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Abstract

The magnitude of a finite metric space is a numerical invariant, intro-
duced by Leinster in 2011 as a measure for the ‘effective number of
species’. In this thesis, we follow Leinster’s approach in [1] to define the
magnitude, as well as the magnitude function of finite metric spaces and
show some examples and ways to compute it. Based on Meckes’ work
in [2], we consider possible generalizations to compact metric spaces
and discuss their equivalence for positive definite spaces. We introduce
a further numerical invariant, similar to the magnitude, the maximum
diversity of a compact metric space. We prove a continuity result for the
maximum diversity and see how this translates to continuity of magni-
tude. In the end, we develop a new perspective on magnitude relying
on Hilbert spaces and Fourier theory. We then prove that magnitude
is continuous on the class of compact subsets of Rn with non-empty
interior with respect to the Hausdorff distance.
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Chapter 1

Introduction

Magnitude was first introduced by Solow and Polasky under the name ‘ef-
fective number of species’. They were interested in large-scale reduction in
biological diversity through the extinction of plant and animal species. In
order to implement a decision-making framework for species conservation,
they needed a measure that would quantify species diversity. They charac-
terized diversity in terms of distances arising from biology1, but arbitrary
distances also yield interesting examples for us.

Solow and Polasky wanted to capture the idea that a set consisting of three
ant species is less diverse than a set consisting of an ant, a fish and an
elephant. They determined three natural requirements that their measure
should respect:

(1) Monotonicity in species: If a set of species contains an other, the diversity
of the first should be larger than that of the second.

(2) Twinning: Diversity should not be increased by the addition of a species
that is already in the set.

(3) Monotonicity in distance: Larger distances between the species should
result in larger diversity.

The measure that Solow and Polasky introduced as ‘effective number of
species’ corresponds to what is now called magnitude. The notion of mag-
nitude was first introduced in mathematics in 2011 by Tom Leinster in [1].
His approach was to generalize the Euler characteristic of a category to a
similar invariant for metric spaces. With this motivation, he introduced
magnitude in the general context of enriched categories, an example of which
are precisely metric spaces. It has been proved that under suitable assump-
tions, magnitude captures some of the most important invariants of a space –

1Such distances can be based on morphological, behavioral differences, or molecular
biology methods.

1



dimension, perimeter, area, volume etc. (see Theorem 4.6 in [3]) and it has
been conjectured that this is true even more generally (see Conjecture 4.5 in
[3]).

A first step towards defining magnitude is considering a special class of finite
metric spaces for which magnitude is particularly easy to define. For an
arbitrary finite metric space (A, d), the distances between any two points are
encoded by the similarity matrix ζA with entries ζA(a, b) = e−d(a,b). If the
similarity matrix is invertible, we can define the magnitude |A| of A as the
sum of the elements of ζ−1

A .

Let us illustrate this on the example of the two-point space A = {a, b}. Let

d := d(a, b). The similarity matrix of A is
(

1 e−d

e−d 1

)
, which has inverse

1
1 − e−2d

(
1 −e−d

−e−d 1

)
and therefore the magnitude is

|A| = 2 − 2e−d

1 − e−2d = 1 +
1 − 2e−d + e−2d

1 − e−2d =

1 +
(1 − e−d)2

(1 − e−d)2(1 + e−d)2 = 1 + tanh
d
2

.

Figure 1.1 shows the magnitude of the space A for different values of the
distance. We can observe that for d = 0, the magnitude is 1. The two points
are effectively just one point and as we had hoped, magnitude captures this.
As d grows larger, magnitude grows towards 2, the number of points in our
space. As shown in Figure 1.1 for d = 3, we already have 2 − |A| < 0.1.

d = 0 d = 1 d = 2 d = 3

|A| = 1 |A| = 1.46 |A| = 1.76 |A| = 1.90

Figure 1.1: Magnitude of the 2-point space A for different distances d.

It is also interesting to note that viewing magnitude at different scales gives
additional information about the space. This means that for t > 0, the
magnitude of the rescaled space2 tA cannot generally be deduced from the
magnitude of the space A. This observation motivates the definition of the
magnitude function t 7→ |tA|.

2The metric space tA has the same point set as A but distances rescaled by a factor t,
meaning that for a, b ∈ tA, the distance in tA is dtA(a, b) = td(a, b).
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We can now rewrite the requirements given by Solow and Polasky in modern
terms as follows:

(1) Magnitude is monotone with respect to inclusion: B ⊂ A =⇒ |B| ≤ |A|.

(2) Magnitude is continuous with respect to inclusion.

(3) The magnitude function is monotone.

We will see that, while not true in general, magnitude does satisfy these
properties under suitable assumptions.

The main goal of this thesis is to review some important results regarding
the magnitude of metric spaces, with a focus on continuity results. The
category theory approach to magnitude is beyond the scope of this thesis, so
we directly define the magnitude of metric spaces.

By relying on Leinster’s [1], we introduce the magnitude of finite metric
spaces. We consider some possible constructions: expansion, union, tensor
product, fibration and constant-distance gluing. By relying on these, we
can simplify computations for the magnitude of a finite metric space, by
deducing it from the magnitudes of simpler spaces. An interesting feature of
magnitude is that it is not scale invariant. In fact, the magnitude function,
contains much more information than just the magnitude. Among other
aspects, we show that the number of points in the space can be deduced from
knowing the magnitude function. However, we also discuss the limitations
of the magnitude function. In general, it is not well-defined everywhere and
it is not necessarily increasing. To get around this problem, we restrict to the
special class of positive definite finite metric spaces, where magnitude does
(or is conjectured to) behave better.

A natural question that arises after having discussed magnitude for finite
metric spaces is, ‘Can it be generalized to infinite ones?’ We review some
possible generalizations of magnitude to compact metric spaces and discuss
strengths and weaknesses of each definition, based on the work of Meckes [2].
There is no generally accepted convention for how to extend the definition
from finite metric spaces to infinite ones. Therefore, we restrict ourselves
again to positive-definite metric spaces, where all proposed generalizations
are equivalent. In this context, our first continuity result for magnitude arises,
in the form of lower semicontinuity. We explicitly compute some magnitudes,
such as that of a line segment and a circle. As a useful tool, we introduce a
further invariant, the maximum diversity, for which a continuity result exists
and we show what implications this has for the continuity of magnitude.

In our final chapter, we develop a new perspective on the magnitude of
metric spaces based on the theory of Hilbert spaces and Fourier analysis.
Equipped with this new tool, we can prove the main known continuity result
for magnitude, as presented by Leinster and Meckes in [3]:
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Theorem Let Kn be the class of compact subsets of Rn with non-empty interior
and suppose that A ∈ Kn is star-shaped. Then magnitude, as a map Kn → R is
continuous3 at A.

3Here continuity means continuity with respect to the Euclidean distance on R and the
Hausdorff distance on Kn, which we define in the first chapter.
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Chapter 2

Magnitude of Finite Metric Spaces

In this chapter, we introduce the magnitude and magnitude function of
finite metric spaces, based on the work of Leinster in [1]. We analyze some
properties of magnitude and ways to compute it using the magnitude of
smaller spaces. We explicitly compute the magnitude for some examples,
which illustrate that it does not always behave as nicely as one might expect.

2.1 Metric Spaces – Basic Definitions

Let us start by reviewing some basic definitions about metric spaces.

Definition 2.1 A metric space (A, d) is a set A, together with a map
d : A × A → [0, ∞], such that for all a, b, c ∈ A:

• d(a, b) = 0 if and only if a = b;

• d(a, b) = d(b, a);

• d(a, c) ≤ d(a, b) + d(b, c).

Furthermore, by the metric space tA, for t > 0, we mean the metric space with the
same points as A, but distances dtA(a, b) = t · d(a, b), for any a, b ∈ A.

In a metric space (A, d), we denote by B(x, r) (or Bd(x, r) if there is some
ambiguity about the distance) the open ball of radius r around x, i.e. the set
{y ∈ A : d(x, y) < r}.

Example 2.2 (Graphs as Metric Spaces) Let G be a (non-oriented) graph, t > 0.
We can define the metric space tG, with points the vertices of G and distances
minimal path-lengths, where the length of one edge is t.

Figure 2.1 shows a concrete example of a graph with four points and four
edges, viewed as a metric space.

We introduce notions of distance on the class of compact metric spaces.
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2.1. Metric Spaces – Basic Definitions

x y

z

w

t

t
t

t

tG

d(x, y) = t

d(x, y) = 2t

Figure 2.1: Example of graph as metric space.

Definition 2.3 Given a metric space (X, d) and two compact subspaces A, B ⊂ X,
the Hausdorff distance between A and B is

dH(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)}.

On the class of compact subsets of X, the Hausdorff distance defines a metric.

Let us explicitly compute the Hausdorff distance for some subspaces of the
Euclidean space.

Example 2.4 Consider the subsets A = {1, 2, 3} and B = {5, 6} of R (equipped
with the Euclidean distance). We have d(A, 6) = 3, d(A, 5) = 2, so sup

b∈B
d(A, b) = 3.

Also, d(3, B) = 2, d(2, B) = 3 and d(1, B) = 4, so sup
a∈A

d(a, B) = 4 and thus

dH(A, B) = 4.

Example 2.5 Let X = R2, A = B((0, 0), 1) and B = {4} × [−3, 3]. (see Figure
2.2) Then sup

a∈A
d(a, B) = 5 and it is attained for a = (−1, 0). Also, sup

b∈B
d(A, b) is

attained at (4,−3) and (4, 3). The origin, (4, 0) and (4, 3) form a right triangle
with cathetes of lengths 3, 4, so the hypothenuse has length 5. The radius of the circle
is 1, so sup

b∈B
d(A, b) = 4. Thus, dH(A, B) = 5.

The following distance notion for metric spaces is slightly more general, since
it does not require the two spaces to be embedded into the same space.

Definition 2.6 Given two metric spaces A, B, the Gromov-Hausdorff distance
between A and B is

dGH(A, B) = inf dH(φ(A), ψ(B)),

where the infimum is taken over all metric spaces X and all isometric embeddings
φ : A → X, ψ : B → X.

This defines a metric on the class of compact metric spaces.
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2.2. Definition of Magnitude for Finite Metric Spaces and First Examples

2.2 Definition of Magnitude for Finite Metric Spaces
and First Examples

Before introducing magnitude, let us fix some notation. For a finite set A,
we denote by #A the number of points in A. Given finite sets X, Y, we say
that ζ is a X × Y-matrix if it has dimensions #X × #Y. We view the matrix as
indexed by the two sets and refer to elements as ζ(x, y) for x ∈ X and y ∈ Y.
By δ we denote the identity matrix (the size can be read from the context).
We write ζT for the transpose of the matrix ζ.

Let us start by defining the magnitude of a matrix.

Definition 2.7 Given an A × A-matrix ζ, a weighting of ζ is an A-vector w such
that ζ · w = 1, where by 1 we denote the A-vector with all entries 1. The magnitude
of the matrix of ζ is |ζ| = ∑

a∈A
w(a).

Relying on the last definition, we can define the magnitude of a metric space:

Definition 2.8 Given a finite metric space (A, d), we define the similarity matrix
of A as the A × A-matrix ζA with elements ζA(a, b) = e−d(a,b) for a, b ∈ A. The
magnitude of the metric space A is the magnitude of the similarity matrix ζA.

Note that if a weighting exists, then the magnitude of a metric space is
well-defined, i.e. it does not depend on the weighting: Given two weightings
w, v on A and using the symmetry of the similarity matrix, we have

∑
a∈A

w(a) = 1T · w = (ζAv)Tw = (vTζT
A)w = vT(ζAw) = vT · 1 = ∑

a∈A
v(a).

0 1 2 3 4

1

2

3

4

−1

−2

−3

A
B

Figure 2.2: The Hausdorff distance between the two spaces is 5.
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2.2. Definition of Magnitude for Finite Metric Spaces and First Examples

Let us see how this plays out in a simple example.

Example 2.9 Let us compute the magnitude of the two-point space A = {a, b}. Let

d := d(a, b). The similarity matrix of A is ζA =

(
1 e−d

e−d 1

)
, which has inverse

ζ−1
A =

1
1 − e−2d

(
1 −e−d

−e−d 1

)
.

We want the weighting to satisfy ζAw = 1, so w = ζ−1
A 1 and we can compute the

weighting

w =
1

1 − e−2d

(
1 −e−d

−e−d 1

)
·
(

1
1

)
=

1
1 − e−2d

(
1 − e−d

1 − e−d

)
.

Hence, the magnitude is

|A| = 2 − 2e−d

1 − e−2d = 1 +
1 − 2e−td + e−2td

1 − e−2td =

1 +
(1 − e−td)2

(1 − e−td)2(1 + e−td)2 = 1 + tanh
d
2

.

As seen in the last example, computing magnitude by relying on the inverse
of the similarity matrix (if it exists) is very practical. This motivates the
following definition:

Definition 2.10 If ζA is invertible, we define the Möbius inversion of A as
µA = ζ−1

A .

