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Abstract

All complex data analysis is driven by mathematical models. Hence, advanced math-
ematical modeling can enable new insights into high dimensional data. The aim of
this paper is to introduce mathematical theory coming from the field of algebraic
topology, in particular the Nerve Theorem. I will provide a step by step proof of
this important result, which guarantees homotopy equivalence between a topologi-
cal space and its nerve under certain conditions. By introducing the computational
method Mapper (17), I will illustrate the significance of the Nerve Theorem. Mapper
is a useful tool in the field of Topological Data Analysis (TDA), extracting and
visualizing characteristics from high dimensional data in the form of simplicial com-
plexes. In the last chapter of this paper, I will present two biomedical applications of
TDA and Mapper. The impact of the mathematical theory and computational meth-
ods introduced earlier, become clear through astonishing findings in breast cancer
and diabetes research (11; 17).
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Chapter 1

Introduction

Today, data is being collected everywhere and in enormous amounts. In a high-
dimensional and complex data context it is challenging to differentiate between
significant information and noise, let alone to visualize the data. Mathematical
methods enable us to strategically analyze the data and look for structures, rela-
tionships and hidden features.

Topological Data Analysis (TDA) presents one approach to tackle this chal-
lenge. In order to understand the mechanisms behind TDA, let us see what lies
behind these three words. Topology is a branch of mathematics that studies the
shape of objects. More specifically, topologists analyze properties of objects that
are preserved when stretching, shrinking, rotating and deforming. These operations
are so called continuous deformations and do not include tearing, cutting, ripping
or puncturing. Using these topological concepts to study the shape of data, is the
key idea of TDA. A simple example might help to understand the topologist’s mind:

Figure 1.1: Example of a homotopy equivalence.

Figure 1.1 shows a deformation of the letter X into the letter Y. The left leg
of the letter X is deformed and shrunken until only the right leg of X remains.
Through bending this remaining leg we obtain the letter Y . In topology, one might
not analyze those two objects separately, but rather deduce characteristics of the
letter X from the letter Y , or vice versa, as they are homotopy equivalent. I will
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discuss this in more detail in Section 2.1.

The mathematical theory presented in this paper originates from the field of
algebraic topology, which uses algebraic methods to study topological problems. I
will provide a step by step derivation of an important result; the Nerve Theorem.
It enables us to analyze complex geometric structures in topological spaces through
simpler abstract ones in form of simplicial complexes.

Figure 1.2: Intuition behind the Nerve Theorem.

Figure 1.2 illustrates the association of a topological space (orange shape) and
its covering (gray disks) with a geometric simplicial complex (right figure) the Nerve
Theorem. The nerve corresponding to the topological space depends on the chosen
covering, as the intersections of the gray disks determine the simplices on the right.
An intersection between two disks is represented by an edge, between three a tri-
angle (orange) and between four disks a three dimensional simplex, a tetrahedron
(red). As Figure 1.2 shows, the Nerve Theorem offers a simplified combinatorial
depiction of complex spaces. Using this idea, the Nerve Theorem provides a foun-
dation for Mapper, a computational method used to detect and visualize shapes in
high-dimensional data sets that was introduced in 2007 by Singh et al. (17). Mapper
is more than a visualization tool. Depending on the origin of the data set and the
relationships one is interested in, the user can adapt multiple parameters in Mapper

to try and find mathematically relevant structures and shapes.

This paper’s aim is to provide an example of how pure mathematical theory and
real-life application intertwine, and draw attention to the great potential of TDA.
I will elaborate on the detection of breast cancer sub-types (11) and identification
of different diabetes types (17) using this approach. Making use of advanced math-
ematical modeling in other sciences can yield powerful results and find patterns,
structures, relationships and answers, that would have stayed hidden otherwise.



Chapter 2

Mathematical Background

The following two sections will be primarily based on the book ‘Topological pattern
recognition for point cloud data’ written by Gunnar Carlsson (4) and the article
‘A Unified View on the Functorial Nerve Theorem and its Variations’ by Bauer,
Kerber, Rolle and Roll (2). The main result of this chapter is the Nerve Theorem
(Theorem 2.2.1), which provides a simplified representation of topological spaces.

2.1 An Introduction to Algebraic Topology

In preparation for the Nerve Theorem, some fundamental constructions from alge-
braic topology are needed. In this section, we will introduce the necessary mathemat-
ical theory accompanied by examples and illustrations that strengthen the reader’s
intuition.

Definition 2.1.1 (General position) Let S = {x0, . . . , xk} ⊂ Rn. Then S is said
to be in general position, if it is not contained in any affine hyperplane of Rn of
dimension d with d < k.

Figure 2.1: The left figure shows three points in R2 in general position, since the
three points are contained in R2 but k = 2. The four points on the right are not in
general position as they are also contained in R2 but k = 3.
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4 2.1. An Introduction to Algebraic Topology

Definition 2.1.2 (Simplex, face, vertex) Let S = {x0, . . . , xk} ⊂ Rn be in gen-
eral position. The k-simplex spanned by S is defined as the convex hull σ = σ(S) ⊂ Rn.
The points xi ∈ S are called vertices and the spanned simplices σ(T ) for ∅ ≠ T ⊆ S

are called faces.

Definition 2.1.3 (Geometric simplicial complex) Let χ be a finite collection
of simplices, in a Euclidean space. We call χ a geometric simplicial complex if the
following conditions hold:

1. For any simplex σ ∈ χ all faces of χ are contained in χ.

2. For any two simplices σ, τ ∈ χ it holds σ ∩ τ ∈ χ is a simplex.

In the following we will be referring to geometric simplicial complexes as simplicial
complexes.

A

B

C

E

D

Figure 2.2: Simplicial complex with vertices A, B, C, D, E and simplices {A, B},
{A, C}, {B, C}, {A, B, C}, {D, E}.

Definition 2.1.4 (Abstract simplicial complex) A pair X = (V (X),Σ(X)) is
called an abstract simplicial complex if σ ∈ Σ(X) and ∅ ≠ τ ⊆ σ implies τ ∈ Σ(X).
The set V (X) is the vertex set and Σ(X) denotes the simplex set. Simplices con-
sisting of exactly two vertices are called edges.

Intuitively, an abstract simplicial complex χA describes a simplicial complex
χ including all faces from every simplex, χA = χ ∪ Σ(χ). Figure 2.2 visualizes
an abstract simplicial complex if and only if the simplex {A,B,C} is included.
Otherwise 2.2 is a geometric, but not an abstract simplicial complex.

