lim
N→∞

∥SN f ∥2 = ∥ f ∥2 = 1
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from our assumptions. Substituting this into our previous limits gives

lim
N→∞

dH

(
XN√

2N + 1
,

XN√
2N + 1∥SN f ∥2

)
= 0.

Notice that since ∥SN f ∥2 → 1, dividing by ∥SN f ∥2 asymptotically has no
effect on the limit and the distance between these two rescaled versions of
XN tends to zero.

From point 2 in the Structure Theorem 6.8, we get the identity

YN =
YN√

2N + 1∥SN f ∥2
.

From the first statement in the Approximation Theorem 5.5 with k = 1 and
the fact that centering is a distance non-increasing operation, we conclude

lim
N→∞

dH

(
XN√

2N + 1∥SN f ∥2
, YN

)
≤ lim

N→∞

√
2 · ∥RN f (1)∥2

∥SN f ∥2 ·
√

N + 1
= 0.

With these three Hausdorff distances going to 0, we can use the triangle
inequality, to conclude that

lim
N→∞

dH(XN , YN) = 0.

Finally, by the stability of the Bottleneck distance dB with respect to the
Hausdorff distance dH, we conclude

lim
N→∞

dB
(
dgm(XN), dgm(YN)

)
= 0.

This follows because persistence diagrams are stable under small perturba-
tions in the underlying point clouds. Thus, combining this with Corollary
7.7, we get our result. □

Proof (Proof of Theorem 7.3) We want to show that the Bottleneck distance
between the persistence diagrams of the function f , over two different do-
mains T and T′, can be controlled by the Hausdorff distance between these
two domains.

Let us fix two points t ∈ T and t′ ∈ T′. Define the sliding window embed-
dings for these points as follows: xN = SW2N,τN f (t) and x′N = SW2N,τN f (t′).
Here, the sliding window embedding creates a point in R2N+1 by sampling
function values at time steps determined by the window size and the sam-
pling interval. This interval is τN = 2π

L(2N+1) and we define λ = ∥ f − f̂ (0)∥2.
Then by expanding the normed difference, we have∥∥∥∥ C(xN)

∥C(xN)∥
− C(x′N)

∥C(x′N)∥

∥∥∥∥ ≤
∥∥∥∥ C(xN)

∥C(xN)∥
− λC(xN)√

2N + 1

∥∥∥∥+ λ∥C(xN)− C(x′N)∥√
2N + 1

+

∥∥∥∥ C(x′N)
∥C(x′N)∥

− λC(x′N)√
2N + 1

∥∥∥∥ .
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7. The Persistent Homology of SW and Centered, Normalized SW

Notice that we can rewrite the term∥∥∥∥ C(xN)

∥C(xN)∥
− λC(xN)√

2N + 1

∥∥∥∥ = ∥C(xN)∥.
∣∣∣∣ 1
∥C(xN)∥

− λ√
2N + 1

∣∣∣∣
=

∥C(xN)∥√
2N + 1

·
∣∣∣∣∣
√

2N + 1
∥C(xN)∥

− λ

∣∣∣∣∣
and similarly we can rewrite the same term with x′N . So with Proposition 7.8,
these terms go to zero as N → ∞.

Since the convergence is uniformly, and given a fixed ε > 0, we can choose
a N0 ∈ N, such that N ≥ N0 implies∥∥∥∥ C(xN)

∥C(xN)∥
− C(x′N)

∥C(x′N)∥

∥∥∥∥ (a)
≤ ε

2
+

λ∥C(xN)− C(x′N)∥√
2N + 1

(b)
≤ ε

2
+

λ∥xN − x′N∥√
2N + 1

(c)
=

ε

2
+ λ

(
2N

∑
n=0

| f (t + nτN)− f (t′ − nτN)|2
2N + 1

)1/2

(d)
≤ ε

2
+ λω(|t − t′|).

(a): The term ε
2 stands for a small perturbation bound, whereas the key

equality used here is a form of Lipschitz continuity. The fraction 1√
2N+1

comes from the normalization of the embedding.

(b): Here, the norm of the centered embeddings C(xN) is replaced with
the norm of the original embeddings xN . This works because the centering
transformation preserves distances up to somee bound.

(c): Here, we expand the norm ∥xN − x′N∥ in terms of the differences
between function values at sampled points.