In the case where the Möbius inversion exists, the weighting is unique,
wA = µA · 1 and the magnitude can be directly computed as the sum of the
elements of µA.

Our definition does not guarantee the existence of magnitude. In fact, we
will see that magnitude is not always defined. However, given some ‘good’
assumptions on a finite metric space, it follows that it has magnitude. A
good example is that of a homogeneous metric space.

Definition 2.11 A metric space (A, d) is called homogeneous if its isometry group
acts transitively on points.

Example 2.12 (Complete Graphs are Homogeneous) Let Kn be the complete
graph with n vertices, t > 0. Take two vertices v, w ∈ tKn. Then the map
φ : tKn → tKn that swaps v and w and keeps everything else fixed is an isometry,
since the distance between any two points is t. Therefore, the metric space tKn is
homogeneous.

8



2.3. Constructions

We can give an explicit formula for the magnitude of a finite homogeneous
metric space:

Example 2.13 (Magnitude of a Finite Homogeneous Metric Space) We show
that a homogeneous metric space A with n elements has magnitude

|A| = n
∑

a∈A
e−d(x,a)

.

To see this, fix x ∈ A and set S := ∑
a∈A

ζA(x, a) = ∑
a∈A

e−d(x,a). By the defini-

tion of homogeneity, this sum is independent of x. Therefore, we can define a
weighting w(a) = 1

S on A. Indeed, this is a weighting, since for any a′ ∈ A,
∑

a∈A
ζA(a′, a)w(a) = S

S = 1. Therefore, the magnitude of A is ∑
a∈A

1
S = n · 1

S .

This allows us to compute the magnitude of a complete graph.

Example 2.14 (Magnitude of Complete Graph) Consider the complete graph
with n vertices Kn. Then, Kn with distance given by the shortest path-length,
such that the length of one edge is 1 is a homogeneous metric space with n points
such that the distance between any two distinct points is 1 and the distance from
a point to itself is 0. Therefore, we can apply Example 2.13: Fix x ∈ Kn. Then
S = e0 + (n − 1) · e−1 = 1 + (n − 1)e−1, so |Kn| = n

1+(n−1)e−1 .

2.3 Constructions

As with other invariants, we would like to determine the behavior of the
magnitude when a space is obtained from others through certain operations.
This allows us to reduce the problem of computing the magnitude of a metric
space to a (hopefully) simpler one.

2.3.1 Expansion

Intuitively, one might expect to have some kind of monotonicity statement
for magnitude with respect to inclusion and dilation. We will see examples
that show that a general monotonicity result does not exist. However, if a
non-negative weighting exists, we do have a monotonicity statement.

Definition 2.15 Given two metric spaces A and B, we say that A is an expansion
of B if there exists a distance-decreasing surjection A → B.

Lemma 2.16 (Monotonicity with Respect to Expansion) Given two metric spaces
(A, dA) and (B, dB), such that each of them admits a non-negative weighting and A
is an expansion of B, it follows that |A| ≥ |B|.

9



2.3. Constructions

Proof Let f : A → B be a distance-decreasing surjection. As for any sur-
jection, we can choose g : B → A such that f ◦ g = idB. Then for any
a ∈ A, b ∈ B we have dA(a, g(b)) ≥ dB( f (a), f (g(b)) = dB( f (a), b). This
implies that ζB( f (a), b) = e−dB( f (a),b) ≥ e−dA(a,g(b)) = ζA(a, g(b)).

Let wA and wB be non-negative weightings on A, respectively B. Then for
every a ∈ A, we have ∑

b∈B
ζB( f (a), b)wB(b) = 1. Thus

|A| = ∑
a∈A

wA(a) = ∑
a∈A

(
∑
b∈B

ζB( f (a), b)wB(b)

)
wA(a) =

= ∑
a∈A,b∈B

ζB( f (a), b)wB(b)wA(a) ≥ ∑
a∈A,b∈B

ζB(a, g(b))wB(b)wA(a) =

= ∑
b∈B

wB(b)

(
∑
a∈A

ζB(a, g(b))wA(a)

)
= ∑

b∈B
wB(b) = |B|.

And we obtain the desired inequality. □

Note that in particular, if B ⊂ A and both admit a non-negative weighting,
the lemma immediately implies that |B| ≤ |A|.

2.3.2 Unions

We want to adapt the inclusion-exclusion principle for the cardinality of the
union of to finite space to the magnitude. Again, the statement does not hold
in general, however we can add the assumption that the sets project onto each
other in order to obtain the desired principle.

Definition 2.17 Given a metric space X and subspaces A, B ⊂ X, we say that A
projects onto B if ∀a ∈ A, ∃π(a) ∈ A ∩ B such that

∀b ∈ B, d(a, b) = d(a, π(a)) + d(π(a), b).

Then d(a, π(a)) = inf
b∈B

d(a, b).

Proposition 2.18 (Inclusion Exclusion Principle for Magnitude) Let X be a
metric space and subspaces A, B ⊂ X, such that A projects onto B and B projects
onto A. If A, B and A ∩ B have magnitude, so does A ∪ B and

|A ∪ B| = |A|+ |B| − |A ∩ B|.

Proof Let wA, wB, wA∩B be weightings on A, B, respectively A ∩ B. We
define the following weighting on A ∪ B:
For x ∈ A ∪ B set

wA∪B(x) =


wA(x), if x ∈ A \ B
wB(x), if x ∈ B \ A
wA(x) + wB(x)− wA∩B(x), if x ∈ A ∩ B.

10



2.3. Constructions

We show that this is indeed a weighting, so we check that ζA∪BwA∪B = 1.

We treat the following cases:

1. x ∈ A \ B. We compute

∑
a∈A∪B

ζA∪B(x, a)wA∪B(a) =

= ∑
a∈A\B

ζA∪B(x, a)wA∪B(a) + ∑
b∈B\A

ζA∪B(x, b)wA∪B(b) + ∑
a∈A∩B

ζA∪B(x, a)wA∪B(a) =

= ∑
a∈A\B

ζA∪B(x, a)wA(a) + ∑
b∈B\A

ζA∪B(x, b)wB(b)+

+ ∑
a∈A∩B

ζA∪B(x, a)(wA(a) + wB(a)− wA∩B(a)) =

= ∑
a∈A

ζA∪B(x, a)wA(a) + ∑
b∈B

ζA∪B(x, b)wB(b)− ∑
a∈A∩B

ζA∪B(x, a)wA∩B(a)

Observe that since x ∈ A, we have ζA∪B(x, a) = ζA(x, a) for any a ∈ A.
So since wA is a weighting, ∑

a∈A
ζA∪B(x, a)wA(a) = 1.

Also, A projects onto B, so ∃π(x) ∈ A ∩ B such that

∀b ∈ B, d(x, b) = d(x, π(x)) + d(π(x), b).

This means that for any b ∈ B,

ζA∪B(x, b) = e−d(x,b) = e−(d(x,π(x))+d(π(x),b)) = e−d(x,π(x)) · e−d(π(x),b) =

= ζA∪B(x, π(x)) · ζA∪B(π(x), b).

Thus, we can continue the chain of equalities above:

∑
a∈A∪B

ζA∪B(x, a)wA∪B(a) =

= 1 + ∑
b∈B

ζA∪B(x, π(x))ζA∪B(π(x), b)wB(b)−

− ∑
a∈A∩B

ζA∪B(x, π(x))ζA∪B(π(x), a)wA∩B(a) =

= 1 + ζA∪B(x, π(x)) ·
(

∑
b∈B

ζA∪B(π(x), b)wB(b)− ∑
a∈A∩B

ζA∪B(π(x), a)wA∩B(a)

)
=

= 1 + ζA∪B(x, π(x)) · (1 − 1) = 1

11



2.3. Constructions

where we used that π(x) ∈ A ∩ B, so in particular π(x) ∈ B and
wA∩B, wB are weightings, so

∑
b∈B

ζA∪B(π(x), b)wB(b) = ∑
a∈A∩B

ζA∪B(π(x), a)wA∩B(a) = 1.

2. x ∈ B \ A. This case is completely analogous to the one above.

3. x ∈ A ∩ B. As above, we compute

∑
a∈A∪B

ζA∪B(x, a)wA∪B(a) =

= ∑
a∈A

ζA∪B(x, a)wA(a) + ∑
b∈B

ζA∪B(x, b)wB(b)− ∑
a∈A∩B

ζA∪B(x, a)wA∩B(a) =

= 1 + 1 − 1 = 1,

where the last equality follows since x ∈ A ∩ B implies x ∈ A and x ∈ B
and from the definition of a weighting.

Thus, wA∪B defines a weighting. Therefore, we can compute the magnitude
as

|A ∪ B| = ∑
x∈A∪B

wA∪B(x) = ∑
a∈A\B

wA(a) + ∑
b∈B\A

wB(b)+

+ ∑
a∈A∩B

(wA(a) + wB(a)− wA∩B(a)) =

= ∑
a∈A

wA(a) + ∑
b∈B

wB(b)− ∑
a∈A∩B

wA∩B(a) = |A|+ |B| − |A ∩ B| □

A quite trivial example of why the condition that the two sets project onto
each other is necessary is the 2-point space:

Example 2.19 Given the 2-point space {a, b} with a ̸= b we can set A = {a}
and B = {b}. Then |A| = |B| = 1, however, as we have seen in Example 2.9, the
magnitude of A ∪ B is not 2.

Our inclusion-exclusion principle immediately implies the following:

Corollary 2.20 Let X be a finite metric space, A, B ⊂ X, such that A ∩ B = {c}
and ∀a ∈ A, ∀b ∈ B, d(a, b) = d(a, c) + d(c, b). If A and B have magnitude, then
A ∪ B has magnitude |A|+ |B| − 1.

Moreover, if A and B have Möbius inversions µA, µB, then so does A ∪ B and

µA∪B(x, y) =


µA(x, y), if x, y ∈ A, (x, y) ̸= (c, c)
µB(x, y), if x, y ∈ B, (x, y) ̸= (c, c)
µA(c, c) + µB(c, c)− 1, if (x, y) = (c, c)
0, otherwise.

12



2.3. Constructions

Proof This is a direct application of the above proposition. We can see
that A and B project onto each other by setting π(a) = π(b) = c for any
a ∈ A, b ∈ B. Now, the proposition above gives |A ∪ B| = |A|+ |B| − |A ∩ B|
and since the magnitude of the one-point space is 1, we obtain the first part.

Let us now assume that A and B have Möbius inversions µA, µB. We
show that the given formula gives an inverse of the matrix ζA∪B, i.e. that
µA∪B · ζA∪B = δ. We treat the following cases:

(1) a, b ∈ A, (a, b) ̸= (c, c). Then

(µA∪B · ζA∪B)(a, b) = ∑
x∈A∪B

µA∪B(a, x)ζA∪B(x, b) =

= ∑
x∈A

µA(a, x)ζA(x, b) = δa,b.

(2) a, b ∈ B, (a, b) ̸= (c, c). This case follows similarly to the previous one.

(3) (a, b) = (c, c)

(µA∪B · ζA∪B)(c, c) = ∑
x∈A∪B

µA∪B(c, x)ζA∪B(x, c) =

= ∑
x∈A\{c}

µA(c, x)ζA(x, c) + (µA(c, c) + µB(c, c)− 1)ζA∪B(c, c)+

+ ∑
x∈B\{c}

µB(c, x)ζB(x, c) =

= ∑
x∈A

µA(c, x)ζA(x, c) + ∑
x∈B

µB(c, x)ζB(x, c)− 1 = 1 + 1 − 1 = 1.

Therefore, µA∪B · ζA∪B = δ and we are done. □

We can use this to determine the magnitude of any finite subset of R.

Corollary 2.21 Let A = {a0, ..., an} be a subset of R with a0 < ... < an and

set di = ai − ai−1. Then A has magnitude |A| = 1 +
n
∑

i=1
tanh di

2 . (We make the

convention that d0 = dn+1 = ∞ and tanh ∞ = 1)

Proof We show this by induction on n. If n = 0, there is nothing to prove.
For n = 1, the claim follows directly from Example 2.9.

Let n > 1 and assume that the statement holds for any k < n. We can define
the sets B = {a0, ..., an−1} and C = {an−1, an}. By the previous corollary, we
deduce |A| = |B|+ |C| − 1 and by induction hypothesis we get the desired
conclusion. □

The magnitude is not a complete invariant of finite metric spaces. In fact,
there exist non-isometric spaces with the same magnitude function, as shown
by the following example.

13



2.3. Constructions

Example 2.22 Consider the spaces X = {0, 1, 2, 3} ⊂ R and the Y-shaped set Y
with the metric from Example 2.2 (see Figure 2.3), where all edges have equal length.
Clearly, the two spaces are not isometric, but for both we can take a set A containing
3 points ({1, 2, 3} respectively {a, b, c}) and a set B containing 2 points ({3, 4},
respectively {c, d}) as depicted in Figure 2.3. We can now apply Corollary 2.20 to
see that the magnitudes are equal.

BA

3 41 2

(a) X and the sets A, B

A

B

a b

c

d

(b) Y and the sets A, B

Figure 2.3: Magnitude is not a complete invariant of metric spaces.

