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Abstract

This thesis is devoted to the study of quiver representations and the proof of Gabriel’s Theorem.
Quiver representations are collections of vector spaces and linear maps. Just like with decomposing
numbers into products of primes, one aims to decompose quiver representations into the smallest
possible building blocks, called indecomposable representations. Gabriel’s Theorem specifies the
quivers that have a finite number of indecomposable representations. Furthermore, it classifies
these indecomposable representations. I prove a decomposition theorem by Krull, Remak, and
Schmidt in Chapter 2. This theorem relies heavily on indecomposable representations, which form
the centerpiece of Chapter 3. In this chapter I introduce a variety of mathematical tools to analyze
quivers and their representations, culminating in the proof of Gabriel’s Theorem. I also show
how Gabriel’s Theorem can be used in topological data analysis to characterize the persistence of
topological features. To do this, I present the necessary quiver representation theory in Chapter 4
and I connect this theory with the topological aspects of persistent homology in Chapter 5. The
thesis is based on [1] and [2].

i



Acknowledgements

I would like to express my warmest thanks to Dr. Sara Kalǐsnik Hintz for supervising my thesis.
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Chapter 1

Introduction

Topology is a mathematical discipline focused on investigating the characteristics of spaces that
remain unchanged under deformations. These deformations involve actions like bending, squish-
ing, shrinking and expanding, whereas tearing is prohibited. Homotopy equivalence emerges as a
formalism to precisely describe this equivalence between topological spaces.

A homotopy between two continuous maps f, g : X → Y is a continuous mapH : X × [0, 1]→ Y
such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. The map H describes a family of
functions interpolating continuously between f and g as the parameter t varies from 0 to 1. A
pair of continuous functions f : X → Y and g : Y → X are called homotopy equivalences if there
exists a homotopy H between the maps g ◦ f and idX , and there exists a homotopy K between
the maps f ◦ g and idY . In this case, the topological spaces X and Y are called homotopy
equivalent. The circle S1 and the punctured disk D′ = D \ {(0, 0)} are homotopy equivalent. The
maps f : D′ → S1, x 7→ x

∥x∥ and g : S1 → D′, x 7→ x are homotopy equivalences. Indeed, note that

f ◦ g = idS1 and H(x, t) = (1− t) x
∥x∥ + tx is a homotopy between g ◦ f and idD′ .

t = 1 t = 1
2 t = 0

Figure 1.1: The punctured disk D′ (left) and the circle S1 (right) are homotopy equivalent. The
red and blue points represent H(x, t) for two points in D′, where H(x, t) = (1− t) x

∥x∥ + tx denotes

the homotopy between the maps (g ◦ f)(x) = x
∥x∥ and idD′ .

Properties of topological spaces that stay the same under deformations are called homotopy
invariants. These invariants are the main objects of study in the field of algebraic topology. One
such invariant is the presence of holes, voids and higher dimensional equivalents in a topological
space and counting how many there are. In Figure 1.1, the punctured disk and the circle are homo-
topy equivalent. Observe that the volumes of the spaces differ, however, the middle hole is present
throughout the deformation process. The mathematical formalization to measure holes and their
higher dimensional analogues is called homology. Homology and other invariants measure the
shape of topological spaces.

Recently, with a huge amount of data being generated, there have been efforts to adapt these
methods to measure the shape of data. Topological data analysis offers one potential approach
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to address this challenge. However, since data is given by point clouds, its topology does not reveal
any information besides the number of points. To fix this problem, we consider triangulations of
point clouds that are called Čech complexes. To compute a Čech complex, we replace the points
with balls of a certain radius. If two balls intersect, we connect the corresponding points by
an edge. The non-trivial intersection of three balls results in a triangle and so on. A crucial

ε

Figure 1.2: A point cloud with associated balls on the left and its associated Čech complex on the
right.

characteristic is that the Čech complex corresponding to a smaller radius is included in the Čech
complex associated with a larger radius. Figure 1.2 illustrates the construction of a Čech complex
from a point cloud. Using the inclusion property of Čech complexes of increasing radii, we get a
sequence of Čech complexes and inclusion maps between them, called a filtration. We then apply
homology to this filtration and track over which parameter values the topological features persist.
This yields a collection of intervals. Each interval [a, b] represents a topological feature born at time
a that disappears at time b. These intervals form a persistence module and they are visualized by a
persistence barcode. Figure 1.3 shows the persistence barcode for the point cloud in Figure 1.2.
Topological features that persist over a long parameter range are considered to be important with
short-lived features as noise. This adaptation of homology to the setting of point clouds is called
persistent homology.