Definition 2.1.5 (n-skeleton) Let K be a simplicial complex. The n-skeleton of
K, denoted as skn(K), is defined as the union of all simplices of K with dimension
m ≤ n.
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Figure 2.3 illustrates the simplicial complex K with sk0(K) and sk1(K). Since
the highest dimensional simplex in K is three dimensional, it holds sk2(K) = K.

(a) Simplicial complex K (b) 0-skeleton sk0(K)

(c) 1-skeleton sk1(K)

Figure 2.3: Visualisation of skeletons of a geometric simplicial complex.

Definition 2.1.6 (Covering and good cover (5)) Let X be a topological space.
A non-empty and finite collection of sets U = {Ui}i∈I with X =

⋃
i∈I Ui is called

a covering of X. If all Ui ∈ U and all finite, non-empty intersections of the Ui are
contractible, we call U a good cover.

A more general definition of a covering allows for a countably infinite collection
of sets. In this paper, we will be using finite collections, as this is sufficient for the
point cloud data application we will be considering.

Definition 2.1.7 (Map of indexed covers) Let X and Y be topological spaces,
with covers U = (Ui)i∈I and V = (Vj)j∈J , respectively. A map of indexed covers
φ : U → V is defined through a map φ : I → J between the indexing sets. We say
that a continuous map f : X → Y is carried by φ for all i ∈ I, if f(Ui) ⊆ Vφ(i).

Definition 2.1.8 (Nerve (5)) Let X be a topological space and U = {Ui}i∈I be
any covering of X, so X =

⋃
i∈I Ui. The nerve of U , denoted N (U), is defined as the

abstract simplicial complex whose vertices are the set I, and where any ∅ ≠ S ⊆ X

is a simplex in N (U) if and only if
⋂

s∈S Us ̸= ∅.
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Example 2.1.1 Let X = {(0, 0), (1, 0), (0, 3)} ⊂ R2 and choose the covering

U = {B 1
4
(0), B1(3), B 1

8
(1)}

Since the elements of the covering do not intersect, N(U) = X.

Example 2.1.2 Let X = ∂([0, 1] × [0, 1]) be the boundary of the unit square.
Consider the covering U shown in Figure 2.4 consisting of four rectangles intersecting
in the corners. Each vertex in N (U) corresponds to one element of the covering and
two vertices are connected by an edge if the corresponding elements of the covering
intersect. For example, the blue and pink rectangle intersect, hence the blue and pink
vertex are connected by an edge. The blue and orange rectangle do not intersect,
hence the blue and orange vertex are not connected.

Figure 2.4: The figure on the left displays X, the unit square. The middle figure
shows a covering U of X and the corresponding nerve N(U) is shown on the right.

Consider a topological space X, whose elements are vectors from a data set.
Nerves are the main way to represent such spaces through a combinatorial model,
which is suitable for computational analyses.

Definition 2.1.9 (Geometric realization) Let K be a geometric or an abstract
simplicial complex and f : V (K) → Rd an injective map. Then f is called geometric
realization of K, if f(K) is a geometric simplicial complex.

Definition 2.1.10 (Barycentric subdivision (7)) Let K be a geometric simplicial
complex and σ = [x1, . . . , xk] ∈ K a simplex spanned by the vertices x1, . . . , xk ∈ K.
The barycenter of σ is defined as b∆(σ) = 1

k

∑k
i=1 xi. The barycentric subdivision

Sd(K) is the decomposition of [x1, . . . , xk] into the n simplices [b∆, w0, . . . , wn−1]

where inductively [w0, . . . , wn−1] is a simplex in the barycentric subdivision of the
face [x0, . . . , xi−1, xi+1, . . . , xn].

The barycenter of a filled triangle corresponds to its center of gravity. Barycen-
tric subdivisions are a useful tool for refining simplicial complexes.
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A

B

C A

B

C

D = b({A,B}) F = b({B,C})

E = b({A,C})

G = b({A,B,C})

Figure 2.5: Visualization of the geometric realization of a simplicial complex (left)
and the barycentric subdivision (right).

The left object in Figure 2.5 displays the geometric realization |K| of a simplicial
complex. The right object shows the corresponding geometric representation of the
barycentric subdivision including the barycenters of the 1-simplices in orange and
the barycenter of the 2-simplex in pink (12).

2.1.1 Homotopy and the Homotopy Extension Property

In the upcoming section we will introduce the definition of a homotopy and the ho-
motopy extension property. The latter is a useful result in algebraic topology, which
enables the extension of homotopies on subspaces to larger spaces. Furthermore, it
provides a way of proving homotopy equivalence between spaces (2). This subsec-
tion is mainly based on the paper ‘A Unified View on the Functorial Nerve Theorem
and its Variations’ by Bauer et al. (2) and on Hatcher’s ‘Algebraic Topology’ (7).

Definition 2.1.11 (Homotopy and homotopic functions) Let X and Y be two
topological spaces and f, g : X → Y two maps. We call f and g homotopic, denoted
f ∼= g if there exists a continuous map H : X × [0, 1] → Y such that H(x, 0) = f(x)

and H(x, 1) = g(x). The function H is called a homotopy between f and g.

Definition 2.1.12 (Homotopy equivalence) Let X and Y be two topological
spaces. We call X and Y homotopy equivalent, denoted X ≃ Y , if there exists
continuous maps f : X → Y and g : Y → X such that f ◦ g ∼= idY and g ◦ f ∼= idX .

Figure 2.6 displays the two spaces S1 and X = R2 \ {(0, 0)}. Intuitively, these
are homotopy equivalent since we can shrink the radius of S1 to an infinitesimal
radius. Following Definition 2.1.12, we must provide two functions in order to prove
homotopy equivalence. Let f : S1 → X be the natural embedding and g : X → S1

be given by g(x) = x
∥x∥ . Since g ◦ f = idS1 it follows in particular that g ◦ f ∼= idS1 .
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Consider the function

H : X × [0, 1] → X H(x, t) =
x · t
∥x∥

+ (1− t) · x

Since H(x, t) ̸= 0 for all x ∈ X and all t ∈ [0, 1], it holds H(x, t) ∈ X. The function
H is continuous as a composition of continuous functions and it holds H(x, 0) = x

and H(x, 1) = (f ◦ g)(x). Therefore H is indeed a homotopy between f and g,
therefore S1 ≃ R2 \ {(0, 0)}.

S1

Figure 2.6: S1 and R2 \ {(0, 0)} are homotopy equivalent.

Finding a specific homotopy between two functions can be quite challenging.
The straight line homotopy H(x, t) = t · g(x) + (1 − t) · f(x) however, presents an
example of a simple homotopy that we will use later on to prove the Nerve Theorem.
Example 2.1.3 provides an example of such a homotopy.