2.3.3 Tensor Product

One can determine the cardinality of the cartesian product of two sets as the
product of their cardinalities. An analogous relation holds for the magnitude
of the tensor product of two metric spaces.

We can define the tensor product of two metric spaces (A, dA) and (B, dB) as
follows:

Definition 2.23 Let A ⊗ B be the metric space whose point-set is A × B and with
distance given by

d((a, b), (a′, b′)) = dA(a, a′) + dB(b, b′), ∀a, a′ ∈ A, ∀b, b′ ∈ B.

With this definition, we get the following result:

Proposition 2.24 (Magnitude of Tensor Product) If two finite metric spaces A
and B have magnitude, so does their tensor and

|A ⊗ B| = |A| · |B|.

Proof Let wA, wB be weightings on A, respectively B. We define

w(a, b) = wA(a) · wB(b)

14



2.3. Constructions

and show that this is a weighting on A ⊗ B.

Fix x, y ∈ A ⊗ B. Then

∑
(a,b)∈A⊗B

ζA⊗B((x, y), (a, b))w(a, b) = ∑
a∈A,b∈B

e−d((x,y),(a,b))w(a, b) =

= ∑
a∈A,b∈B

e−dA(x,a)e−dB(y,b)wA(a)wB(b) =

= ∑
a∈A

e−dA(x,a)wA(a)

(
∑
b∈B

e−dB(y,b)wB(b)

)
= ∑

a∈A
e−dA(x,a)wA(a) · 1 = 1.

So, w gives a weighting and therefore A ⊗ B has magnitude. We can compute
it as

|A ⊗ B| = ∑
a∈A,b∈B

wA(a)wB(b) = |A| · |B|,

which is exactly the desired equality. □

We can now determine the magnitude of the space FN
q endowed with the

Hamming metric.

Example 2.25 For a prime power q, let Fq be the field with q elements. We can
endow it with a metric defined as d(a, b) = 1 for any a ̸= b. Let N ∈ N and denote

FN
q :=

N⊗
i=1

Fq, endowed with the Hamming metric, i.e. the distance between two

points is the number of positions where the two N-tuples are different. By Proposition
2.24, |FN

q | = |Fq|N . We can view Fq as a complete graph with q vertices, so by

Example 2.36, the magnitude is given by |FN
q | =

(
q

1+(q−1)e−1

)N
.

2.3.4 Fibrations

It is well-known that the Euler characteristic is multiplicative with respect
to fibration. We develop a similar result in the context of the magnitude of
metric fibrations.

Definition 2.26 For two metric spaces A and B, a metric fibration from A to
B is a distance-decreasing map p : A → B such that ∀a ∈ A, ∀b′ ∈ B with
d(p(a), b′) < ∞, ∃ab′ ∈ p−1(b′) satisfying

∀a′ ∈ p−1(b′) : d(a, a′) = d(p(a), b′) + d(ab′ , a′). (2.1)

We want to define a fibre of B as p−1(b) for a fibration p and some b ∈ B.
It is important to note that p−1(b) is independent of b (up to isometry), as
shown by the following lemma.

Lemma 2.27 Let p : A → B be a fibration of metric spaces and b, b′ ∈ B with
d(b, b′) < ∞. Then p−1(b) and p−1(b′) are isometric.
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2.3. Constructions

Proof Fix a ∈ p−1(b). We show that ab′ is unique. Assume there exist a1
b′ , a2

b′ ,
both satisfying (2.1).
Take a′ = a1

b′ , ab′ = a1
b′ in (2.1). Then

d(a, a1
b′) = d(b, b′) + d(a1

b′ , a1
b′) = d(b, b′). (2.2)

Now, take a′ = a1
b′ , ab′ = a2

b′ in (2.1). Then d(a, a1
b′) = d(b, b′) + d(a2

b′ , a1
b′).

The two equations, together with finiteness of d(a, c), imply d(a2
b′ , a1

b′) = 0, so
by the definition of a metric, a2

b′ = a1
b′ .

Therefore, we can define a map γb,b′ : p−1(b) → p−1(b′), by a 7→ ab′ . We show
that it is distance-decreasing: for a, c ∈ p−1(b)

d(b, b′) + d(γb,b′(a), γb,b′(c)) = d(b, b′) + d(ab′ , γb,b′(c)) =
= d(a, γb,b′(c)) ≤ d(a, c) + d(c, γb,b′(c)) = d(a, c) + d(b, b′)

where the last equality follows from (2.2). Since d(b, b′) is finite, we obtain

d(γb,b′(a), γb,b′(c)) ≤ d(a, c).

By symmetry, there exists a distance-decreasing map γb′,b : p−1(b′) → p−1(b)
defined in the same way. We check that these are mutually inverse. Fix
a′ ∈ p−1(b′). Then γb,b′ ◦ γb′,b(a′) = γb,b′(a′b), which we denote by x. Now
Equation (2.1) for a = a′b gives d(a′b, a′) = d(b, b′) + d(x, a′). But, by Equation
(2.2), d(a′b, a′) = d(b, b′), so d(x, a′) = 0, and therefore x = a′. Thus, γb,b′ ◦
γb′,b = idp−1(b′). Completely analogously, it follows γb′,b ◦ γb,b′ = idp−1(b).
Hence, the two maps are mutually inverse and distance-decreasing, which
implies that they are isometries and we are done. □

The lemma now allows us to introduce the following definition:

a

a′

ab′

p(a)

p

A

B

b′

Figure 2.4: Vizualization of fibration
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Definition 2.28 Given a nonempty metric space, such that all distances are finite
and a fibration p : A → B, we say that the space p−1(b) is the fibre of B.

By Lemma 2.27, the fibre of B is well-defined up to isometry. The following
theorem gives the desired result about fibres.

Theorem 2.29 Let p : A → B be a fibration of finite metric spaces, such that B is
nonempty with finite distances and F the fibre of B. If F and B have magnitude, then
so does A and |A| = |B| · |F|.

Proof Let wB be a weighting on B and for each b ∈ B let wb be a weighting
on p−1(b). For a ∈ A, define wA(a) = wp(a)(a) · wB(p(a)). We show that this
is indeed a weighting. Fix a′ ∈ A and for b ∈ B let a′b ∈ p−1(b) be as in (2.1).
Then

∑
a∈A

ζA(a′, a)wA(a) = ∑
b∈B

∑
a∈p−1(b)

e−d(a′,a)wA(a) =

= ∑
b∈B

∑
a∈p−1(b)

e−d(p(a′),b)−d(a′b,a) · wb(a)wB(b) =

= ∑
b∈B

e−d(p(a′),b)wB(b)

 ∑
a∈p−1(b)

e−d(a′b,a) · wb(a)

 =

= ∑
b∈B

e−d(p(a′),b)wB(b) · 1 = 1.

Where in the last two equalities, we have used that wB and wb are weightings.
Therefore, wA is a weighting and

|A| = ∑
a∈A

wA(a) = ∑
b∈B

∑
a∈p−1(b)

wb(a)wB(b) =

= ∑
b∈B

wB(b) ·

 ∑
a∈p−1(b)

wb(a)

 = ∑
b∈B

wB(b) · |F| = |B| · |F|. □

Let us start with a somewhat trivial example of a fibration.

Example 2.30 Consider the product projection p : B ⊗ F → B. This is a fibration
and by Theorem 2.29, |B ⊗ F| = |B| · |F|, which is consistent with Proposition 2.24.

Let us also look at a more interesting example, taken from [4].

Example 2.31 Consider the example represented in Figure 2.5, where B is a complete
graph with three vertices and A is a graph consisting of 6 vertices, as in the figure.
We view them as metric spaces with distance given by the shortest path-length,
where the length of one edge is equal to 1 (see Example 2.2). We consider the map
p : A → B that takes the three inner vertices of A to corresponding vertices in B and

17



2.3. Constructions

the three outer vertices of A to the corresponding ones in B. Then this is a metric
fibration, as can be seen by directly checking that Equation (2.1) is satisfied for any
pair (a, b′) ∈ A × B. A fibre is given by F = K2, the complete graph with two
points. Therefore, by Theorem 2.29, |A| = |F| · |B|. Now by Example 2.14, we have
|B| = 3

1+2e−1 and |F| = 2
1+e−1 . Together, these results imply that |A| = 6

1+3e−1+2e−2 .

2.3.5 Constant-Distance Gluing

We want to see what happens to the magnitude if we ‘glue’ together two
spaces.

Definition 2.32 Given metric spaces (A, dA) and (B, dB) and D ≥ max(diam(A), diam(B))
2 ,

we define A +D B as the metric space with points A ⊔ B and metric

d(x, y) =


dA(x, y), if x, y ∈ A
dB(x, y), if x, y ∈ B
D, otherwise.

Proposition 2.33 Let A, B be finite metric spaces, D ≥ max(diam(A), diam(B))
2 . If A

and B have magnitude and |A| · |B| ̸= e2D, then A +D B has magnitude

|A +D B| = |A|+ |B| − 2e−D|A||B|
1 − e−2D|A||B| .

Proof As above, let us denote dA, dB, d the distances in A, B and A +D B.
Let wA and wB be weightings on A, respectively B. We define

w(a) =
1 − e−D|B|

1 − e−2D|A||B|wA(a) for a ∈ A,

w(b) =
1 − e−D|A|

1 − e−2D|A||B|wB(b) for b ∈ B.

A

B

p

Figure 2.5: Example of a nontrivial fibration
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2.4. The Magnitude Function

We show that this is a weighting. Fix a′ ∈ A. Then

∑
x∈A+D B

ζA+D B(a′, x)w(x) = ∑
a∈A

e−d(a′,a)w(a) + ∑
b∈B

e−d(a′,b)w(b) =

= ∑
a∈A

e−dA(a′,a) 1 − e−D|B|
1 − e−2D|A||B|wA(a) + ∑

b∈B
e−D 1 − e−D|A|

1 − e−2D|A||B|wB(b) =

=
1 − e−D|B|

1 − e−2D|A||B| ∑
a∈A

e−dA(a′,a)wA(a) + e−D 1 − e−D|A|
1 − e−2D|A||B| ∑

b∈B
wB(b) =

=
1 − e−D|B|

1 − e−2D|A||B| · 1 + e−D 1 − e−D|A|
1 − e−2D|A||B| · |B| =

=
1 − e−D|B|+ e−D|B| − e−2D|A||B|

1 − e−2D|A||B| = 1.

We can do the same computation for fixed b′ ∈ B, and conclude that w
defines a weighting. Therefore, we can compute the magnitude as

|A +D B| = ∑
x∈A+D B

(a′, x)w(x) = ∑
a∈A

w(a) + ∑
b∈B

w(b) =

= ∑
a∈A

1 − e−D|B|
1 − e−2D|A||B|wA(a) + ∑

b∈B

1 − e−D|A|
1 − e−2D|A||B|wB(b) =

=
1 − e−D|B|

1 − e−2D|A||B| · |A|+ 1 − e−D|A|
1 − e−2D|A||B| · |B| =

|A|+ |B| − 2e−D|A||B|
1 − e−2D|A||B| .□

This theorem is useful for computing the magnitude of certain graphs, as we
will see in the next section.

2.4 The Magnitude Function

Magnitude does not behave predictably with respect to scaling. In fact,
viewing the magnitude of all possible rescalings of a space, rather than
just the magnitude gives significantly more information. This motivates the
following definition:

Definition 2.34 The magnitude function is a partially defined function (0, ∞) → R,
taking t 7→ |tA|.

Let us first return to the example of the 2-point space.

Example 2.35 Let A = {a, b} and d = d(a, b). We can directly apply Example 2.9
on the space tA, the 2-point space where the distance between the two points is td.
Thus, |tA| = 1 + tanh td

2 .

We can now extend Example 2.14 to determine the magnitude function of a
complete graph.
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2.4. The Magnitude Function

Figure 2.6: Magnitude function for K3,2

Example 2.36 (Magnitude Function of a Complete Graph) Consider the com-
plete graph with n vertices Kn. Then, tKn with the metric from Definition 2.2 is a
homogeneous space with n points such that the distance between any two distinct
points is t and the distance from a point to itself is 0. Therefore, we can apply
Example 2.13: Fix x ∈ Kn. Then S = e0 + (n − 1) · e−t = 1 + (n − 1)e−t, so
|tKn| = n

1+(n−1)e−t .

Let us consider some examples that show that the magnitude does not always
behave as one might hope.

The following is a fruitful counterexample. It shows that the magnitude
function is not necessarily defined everywhere, it is not always increasing
and it can take negative values.

Example 2.37 (Pathological Behaviour of Magnitude Function) Consider the
bipartite graph K3,2 (see Figure 2.7a). We can pick A as the three elements on one
part, B as the two elements in the other. Then both tA and tB are complete graphs
with distance 2t between their points. Thus by Example 2.36, we have |tA| = 3

1+2e−2t

and |tB| = 2
1+e−2t We can pick D = t in Proposition 2.33. Then tK3,2 = tA +D tB.