(d): Since the sum in the square root is a discrete approximation of an
integral, we bound it using ω(|t − t′|).

Let now XN and X′N be the centered and normalized sets SW2N,τN f (T)
and SW2N,τN f (T′) respectively. By the result of Proposition 7.8, all the esti-
mates above are uniform in t and t′. From that it follows that for all N ≥ N0,
we have

dH(XN , X′N) ≤
ε

2
+ λω(dH(T, T′)),

where dH on the left hand side is with respect to R2N+1 and the one on the
right hand side is with respect to T. The Stability Theorem 2.35 tells us

dB(dgm(XN), dgm(X′N)) ≤ ε + 2λω(dH(T, T′)).

58



7.2. A Lower Bound for Maximum Persistence

If we now let N → ∞ in this equation and apply the first Convergence
Theorem 7.1, we get

dB(dgm∞( f , T, w), dgm∞( f , T′, w)) ≤ ε + 2λω(dH(T, T′)).

We proved this for every ε, therefore we can let ε ↓ 0 and get the first part
of the theorem. As we know that the sequence of generalized persistence
diagrams dgm∞( f , T, w) is Cauchy, we see that it must have a limit, and
therefore the set of generalized persistence diagrams is complete with respect
to dB. The existence of dgm∞( f , w) follows. □

7.2 A Lower Bound for Maximum Persistence

This section establishes a lower bound for the maximum persistence of a
function’s persistence diagram, ensuring that the sliding window embedding
retains significant topological features even under small perturbations.

The following theorem ensures that the sliding window embedding
retains meaningful topological information about the function f , even under
small perturbations (here expressed in δ and κN), which appear in real world
data. It provides a stability guarantee that connects persistence diagrams
with the geometric properties of the function and its derivatives. The theorem
also shows that the death times of persistent homology classes are bounded
from below, meaning that significant topological features cannot disappear
too quickly.

Theorem 7.9 Let f ∈ C2(T) be an L-periodic function, N ∈ N, M ≥ 2N,
L(M + 1)τ = 2π and T ⊆ T finite. Additionally, we assume that dH(T, T) < δ
for some δ, such that

0 < δ < max
1≤n≤N

√
3r̃n

κN
, where κN =

2
√

2∥SN f ′∥2

∥SN( f − f̂ (0))∥2
.

For easier notation, we set Y = YN to be the set that results from pointwise centering
and normalizing the point cloud SWM,τSN f (T) ⊆ RM+1. Let p > N be prime.
If dgm(Y) is the 1-dimensional Fp-persistence diagram for the Rips filtration on Y,
then φτ gives us an element xφ ∈ dgm(Y) with the following properties:

1. birth(xφ) ≤ δκN

2. death(xφ) ≥
√

3 max
1≤n≤N

r̃n.

Therefore we have the following lower bound for maximum persistence:

mp
(
dgm(Y)

)
≥
(√

3 max
1≤n≤N

r̃n

)
− δκN . (7.6)
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7. The Persistent Homology of SW and Centered, Normalized SW

Proof From the third point in the Structure Theorem 6.8 and with respect
to the orthogonal set {x̃n, ỹn ∈ RM+1|1 ≤ n ≤ N, n ≡ 0 (mod L)}, we have a
linear decomposition of φτ :

φτ(t) =
N

∑
n=1

n≡0 (mod L)

r̃n(cos(nt)x̃n + sin(nt)ỹn).

If follows that the following map

Pn : Y → C

φτ(t) 7→ r̃neint

is the orthogonal projection from RM+1 to Span{x̃n, ỹn}, when restricted to Y.
With the fact that orthogonal projections are linear and norm-non-increasing,
we get

∥Pn(x)− Pn(y)∥ ≤ ∥x − y∥

for all x, y ∈ Y. So if S1(r̃n) = {r̃neint|t ∈ T}, then Pn induces simplicial maps

Pn# : Rε(Y) → Rε(S1(r̃n))

[x0, . . . , xk] 7→ [Pn(x0), . . . , Pn(xk)]

for every ε > 0. These simplicial maps give us the homomorphisms

Pn∗ : Hk

(
Rε(Y); Fp

)
→ Hk

(
Rε(S1(r̃n); Fp

)
,

that are homomorphisms of Fp-vector spaces at homology level. What we
now want to show is that through the homomorphisms Pn∗ , the maximum
1-dimensional persistence of Y can be bounded below by that of S1(r̃n).
so let now ε1, ε2 > 0 be such that