Example 2.1.3 Let X = R2 \ {(0, 0)} and consider the two functions

f(x) = (cos(πx), sin(πx)) g(x) = (cos(πx), sin(2πx))

shown in Figure 2.7. The straight line homotopy H(x, t) = t · g(x) + (1 − t) · f(x)
is illustrated by the small black arrows. At time t = 0 the homotopy is exactly the
function f and then continuously deforms until H defines the function g at time
t = 1. Since we are considering the space X = R2 \ {(0, 0)}, there is no straight
line homotopy between f and h or g and h, as the point (0, 0) is not included in our
space. Intuitively, one can think of f not being transformable through the hole in
the space at the point (0, 0).
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f

g

h

Figure 2.7: Straight line homotopy between f and g from Example 2.1.3.

Definition 2.1.13 (Contractible space) A topological space X is called con-
tractible, if X is homotopy equivalent to a one point space, i.e. for a ∈ X it holds
X ≃ {a}.

Figure 2.8: The orange spaces are contractible, the pink spaces are not.

Intuitively, two homotopy equivalent spaces can be continuously deformed into
one another, without tearing. The orange spaces in Figure 2.8 can be continuously
deformed into a one point space. The pink spaces on the other hand cannot be
transformed into a one point space without tearing the space in order to eliminate
the holes in the space.

Definition 2.1.14 (Homotopy extension property) LetX and Y be topological
spaces and A ⊂ X. The pair (X,A) is said to have the homotopy extension property,
if for every pair of maps f : X × {0} → Y and g : A× [0, 1] → Y with

f(A× {0}) = g(A× {0})
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can be extended to a map h : X × [0, 1] → Y .

Lemma 2.1.4 Let X be a topological space and A ⊆ X. The pair (X,A) has
the homotopy extension property if and only if X × {0} ∪ A × [0, 1] is a retract of
X × [0, 1].

The proof of Lemma 2.1.4 can be found on page 533 in Hatcher’s ‘Algebraic
Topology’ (7). Next, we introduce a useful lemma which provides an alternative
way of checking whether two function are homotopic to one another.

Lemma 2.1.5 Let X be a finite simplicial complex and let Y be a topological space.
Let (f, φ), (g, φ) be two morphisms of covered spaces

(f, φ), (g, φ) : (|X|, (|Ui|)i∈[n]) → (Y, (Vj)j∈J)

with the same map of index sets φ : [n] → J , a cover of subcomplexes U = (|Ui|)i∈[n]
and a good cover V = (Vj)j∈J . Then f is homotopic to g.

Proof. Let m = dim(K). In order to construct a homotopy between f and g, we
will first use induction to define homotopies between f ||skm(Li)| and g||skm(Li)|. These
homotopies

Hm : |skm(K)| × [0, 1] → Y

are carried by

φ : (|skm(Li)| × [0, 1])i∈[n] → (Vj)j∈J (2.1)

which is induced by the given map φ : [n] → J . Finally, we will use the homotopy
extension property to deduce the homotopy between f and g.

Base Case: Let m = 0 and p ∈ K be a vertex. Let i0, . . . , ik ∈ [n] be the indices i
such that |p| ∈ |Li|, where |p| denotes the geometric realization of p. Since (Vj)j∈J

is a good cover, S :=
⋂k

l=0 Vφ(il) is contractible. Since f(|p|), g(|p|) ∈ S, we can find
a path Γ that connects f(|p|) and g(|p|). With H0 = Γ, we have found the wanted
homotopy. It remains to show that H0 is carried by φ. Let (|p|, t) ∈ |p| × [0, 1]

be a point, we have to show that H0((|p|, t)) ∈ Vφ(i). If (|p|, t) ∈ |Li| × [0, 1], then
the index i is one of the indices i0, . . . , ik ∈ [n] above. By construction it holds
f(|p|), g(|p|) ∈ S and therefore H0((|p|, t)) ∈ S ⊆ Vφ(il) = Vφ(i).
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Induction hypothesis : Let

Hm−1 : |skm−1(K)| × [0, 1] → Y

be the homotopy between f ||skm−1(Li)| and g||skm−1(Li)|, carried by

φ : (|skm−1(Li)| × [0, 1])i∈[n] → (Vj)j∈J .

We now want to deduce the homotopy for m, assuming that the construction holds
for (m− 1).

Induction step: Let σ ∈ skm(K) be anm-simplex and i0, . . . , ik ∈ [n] be those indices
i such that σ ∈ Li. Let ∂σ denote the boundary of the simplex. Using the induction
hypothesis and the fact that the boundary of a k-simplex is a (k− 1)-simplex itself,
we have

Hm−1(|∂σ| × [0, 1]) ⊆ W :=
k⋂

l=0

Vφ(il).

Per assumption V is a good cover, thusW is contractible. Since (σ×{0})∪(∂σ×[0, 1])

is a retract of σ × [0, 1], Lemma 2.1.4 concludes that (σ, ∂σ) has the homotopy
extension property. Therefore, we can extend the homotopy Hm−1||∂σ|×[0,1] to the
homotopy

Hm||σ|×[0,1]

between f ||σ| and g||σ|. The choice of the m-simplex σ from above was arbitrary,
hence without loss of generality we can choose σ as the m-skeleton skm and thus
extend

Hm−1 : |skm−1(K)| × [0, 1] → Y to Hm : |skm(K)| × [0, 1] → Y.

It remains to confirm that the map Hm is carried by φ, defined in Equation 2.1. In
order to prove this, we need to show that for every point (x, t) ∈ |skm(Li)| × [0, 1]

it holds Hm(x, t) ∈ Vφ(i). Following the induction hypothesis, we already know that
this holds for every x ∈ |skm−1(Li)|, points lying in the (m − 1)-skeleton of Li.
Again, using that the boundary of an m-simplex is a (m− 1)-simplex, it suffices to
prove the claim for all points x contained in the interior of an m-simplex σ ∈ Li.
The index i must now be one of the indices i0, . . . , ik ∈ [n] and therefore by the
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construction of Hm we can conclude

Hm(x, t) ∈ Hm(|σ| × [0, 1]) ⊆ W ⊆ Vφ(i).

The claim follows as we have found a homotopy between the morphisms of covered
spaces (f, φ) and (g, φ).

2.2 The Nerve Theorem

We have now established the framework needed to present the Nerve Theorem.
This section, and the proof of the Nerve Theorem in particular, will follow the proof
published by Bauer et al in their paper ‘A Unified View on the Functorial Nerve
Theorem and its Variations’ (2).