So with Proposition 2.33, we can compute the magnitude function:

|tK3,2| =
3

1+2e−2t +
2

1+e−2t − 2e−t 3
1+2e−2t

2
1+e−2t

1 − e−2t 3
1+2e−2t

2
1+e−2t

=
5 − 12e−t + 7e−2t

1 − 3e−2t + 2e−4t =

=
(5 − 7e−t)(1 − e−t)

(1 − 2e−2t)(1 + e−t)(1 − e−t)
=

5 − 7e−t

(1 − 2e−2t)(1 + e−t)
.

This shows that the magnitude function of K3,2 is undefined for t = log
√

2. This
magnitude function also has negative values, as well as larger values than the number
of points. Also, the magnitude function is decreasing on certain intervals as can be
seen clearly from the plot (see Figure 2.6).
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2.4. The Magnitude Function

B

A

(a) K3,2 and the sets A, B

BA

(b) G and the sets A, B

Figure 2.7

The following is an example of a metric space, whose magnitude function
does not tend to 1 as t shrinks.

Example 2.38 (Magnitude does not always go to 1 for t → 0) Consider the graph
G, obtained from the bipartite graph K3,3 with two pairs of 3 vertices, where we add
3 additional edges, uniting all vertices in the second group (see Figure 2.7b). Then,
in the above proposition, we can take A as the first group of three points and B as
the second one. Fix t > 0. Then for each t, the distance between any two points
of tA is 2t and the distance between any two points of tB is t. Thus, we can take
D = t in Proposition 2.33 and we see tG = tA +D tB. Also, we can view tA and
tB as complete graphs with edge lengths 2t, respectively t, so by Example 2.36, their
magnitudes are |tA| = 3

1+2e−2t and |tB| = 3
1+2e−t . Thus, Proposition 2.33 gives

|tG| =
3

1+2e−t +
3

1+2e−t − 2e−t 3
1+2e−t

3
1+2e−t

1 − e−2t 3
1+2e−t

3
1+2e−t

=
3 + 6e−t + 3 + 6e−2t − 18e−t

1 + 2e−t + 2e−2t + 4e−3t − 9e−2t =

=
6(1 − 2e−t + e−2t)

(1 + 4e−t)(1 − 2e−t + e−2t)
=

6
1 + 4e−t .

Now note that lim
t→0

|tG| = 6
5 , which is clearly different from 1.

Despite the examples we have just seen, the magnitude function does behave
well for t sufficiently large.

Proposition 2.39 Given a finite metric space A, the following hold:

(1) tA has Möbius inversion and thus magnitude for sufficiently large t > 0.

(2) For t sufficiently large, there is a unique positive weighting on A.

(3) For t sufficiently large, the magnitude function of A is increasing.

(4) |tA| → #A as t → ∞.
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Proof We start by noting that any ζ ∈ GL(A) has weighting wζ(a) = ∑
b∈A

ζ−1(a, b).

Let us write ζ̃ for the adjoint matrix of ζ. We then have an explicit formula
for the inverse and deduce wζ(a) = ζ̃(a,b)

det(ζ) .

(1) Note that as t becomes larger, ζtA → δ. In particular, ζtA is invertible for
t sufficiently large. This means precisely that tA has Möbius inversion
and therefore magnitude.

(2) The explicit formula we gave in the beginning of the proof, along with
continuity of the determinant and the adjoint show that for each a ∈ A,
the map ζ 7→ wζ(a) is continuous on GL(A).

Now wδ(a) = 1, ∀a ∈ A, so by continuity, there exists a neighborhood
U ⊂ GL(A) of δ such that wδ(a) > 0, ∀ζ ∈ U, ∀a ∈ A. But ζtA → δ
for t → ∞, so for t large enough, ζtA ∈ U, which is exactly what we
claimed.

(3) From the last point, it follows that for t < u sufficiently large, the
weightings wtA and wuA are positive and tA = t

u · uA, meaning that uA
is an expansion of tA. By the lemma above, we can deduce |tA| ≤ |uA|.

(4) By continuity (for t sufficiently large), it follows that

lim
t→∞

|tA| = | lim
t→∞

ζtA| = |δ| = #A.

2.5 Magnitude of Finite Positive Definite Spaces

The examples in the previous chapters have shown that the behaviour of the
magnitude function can sometimes be pathological. Therefore, we would like
to restrict ourselves to a special class of metric spaces, such that magnitude
has ’nice’ properties (it is defined, non-decreasing, etc. ). A category of spaces
that satisfies this is that of positive definite metric spaces.

Definition 2.40 A finite metric space A is called positive definite if its similarity
matrix ζA is positive definite. A is called positive semidefinite, if its similarity
matrix is positive semidefinite.

We start by noting that a positive definite matrix is invertible, so a positive
definite space has Möbius inversion and therefore it has magnitude and a
unique weighting.

The following way of viewing the magnitude of a positive-definite metric
space will turn out particularly useful for generalizing to compact metric
spaces.
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Proposition 2.41 A positive definite metric space A has magnitude

|A| = sup
v∈RA\{0}

(
∑

a∈A
v(a)

)2

vTζAv
,

where the supremum is attained at v if and only if v is a nonzero scalar multiple of
the (unique) weighting wA on A.

Proof ζA is positive definite, so we can apply the Cauchy-Schwarz inequality
to obtain (vTζAv)(wTζAw) ≥ (vTζAw)2, for any v, w ∈ RA, with equality if
and only if v = λw for some λ ∈ R. Now take w = wA. Then ζAwA = 1 and
wT

AζAwA = |A|, so the inequality above becomes

(vTζAv) · |A| ≥
(

∑
a∈A

v(a)

)2

, i.e. |A| ≥

(
∑

a∈A
v(a)

)2

vTζAv
,

with equality if and only if v is a scalar multiple of wA, which gives the
conclusion. □

The last proposition quickly implies that in the case of finite positive definite
metric spaces, magnitude is monotone with respect to inclusion.

Corollary 2.42 If A is a positive definite metric space and B ⊂ A, then |B| ≤ |A|.

Proof Let w be the weighting on B. Define v ∈ RA as v(b) = w(b) for any
b ∈ B and 0 otherwise. Then the last proposition implies

|B| =

(
∑

a∈A
w(a)

)2

wTζBw
=

(
∑

a∈A
v(a)

)2

vTζAv
≤ |A|,

which is what we wanted to show. □

A further property of magnitude that is easily obtained for finite positive
definite metric spaces is the following:

Corollary 2.43 A nonempty positive definite finite metric space A has magnitude
at least 1.

Proof Take v as the vector with all entries 1 in RA. Then ∑
a∈A

v(a) = #A and

∀a, b ∈ A, d(a, b) ≥ 0, so ζA(a, b) = e−d(a,b) ≤ 1. Therefore,

vTζAv = ∑
a,b∈A

ζA(a, b) ≤ ∑
a,b∈A

1 = (#A)2

and hence, |A| ≥

(
∑

a∈A
v(a)

)2

vTζAv = (#A)2

(#A)2 = 1. □
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The following proposition gives us an important class of examples for positive
definite metric spaces.

Proposition 2.44 Every finite subspace X of R (with the euclidean metric) is
positive-definite with positive weighting.

Proof We say that a metric space is good if it has Möbius inversion µA and
∀v ∈ RA : vTµAv ≥ max

a∈A
v(a)2. Let A, B ⊂ X such that A ∩ B = {c} and

∀a ∈ A, b ∈ B : d(a, b) = d(a, c) + d(b, c).

We show that if A and B are good, then so is their union. Let v ∈ RA∪B.
Then by Corollary 2.20, A ∪ B has Möbius inversion µA∪B and

vTµA∪Bv = v|TAµAv|A + v|TBµBv|B − v|TA∩Bv|A∩B = v|TAµAv|A + v|TBµBv|B − v(c)2.

Let x ∈ A ∪ B. We can assume without loss of generality that x ∈ A. A is
good, so v|TAµAv|A ≥ v(x)2. B is good, so v|TBµBv|B ≥ v(c)2. Therefore, we
have vTµA∪Bv ≥ v(x)2, so it follows that A ∪ B is good.

Let us now conclude by induction. Clearly, every metric space with 0, 1, 2
points is good. Let X be a subset of R with n points. We assume that
n ≥ 3 and and that any subset of R with n − 1 points is good. We
can order the points in X in an increasing order, say X = {x1, ..., xn}
with x1 < x2 < ... < xn. Let A = {x1, ..., xn−1} and B = {xn−1, xn}. Then
X = A ∪ B with A ∩ B = {xn−1} and for all a ∈ A and b ∈ B, we have
d(a, b) = d(a, xn−1) + d(b, xn−1) (note that this is where we use the assump-
tion that X is a subset of R). By induction hypothesis, the set A is good. B
has two elements and is therefore good, so the considerations above show
that X must also be good. Thus every subset of R is good and in particular
positive-definite with positive weighting. □
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Chapter 3

Magnitude of Compact Metric Spaces

After having discussed magnitude of finite metric spaces, we analyse how
this notion can be generalized to infinite ones. This chapter is based on
the approach of Meckes in [2]. We offer some possibilities for defining
the magnitude of a compact metric space, and discuss advantages and
disadvantages of each definition. We focus on the class of positive definite
metric spaces, where we show that the four definitions for the magnitude
of compact metric spaces are equivalent. In the process, we show our
first continuity result: lower semicontinuity of magnitude. In the end, we
introduce an invariant similar to magnitude called the maximum diversity
and formulate a continuity result for the maximum diversity.

Throughout this section, we restrict the notion of metric to finite-valued
maps, satisfying the properties in Definition 2.1.

3.1 Measure Theoretic Preliminaries

Since two of the definitions for magnitude we suggest rely on measures, we
start this section with some basic measure theoretic notions. We introduce
the definition of a signed measure and total variation, based on [5] and the
support of a measure based on [6].

Throughout this section, let X be a space and M a σ-algebra of subsets of X.

Definition 3.1 A (signed) measure on M is a map ν : M → (−∞, ∞], such that

for any countable set {Ej}∞
j=1 of pairwise disjoint sets in M, ν(

∞⋃
j=1

Ej) =
∞
∑

j=1
ν(Ej).

By a positive measure we mean a signed measure with non-negative values.

Example 3.2 Let µ be a positive measure and f : E → R a µ-measurable, µ-
integrable function f , where by µ- integrable, we mean

∫
E f−dµ < ∞ and

∫
E f+dµ
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3.1. Measure Theoretic Preliminaries

exists. Then ν(A) :=
∫

A f dµ for subsets A ⊂ E is a signed measure, which can
take negative values depending on the function f .

Definition 3.3 Given a set X, the Dirac delta measure δx is δx(A) =

{
1, if x ∈ A
0, otherwise.

Definition 3.4 The total variation of a signed measure ν is

|ν|(E) = sup
∞

∑
j=1

|ν(Ej)|,

where the sup is taken over all sequences {Ej}∞
j=1 of pairwise disjoint elements in

M with
∞⋃

j=1
Ej = E.

Note that the total variation is additive.

Definition 3.5 The support of a positive measure µ on X is the set

supp(µ) = {x ∈ X : µ(U) > 0 for each neighborhood U of x}.

Example 3.6 We determine the support of two positive measures on Rn.

• The support of the Lebesgue measure λ on Rn is Rn, since ∀x ∈ Rn, every
neighborhood of x contains some open ball, which has positive Lebesgue measure,
so any neighborhood of x has positive Lebesgue measure, and thus x ∈ supp(λ).

• The support of the Dirac measure δa for a ∈ Rn is {a}, since every neighborhood
of a contains a and has therefore positive measure, so a ∈ supp(δa). However,
for any x ̸= a, there exists a neighborhood of x that does not contain a, so this
neighborhood has measure 0, and thus x /∈ supp(δa)

By relying on the last definition, we can define the support of a signed
measure.

Definition 3.7 The support of a signed measure µ on X is supp(µ) =supp|µ|.

We use the following notation for spaces of measures. Let A be a metric
space. We denote by

• M(A) the space of finite signed Borel measures on A;

• M+(A) the cone of positive measures on A;

• FM(A) the space of finitely supported signed measures on A;

• FM+(A) the cone of finitely supported positive measures on A.

We equip M(A) with the norm ||µ|| = |µ|(A), where |µ| is the total variation
of µ.
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3.2. Generalizations of Magnitude to Compact Metric Spaces

3.2 Generalizations of Magnitude to Compact Metric
Spaces

We introduce 4 possible generalizations of magnitude to infinite metric spaces.
Let (A, d) be a compact metric space.

(1) The first notion of magnitude that we introduce is a naive generalization:
|A| := sup

B⊂A finite
|B|. In general, this definition does not coincide with

the notion of magnitude we have seen for finite metric spaces, since in
general, magnitude is not monotone with respect to inclusion. However,
we have seen in in Corollary 2.42 that that is the case for positive definite
metric spaces.

(2) Another option is to define magnitude by approximating a compact
metric space using finite subspaces. Given a sequence {Ak}k of finite
subspaces of A such that lim

k→∞
Ak = A (where the limit is taken in dH,

see Definition 2.3), we set |A| := lim
l→∞

|Ak|. A priori, it is not clear that

this definition does not depend on the choice of the sequence {Ak}k.