0

5

10

15

20

25

0 10 20 30 40 50
ε

Dimension 0 1

Figure 1.3: A persistence barcode coming from a point cloud.

The existence of persistence barcodes relies on a theorem from quiver representation theory,
called Gabriel’s Theorem. This discipline focuses on quivers and their corresponding representa-
tions. Quivers are directed graphs consisting of points and arrows connecting the points. A quiver
representation is an allocation of vector spaces to the points and linear maps are allocated to the
arrows. Figure 1.4 shows an example of a quiver and a possible representation. This quiver is
called a linear quiver. Quiver representation theory is built on a purely algebraic foundation which
offers distinct advantages. Firstly, the broad algebraic framework allows for versatile application in
various contexts without the necessity of introducing novel concepts. This flexibility will be used
to extend the theory of persistent homology to include zigzag persistent homology. Additionally,
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it is worth noting that quiver representation theory finds applications beyond topology, such as in
the realms of Lie algebras and quantum groups [2]. However, these applications are beyond the
scope of this thesis.

V1 V2 Vn
1 2 n

a b c va vb vc

Figure 1.4: The linear quiver Ln (left) and a quiver representation (right).

The goal of this thesis is to prove Gabriel’s Theorem. In Chapter 2, we introduce quiver
representations and observe that they always possess a unique decomposition into the smallest
possible building blocks called indecomposable representations. This naturally leads to the question
of which quivers only have a finite number of indecomposable representations. Such quivers are
called finite-type quivers. The answer to this question is given by Gabriel’s Theorem, whose proof
is at the center of Chapter 3. It turns out that the persistence modules are quiver representations
of the linear quivers. Therefore, we can apply Gabriel’s Theorem in the setting of persistence
modules. This is the reason why a persistence barcode always exists. Chapter 4 focuses on the
algebraic aspects of the quiver theory of An-type quivers, which are a broader generalization of
the linear quivers. In Chapter 5, we introduce the topological aspects of persistent homology while
using the theory from the previous chapters.
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Chapter 2

Quiver Representations

In this chapter, we introduce quiver representations and we consider their morphisms and direct
sums of quiver representations. This culminates in a decomposition theorem by Krull, Remak, and
Schmidt (Theorem 2.33). This chapter is primarily based on the book ‘Persistence Theory: From
Quiver Representations to Data Analysis’ written by Steve Y. Oudot [1].

2.1 Quivers

Definition 2.1. A quiver Q consists of two sets Q0, Q1 and two maps h, t : Q1 → Q0. The
elements of Q0 are called the vertices of Q, while those of Q1 are called the arrows. The head
map h and the tail map t assign a head ha and a tail ta to every arrow a ∈ Q1.

Example 2.2. Consider the quiver Q with vertices Q0 = {1, 2, 3} and arrows Q1 = {a, b, c, d, e}.

1

2 3

a

b c

d
e

Its head map h : Q1 → Q0 is given by a 7→ 2, b 7→ 2, c 7→ 3, d 7→ 1, e 7→ 1 and its tail map
t : Q1 → Q0 is given by a 7→ 1, b 7→ 2, c 7→ 2, d 7→ 3, e 7→ 3.

Q is a directed graph, where the elements in Q0 are the vertices and for every a ∈ Q1, the pair
(ta, ha) is a directed edge in our graph. There are no restrictions on the sets Q0 and Q1, so there
may be infinitely many points and edges and also multiple edges between two points, thus a quiver
is graphically represented by a directed multigraph. We denote by Q̄ the underlying undirected
graph of Q.