Theorem 2.2.1 (Nerve Theorem (2)) Let X ⊂ Rn be a topological space with
a closed and convex covering U . The map Γ: X → |Sd(N (U))| is a homotopy
equivalence. In particular X is homotopy equivalent to N(U), denoted X ≃ N(U).

In order to prove the Nerve Theorem, we will construct a homotopy inverse Ψ to
Γ. The idea is to show that Ψ and Γ are morphisms of covered spaces and then use
their properties to prove the homotopy equivalence. We will present a few lemmas
in preparation for the main proof. Other constructions, such as the next definition,
provide a technical features needed for the construction of the inverse.

Lemma 2.2.2 Let C = {Ci}i∈[n] be a finite family of closed, convex subsets of
Rd. Then there exists a family of open sets U = {Ui}i∈[n] with Ci ⊆ Ui and
N (U) = N (C).

Proof. For every closed and disjoint sets U, V ⊆ Rd there exist open and disjoint
neighborhoods OU and OV , i.e. Rd is normal. Thus for every pair of closed, convex
sets Ci, Cj there exist disjoint, open sets Vi,j ⊇ Ci and Vj,i ⊇ Cj. Let

Ui =
⋂

j:Ci∩Cj=∅

Vi,j

since finite intersections of open sets are open, this yields an open cover U = {Ui}i∈[n].
It remains to be shown that N (U) = N (C), clearly N (C) ⊆ N (U).

Let σ ∈ N (U) be a k-simplex, per definition there exist k open sets U1, . . . , Uk

with U1 ∩ · · · ∩ Uk ̸= ∅. Through renumbering the open sets we can choose the
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first k sets without loss of generality. In order to prove that σ ∈ N (C), we assume
the contrary. Assume that the corresponding Cj to the Uj do not intersect, i.e.
C1 ∩ · · · ∩ Ck = ∅. Then there exist α, β ∈ {1, . . . , k} such that Cα ∩ Cβ = ∅ and
hence Vα,β∩Vβ,α = ∅. Using the definition of the Ui, this contradicts the assumption
that U1 ∩ · · · ∩ Uk ̸= ∅. Hence σ ∈ N (C) and Lemma 2.2.2 follows.

Lemma 2.2.2 contributes to the construction of the homotopy inverse Ψ, as
it provides an open cover containing our given closed and convex cover U . The
inverse will be a linear combination of multiple different functions, one of them
being a partition of unity, introduced in the following definition. In order to maintain
continuity, this function requires the covering to consist of the open sets provided
by Lemma 2.2.2.

Definition 2.2.1 (Partition of unity (17)) Let X be a topological space and
U = {Uα}α∈A a finite open covering. A partition of unity subordinate to U is a
family of real valued functions (fα)α∈A with the following properties for all x ∈ X:

1. 0 ≤ fα(x) ≤ 1 ∀α ∈ A;

2.
∑

α∈A fα(x) = 1;

3. {x ∈ X | fα(x) > 0} ⊆ Uα.

Partitions of unity are useful for a variety of different constructions. They allow
us to operate on a topological space that is divided into smaller sections, blending
from one section to another whilst preserving continuity. For the purpose of proving
the Nerve Theorem, the partition of unity lets us move from a covering of the
topological space X to a covering of its nerve. A more detailed construction will
follow in Equation 2.2.

Definition 2.2.2 (Morphism of covered spaces) Let X and Y be topological
spaces with coverings U = {U}i∈I and V = {V }j∈J , respectively. A morphism of
covered spaces

(f, φ) : (X,U) → (Y,V)

consists of a continuous map f : X → Y which is defined through the map between
index sets φ : I → J .
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Definition 2.2.3 (Closed barycentric star) Let K be a simplicial complex and
v ∈ K a vertex. The subspace

bst(v) = |{σ ∈ Sd(K) | σ ∪ {v} ∈ Sd(K)}| ⊆ |Sd(K)|

is called the closed barycentric star of v ∈ K.

Figure 2.9 illustrates the closed barycentric star bst(v) of the orange vertex
v ∈ K. The pink edges connect v with other vertices and are hence elements of
bst(v). The gray faces contain v as a vertex and are also part of the barycentric
star.

Figure 2.9: Closed barycentric star of the orange vertex.

In preparation for the next lemma, we construct a function Φ which sends an
element x ∈ X to its barycentric coordinates in |N (U)|. As stated in the proof of
Lemma 2.2.2, Rd is a normal space. It follows from the Lemma of Urysohn (8) that
for each pair of disjoint sets (Ci, Ui) there exists a continuous function φi satisfying
φi(Ci) = 0 and φi(Ui) = 1. The following is an example of such an Urysohn function:

φi : Rd → [0, 1] φi(x) =
d(x,Rd \ Ui)

d(x,Ci) + d(x,Rd \ Ui)
. (2.2)

Here d is defined as

d(x,A) = inf
a∈A

d̃(x, a),

where d̃ is the standard Euclidean metric on R. Normalizing the functions φi yields
a partition of unity on X.

ψi(x) =
φi(x)∑n
j=0 φj(x)

.
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Let vi ∈ N (U) be the ith vertex in N (U) and |vi| the corresponding point in the
geometric realization. We can now define the map Φ : X → |N (U)| using the
constructions above:

Φ(x) =
n∑

i=0

ψi(x) · |vi|.

Lemma 2.2.3 Let Ψ: X → |Sd(N(U))| be the map which sends points in the
topological space to the barycentric subdivision of the N (U). The pair of maps
(Ψ, id[n]) is a morphism of covered spaces

(X,U) → (|Sd(N(U))|,B)

where B = {bst(vi)}i∈[n] is the covering consisting of closed barycentric stars.

Proof. Let α : |N(U)| → |Sd(N(U))| be the natural homeomorphism from the nerve
of U to its barycentric subdivision. Using the construction of the map Φ from above,
we can write Ψ = α ◦ Φ. It follows from the definition of the Urysohn function φi

that φi(x) = 1 for x ∈ Ci. Thus ψi(x) is maximal among the ψj(x). Therefore
Ψ(x) ∈ bst(vi) which concludes the claim.

An important characteristic of the covering consisting of closed barycentric stars
is its contractability, shown in Lemma 2.2.4. In order to prove this lemma, we
introduce the following two definitions.

Definition 2.2.4 (Coface) Let A and B be simplices. If B is a face of A, then A

is called a coface of B.

Definition 2.2.5 (Chain of a simplicial complex (16)) Let K be a simplicial
complex. Then a nested sequence of simplices σ1 ⊂ σ2 ⊂ · · · ⊂ σk of K is called
a chain of K. The set of all chains of K comprises an abstract simplicial complex,
sometimes referred to as the barycentric subdivision Sd(K) of K.