δκN < ε1 < ε2 <
√

3r̃m,

for m = arg max{r̃n|1 ≤ n ≤ N}. Remember that dH(T, T) < δ, and if
we take T = {t0 < t2 < . . . < tJ}, it follows that |tj − tj−1| < 2δ for all
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7.2. A Lower Bound for Maximum Persistence

j = 1, . . . , J. Therefore we can compute

∥φτ(tj)− φτ(tj−1)∥2 =
N

∑
n=1

n≡0 (mod L)

2r̃2
n

(
1 − cos(n(tj − tj−1))

)

≤
N

∑
n=1

n≡0 (mod L)

r̃2
n(n(tj − tj−1))

2

= (tj − tj−1)
2

N

∑
n=1

4n2| f̂ (n)|2

∥SN f ∥2
2 − f̂ (0)2

=
(tj − tj−1)

2

∥SN( f − f̂ (0))∥2
2

∑
1≤|n|≤N

2| f̂ ′(n)|2

≤ 8δ2 ∥SN f ′∥2
2

∥SN( f − f̂ (0))∥2
2

= (δκN)
2.

Notice that the first inequality is due to the Taylor expansion for cos(x)
around zero. Therefore

ν = [φτ(t0), φτ(t1)] + . . . + [φτ(tJ−1), φτ(tJ)] + [φτ(tJ), φτ(t0)]

is a 1-dimensional cycle on Rε1(Y), because every summand is a 1-simplex
and we get the homology class

Pm∗([ν]) ∈ H1(Rε1(S
1(r̃m)); Fp).

Let now {θ0 < θ1 < . . . < θJm} = {t mod 2π
m |t ∈ T} and let cj = r̃meimθj . By

performing a similar calculation as above, we get

∥cj − cj−1∥2 ≤ (θj − θj−1)
2 4| f̂ ′(m)|2

∥SN( f − f̂ (0))∥2
2

≤ (δκN)
2

and therefore the 1-dimensional cycle

µ = [c0, c1] + . . . + [cJm−1 , cJm ] + [cJm , c0]

with [mu] ∈ H1(Rε1(S
1(r̃m)); Fp) satisfies i∗([µ]) ̸= 0. Here i∗ is the homo-

morphism induced by the inclusion

i : Rε1(S
1(r̃m)) ↪−→ Rε2(S

1(r̃m)).

Notice that Pm∗([ν]) = m[µ]. With 1 ≤ m ≤ N < p implying that m is
invertible in Fp, we get that i∗ ◦ Pm∗([ν]) ̸= 0. From the commutativity of the
diagram

H1(Rε1(Y); Fp) H1(Rε2(Y); Fp)

H1(Rε1(S
1(r̃m)); Fp) H1(Rε2(S

1(r̃m)); Fp)

Pm∗

i∗

Pm∗

i∗
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7. The Persistent Homology of SW and Centered, Normalized SW

we see that i∗([ν]) ̸= 0 and therefore [ν] gives us an element xφ ∈ dgm(Y)
such that

birth(xφ) ≤ ε1 and death(xφ) ≥ ε2.

Because we chose our epsilons δκN < ε1 < ε2 <
√

3r̃m, the result of the
theorem follows by letting ε1 ↓ δκN and letting ε2 ↑

√
3r̃m. □

Notice that in this proof, we could have also worked with the field of rational
numbers Q instead of Fp. With the lower bound on maximum persistence
(7.6) and the two convergence theorems (7.1 and 7.3), we can state the
following corollary:

Corollary 7.10 Let f ∈ C1(T) be an L-periodic function, such that f̂ (0) = 0,
∥ f ∥2 = 1 and let T ⊆ T be finite with dH(T, T) < δ for some

0 < δ <

√
3√

2∥ f ′∥2
max
n∈N

| f̂ (n)|.