Definition 2.3. A quiver Q is called finite if both Q0 and Q1 are finite sets.

Definition 2.4. A quiver Q is called a Dynkin quiver if its underlying graph Q̄ is one of the
graphs in Figure 2.1.

Dynkin quivers emerge in Gabriel’s Theorem (Theorem 3.2). They also play a fundamental
role in classifying semisimple Lie algebras [2, p. 29]. An important subset of the Dynkin quivers
are the linear quivers.

Definition 2.5. For each n ∈ N, the following quiver is called the linear quiver Ln:

1 2 n− 1 n

Definition 2.6. A quiver Q is called acyclic if there is no oriented cycle in Q.

Every Dynkin quiver is acyclic. An example of a non-acyclic quiver is the loop quiver.
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An(n ≥ 1)
1 2 n− 1 n

Dn(n ≥ 4)
1 2

n− 2

n

n− 1

E6
1 3

2

4 5 6

E7
1 3

2

4 5 6 7

E8
1 3

2

4 5 6 7 8

Figure 2.1: The Dynkin diagrams.

Definition 2.7. The loop quiver consists of a single vertex that loops to itself.

1

a

Sometimes, it is interesting to consider a part of a given quiver as it allows us to consider a
property of the smaller quiver, and then extend it to the bigger quiver.

Definition 2.8. Let Q = (Q0, Q1) be a quiver and let A0 ⊆ Q0 and A1 ⊆ Q1 such that for all
arrows a ∈ A1 we have that h(a) ∈ A0 and t(a) ∈ A0. Then A = (A0, A1) defines a subquiver of
Q (A is a quiver). Moreover, if for all i, j ∈ A0 we have that {a ∈ Q1 | t(a) = i, h(a) = j} ⊆ A1,
then A is called a full subquiver with support A0. In addition, if we say that we delete a vertex
i from a quiver Q, then the resulting (sub)quiver is the full subquiver with support Q0 \ {i}.

Example 2.9. Consider the quiver Q on the left. The quivers A (middle) and B (right) are both
subquivers of Q. However, B is a full subquiver whereas A is not full.

1

2 3

a

b c

d
e

1

2 3

a

b

e

1

3

d
e

2.2 The Category of Quiver Representations

For a fixed quiver Q, we define quiver representations and morphisms between them. This is
done in a way that turns them into a category. This category is called the category of quiver
representations.

Definition 2.10. A quiver representation of a quiver Q over a field k is a pair V = (Vi, va),
which consists of a set of k-vector spaces {Vi | i ∈ Q0} together with a set of k-linear maps
{va : Vta → Vha | a ∈ Q1}. We often abbreviate quiver representation to representation.

There are no restrictions on the vector spaces and the maps. Thus the maps generally do not
commute, i.e. if we have two different paths with the same starting point and end point, the
compositions of the maps along the two paths need not be the same. Also, the vector spaces can
be infinite-dimensional.
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Definition 2.11. A quiver representation V of a quiver Q is called finite-dimensional if the sum
of the dimensions of the vector spaces

∑
i∈Q0

dimVi is finite. If Q is a finite quiver with vertex set
Q0 = { 1, 2, . . . , n} and V is a finite-dimensional representation, then we define the dimension
vector dimV and its dimension dimV as:

dimV = (dimV1, . . . ,dimVn)
T ,

dimV = ∥dimV∥1 =

n∑
i=1

dimVi.

Example 2.12. A representation of the linear L2-quiver

1 2

is a set consisting of two vector spaces V1, V2 together with a linear map va : V1 → V2.

Example 2.13. [3] A representation of the loop quiver

1

a

is a vector space V1 together with an endomorphism va : V1 → V1. If we restrict to the case where
the field k is algebraically closed and V1 is finite-dimensional, then we know from linear algebra
that the matrix of va has a Jordan normal form (in a suitable basis)

Jn1,λ1 0 · · · 0
0 Jn2,λ2

0
...

. . .
...