(3) The next definition is motivated by the classical notion of ‘transforming
sums into integrals’.

Definition 3.8 A weight measure for (A, d) is a finite signed measure
µ ∈ M such that

∫
A e−d(x,y)dµ = 1, ∀x ∈ A.

If A possesses a weight measure, we define the magnitude as |A| := µ(A).

As in the case of finite metric spaces, this definition does not depend of
a choice of the weight measure: Let µ and ν be two weight measures on
A. Then we have

µ(A) =
∫

A
1dµ(x) =

∫
A

(∫
A

e−d(x,y)dν(y)
)

dµ(x) =

=
∫

A

(∫
A

e−d(x,y)dµ(x)
)

dν(y) =
∫

A
1dν(y) = ν(A),

where for the third equality we have used Fubini’s theorem. However,
there is no general guarantee for the existence of a weight measure.

(4) We introduce our last definition for the magnitude based on a symmetric
bilinear form on M(A), by generalizing Proposition 2.41. For signed
measures µ, ν ∈ M(A) define

ZA(µ, ν) =
∫

A

∫
A

e−d(x,y)dµ(x)dν(y).
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3.3. Equivalence of Definitions of Magnitude for Positive Definite Spaces

Linearity of the integral implies bilinearity of this map, whereas Fubini’s
theorem implies symmetry. We can now define the magnitude

|A| := sup{ µ(A)2

ZA(µ, µ)
: µ ∈ M(A), ZA(µ, µ) ̸= 0}.

In this thesis, by magnitude of a compact metric space A, we mean magnitude
in the sense of the last definition. The advantage of this convention is that
we do not have to worry about existence, since the supremum of a set always
exists if we set it to ∞ if the set is unbounded. We mainly work with positive
definite metric spaces, in which case all four definitions are equivalent, so
there is little source of confusion.

3.3 Equivalence of Definitions of Magnitude for Positive
Definite Spaces

In this section, we show that all definitions above are equivalent for compact
positive definite metric spaces. In the process, we also show our first continu-
ity result, in the form of lower semicontinuity of magnitude (Theorem 3.21).

Definition 3.9 A metric space (A, d) is positive definite, if all its finite subspaces
are positive definite. For finite subspaces, positive definitenes is understood as in
Definition 2.40. Similarly, a metric space is positive semidefinite, if all its finite
subspaces are positive semidefinite.

As in the case of finite spaces, magnitude is increasing with respect to
inclusion in positive definite metric spaces:

Proposition 3.10 For a compact, positive definite metric space A and B ⊂ A, we
have |B| ≤ |A|.

Proof Let (A, d) be a positive definite metric space and B ⊂ A. Given a mea-
sure µB ∈ M(B) we can define µA ∈ M(A) as µA(E) = µB(E ∩ B), ∀E ⊂ A.
Then µA(A) = µB(B) and

ZA(µA, µA) =
∫

A

∫
A

e−d(x,y)dµA(x)dµA(y) =

=
∫

A

(∫
B

e−d(x,y)dµA(x) +
∫

A\B
e−d(x,y)dµA(x)

)
dµA(y) =

=
∫

A

(∫
B

e−d(x,y)dµA(x)
)

dµA(y) =

=
∫

B

(∫
B

e−d(x,y)dµA(x)
)

dµA(y) = ZB(µB, µB).
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3.3. Equivalence of Definitions of Magnitude for Positive Definite Spaces

The computation above implies µ(A)2

ZA(µA,µA)
= µ(B)2

ZB(µB,µB)
, and, in particular,

|A| = sup{ µ(A)2

ZA(µ,µ) : µ ∈ M(A), ZA(µ, µ) ̸= 0} ≥ µ(B)2

ZB(µB,µB)
. Since µB ∈ M(B)

was arbitrary, we can take the supremum over all such µB and obtain the
desired inequality. □

The modulus of continuity is useful in formulating our next results.

Definition 3.11 Let (A, d) be a metric space. The modulus of continuity of an
absolutely continuous function f : A → R is the function

ω f : (0, ∞) → [0, ∞), w f (ε) = sup{| f (x)− f (y)| : x, y ∈ A, d(x, y) < ε}.

The following fact about the modulus of continuity of an exponential function
will turn out useful:

Example 3.12 For the exponential function f : (0, ∞) → R, x 7→ e−x, we have a
simple upper bound for the modulus of continuity. Indeed, ∀x, y ∈ R, the mean
value theorem implies that ∃c ∈ (0, ∞) such that f ′(c)(x − y) = f (x) − f (y).
Therefore, |e−x − e−y| = e−c|x − y| ≤ |x − y|, so ω f (ε) ≤ ε.

The following lemmas are purely technical, but very useful in this section’s
proofs.

Lemma 3.13 Let A, B be compact metric subspaces of some metric space X and
µ ∈ M(A). Then ∀ε > dH(A, B), ∃ν ∈ M(B) such that

• ν(B) = µ(A),

• ||ν|| ≤ ||µ|| and

• for any uniformly continuous map f : X → R: |
∫

A f dµ−
∫

B f dν| ≤ ||µ||ω f (ε).

Furthermore, if µ is positive, then ν can also be taken positive.

Proof Fix ε > dH(A, B). Then ∀a ∈ A, ∃b ∈ B : d(a, b) < ε. This means that
A ⊂ ⋃

b∈B
B(b, ε). Compactness of A now implies that there exist x1, ..., xN ∈ B

such that A ⊂
N⋃

i=1
B(xi, ε).

We define the sets U1 = B(x1, ε) and Uj = B(xj, ε) \
j−1⋃
i=1

B(xi, ε).These also

cover A and they are disjoint. Set ν :=
N
∑

j=1
µ(Uj ∩ A)δxj .

We show that this measure satisfies the desired properties.

• ν(B) =
N
∑

j=1
µ(Uj ∩ A)δxj(B) =

N
∑

j=1
µ(Uj ∩ A) = µ(A), where we have

used that ∀j : xj ∈ B, so δxj(B) = 1 and that the sets Uj are disjoint,
covering A.
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3.3. Equivalence of Definitions of Magnitude for Positive Definite Spaces

• We have

||ν|| = |ν|(B) =
N

∑
j=1

|µ(Uj ∩ A)δxj |(B) =
N

∑
j=1

|µ(Uj ∩ A)| ≤

≤ |µ|(A) = ||µ||.

• For a uniformly continuous map f : X → R, we have∣∣∣∣∫A
f dµ −

∫
B

f dν

∣∣∣∣ =
∣∣∣∣∣ N

∑
j=1

∫
Uj∩A

f dµ −
N

∑
j=1

µ(Uj ∩ A) f (xj)

∣∣∣∣∣ =
=

∣∣∣∣∣ N

∑
j=1

∫
Uj∩A

( f (x)− f (xj))dµ(x)

∣∣∣∣∣ ≤ N

∑
j=1

∫
Uj∩A

| f (x)− f (xj)|d|µ|(x) ≤

≤
N

∑
j=1

∫
Uj∩A

ω f (ε)d|µ|(x) =
N

∑
j=1

|µ|(Uj ∩ A)ω f (ε) = ω f (ε)|µ|(A) =

= ||µ||ω f (ε).

Finally, if µ is positive, the ν we have defined above is also positive as a sum
of positive measures. □

Lemma 3.14 Let A, B be compact metric subspaces of some metric space X, µ ∈ M(A),
ε > 0 and ν ∈ M(B) such that ν(B) = µ(A), ||ν|| ≤ ||µ|| and for any uniformly
continuous map f : X → R, |

∫
A f dµ −

∫
B f dν| ≤ ||µ||ω f (ε). Then

|ZA(µ, µ)− ZB(ν, ν)| ≤ 2ε||µ||2.

Proof We define the maps fµ : A → R, fµ(x) =
∫

A e−d(x,z)dµ(z) and
fν : A → R, fν(x) =

∫
B e−d(x,z)dν(z). Note that Fubini’s theorem implies

that
∫

B fµdν =
∫

A fνdµ. For any x ∈ A, we have

| fµ(x)− fν(x)| = |
∫

A
e−d(x,z)dµ(z)−

∫
B

e−d(x,z)dν(z)| ≤ ||µ||ωe−d(x,·)(ε) ≤ ||µ||ε.

Therefore,

|ZA(µ, µ)− ZB(ν, ν)| = |
∫

A
fµdµ −

∫
B

fνdν| ≤

≤ |
∫

A
fµdµ −

∫
A

fνdµ|+ |
∫

B
fµdν −

∫
B

fνdν| ≤

≤
∫

A
| fµ − fν|d|µ|+

∫
B
| fµ − fν|d|ν| ≤

∫
A

ε||µ||d|µ|+
∫

B
ε||µ||d|ν| =

= ε||µ|| · |µ|(A) + ε||µ|| · |ν|(A) = ε||µ||2 + ε||µ|| · ||ν|| ≤ 2||µ||2ε. □
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3.3. Equivalence of Definitions of Magnitude for Positive Definite Spaces

Lemma 3.15 Let A be a compact metric space, µ ∈ M(A) and ε > 0. Then there
exists a finite subset B ⊂ A and a measure ν ∈ M(B) as in Lemma 3.13 such that
|ZA(µ, µ)− ZB(ν, ν)| ≤ 2ε||µ||2. Furthermore, if µ is positive, then ν can also be
chosen positive.

Proof The balls B(x, ε) for all x ∈ A clearly form a covering of A. By
compactness of A, there exists a finite subset B such that A ⊂ ⋃

x∈B
B(x, ε). This

implies d(a, B) < ε, ∀a ∈ A. Furthermore, B ⊂ A implies d(b, A) = 0, ∀b ∈ B,
so dH(A, B) < ε. Thus, we can apply Lemma 3.13 to find a measure ν ∈ M(B)
such that µ(A) = ν(B), ||ν|| ≤ ||µ|| and |

∫
A f dµ −

∫
B f dν| ≤ ||µ||ω f (ε) for

every absolutely continuous map f : X → R. The fact that if µ is positive,
ν can also be chosen positive follows directly from the same statement in
Lemma 3.13. Now, applying Lemma 3.14, we directly obtain the conclusion.□

Let us introduce a characterization of positive (semi-)definiteness of the
metric space A based on the bilinear form ZA.

Lemma 3.16 A compact metric metric space A is positive semidefinite if and only if
ZA is a positive semidefinite bilinear form on M(A). Furthermore, if ZA is positive
definite, then A is positive definite.

Proof We start by showing the equivalence for B finite.

Let B be a finite space and µ a measure on B. Then,

ZB(µ, µ) =
∫

B

∫
B

e−d(x,y)dµ(x)dµ(y) =

= ∑
x,y∈B

e−d(x,y)µ({x})µ({y}) = (µ({x}))T
x∈BζB(µ({y}))y∈B

For an arbitrary vector v = (v(x))x∈B we can define a measure on B as
µ(E) = ∑

x∈E
v(x) for each E ⊂ B. Conversely, each measure µ on B gives a

vector v = (µ({x}))x∈B. Thus, the equality above shows that

vTζBv ≥ 0 ⇐⇒ ZB(µ, µ) ≥ 0,

so B is positive semidefinite if and only if ZB is positive semidefinite.

In the case of finite spaces, we also have that B is positive definite if and
only if ZB is positive definite, by the same reasoning as above with strict
inequality instead of ≥.

Let us move on to the general case.

⇐= We assume that ZA is positive semidefinite. Let B be a finite subset
of A. Given a measure µB on B, we extend it to µ ∈ M(A) by setting
µ(E) = µB(E ∩ B) for any E ⊂ A. Then ZB(µB, µB) = ZA(µ, µ) ≥ 0, so ZB
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3.3. Equivalence of Definitions of Magnitude for Positive Definite Spaces

is positive semidefinite and since B is finite, this implies that B is positive
semidefinite. The definition of positive semidefiniteness of A now implies
that the metric space A is positive semidefinite.

=⇒ Conversely, let us assume assume that A is positive semidefinite. Take
an arbitrary measure µ ∈ M(A) and ε > 0. By Lemma 3.15, there exists a
finite subset B ⊂ A and a measure ν ∈ M(B) such that

|ZA(µ, µ)− ZB(ν, ν)| ≤ 2ε||µ||2.

As a finite subset of A, B is positive semidefinite, so the computation we
have started with implies ZB(ν, ν) ≥ 0. Thus, the inequality above gives
ZA(µ, µ) ≥ −2ε||µ||2. Since, ε was arbitrary, it follows ZA(µ, µ) ≥ 0, so we
are done.

If we assume that ZA is positive definite, we can proceed as in the inverse
implication, replacing ≥ with strict inequality. □

The fact that our definition of magnitude coincides with the one relying on
weight measures follows immediately from the following theorem:

Theorem 3.17 Let A be a compact, positive definite metric space. The supremum in
|A| = sup{ µ(A)2

ZA(µ,µ) : µ ∈ M(A), ZA(µ, µ) ̸= 0} is attained for a measure µ if and
only if µ is a nonzero scalar multiple of some weight measure on A. In particular, if
µ is a weight measure, then |A| = µ(A).