Then the 1-dimensional persistence diagram dgm∞( f , T, w) with coefficients in Q

satisfies
1
2

mp
(

dgm∞( f , T, w)

)
≥

√
3 max

n∈N
| f̂ (n)| −

√
2δ∥ f ′∥2,

and therefore

mp
(

dgm∞( f , w)

)
≥ 2

√
3 max

n∈N
| f̂ (n)|. (7.7)

This result connects persistent homology to classical Fourier analysis, show-
ing that the key topological feature (the longest-lived loop in persistent
homology) corresponds to the most dominant frequency in the function.

7.3 Dependence on the Field of Coefficients

This section explores how the choice of coefficient field affects persistent
homology computations. A key observation is that the embedding forms a
Möbius strip-like structure rather than a simple torus.

In Theorem 7.9 we worked over the field Fp. Now an interesting question
would be whether the lower bound established in the theorem is, in fact,
dependent on the field of coefficients. Moreover, if the persistence diagram
changes for different fields. To study these questions we look at the two
functions

g1(t) = 0.6 cos(t) + 0.8 cos(2t)
g2(t) = 0.8 cos(t) + 0.6 cos(2t),

displayed in Figure 7.3. For the construction of their sliding window point
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7.3. Dependence on the Field of Coefficients

(a) The function g1(t). (b) The function g2(t).

Figure 7.3

clouds, we set our parameters to be the following: M = 4, τ = 2π
5 and

T = { 2πk
150 |k = 0, 1, . . . , 150}. The next step is to pointwise center and normal-

ize SWM,τg1(T) and SWM,τg2(T). This can be done by a fast implementation
of 1-dimensional persistent homology, for some detail, see [21] and [24]. The
results of this implementation can be seen in Figure 7.4, where we work over
the fields F2 and F3. The main difference we see, is between the 1-persistence
diagram of g1 over F2 and the one over F3. Over F2 there is a persistence fea-
ture that births at approximately 1.2 and dies at 1.6, whereas it is completely
absent over F3.

This example shows that the persistence diagrams can differ for different
fields of coefficients, and therefore also the persistent homology differs. We
will now discuss this in more detail. Fix (r1, r2) ∈ R2 such that r2

1 + r2
2 = 1

and r1r2 ̸= 0. Then we can use the third point of the Structure Theorem 6.8
to see that if α1, α2 ∈ [0, 2π] and g(t) = r1 cos(t − α1) + r2 cos(2t − α2), then
for all t ∈ [0, 2π], for M ≥ 4 and for τ = 2π

M+1 , we get that

φτ(t) =
C(SWM,τg(t))

∥C(SWM,τg(t))∥

can be isometrically identified with the curve in C2

φ̃(t) = (r1eit, r2e2it) ∈ C2.

This embedding captures the periodic structure by representing the function
as a trajectory in a high-dimensional space.

If we now replace φτ through φ̃ for the persistent homology computation,
we see that the image of this embedding can be understood as the boundary
of a Möbius strip. To see that, define the map

M : [0, π]× [−1, 1] → C2

(t, s) 7→ (−sr1eit, r2e2it).
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7. The Persistent Homology of SW and Centered, Normalized SW

Figure 7.4: Here we see the 1-dimensional persistence diagrams of the centered and normalized
sliding window point clouds of g1 and g2 over the different fields of coefficients F2 and F3. The
x-axis denotes the birth-time and the y-axis the death-time. Code for this figure: Appendix,
Figure A.7.

This construction reveals that the embedding is not simply a torus but
instead has a twist, leading to Moöbius-like behavior. Because we assumed
that r1r2 ̸= 0, M is a continuous injection onto [0, π)× [−1, 1). Moreover, it
descends to an embedding of the quotient space

M̃ : ([0, π]× [−1, 1]/ ∼) → C2,

where (0, s) ∼ (π,−s) for every s ∈ [−1, 1]. Notice that the Möbius strip
is normally represented as [0, π] × [−1, 1]/∼. Furthermore, we see that
∂(Im(M̃)) = Im(φ̃).

The function g(t) generates a periodic embedding in high-dimensional
space, forming a closed loop in homology. The goal is to show that this loop
is the boundary of a 2-chain, meaning it can be ”filled in” with simplices
when using F2. For that let T = {t0 < t1 < . . . < tJ} be a δ-dense subset of
[0, 2π] and X = φ̃(T). Furthermore, for r > 4δ, let [ν] ∈ H1(Rr(X); F2) be
the homology class of the 1-cycle

ν = [φ̃(t0), φ̃(t1)] + . . . + [φ̃(tJ−1), φ̃(tJ)] + [φ̃(tJ), φ̃(t0)].
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7.3. Dependence on the Field of Coefficients

Since T is δ-dense, the set of points can be used to approximate the full
embedding. We define

V =

{
(t, s)|(t, s) ∈ (T ∩ [0, π))× {−1} or (t + π, s) ∈ (T ∩ (π, 2π])× {1}

}
.