Lemma 2.2.4 Let K be a simplicial complex and σ ∈ K a simplex. The intersection⋂
v∈σ bst(v) is contractible.

Proof. Let σ = [x0, . . . , xk] ∈ K be a simplex and

L = {τ0 ⊂ · · · ⊂ τm | σ ⊆ τ0} ⊆ Sd(K)
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a subset of all chains of K. The first step is to show that
⋂k

i=0 bst(vi) = |L|, where
|L| is the geometric realization of the subcomplex L. We prove this equality of sets
by verifying both inclusions.

Let ϕ ∈ L be a simplex, per definition it holds that ϕ is contained in the chain
(σ ⊆ τ0 ⊆ · · · ⊆ τm) ∈ L. Therefore, |ϕ| ⊆ bst(vi) for all i ∈ {0, . . . , k}. Since ϕ was
arbitrary, we can deduce that |L| ⊆

⋂k
i=0 bst(vi).

Now, let |ϕ| = |(τ0 ⊆ · · · ⊆ τm)| ⊆
⋂k

i=0 bst(vi). Since for all i ∈ {0, . . . , k} it holds
|ϕ| ⊆ bst(vi), it follows that vi ∈ τ0 for all i ∈ {0, . . . , k} and therefore σ ∈ τ0. Using
the definition of L, this implies that ϕ ∈ L. Finally, this yields the other inclusion⋂k

i=0 bst(vi) ⊆ |L|, and thus proves the first claim.

It remains to show that B is a good cover. Using the first part of the proof it
follows that every geometric simplex in

⋂
v∈σ bst(v) ⊆ |L| ⊆ |Sd(K)| has a coface

in
⋂

v∈σ bst(v) with b∆(σ), the barycenter of σ, being a vertex in the coface. Since
b∆(σ) is a vertex in all these cofaces, we can deduce that

⋂
v∈σ bst(v) is star-shaped1,

with center b∆(σ). Star-shaped spaces are convex and thus contractible2 thus, the
claim follows.

Lemma 2.2.5 Let Γ: |Sd(N(U))| → X be the unique and continuous map that is
affine linear on each simplex σ ∈ |Sd(N(U))|. Then, the pair of maps (Γ, id[n]) is a
morphism of covered spaces

(|Sd(N(X))|,B) → (X,U).

Proof. The map Γ sends the vertices of any simplex σ ∈ bst(vi) to a convex and
closed element Ui ∈ U . Since Ui is convex and each simplex can be written as a
linear combination of its vertices, it holds Γ(σ) ⊆ Ui. Again using convexity and
the definition of bst(vi), it follows Γ(bst(vi)) ⊆ Ui, which proves the claim.

Having set the stage using the lemmas above, we can now prove the Nerve
Theorem 2.2.1.

Proof of the Nerve Theorem. Let Γ and Ψ be the maps as defined above. In or-
der to prove the Nerve Theorem, it is sufficient to show that Γ ◦ Ψ ∼= id[n] and

1A set S ⊂ Rn is called a star-shaped, if there exists a point x0 ∈ S called center of the star,
such that for all x ∈ S the line segment from x0 to x is in S. In other words, if for all t ∈ [0, 1] it
holds (x0 · t+ (1− t) · x) ∈ S.

2For more information and a proof of this statement refer to Theorem 5.19 in Armstrong’s
‘Basic Topology’ (1).
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Ψ ◦ Γ ∼= id|Sd(N (U))|, i.e. that Γ and Ψ are homotopy inverses of each other.

The composition of continuous maps is continuous, hence according to Lemma 2.2.3
and Lemma 2.2.5 the pair (Γ◦Ψ, id[n]) defines a morphism of covered spaces. More-
over, Γ ◦Ψ ∼= idX by a straight line homotopy: for all x ∈ Ci it holds Γ ◦Ψ(x) ∈ Ci

and because the Ci are convex, the straight line connecting x and Γ ◦ Ψ(x) is con-
tained in Ci.

Analogously, it follows that (Ψ ◦ Γ, id[n]) is a morphism of covered spaces. The
cover consisting of closed barycentric stars B is a good cover according to Lemma
2.2.4, hence it follows from Lemma 2.1.5 that the composition Ψ ◦ Γ is homotopic
to id|Sd(N (C))|.



Chapter 3

Introduction to Mapper

This upcoming section is mainly based on the introductory paper ‘Topological Meth-
ods for the Analysis of High Dimensional Data Sets and 3D Object Recognition’ (17)
and chapter three in ‘Topology and Data’ (3).

3.1 Approaches to Data Analysis

As tremendous amounts of data become more easily accessible, the use of data
analysis with efficient and innovative techniques has become indispensable. Different
methods allow for a visualization of data sets and their geometric structure. An
example for a commonly used method is the projection pursuit method (9). This
approach uses a high-dimensional data set and projects the data vectors onto two
or three components, making it possible to visualize the data set. Whilst this can
reveal important information about the data set, as we will see in Subsection 4.1.2,
relevant features of the data may be overseen when projecting onto only two or three
dimensions.

3.2 An Introduction to Mapper

Mapper is a computational method that was developed in 2007 by G. Singh, F.
Mémoli and G. Carlsson. Its purpose is to simplify, analyze and visualize high
dimensional data sets, whilst maintaining important characteristics of the data.
Mapper helps to find and illustrate shape of data and by doing so became a very
useful method for Topological Data Analysis. It’s core strengths are:

- Insensitivity to metric: When analyzing data sets originating from a con-
text in physics, a measure of distance can often be easily identified. In bi-

18



Chapter 3. Introduction to Mapper 19

ological settings however, it is sometimes not clear how to measure distance
between data points. Mapper allows for various different notions of distance,
unique to the data set being analyzed.

- Parameter flexibility: Mapper enables the user to decide on multiple param-
eters constituting the analysis. Depending on the nature of the data set, the
desired granularity of analysis, and the data characteristics aimed to be ana-
lyzed, the user can adapt Mapper accordingly. This allows for a very targeted
analysis.

- Multiscale representation: As a result of the parameter flexibility, we can
look at the data with various levels of resolution. Observing the effect on the
data of slightly altering the parameters can reveal more about the data.

These three properties can be referred to as the topological foundation underly-
ing Mapper and aiming for the recognition of patterns in data within a reasonable
perimeter in order to extract a simplified geometric description.

3.2.1 The Topological Construction of Mapper

The theoretical construction of Mapper is carried out on a topological space. In
order to use the algorithm on point cloud data, the so called statistical version is
then deduced.