Proof ⇐= Let µ be a weight measure for A. We observe that in this case,
for any ν ∈ M(A), ZA(µ, ν) = ν(A). Since A is positive definite, Lemma
3.16 implies that ZA is a positive semidefinite bilinear form on M(A), and
thus it satisfies the Cauchy-Schwarz inequality. Hence, ∀ν ∈ M(A), we have
ν(A) = ZA(µ, ν) ≤

√
ZA(µ, µ)ZA(ν, ν) =

√
µ(A)ZA(ν, ν) with equality if

and only if ν is a scalar multiple of µ. In particular, we have equality for
µ = ν. Therefore,

µ(A) =
µ(A)2

ZA(µ, µ)
≥ ν(A)2

ZA(ν, ν)
, ∀ν ∈ M(A).

This means that

µ(A) = sup{ ν(A)2

ZA(ν, ν)
: ν ∈ M(A), ZA(ν, ν) ̸= 0} = |A|.

For any λ ∈ R \ {0}, we have (λµ(A)2)
ZA(λµ,λµ)

= µ(A)2

ZA(µ,µ) , so the supremum is also
attained at λµ.

=⇒ Let us now suppose that the supremum in the definition of magnitude
is attained at µ ∈ M(A) and take ν ∈ M(A) with ν(A) = 0. By the choice of
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µ, we have for any t ∈ R,

µ(A)2

ZA(µ, µ)
≥ ((µ + tν)(A))2

ZA(µ + tν, µ + tν)
=

µ(A)2

ZA(µ + tν, µ + tν)
.

Therefore, ZA(µ, µ) ≤ ZA(µ+ tν, µ+ tν) = ZA(µ, µ)+ 2tZA(µ, ν)+ t2ZA(ν, ν)
and so 0 ≤ 2tZA(µ, ν) + t2ZA(ν, ν). By Lemma 3.16, ZA(ν, ν) ≥ 0, so the in-
equality above is only possible for all real values of t if ZA(µ, ν) = 0. Fix
x, y ∈ A. The above computation, for ν = δx − δy gives

0 = ZA(µ, ν) =
∫

A
e−d(x,z)dµ(z)−

∫
A

e−d(y,z)dµ(z),

so the value c :=
∫

A e−d(x,z)dµ(z) is constant.

If c = 0, then ZA(µ, µ) =
∫

A cdµ = 0, which cannot be the case by assumption.
Therefore, µ

c is a weight measure, which is precisely what we wanted to
show. □

The following theorem shows that our definition of magnitude is equivalent
to the one setting |A| the supremum over the magnitude of all finite subspaces
of A.

Theorem 3.18 For a compact positive definite metric space A, we have

|A| = sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM(A), µ ̸= 0} = sup{|B| : B ⊂ A finite}.

Proof Let us start with motivating the second equality. For any µ ∈ FM(A),
we can take B as the support of µ, and we have µ(A)2

ZA(µ,µ) ≤ |B|. For the other
direction, let B be an arbitrary finite subset of A. Since A is positive-definite,
B must also be positive-definite, so a weighting w exists. We can now define
a finitely supported measure µ on A, by extending µ({x}) = w(x) if x ∈ B
and µ({x}) = 0 to all sets. Then µ(A)2

ZA(µ,µ) = |B|.

Let us prove the first equality. Since A is positive definite, we have for any
µ ∈ FM(A), that ZA(µ, µ) = 0 if and only if µ = 0, since the integral is in
fact a finite sum of non-negative entries. This means that

{ µ(A)2

ZA(µ, µ)
: µ ∈ FM(A), µ ̸= 0} ⊂ { µ(A)2

ZA(µ, µ)
: µ ∈ M(A), ZA(µ, µ) ̸= 0}

and therefore sup{ µ(A)2

ZA(µ,µ) : µ ∈ FM(A), µ ̸= 0} ≤ |A|.
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It now remains to show the inequality

sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM(A), µ ̸= 0} ≥ |A|,

after which the theorem is proven.

Let µ ∈ M(A) with ZA(µ, µ) ̸= 0 and ε > 0. By Lemma 3.15, there exists
a finite subset B ⊂ A and a measure ν ∈ M(B) such that ν(B) = µ(A),
||ν|| ≤ ||µ|| and |ZA(µ, µ)− ZB(ν, ν)| ≤ 2ε||µ||2. This implies that

ZB(ν, ν) ≤ ZA(µ, µ) + 2ε||µ||2

and hence
ν(A)2

ZA(ν, ν)
=

µ(A)2

ZB(ν, ν)
≥ µ(A)2

ZA(µ, µ) + 2||µ||2ε
.

In particular, it holds that sup{ ν(A)2

ZA(ν,ν) : ν ∈ FM(A), ν ̸= 0} ≥ µ(A)2

ZA(µ,µ)+2||µ||2ε
.

Since ε was arbitrary, it now follows that

sup{ ν(A)2

ZA(ν, ν)
: ν ∈ FM(A), ν ̸= 0} ≥ µ(A)2

ZA(µ, µ)
.

Finally, taking the supremum over all µ ∈ M(A), we obtain the conclusion.□

Before we can formulate our first continuity result, we need the following
definition:

Definition 3.19 A map f : X → R is called lower semicontinuous at x0 ∈ X if
∀y < f (x0), there exists δ > 0 such that f (x) > y, ∀x with d(x, x0) < δ.

We also give the symmetric definition for upper semicontinuity:

Definition 3.20 A map f : X → R is called upper semicontinuous at x0 ∈ X if
∀y > f (x0), there exists δ > 0 such that f (x) < y, ∀x with d(x, x0) < δ.

Note that a function is continuous if and only if it is both upper and lower
semiconutinous.

The next proposition gives our first (semi-)continuity result for the magnitude.
Based on it, we can also deduce the equivalence of our definition for the
magnitude with the one based on approximating a space via finite subspaces,
thus concluding this section.

Theorem 3.21 (Lower Semicontinuity of Magnitude) The map A 7→ |A| with
values in [1, ∞] is lower semicontinuous with respect to the Gromov-Hausdorff1

distance on the class of compact positive definite metric spaces.
1See Definition 2.6
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Proof Let A be a compact positive definite metric space. We first treat the
case |A| < ∞. Let ε > 0. The definition of magnitude as a supremum
implies that we can pick a signed measure µ on A with ZA(µ, µ) ̸= 0 and
|A| ≤ µ(A)2

ZA(µ,µ) (1 + ε).

Let B be any other compact positive definite metric space. Since the Gromov-
Hausdorff distance is a metric, this implies dGH(A, B) > 0. By definition of
the Gromov-Hausdorff distance, we can pick a metric space X and isometric
embeddings φ : A → X, ψ : B → X such that 0 < dH(φ(A), ψ(B)) ≤ 2dGH(A, B).
We can assume without loss of generality that A = φ(A) and B = ψ(B). Let
us apply Lemma 3.13 for ε = 2dH(A, B) to deduce ∃ν ∈ M(B) such that
ν(B) = µ(A), ||ν|| ≤ ||µ|| and for any uniformly continuous map f : X → R,
|
∫

A f dµ −
∫

B f dν| ≤ ||µ||ω f (2dH(A, B)). Now by Lemma 3.14, we obtain
|ZA(µ, µ)− ZB(ν, ν)| ≤ 2 · 2dH(A, B)||µ||2 and hence

|ZA(µ, µ)− ZB(ν, ν)| ≤ 8||µ||2dGH(A, B).

Now we have

|B| ≥ ν(B)2

ZB(ν, ν)
≥ µ(A)2

ZA(µ, µ) + 8||µ||2dGH(A, B)
≥

≥ |A|
1 + ε

·
(

1 +
8||µ||2

ZA(µ, µ)
dGH(A, B)

)−1

,

where in the last inequality we have used the choice of µ.

Hence if dGH(A, B) ≤ ZA(µ,µ)
8||µ||2 ε, the above inequality implies |B| ≥ |A|

(1+ε)2 and
therefore lower semicontinuity is proven.

Let us now treat the case |A| = ∞. Fix N ≥ 1. Again, by the definition of
magnitude as a supremum, we can pick µ ∈ M(A) with ZA(µ, µ) ̸= 0, such
that µ(A)2

ZA(µ,µ) ≥ N. For B distinct from A, the same computation as above gives

|B| ≥ µ(A)2

ZA(µ,µ)+8||µ||2dGH(A,B) and hence |B| ≥ N ·
(

1 + 8||µ||2
ZA(µ,µ)dGH(A, B)

)−1
.

Thus, for dG H(A, B) ≤ ZA(µ,µ)
8||µ||2 , we get |B| ≥ N

2 , and lower semicontinuity is
proven in this case as well. □

We can now prove our last equivalence:

Corollary 3.22 Let A be a compact positive definite metric space and {Ak}k
a sequence of compact subspaces of A such that lim

k→∞
dH(Ak, A) = 0. Then

|A| = lim
k→∞

|Ak|.

Proof As discussed in Proposition 3.10, the magnitude is increasing with
respect to inclusion, so |Ak| ≤ |A| for all k. Also, Ak ⊂ A implies that
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dGH(Ak, A) ≤ dH(Ak, A) (since we can take X = A and the trivial embed-
dings for A and Ak into A in the definition of the Gromov-Hausdorff dis-
tance).

Lower semicontinuity of A 7→ |A| (Theorem 3.21) implies that ∀ε > 0∃δ > 0
such that ∀B ∈ BdH (A, δ) : |A| − ε ≤ |B|. Now, lim

k→∞
dH(A, B) = 0, so ∃K ≥ 1

such that ∀k ≥ K : Ak ∈ BdH (A, δ), so we obtain

|A| − ε ≤ |Ak| ≤ |A|, ∀k ≥ K

and therefore we can conclude |A| = lim
k→∞

|Ak|. □

3.4 Magnitude of Compact Metric Spaces: Examples

Let us explicitly compute the magnitude for some spaces, as done by Willer-
ton in [7]. It is important to note that there are no known methods for
computing the magnitude of arbitrary spaces (not even for Euclidean sub-
spaces). In fact, not even the magnitude of ‘simple’ spaces such as the 2-disc,
or the cube can be computed with current methods.

Example 3.23 (Magnitude of Line Segment) Let us compute the magnitude of
a line segment [a, b] ⊂ R. We denote λ the Lebesgue measure and δa, δb the Dirac
delta measures supported at a, respectively b. We show that 1

2 (δa + δb + λ) is a
weight measure. For any y ∈ [a, b], we have:

∫ b

a
e−d(x,y)(dδa + dδb + dλ)(x) =

= e−d(a,y) + e−d(b,y) +
∫ y

a
e−d(x,y)dλ(x) +

∫ b

y
e−d(x,y)dλ(x) =

= e−(y−a) + e−(b−y) +
∫ y

a
e−(y−x)dλ(x) +

∫ b

y
e−(b−y))dλ(x) =

= ea−y + ey−b + 1 − ea−y − ey−b + 1 = 2.

Therefore, 1
2 (δa + δb + λ) is a weight measure and we can compute the magnitude:

|[a, b]| = 1
2

∫ b

a
(dδa + dδb + dλ)(x) =

1
2
(1 + 1 + b − a) = 1 +

b − a
2

.

Note that the difficult part in the previous example was determining a weight
measure. After that, the computation of the magnitude only consisted of
routine computations.

We can generalize Example 2.13 about magnitude of finite homogeneous
metric spaces to compact homogeneous metric spaces under some reasonable
assumptions.
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3.5. Maximum Diversity

Theorem 3.24 (Speyer’s Homogeneity Theorem) Let X be a homogeneous com-
pact metric space and µ an invariant measure on X. Then the integral

∫
X e−d(x,y)dµ(x)

is independent of y. If this integral is non-zero and finite, then a weight measure on
X is given by µ∫

X e−d(x,y)dµ(x)
. In this case, the magnitude is |X| =

∫
X dµ(x)∫

X e−d(x,y)dµ(x)
.

Proof The proof is similar to the finite case. We start by showing that∫
X e−d(x,y)dµ(x) is independent of y. Let y, z be arbitrary points in X. Homo-

geneity implies that there exists an isometry φ : X → X satifying φ(y) = z.
Then ∫

X
e−d(x,y)dµ(x) =

∫
X

e−d(φ(x),φ(y))dµ(x) =

=
∫

X
e−d(φ(x),z)dµ(x) =

∫
X

e−d(x,z)dµ(x),

where in the last equality, we have used the invariance of µ. Therefore,∫
X e−d(x,y)dµ(x) does not depend on the choice of y ∈ X.

If this quantity is non-zero and finite, we can immediately deduce that
µ∫

X e−d(x,y)dµ(x)
is a weight measure on X and therefore the magnitude is

|X| = µ∫
X e−d(x,y)dµ(x)

(X) =

∫
X dµ(x)∫

X e−d(x,y)dµ(x)
,

where we are also using that if a weight measure exists, then the magnitude
is the weight of the whole space (Theorem 3.17). □

Let us apply this to compute the magnitude of a circle.