Since T is δ-dense in [0, 2π], the points in V provide a fine enough sampling
for triangulation. The image of M̃ forms a surface that can be decomposed
into simplices using M̃(V) as vertices. Indeed, Im(M̃) resembles a twisted
cylinder or an annulus-like surface in the embedding space and a cylinder
can always be triangulated by connecting neighboring points with triangles
in a structured way. So if we take coefficients in F2, the formal sum of these
triangles yields a 2-chain Σ with ∂2(Σ) = ν. Since T is δ-dense in [0, 2π]
we can bound the variation in the embedding due to discretization for all
t ∈ [0, π]:

∥M̃(t,−1)− M̃(t ± δ, 1)∥2 = 2[r2
1(1 + cos(δ)) + r2

2(1 − cos(2δ))]

≤ 2
[

r2
1

(
2 − δ2

2

)
+ 2r2

2δ2
]

= r2
1(4 − 5δ2) + 4δ2.

So if δ > 0 is small, then we can choose our 2-chain Σ such that

Σ ∈ C2(Rr′(X); F2) , where r′ = r1

√
4 − 5δ2 + 2δ.

The term r′ accounts for small perturbations. To summarize this we can say
that if

r1

√
4 − 5δ2 + 2δ <

√
3r2, (7.8)

then

death([ν])

{
≤ r1

√
4 − 5δ2 + 2δ for coefficients in F2,

>
√

3r2 for coefficients in Fp for any prime p ≥ 3.

With F2 coefficients and assuming that Equation (7.8) holds, for example for
g1, the first edge spanning the Möbius band gives rise to a new homology
class associated with the equator t 7→ M̃(t, 0) = (0, r2e2it) of the embedded
Möbius strip. This class persists until

√
3r2. However, with F3 coefficients,

the equatorial and boundary classes merge into the same persistence class
once all the 2-simplices within the Möbius band are included. Consequently,
the later-born class, represented by the equator, vanishes.
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Chapter 8

Examples: Quantifying Periodicity of
Sampled Signals

Our goal in this chapter is to apply the theoretical framework developed in
the sections above, namely the sliding window embeddings and persistent
homology, to practical problems with periodic and non-periodic signals.

Definition 8.1 A signal is defined as a physical quantity that varies over time,
space or other independent variables.

Mathematically, we describe a signal as a function of one or more independent
variables.

Example 8.2 The functions

S1(t) = 2t

S2(t) = 2t3

are both signals in one variable.

Many real world signals show periodic or quasi-periodic behavior, and
understanding this structure is very important in time series analysis. In
particular, we look at two experiments to verify the calculations from the
previous chapters. The first one, discussed in Section 8.1, aims to rank
signals based purely on their periodicity, independent of the specific shape
of their repeating pattern. This means that we do not rely on assumptions
about waveform characteristics such as being sinusoidal or non-sinusoidal.
In contrast the method evaluates periodicity regarding the shape, using
topological techniques. The second one, discussed in Section 8.2, deals with
the accurate classification of a signal as periodic or non-periodic at different
noise levels.

For that we associate a real valued function fS to every sampled signal
of the form S = [s1, . . . , sJ ] by applying cubic spline interpolation, then
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8. Examples: Quantifying Periodicity of Sampled Signals

constructing its centered and normalized sliding window point cloud XS.
We let

mp(dgm(XS))√
3

= Score(S) (8.1)

be its periodicity score, a measure designed to quantify how periodic a given
sampled signal is. These scores are then being compared to the ones obtained
with different algorithms from other papers.

8.1 Ranking Signals Based on Periodicity

For this fist experiment, we want to see the differences that we get in score
for the different algorithms and for different functions. Therefore, we take
ten function, that do not look much alike.