Let X be a topological space, Z a parameter space with a finite open cover-
ing U = {Uα}α∈A and let f : X → Z be continuous. Due to continuity, the set
{f−1(Uα)}α∈A is a covering of X. We then identify the path-connected1 components
of f−1(Uα) for all α ∈ A. Each connected component corresponds to one vertex
in the simplicial complex, and if connective components from distinct pre-images
{f−1(Uα)} and {f−1(Uβ)} overlap, the vertices corresponding to the path-connected
components are joined by an edge. Example 3.2.1 illustrates the issue arising, if we
do not separate the connected components of the pre-images.

Example 3.2.1 Consider the topological space X = {(x, y) | x2+y2 = 1} ⊆ R2 and
a covering U = {A,B,C} of X where A = {(x, y) | y > 0}, B = {(x, y) | y < 0} and
C = {(x, y) | y ̸= ±1}. We can observe, that U consists of three elements A,B,C
and four path-connected components A,B,C ∩{(x, y) | x < 0}, C ∩{(x, y) | x > 0}.

1A subset A ⊆ X of a topological space X is called path-connected, if for every x, y ∈ A there
exists a continuous path γ : [0, 1] → A such that γ(0) = x and γ(1) = y.
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C

A

B

Figure 3.1: Covering from Example 3.2.1.

Not dividing the pre-images into separate path-connected components, might
result in the corresponding simplicial complex not being homotopy equivalent to X.
This issue happens with A,B,C from Example 3.2.1, the corresponding nerve is
depicted in Figure 3.2b. This complex is not homotopy equivalent to X, as we can
not transform a circle into a straight line continuously.

A

B

C C ′

(a)

B

C

A

(b)

Figure 3.2: Nerves from Example 3.2.1

Figure 3.2a shows the nerve N (U), taking into account the two path-connected
components of C. Mathematically, we can explain the difference between Figure 3.2a
and Figure 3.2b using the Nerve Theorem 2.2.1. Without considering its two path-
connected components separately, the set C is not convex. Since the Nerve Theorem
requires convexity of the covering, homotopy equivalence cannot be deduced. The
Nerve Theorem guarantees that the nerve is homotopy equivalent to its topological
space, but only if the conditions of the theorem are met.

3.2.2 The Statistical Version of Mapper

In order to use Mapper on point cloud data, the authors introduced the statistical
version of the method. In comparison to the topological method, we now implement
a statistical approach to clustering the space into its connected components.

Definition 3.2.1 (Filter) Let X be a point cloud. A function f : X → R is called
a filter function.
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The importance of the filter function will be highlighted later on. For now, the
name filter function provides a brief intuition about what this functions does: it
enables the user to analyze the data with respect to certain parameters or char-
acteristics. Coming back to the statistical Mapper: after having chosen the filter
function, the image Im(f) is divided into a set O of smaller, overlapping intervals.
This cover can be thought of as the resolution under which the data is meant to be
analyzed (10). The user can now use three flexible parameters to analyze the point
cloud from various different angles: the filter function, the length of the intervals lI
and the percentage of overlap pI .

Example 3.2.2 Let I = [0, 1] with lI = 1
2

and pI = 1
2
. Then the set of smaller

intervals is defined as O = {I1, I2, I3} = {[0, 1
2
], [1

4
, 3
4
], [1

2
, 1]}.

The sets Ui = {x ∈ X | f(x) ∈ Ii} form a covering of the point cloud X. Using
any preferred clustering algorithm, the Ui are then clustered. Each cluster found
in Ui corresponds to a vertex in the complex. If two distinct clusters intersect, the
corresponding vertices are connected with an edge. Aligning with the topological
version, the clusters here correspond to the path-connected components described
above. To summarize, one can structure the approach of Mapper into four steps:

Algorithm

1. The Data is collected and pre-processed, this can include imputing missing
values and normalizing or log-transforming the data. Using any efficient clus-
tering algorithm the pre-processed data is then clustered.

2. Depending on the geometric structures to be analyzed, a filter function is
selected. The range of the filter function f is divided into n ∈ N overlapping
intervals I = {I1, . . . , In}.

3. For each interval Ik ∈ I the number of clusters in the pre-image f−1(Ik)

corresponds to the number of vertices in the resulting simplicial complex

4. An edge between the vertices is drawn, if the corresponding pre-images inter-
sect

Figure 3.3 visualizes the method using a height function as the filter function.
The image Im(f) is divided into four overlapping intervals I1, . . . , I4 (yellow, blue,
violet, orange). The data points xj ∈ X of the point cloud are colored according to
the image of the filter function f(xj) ∈ Ii. If for a point x ∈ X the image lies in two
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intervals, it is colored according to the overlapping interval (green, dark blue, red).
Next, a clustering algorithm is applied to the covering {f−1(I1), . . . , f

−1(I4)} of X.
Each cluster corresponds to one vertex in the complex on the right. According to
the overlap of the intervals Ij, edges are drawn between the vertices.

1

2

3

4
f−1

I4

I1

I3

I2

Figure 3.3: Statistical Version of Mapper

The Filter Function

The output of Mapper is highly dependent on the choice of the filter function. De-
pending on the geometric properties one is interested in, some filter functions are
more or less likely to pick up on interesting characteristics in the data. Mapper’s
flexibility with the filter function allows us to analyze data sets from several domains
and pose various different research questions. In the following some common filter
functions will be looked at in more detail.

- The Gaussian kernel: This is a filter function used to estimate the density
of a data sample. For a given data set X, points x, y ∈ X and a smoothing
parameter ϵ > 0, such a filter is given by

fϵ(x) = Cϵ ·
∑
y

exp(
−d(x, y)2

ϵ
). (3.1)

- Eccentricity function: When aiming for a measure describing the closeness
of data points to the center of the data set, sometimes referred to as data
depth, eccentricity functions are an appropriate choice. Given p ∈ [1,∞) these
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functions are of the form

Ep(x) =
(∑y∈X d(x, y)

p

|X|
) 1

p . (3.2)

- Projection: This filter function returns the projection onto chosen columns
of the data. When wanting to extract one specific parameter from the data set,
the projection filter function might be useful. Using a projection filter function
with Mapper mimics the projection pursuit method mentioned in Section 3.1.

- Entropy: Measuring the entropy of a point cloud, yields in a description of
the order of chaos of the point cloud.

In order to demonstrate the impact of the filter function on Mapper’s output, con-
sider the filter functions Entropy, Eccentricity and Projection. Using the scikit-learn
function make_circles provided by Python (13), we generate 5000 data points ar-
ranged in two concentric circles. Figure 3.4 illustrates the point cloud:

Figure 3.4: Point cloud generated from 5000 points using the make_circles func-
tion with a noise parameter of 0.05, scale factor of inner and outer circle of 0.3 and
random state of 42.