Example 3.25 (Magnitude of Circle) Let Cr be a circle of radius r and let λ
denote the Lebesgue measure. Since Cr is homogeneous, the last theorem immediately
gives the magnitude of the circle:

|Cr| =
∫

Cr
dλ(x)∫

Cr
e−d(x,y)dλ(x)

=
2πr∫

Cr
e−d(x,y)dλ(x)

3.5 Maximum Diversity

Let us introduce an invariant similar to the magnitude, which is sometimes
easier to work with. In particular, we prove a continuity result for the
maximum diversity, which translates to continuity of magnitude in some
special cases.

Definition 3.26 The maximum diversity of a positive definite, compact metric
space (A, d) is

|A|+ = sup{ µ(A)2

ZA(µ, µ)
: µ ∈ M+(A), µ ̸= 0}.
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3.5. Maximum Diversity

Note that for a positive measure µ ̸= 0 implies ZA(µ, µ) > 0, so the definition
above makes sense.

Lemma 3.27 For a compact positive definite metric space A, we have

|A|+ ≤ exp(diam(A)).

Proof It suffices to show that ∀µ ∈ M+(A), µ ̸= 0 : µ(A)2

ZA(µ,µ) ≤ exp(diam(A)).
For any such µ, we have

ediam(A)ZA(µ, µ) =
∫

A

∫
A

ediam(A)−d(x,y)dµ(x)dµ(y) ≥
∫

A

∫
A

1dµ(x)dµ(y) = µ(A)2.

Hence, µ(A)2

ZA(µ,µ) ≤ exp(diam(A)) and we are done. □

Now let us prove an analogue to Theorem 3.18 for the maximum diversity.

Theorem 3.28 For a compact positive definite metric space A, we have

|A|+ = sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM+(A), µ ̸= 0} = sup{|B|+ : B ⊂ A finite}.

Proof We clearly have

sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM+(A), µ ̸= 0} ⊂ sup{ µ(A)2

ZA(µ, µ)
: µ ∈ M+(A), µ ̸= 0}

and therefore

sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM+(A), µ ̸= 0} ≤ |A|+.

It now remains to show the inequality

sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM+(A), µ ̸= 0} ≥ |A|+,

after which the theorem is proven. Let µ ∈ M+(A) with µ ̸= 0 and
ε > 0. Now by lemma 3.15, there exists a finite subset B ⊂ A and a
positive measure ν ∈ M+(B) such that ν(B) = µ(A), ||ν|| ≤ ||µ|| and
|ZA(µ, µ)− ZB(ν, ν)| ≤ 2ε||µ||2. This implies that

ZB(ν, ν) ≤ ZA(µ, µ) + 2ε||µ||2

and hence
ν(A)2

ZA(ν, ν)
=

µ(A)2

ZB(ν, ν)
≥ µ(A)2

ZA(µ, µ) + 2||µ||2ε
.
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3.5. Maximum Diversity

In particular, it holds that

sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM+(A), µ ̸= 0} ≥ µ(A)2

ZA(µ, µ) + 2||µ||2ε
.

Since ε was arbitrary, it follows that

sup{ µ(A)2

ZA(µ, µ)
: µ ∈ FM+(A), µ ̸= 0} ≥ µ(A)2

ZA(µ, µ)
.

Finally, taking the supremum over all µ ∈ M+(A), we reach the conclusion.□

Note that in general, we have |A|+ ≤ |A|. However, if equality between the
two invariants holds, then results about the maximum diversity automati-
cally translate into results about magnitude. This motivates the following
definition:

Definition 3.29 A compact positive definite metric space A is positively weighted
if |A| = |A|+.

We observe that a finite positive definite metric space is positively weighted if
and only if it admits a positive weighting. The following lemma gives some
sufficient conditions for a compact space to be positively weighted.

Lemma 3.30 Let (A, d) be a compact, positive-definite metric space.

(1) If A admits a non-negative weighting, then A is positively weighted.

(2) If every finite subset of A has a weighting with only nonnegative components,
then A is positively weighted.

(3) If there exists an isometric embedding on A into R (where R is endowed with
the standard metric) then A is positively weighted.

Proof (1) Let A be a compact positive definite metric space and µ ∈ M+(A)

a weight measure. By Theorem 3.17, |A| = µ(A)2

ZA(µ,µ) and therefore we get
|A| ≤ |A|+ and hence equality.

(2) The assumption implies that for any finite subset B ⊂ A, we have
|B| = |B|+. Now, Theorem 3.18 and Theorem 3.28 imply |A| = |A|+.

(3) By Proposition 2.44, every finite subspace of R is positive definite with
positive weighting, so every finite subspace of A has a positive weighting
and by the previous point we are done. □

Example 3.31 Any homogeneous positive definite metric space, admitting a positive
invariant measure is positively weighted. Indeed, let X be such a space. We can pick
any non-zero invariant positive measure on X and by Theorem 3.24, there exists a
positive weighting on X. Now by the lemma above, it follows that X is positively
weighted.
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3.5. Maximum Diversity

We want to show that the supremum in the definition of the maximum
diversity is attained. For this, we will need the fact that the space P(A) of
probability measures is metrized by the so-called Wasserstein distance, which
we define here.

Note that what we call the Wasserstein distance here is in the general equiva-
lent to what is sometimes called the Wasserstein distance W1, see Definition
6.4 and Remark 6.5 in [8] for details.

Definition 3.32 The Wasserstein distance on the set of signed measures M(A) is

dW(µ, ν) = sup
{∫

A
f dµ −

∫
A

f dν | f : A → R is 1 − Lipschitz
}

.

For a proof of the following proposition, see Corollary 6.13 in [8].2

Proposition 3.33 For a compact metric space A, the space P(A) of probability
measures endowed with the weak-∗ topology inherited from M(A) can be metrized
by the Wasserstein distance.

Let us show that the supremum in the definition of the maximum diversity
is attained.

Proposition 3.34 For any compact positive definite metric space A, the supremum
in the definition of |A|+ is attained for some measure µ ∈ M+(A).

Proof Let us set P(A) = {µ ∈ M+(A) : µ(A) = 1} the space of proba-
bility measures on A. P(A) is compact in the weak-∗ and it is metrized
by the Wasserstein distance3 (see Corollary 5.4 in the Appendix [5], and
Proposition 3.33).

We have |A|+ = sup
{

µ(A)2

ZA(µ,µ) : µ ∈ M+(A), µ ̸= 0
}

= sup
µ∈P(A)

1
ZA(µ,µ) , by ho-

mogeneity of the expression.

Take arbitrary µ, ν ∈ P(A). As in Lemma 3.14, we define the maps fµ : A → R,
fµ(x) =

∫
A e−d(x,z)dµ(z) and fν : A → R, fν(x) =

∫
A e−d(x,z)dν(z). We show

that these are 1-Lipschitz. For any x, y ∈ A, we have

| fµ(x)− fµ(y)| = |
∫

A
(e−d(x,z) − e−d(y,z))dµ(z)| ≤

≤
∫

A
|e−d(x,z) − e−d(y,z)|d|µ|(z) ≤ d(x, y)||µ|| = d(x, y),

2In the cited work, in the case of compact spaces the weak topology is what we here call
the weak-∗ topology.

3See Definition 3.32.
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where the last equality follows since µ is a probability measure and therefore,
||µ|| = µ(A) = 1. Similarly, fν is also 1-Lipschitz continuous.

Then we have

|ZA(µ, µ)− ZA(ν, ν)| =
∣∣∣∣∫A

fµdµ −
∫

A
fνdν

∣∣∣∣ ≤
≤
∣∣∣∣∫A

fµdµ −
∫

A
fµdν

∣∣∣∣+ ∣∣∣∣∫A
fνdµ −

∫
A

fνdν

∣∣∣∣ ≤ 2dW(µ, ν).

Hence, the map P(A) → (0, ∞), µ 7→ ZA(µ, µ) is Lipschitz-continuous and in
particular continuous. Therefore, the map P(A) → (0, ∞), µ 7→ 1

ZA(µ,µ) is also
continuous. Now by compactness of P(A), it follows that this map attains its
supremum, so ∃µ0 ∈ P(A) such that 1

ZA(µ0,µ0)
= sup

µ∈P(A)

1
ZA(µ,µ) = |A|+. □

The following is a direct implication of the last proposition.

Corollary 3.35 If A is positively weighted compact positive definite metric space,
then there exists a positive weight measure on A.

Proof By proposition 3.34, ∃µ ∈ M+(A) such that |A|+ = µ(A)2

ZA(µ,µ) . By

definition of positively weighted, we have therefore |A| = µ(A)2

ZA(µ,µ) . Now by
Theorem 3.17, it follows that µ is a scalar multiple of a weight measure on A
and in particular, a positive weight measure exists. □

The following proposition shows that the maximum diversity is continuous.

Proposition 3.36 (Continuity of Maximum Diversity) The map A 7→ |A|+ is
continuous with respect to the Gromov-Hausdorff distance on the class of compact
positive definite metric spaces.

Proof Lower semicontinuity of this map follows as in the proof of Theo-
rem 3.21. Therefore, it suffices to prove upper semicontinuity.

Take A, B with dGH(A, B) > 0. We can assume without loss of general-
ity that A and B are both subspaces of some metric space X such that
0 < dH(A, B) < 2dGH(A, B). By Proposition 3.34, ∃µ ∈ M+(B) such that
|B|+ = µ(B)2

ZB(µ,µ) . Let ν ∈ M+(A) be as given by Lemma 3.13 for ε = 2dH(A, B).
Now by Lemma 3.14, we have |ZA(ν, ν)− ZB(µ, µ)| ≤ 4dH(A, B)||ν||2. There-
fore |ZA(ν, ν)− ZB(µ, µ)| ≤ 8dGH(A, B)||ν||2, and so

ZB(µ, µ) ≥ ZA(ν, ν)− 8dGH(A, B)||ν||2.

This implies
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µ(B)2

ZB(µ, µ)
≤ ν(A)2

ZA(ν, ν)− 8dGH(A, B)||ν||2 .

Since the measure ν is positive, we have ||ν|| = |ν|(A) = ν(A) and so

|B|+ =
µ(B)2

ZB(µ, µ)
≤ ν(A)2

ZA(ν, ν)− 8dGH(A, B)ν(A)2 =

=

(
ZA(ν, ν)

ν(A)2 − 8dGH(A, B)
)−1

=
ν(A)2

ZA(ν, ν)
·
(

1 − 8ν(A)2

ZA(ν, ν)
dGH(A, B)

)−1

≤

≤ |A|+ ·
(

1 − 8ν(A)2

ZA(ν, ν)
dGH(A, B)

)−1

Thus, if dGH(A, B) ≤ ε
8|A|+ , for 0 < ε < 1, then |B|+ ≤ |A|+

1−ε and we have
upper semicontinuity and therefore continuity. □

If magnitude and maximum diversity are equal, we immediately obtain
continuity of magnitude:

Corollary 3.37 Magnitude is continuous with respect to the Gromov-Hausdorff
distance on the class of positively weighted compact positive definite metric spaces.

Proof This follows immediately from the previous proposition, since magni-
tude and maximal diversity are equal for positively weighted spaces. □

Corollary 3.38 Magnitude is continuous with respect to the Gromov-Hausdorff
distance on the class of compact subsets of R.

Proof By Lemma 3.30, compact subsets of R are positively weighted and
therefore, by the previous corollary, the conclusion is immediate. □
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Chapter 4

An Analytic Perspective on Magnitude

In this chapter, we develop a new perspective on magnitude. We start by
viewing magnitude of compact metric spaces from the point of view of
Hilbert spaces. Based on this, we develop a Fourier-analytic perspective on
the magnitude of compact metric subspaces of the Euclidean space. These
new tools will allow us to prove our final continuity result: continuity of
magnitude for positive-definite subsets of Rn equipped with metrics coming
from p-norms. This chapter is based on Section 4.3 in [3].

4.1 Magnitude and Hilbert Spaces

In this section, we give a characterization of magnitude relying on the theory
of Hilbert spaces.

Let us start by introducing the following notation:

Definition 4.1 For X ⊂ Rn and 0 < p < ∞ we set Lp(X), the space of equivalence
classes under equality almost everywhere of measurable functions f : X → R such

that || f ||p :=
(∫

X | f (t)|pdt
) 1

p < ∞.

Definition 4.2 A positive definite kernel on a space X is a function K : X × X → C

such that for any finite A ⊂ X, the matrix (K(a, b))a,b∈A ∈ CA×A is positive defi-
nite.

We are mainly interested in the following example:

Example 4.3 For a positive definite metric space (A, d), the map A × A → R,
(x, y) 7→ e−d(x,y) is a positive definite kernel.

Definition 4.4 Given a positive definite kernel K on X, the reproducing kernel
Hilbert space (RKHS) H on X with kernel K is the completion of the linear space
on the functions kx(y) = K(x, y) with respect to the inner product given by
⟨ky, ky⟩H = K(x, y).
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Let us remark that if f ∈ H, then ⟨ f , kx⟩H = f (x).

Based on the following theorem, we can give a characterization of magnitude
using the RKHS. For a proof, see Theorem 5.3 in [5].