1. 2-periodic pure cosine-curve

2. 2-periodic cosine-like function with variance at 25% of the signal’s
amplitude

3. 2-periodic cosine-like function with variance at 50% of the signal’s
amplitude

4. 2-periodic cosine-like function with variance at 75% of the signal’s
amplitude

5. noisy sawtooth-function with noise level at 25% of the signal’s ampli-
tude

6. function cos(ϕ(t)) for ϕ(t) = eat+b

7. noisy damped cosine-like curve with three periods

8. spiky signal with three periods

9. noisy square wave with two periods

10. 1-periodic function Re
(

∑5
n=1 f̂ (n)e2int

)
for f̂ (n) drawn randomly and

uniformly from the unit disk in C

Each of these ten functions is then evaluated at 50 evenly spaced time points.
This gives us the sampled signals [s1, . . . , s50], that we can put in the following
four algorithms:

• JTK CYCLE [16]: This is an algorithm that efficiently identifies and
characterizes cycling variables in large datasets. It is very efficient in
differentiating between rhythmic and non-rhythmic transcripts and
measures the period, phase and amplitude of the transcripts with high
accuracy.
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8.2. Classification of Periodic and Non-Periodic Signals

Figure 8.1: Signals are ranked by periodicity in Sliding windows going from highest (top) to
lowest (bottom). For every algorithm and signal, the periodicity score and normed plot are
displayed. [25]

• Lomb-Scargle periodogram [14]: This algorithm can effectively find
periodic gene expression profiles in microarray data. It particularly
performs well when a significant proportion of data is missing or when
the data is collected at arbitrary time points.

• Total Persistent Homology [10]: This algorithm also searches for peri-
odicity in data. Total persistence denotes the sum of p-th powers of
persistence.

• Sliding window (discussed in this paper, based on [25]): With param-
eters N = 50, coefficients in F11, L = 2, 3, 4, such that always the best
score 8.1 is reported.

If not stated otherwise, parameters for the algorithms are set to suggested
or default values. The results for the different functions and algorithms are
displayed in Figure 8.1.

Notice that for the JTK CYCLE, Lomb-Scargle and Persistent Homology
algorithms, the scores get bigger from top to bottom and the scores differ
relatively more than in the Sliding window algorithm. This is due to the
fact that for example JTK CYCLE and Lomb-Scargle define their periodicity
score in terms of p-values, that are difficult to interpret. In contrast to these
algorithms, our sliding windows method has a clear geometric interpretation.

8.2 Classification of Periodic and Non-Periodic Signals

The goal of this section is to evaluate and compare different algorithms’
ability to distinguish periodic from non-periodic signals. We want to test this
on synthetic data. We use the following six signals:
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Figure 8.2: Examples of the six different periodic and non-periodic functions. For each signal,
the upper third shows the signal with 0%, the middle third the one with 25% and the bottom
third the one with 50% Gaussian noise. [25]

1. cosine (periodic, over two periods)

2. cosine with damping (periodic, over two periods)

3. cosine with trending (periodic, over two periods)

4. cosine with increased peak steepness (periodic, over two periods)

5. constant function (non-periodic)

6. linear function (non-periodic)

We will refer to the periodic signals as positive cases and to the non-periodic
signals as negative cases. Then 100 profiles are generated of each shape, by
varying the phase. For example, the 100 profiles of the cosine are

f j(t) = cos
(

2t − jt
50

)
, for j = 0, . . . , 99.

So in total we get 600 profiles and sample these at 50 evenly spaced time
points t ∈ [0, 2π]. Then we add a Gaussian noise with standard deviation at
0%, 25% and 50% of the signal’s amplitude. See the examples in Figure 8.2.

Remark 8.3 We treat constant functions as non-periodic, due to two main reasons.
Biological Relevance: The primary application of SW1PerS is to identify genes
that are relevant and that have a periodic pattern with respect to time. Here,
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by relevant we mean that changes in the expression translate into physiological
phenomena. Topological Justification: The method detects periodicity when there
are 1-dimensional homology classes in the sliding window point cloud. For a constant
function, the sliding window embedding results in a single point. Therefore there is
no 1-dimensional homology and we can interpret that the point cloud arises from a
non-periodic function.