Figure 3.5 illustrates how the different filter functions generate significant differ-
ences in the Mapper output. The graph resulting from the projection filter function
in Figure 3.5b nicely displays an important topological feature of our point cloud;
the two holes.
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(a) Eccentricity (b) Projection

(c) Entropy

Figure 3.5: Mapper outputs using different filter functions on the same data. The
cover of the image each filter function consists of 10 intervals with an overlap of
30%. By default, the vertices of the graph are colored by the mean value of the
points that belong to a given vertex.

The example above illustrates that not every filter function is suitable for a
specific data set and it is an essential part of the analysis to identify a useful filter
function and optimize the other parameters such as interval length and overlap.
Figure 3.6 shows the effect of the percentage of overlap on the Mapper output. The
method is not able to detect any structure, if the overlap is too small. On the other
hand, an overlap of close to, or even equal to 100%, will not display any interesting
characteristics, as all of the vertices in the nerve will be connected by an edge.
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(a) 30% overlap (b) 50% overlap

(c) 70% overlap (d) 90% overlap

Figure 3.6: Mapper outputs using the eccentricity filter function on the same data.
The cover of the image of each filter function consists of 10 intervals with an overlap
of 30%-90%.

It is important to note that mathematically relevant structures in the data are
not always relevant in the context of the data. More specifically, if the Mapper

output presents a visually distinguishable subset of a given biological point cloud,
as in cancer or diabetes research, this might not be a relevant new sub-type of e.g.
cancer or diabetes. A statistical analysis is required, to ensure biological relevance
of the mathematically outstanding structures.



Chapter 4

Applications

4.1 Using Mapper to illustrate Different Diabetes Types

In 1979 G. Reaven and R. Miller conducted a study on the relationship between
chemical and overt diabetes (15). This section focuses on the recreation of their
results.

4.1.1 Data

Diabetes can be categorized into four intensity stages based on the human carbohy-
drate metabolism. The earliest stage is referred to as prediabetes, which describes
a slight abnormal glucose tolerance. Subclinical diabetes denotes abnormal glucose
tolerance in response to stress such as pregnancy. The third stage is referred to as
overt diabetes, here patients show no symptoms of diabetes but present a significant
abnormal glucose tolerance. Patients showing classical diabetes symptoms and el-
evated fasting blood glucose concentration are diagnosed with chemical diabetes (6).

In efforts to study the relationship between overt and chemical diabetes, 145
non-obese adults were examined. The authors measured six biological parameters
during the course of the experiment.

- Age.

- Weight.

- Fasting plasma glucose, which corresponds to the blood glucose level an a
fasted state.

- Area under the plasma glucose curve for the 3 hour oral glucose tolerance

26



Chapter 4. Applications 27

test (Oral Glucose Tolerance Test - OGTT): The OGTT consists of multiple
blood samples, which are being drawn first at fasted state and then in regular
intervals after having consumed a glucose drink. Plotting the received glucose
levels in a graph, yields the desired area under the plasma glucose curve (18).

- Area under the plasma insulin curve for the OGTT: This parameter is obtained
similarly to the one above, however in this case insulin levels instead of glucose
levels are being measured.

- Steady state plasma glucose response (SSPG): This parameter is measured
through giving patients continuous glucose infusions for three hours until
achieving constant plasma levels of glucose and insulin. In the last 90 minutes
of the infusion period, blood glucose and insulin levels are measured (14).

Further information about the measurements taken can be found in the original
article from Reaven and Miller (15).

4.1.2 Results

The authors used a computational projection approach to analyze the data obtained
in the experiments. The Prim-9 program at Stanford Linear Accelerator Compu-
tational Center allowed for a two-dimensional projection of three-dimensional data,
which yielded the following outcome:

Figure 4.1: Artist’s version of Prim-9 output from diabetes data collected in
Reaven and Miller’s experiment (15).

The authors describe the illustration in Figure 4.1 as a boomerang with two
wings and a fat middle (15). The two wings represent patients with overt diabetes
(left wing) and chemical diabetes (right wing), while the middle part illustrates the
normal group. 28 years later, the authors Singh, Mémoli and Carlsson first used
their recently developed method Mapper (17) on this data set.
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Intending to recreate the computational analysis on the structures in the dia-
betes data using, we used Mapper on the data set described in Section 4.1.1. Fig-
ure 4.2 shows our findings using the eccentricity function provided by the software
Giotto-tda (20). An overlap of 61% between the 25 intervals, yields a structure that
has significant similarities with the original Prim-9 illustration shown in Figure 4.1.
The color of the nodes corresponds to the eccentricity value, which is calculated
using the L∞-norm on the distance matrix between data points. Dark blue nodes
represent a distance of 48 to the core of the data, whereas yellow nodes indicate a
distance from 130. The node size ranges from 2 to 48 and is proportional to the
number of data points contained in the node.

(a) Front view (b) Back view

(c) Bottom view (d) Top view

Figure 4.2: Recreation of Reaven and Miller’s diabetes analysis (15) using Mapper.
The point of view is provided in perspective to the view in Figure 4.1.
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As mentioned at the end of Section 3.2.2, after finding these mathematically
interesting structures displayed in Figure 4.2, it is crucial to ensure the biological
significance as well. Using statistical methods, Reaven and Miller found that the
structure in Figure 4.1 does indeed illustrate diabetes subtypes (15). After recreat-
ing Reaven and Miller’s results, we can thus conclude that Figure 4.2 displays the
diabetes subtypes. Overt diabetes is represented by the blue wing, while the yellow
wing denotes chemical diabetes. The normal subtype is represented by the pointy
middle in different shades of green.

4.2 Discoveries in Breast Cancer Research using Mapper

In 2011, Monical Nicolau, Arnold Levine and Gunnar Carlsson published substantial
findings in breast cancer data (11). Using a method called Progression Analysis of
Disease (PAD) and Mapper the authors were able to identify a subgroup of breast
cancers with a unique mutational profile and a 100% chance of survival, that was
previously not found using standard clustering techniques. This subgroup is referred
to as c-MYB+ breast cancer.