Theorem 4.5 (Riesz Representation Theorem for Hilbert Spaces) Let Λ be
a continuous linear funtional on a Hilbert space H with inner product ⟨·, ·⟩. Then
there exists a unique g ∈ H such that Λ( f ) = ⟨ f , g⟩, ∀ f ∈ H. Moreover,
||Λ|| = ||g||.

The following theorem allows us to determine the magnitude of a compact
metric space via the norm in the RKHS.

Theorem 4.6 (Characterization of magnitude using RKHS) Let (X, d) be a
positive definite metric space and let H denote the RKHS of the map K(x, y) = e−d(x,y)

on X. Let A ⊂ X be a compact subset. Then |A| < ∞ ⇐⇒ ∃h ∈ H such that
h ≡ 1 on A. In that case,

|A| = inf{||h||2H : h ∈ H, h ≡ 1 on A}.

Furthermore, the infimum above is achieved for a unique function h ∈ H.

Proof We start with the following useful computation: Let B ⊂ X be finite,
w ∈ RB an arbitrary B-vector. Define fw = ∑

b∈B
wbe−d(·,b). Then

wTζBw = ∑
a,b∈B

wae−d(a,b)wb = ∑
a,b∈B

wawb⟨e−d(·,a), e−d(·,b)⟩H =

= ⟨∑
a∈B

wae−d(·,a), ∑
b∈B

wae−d(·,b)⟩H = || fw||2H.

Let us assume that |A| < ∞ and let B ⊂ A be finite, w ∈ RB. By Proposi-
tion 2.41, we have

|B| = sup
w′∈RB

(
∑b∈B w′

b

)2

w′TζBw′ .

Therefore,(
∑
b∈B

wb

)2

≤ |B| · (wTζBw) = |B| · || fw||2H ≤ |A| · || fw||2H,

where the equality follows from the computation above and the last inequality
follows from monotonicity of magnitude with respect to inclusion in positive
definite metric spaces (Proposition 3.10).

Therefore, the linear functional

fw 7→ ∑
b∈B

wb on { fw : w ∈ RB, B ⊂ A finite} ⊂ H
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has norm at most
√
|A|. Let us also note that since A is positive definite,

lim
B→A

|B| = |A|, where the limit is taken over all finite subspaces B ⊂ A with

respect to the Hausdorff metric (see Proposition 3.28). This implies that the
operator norm of the linear functional above is exactly

√
|A|.

By the Riesz Representation Theorem for Hilbert spaces (Theorem 4.5), we
deduce ∃h ∈ H with such that

||h||H =
√
|A| and ∑

b∈B
wb = ⟨ fw, h⟩H = ∑

b∈B
wbh(b), for all w ∈ RB.

For any a ∈ A, let us now take wb = δa,b, i.e. fw = e−d(·,a). This implies
h(a) = 1 and so h ≡ 1 on A. This means that the ‘if’ part in the theorem
is proven. Even more, we know that in this case, there exists h ∈ H with
||h||2H = |A| and h ≡ 1 on A.

Conversely, let us suppose ∃h ≡ 1 on A. Let B ⊂ A be finite and w ∈ RB. The
Cauchy-Schwarz inequality together with the computation we have started
with imply

| ∑
b∈B

wb| = |⟨h, fw⟩| ≤ ||h||H · || fw||H = ||h||H
√

wTζBw.

Therefore, (
∑

b∈B
wb

)2

wTζBw
≤ ||h||2H

and by Proposition 2.41 |B| ≤ ||h||2H. Since this holds for any finite subset of
A, Theorem 3.28 now implies |A| ≤ ||h||2H and in particular, |A| is finite.

So, the if and only if part of the theorem is proven. Also, we have seen that if
|A| is finite, then for any h ≡ 1 on A, we have |A| ≤ ||h||2H. In the first part
of the proof we have also seen that there exists some h ≡ 1 on A such that
|A| = ||h||2H. Therefore, we can immediately conclude

|A| = inf{||h||2H : h ∈ H, h ≡ 1 on A}.

Finally, uniqueness of h where it is attained follows from uniqueness in the
Riesz Representation Theorem for Hilbert Spaces. □

Existence and uniqueness of the map h in the last theorem allows us to
introduce the following definition.

Definition 4.7 The unique function h which achieves the infimum in Theorem 4.6
is called the potential function of A.
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4.2 Magnitude on Subsets of Rn

In this section, we introduce a Fourier-theoretic perspective on magnitude.
The advantage is that Fourier theory allows us to give an explicit characteri-
zation of the RKHS, which in turn enables us to prove our final continuity
result.

We work with the following convention for the Fourier transform:

Definition 4.8 The Fourier transform of a function f ∈ L1(R
n) is

f̂ (ξ) =
∫

Rn
f (x)e−2πi⟨x,ξ⟩dx.

We also need the following useful fact (which can be shown using a routine
computation):

Lemma 4.9 (Fourier Tranform and Dilation) For a function f ∈ L1(R
n), the

Fourier transform of the inverse dilation 1
|δ|n f ( x

δ ) is the dilation f̂ (δx).

With the following generalization of the notion of norm, we can formulate
our final continuity result.

Definition 4.10 Let p > 0. A p-norm on a real vector space V is a map
|| · || : V → R such that

• ||v|| ≥ 0, ∀v ∈ V with equality if and only if v = 0.

• ||tv|| = |t| · ||v||, ∀t ∈ R, ∀v ∈ V.

• ||v + w||p ≤ ||v||p + ||w||p, ∀v, w ∈ V.

Note that any p-norm || · || on Rn induces a distance dp(x, y) = ||x − y||p.

Example 4.11 We note that for p ≥ 1, || · ||p defines a norm on Lp, while for
0 < p < 1, it defines a p-norm. Thus, in general, we can view Lp as endowed with

the metric dp( f , g) = || f − g||min{1,p}
p .

For the rest of this section, let || · || be a p-norm on Rn and dp the in-
duced metric, such that (Rn, dp) is a positive definite metric space. Let
Fp : Rn → R, Fp(x) = e−||x||p and let B := {x ∈ Rn : ||x|| = 1} be the unit
ball with respect to the fixed p-norm.

The following proposition is be useful in proving our last continuity result
for magnitude. For a proof, see proposition 4.11(2) in [3].

Proposition 4.12 For all x ∈ Rn, the map t 7→ F̂p(tx) is nonincreasing.

We can now give an explicit expression for the RKHS H of (Rn, d), which
will turn out vital in our last proof. For a proof see Theorem 10.12 in [9].
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Proposition 4.13 (Explicit Characterization of the RKHS) The RKHS of the
map K(x, y) = e−dp(x,y) on (Rn, dp) is

H = { f ∈ L2(R
n) :

∫
Rn

1
F̂p(x)

| f̂ (x)|2dx < ∞}

with norm given by || f ||2H =
∫

Rn
1

F̂p(x)
| f̂ (x)|2dx.

For a subspace A of Rn, we denote t ∗ A the space {t · a : a ∈ A} ⊂ Rn

with the metric dp. Note that this is in general not the same as the space
tA = (A, tdp), in fact the space tA is isometric to the space t1/p ∗ A, equipped
with dp.

We now state and prove a continuity result for magnitude on subspaces of
Rn, equipped with the metric dp.

Theorem 4.14 (Continuity of Magnitude for Compact Subsets of Rn) Let Kn
be the class of compact subsets of Rn with non-empty interior, equipped with the
Hausdorff distance dH induced by dp and suppose that A ∈ Kn is star-shaped. Then
magnitude, as a map Kn → R is continuous at A.

Proof We have already shown lower semicontinuity in Theorem 3.21, so it
only remains to show upper semicontinuity.

We start by noting that |A| is finite: by Proposition 4.13, it follows that there
exist functions in H that only take the value 1 on A. Hence, by Theorem 4.6,
|A| is finite.

Let us prove |t ∗ A| ≤ tn|A|. Let h be the potential function of A and for
t ≥ 1 let us denote ht the map ht(x) = h( x

t ). Note that h ≡ 1 on A implies
that ht ≡ 1 on t ∗ A. Therefore, by Theorem 4.6, we have |t ∗ A| ≤ ||ht||2H.
Theorem 4.13 implies ||ht||2H =

∫
Rn

1
F̂p(x)

|ĥt(x)|2.

Observe that for any t ≥ 1, ht(x) = tn · 1
tn h( x

t ) and therefore, by Lemma 4.9,
ĥt(x) = tn · ĥ(tx). Hence, we can make the substitution y = tx in the integral
above and obtain∫

Rn

1
F̂p(x)

|ĥt(x)|2 = t−n
∫

Rn

1
F̂p(

y
t )
|tnĥt(y)|2 = tn

∫
Rn

1
F̂p(

y
t )
|ĥt(y)|2.

Now, t ≥ 1 =⇒ 1
t ≤ 1, so by Proposition 4.12, F̂p(

y
t ) ≥ F̂p(y) and hence

1
F̂( y

t )
≤ 1

F̂p(y)
. So,

tn
∫

Rn

1
F̂p(

y
t )
|ĥt(y)|2 ≤ tn

∫
Rn

1
F̂p(y)

|ĥt(y)|2 = tn|A|,
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where in the last equality we have used the assumption that h is a potential.
This chain of inequalities implies |t ∗ A| ≤ tn|A|.

By translation invariance, we can assume without loss of generality that
0 ∈ A and r1/p ∗ B ⊂ A for some r > 0. Let ε > 0 be arbitrary and let B ∈ Kn
with dH(A, B) < ε. By definition of the Hausdorff distance, it follows that
B ⊂ A + ε1/p ∗ B ⊂

(
1 +

(
ε
r

)1/p
)
∗ A. Therefore,

|B| ≤
∣∣∣∣(1 +

( ε

r

)1/p
)
∗ A
∣∣∣∣ ≤ (1 +

( ε

r

)1/p
)n

|A|

and we obtain upper semicontinuity. Together with the already established
lower semicontinuity, we can conclude that magnitude is continuous at
star-shaped sets in Kn. □

48



Chapter 5

Appendix

In order to show that the supremum in the definition of maximum diversity
is attained for some positive measure (Proposition 3.34), we rely on a well-
known consequence of the Banach-Alaoglu Theorem, which we state in this
section.

Let (A, d) be a compact metric space. We denote

P(A) = {µ ∈ M+(A) : µ(A) = 1}

the space of probability measures on A and Cb(A) the space of bounded,
continuous functions on A.

Let E be a Banach space and E∗ its continuous dual (the subspace of continu-
ous linear functionals on E). We endow E∗ with the norm || f || = sup

x∈E,||x||≤1
| f (x)|.

For a proof of the following theorem, see [10], Theorem 7.54.

Theorem 5.1 (Riesz representation on C0(X)) Let X be a locally compact, σ-
compact metric space and let Λ ∈ (C0(X))∗ be a continuous linear functional on
the space C0(X) of continuous functions on X that vanish at infinity. Then there
exists a uniquely determined signed measure µ representing Λ. In other words, the
map φ : M(X) → C0(X)∗, φ(µ) =

(
f 7→

∫
X f dµ

)
is an isometry.

To every x ∈ E we can associate a linear functional φx : E∗ → R, defined by
f 7→ f (x).

Definition 5.2 The weak-∗ topology on E∗ is defined as the coarsest topology on
E∗ such that the associated linear functional φx is continuous, for all x ∈ E.

Since A is compact by assumption, it means that the spaces C0(A) and Cb(A)
are equal and the Riesz representation theorem (as stated above) implies
that we can identify the space M(A) of measures on A with the norm of
total variation and the dual of the Banach space (Cb(A), || · ||∞). Under this
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identification, we can view the space M(A) as endowed with the weak-∗

topology.

For a proof of the following see theorem 8.10 in [10].

Theorem 5.3 (Banach-Alaoglu Theorem) The closed unit ball

BE∗ := { f ∈ E∗ : || f || ≤ 1}

is compact in the weak-∗ topology.

The following corollary is useful in proving Proposition 3.34

Corollary 5.4 For a compact metric space A, the space P(A) of probability measures
is compact in the weak-∗ topology on M(A).

Proof By Banach-Alaoglu, the unit ball {µ ∈ M(A) : ||µ|| ≤ 1} ⊂ M(A) is
compact in the weak-∗ topology. We show that P(A) is a closed subset of the
unit ball.

Observe that M+(A) =
⋂

f∈C0(A)+
{µ ∈ M(A) :

∫
A f dµ ≥ 0}, where by C0(A)+

we denote the set of nonnegative continuous functions that vanish at infinity.
Each of the sets in this intersection is closed, therefore we deduce that M+(A)
is closed in M(A). Finally, {µ ∈ M(A) : ||µ|| = 1} is closed, since it is the
preimage of the closed set {1} under the total variation norm (which is a
continuous map).

By definition, P(A) = M+(A) ∩ {µ ∈ M(A) : ||µ|| = 1}, so it is closed as an
interesection of closed sets. Also note that P(A) ⊂ {µ ∈ M(A) : ||µ|| ≤ 1},
so P(A) is a closed subset of a compact set and therefore compact. □
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