We use Receiver Operator Characteristic (ROC) plots to assess the perfor-
mance of various methods, including the Sliding Windows and 1-Persistent
Scoring (SW1PerS) approach. By using the True Positive Rate (TPR) and
False Positive Rate (FPR), the ROC curve provides a quantitative metric
for classification success. Note that the TPR is the proportion of correctly
identified positive cases out of all positives and the FPR is the proportion of
negative cases incorrectly identified as positives out of all the negatives. The
diagonal, where TPR=FPR, represents the case of a random guess. So the
higher the ROC curve is above this line, the better it performs in classification.
The best case would therefore be a ROC curve, that passes through TPR= 1
and FPR= 0. So the bigger the area under the ROC curve is, the better the
method performs. We name this area the Area Under the Curve (AUC). It
serves as a summary statistic to compare different methods.

We now have to choose parameters for the Sliding Windows approach.
We let N = 10, L = 2 and use coefficients in F11. To deal with eventual noise,
we include a layer of moving average at the sampled signal level and one
iteration of mean-shift [11] at the sliding window point cloud level.

Definition 8.4 Mean-Shift takes a pointwise mean-centered and normalized point
cloud, lying on the surface of the unit sphere in RM+1.1 It then measures the distance
between two points x, y in the point cloud via the angle between them. Two points
are now considered close, if ∡(x, y) < π

16 . It then replaces each point by the average
of its close neighbors.

To smooth out small fluctuations and to reduce noise in the time series data,
we apply a moving average filter with a window size of 7 data points. After
denoising the signal, we fit a cubic spline onto it to populate the point cloud.
A cubic spline is a polynomial, that is used to smoothly interpolate data
points. It is called cubic because every term of the spline is a polynomial of
order three, so it has the form:

S(x) = ax3 + bx2 + cx + d.

This spline representation is then used to construct the sliding window point
cloud. We apply mean-shift to the centered and normalized sliding window
point cloud XS. This is done as follows: Given a point x ∈ XS, we compute

1M is a positive integer, closer defined in the following section
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8. Examples: Quantifying Periodicity of Sampled Signals

Figure 8.3: The ROC plots for the four different algorithms and the four periodic signals. The
FPR is displayed at the x-axis, the TPR at the y-axis. The AUC is reported at the bottom right
of every plot.[25]

its mean shift using its cosine-similarity neighbors [19]. Cosine similarity
measures how similar two vectors are based on the angle between them. It is
defined as:

cosine similarity(x, y) =
x · y

∥x∥ · ∥y∥ .

Specifically, we define the set of neighboring points as

{y ∈ XS|1 − (x · y) < ε} , where ε = cos
( π

16

)
.

This means that we consider all points whose cosine similarity to x is above
a certain threshold. We define a new representative point x for x as the
mean of its ε-neighborhood. To ensure uniform scaling, we normalize each
mean-shifted point by dividing it by its norm and get the mean-shifted point
cloud

XS =

{
x

∥x∥ |x ∈ XS

}
.

We can now use this point cloud for the persistent homology computation.
The results of the various ROC plots can be found in Figure 8.3.

We see that all signals perform the same with no noise, but we see
significant differences in noise levels 25% and 50%. Notice, that the Lomb-
Scargle periodogram is known for being one of the best approaches to detect
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8.2. Classification of Periodic and Non-Periodic Signals

Figure 8.4: ROC plots for SW1PerS with non-denoised data. [25]

periodicity and that the values of the SW1PerS are pretty similar. In high
noise levels, it even outperforms every other approach for damped cosine
functions and cosine functions with increased peak steepness. For the cosine
function and the trending cosine, it is only outperformed by the Lomb-Scargle
periodogram.

One might wonder, whether the denoising part in our above steps the
preprocess the data is really necessary, thus whether we can skip the applica-
tion of moving average or mean-shift. In Figure 8.4, we see the ROC plots for
our four periodic functions at different noise levels. It becomes clear, that our
SW1PerS approach performs not near as good as with the denoised data.
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Appendix A

Appendix

To support with the coding in python, AI [22] was used for some parts of the
codes.

Figure A.1: Code for Figures 1.1, 1.2 and 1.4.
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A. Appendix

Figure A.2: Code for Figure 1.3.
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Figure A.3: Code for Figures in Example 3.9.
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A. Appendix

Figure A.4: Code for Figure 4.2.
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Figure A.5: Code for Figure 7.1.
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A. Appendix

Figure A.6: Code for Figure 7.2.
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Figure A.7: Code for Figure 7.4.
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