4.2.1 Data

Deciding on what data to extract and use for PAD is very significant for obtaining
meaningful results. In this breast cancer analysis the authors used data that had
previously been collected at different hospitals and research institutions (21). Table
4.1 displays the parameters considered in one out of the four data batches collected.
It shows an excerpt from the Nederlands Kanker Instituut (NKI) data consisting of
295 tumors. The tumor grade ranges from 1-3, 1 labelling slowly growing cancer
cells that resemble normal cells and 3 labeling fast and aggressively growing cancer
cells. Angioinvasion (A.I.) defines tumor cells infiltrating blood vessels and extensive
lymphocytic infiltrate (L.I.) refers to the buildup of white blood cells. ER+ and
PR+ denote that the tumor cells grow in response to estrogen and progesterone,
respectively. In these rows the numbers stand for the percentage of tumor cells in
the tumor with according hormone receptors (19).
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Age Diameter
(mm)

Followup
time (yr)

Meta-
stases Grade A.I. ER+ PR+ L.I. Brca1

mutation

43 25 12,53 0 2 1 80 80 0 0
44 20 6,44 0 1 0 50 50 0 0
41 45 10,66 0 3 1 10 5 0 0
41 20 13 0 3 0 50 70 1 0
48 20 11,96 0 3 1 100 80 0 0
49 13 11,16 0 2 0 80 80 0 0
46 20 10,14 0 1 0 80 50 0 0
48 28 8,8 0 3 0 0 0 1 0
48 15 10,29 0 3 0 60 80 0 0

Table 4.1: Biological parameters used for analysis.

4.2.2 Progression Analysis of Disease (PAD)

In the paper (11), the authors introduce PAD as a method that is able to detect
geometric structures of data and visualize the findings in a very accessible way. PAD
consists of two components: working with the raw data to identify a suitable filter
function, and using Mapper to visualize the geometric structure of the data. Nicolau
et al. used Disease-Specific Genomic Analysis (DSGA) as a way to construct the
filter function. PAD results in a graph which represents the geometric shape of the
data set, sometimes revealing meaningful characteristics of the data.

Disease-Specific Genomic Analysis (DSGA)

DSGA is a mathematical method that displays omic data1 D⃗ as a sum of two terms:
the normal component and the disease component.

D⃗ = Nc.D⃗ +Dc.D⃗

This decomposition is defined by using the so called Healthy State Model (HSM).
By substituting each normal tissue vector by a linear combination of all other normal
tissue vectors, the HSM does not only de-sparse the data, but enabled the authors
to define a subspace spanned by normal tissue vectors. Figure 4.3 displays the HSM.
The deviation from normal tissue to diseased tissue can thereby be observed through
the distance of the two subspaces.

1Omic data refers to biological data that belongs to a biological field ending with -omics. For
example genomics, metagenomics or metabolomics.
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Healthy State Model

~T

Dc.~T

Nc.~T

Figure 4.3: DSGA decomposition of the original tumor vector T⃗ into the normal
component Nc.T⃗ as part of the Healthy State Model and the Disease component
Dc.T⃗ orthogonal to the space spanned by normal components.

DSGA has the advantage of enabling us to use only the disease component for
certain analyses. Working with the disease component of data outperforms methods
using the original data and brings out unique biology of the tumor cells. In contrast
to methods directly comparing normal and neoplastic data, DSGA shows the extent
to which gene expression in the tumor data is abnormal.

Total Proceeding of PAD Performed on Breast Cancer Data

1. Input: The Data matrix

Dk,m =

 | | | |
N1 · · · Nk T1 · · · Tm

| | | |


includes the tumor data vectors Tj and the healthy tissue vectors Ni. Table
4.1 shows the measurements taken from tumor tissue. One tumor vector Tj
corresponds to one row in the table.

2. DSGA-transformation: The Dc.mat matrix contains the disease components
of the tumor vectors:

Dc.mat =

 | |
Dc.T1 · · · Dc.Tm

| |

 .

The L1.mat matrix contains the leave-one out cross validation estimates of the
deviation from healthy state by normal tissue data. We denote these adapted
vectors by L1.Nj:
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L1.mat =

 | |
L1.N1 · · · L1.Nk

| |

 .

L1Dc.mat denotes the final matrix:

L1Dc.mat =

 | | | |
L1.N1 · · · L1.Nk Dc.T1 · · · Dc.Tm

| | | |

 .

3. Adapt the final matrix L1Dc.mat using a suitable threshold, which eliminates
all diseased components that do not show a significant deviation from the
normal tissue.

4. Prepare for Mapper: Select a biologically relevant filter function and use the
columns of L1Dc.mat as data points. In this analysis the authors considered
the filter functions

fp,k(V⃗ ) =
( s∑

j=1

|gj|p
) k

p

which measure the overall deviation from the HSM. Here

V⃗ = (g1, . . . , gs)
T

denotes the columns of the data matrix, where gj are the genes, proteins, or
other biological parameters of the sample we wish to compare.

5. Use Mapper on the data obtained in Step 3, using the filter function chosen in
Step 4.

In their publication, Nicolau et al. (11) used the PAD analysis described above to
analyze subtypes of breast cancer. In the following, we will briefly summarize their
findings.
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The results Nicolau et al. present in their publication are impressive. In Figure
4.4 we can identify a clear structure consisting of three distinct branches. Not only
is this mathematically relevant, but a statistical analysis carried out afterwards,
confirmed a biological distinction between these subgroups. The vertices (small col-
ored dots) indicate a tumor subgroup, whereas the color of each vertex corresponds
to the tissue’s deviation from normal tissue. As stated in the key on the top left,
dark blue nodes are tissue samples closest to normal tissue, while dark red nodes
denote more neoplastic tissue. Biologically, the branches visible in Figure 4.4 differ
in gene activity. The high value of the filter function found in the lower right branch,
recognizes these tumors as most distinct from normal tissue. The tumors show high
activity in the gene groups ER+ and c-MYB+, relative to normal tissue.

Figure 4.4: PAD analysis of the breast cancer data from M. Nicolau, A. Levine
and G. Carlsson’s paper (11).

In order to highlight the significance of this approach, Figure 4.5 shows the
subgroups identified by a regular clustering approach. Clearly, the c-MYB+ group
(colored lines) is not distinguishable solely using clustering techniques.
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Figure 4.5: The dendrogram displays different tumor subgroups which were found
using standard clustering approaches. Tumor subgroups contained in c-MYB+ are
colored in red (no outliers) and orange (including outliers).

Regular cluster analysis is able to find subgroups in data that are high in den-
sity, while sparse subgroups are rarely detected. The method Mapper presents a
possible solution to this problem, as it is able to detect subtle differences in the
data. Furthermore, the flexibility of the filter function allows us to analyze the data
from multiple perspectives and tailor the analysis to the features we want to ex-
amine. Identifying the filter function is one of the, if not the main challenge when
using Mapper. It requires in depth understanding of the data and the biological or
medical significance of the parameters collected. Finding ways to make a suitable
filter function more obvious, is a very interesting and important line of research,
that could expand Mapper’s impact in data analysis.
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