0 0 · · · Jnr,λr

 ,

where Jn,λ denotes the n× n-Jordan block:
λ 1

λ 1 ∅
. . .

. . .

∅ λ 1
λ

 .

Definition 2.14. A representation W = (Wi, wa) is a subrepresentation of a representation
V = (Vi, va) if Wi is a subspace of Vi for all i ∈ Q0 and if for all a ∈ Q1, wa is the restriction of the

map va to the subspace Wta of the domain and the subspace Wha of the image, i.e. wa = va |
Wha

Wta
.

We call W a proper subrepresentation of V if 0 ⊊ W ⊊ V.

Definition 2.15. A representation of a quiver Q is called simple if it is non-trivial and it has no
proper subrepresentations.

Example 2.16. We fix a vertex i ∈ Q0 of a quiver Q. We define the representation Si = (S
(i)
j , s

(i)
a )

to be

S
(i)
j =

{
k if j = i

0 if j ̸= i
and s(i)a = 0

for j ∈ Q0 and a ∈ Q1. This representation is simple. Indeed if W ⊊ Si is a subrepresentation,
then Wj = 0 for all j ∈ Q0 and thus W = 0 is trivial.

Our goal is not only to define quiver representations but also to compare and classify them. To
be able to do this, we need to define morphisms between quiver representations.

Definition 2.17. A morphism ϕ between two representations V,W of a quiver Q is a set of
k-linear maps {ϕi : Vi → Wi | i ∈ Q0} such that the following diagram commutes for each arrow
a ∈ Q1:
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Vta Vha

Wta Wha .

va

ϕta ϕha

wa

The morphism is called a monomorphism if every linear map ϕi is injective, an epimorphism
if every ϕi is surjective, and an isomorphism (denoted by ∼=) if every ϕi is bijective. If ϕ : V→ V
maps onto itself, we call it an endomorphism. We denote the set of morphisms from V to W by
Hom(V,W). If we equip Hom(V,W) with pointwise multiplication and addition of linear maps, then
it is a k-vector space.

Example 2.18. A morphism between two representations V,W of the L2-quiver is given by two
linear maps ϕ1 : V1 →W1, ϕ2 : V2 →W2 such that the following diagram commutes

V1 V2

W1 W2 .

va

ϕ1 ϕ2

wa

Lemma 2.19. Every isomorphism ϕ : V→ W is invertible, meaning that the map ψ = ϕ−1 : W→ V
is a morphism of quiver representations (where ψi = (ϕi)

−1). Thus the expressions isomorphism
and invertible morphism are exchangeable.

Proof. It is clear that ψ is pointwise well-defined. We need to check that for each arrow a ∈ Q1

the following diagram commutes

Vi Vj

Wi Wj .

va

ϕi ϕj

wa

ψi ψj

Now for each w ∈ Wi we have ϕjvaψi(w) = wa(w) since ψi = (ϕi)
−1 and using that the diagram

commutes with respect to the maps ϕi, ϕj . But then vaψi(w) = ψjwa(w). Thus the diagram
commutes.

To turn quiver representations into a category, we need to define the composition of two mor-
phisms in an associative way that guarantees the existence of an identity morphism. We can define
such a composition by composing the maps ϕi at each point in our quiver.

Definition 2.20. The composition of two morphisms ϕ : U → V and ψ : V → W is given by the
maps (ψ ◦ ϕ)i = ψi ◦ ϕi at each point i ∈ Q0 in our quiver.

This composition of morphisms is associative since it inherits the associativity of the composi-
tion of functions. Moreover, for each representation V we have the identity morphism 1V : V → V
which is the identity on each Vi. Thus for a fixed quiver Q and a fixed field k, we get the cate-
gory of the quiver representations of Q, denoted by Repk(Q). If we restrict ourselves to the
finite-dimensional representations we get the subcategory repk(Q).

Example 2.21. We give a description of the category repk(Q) for the loop quiver Q. A morphism
between two representations V = (V1, va),W = (W1, wa) of the loop quiver is a map ϕ1 : V1 →W1

such that waϕ1 = ϕ1va. In Example 2.13 we saw that every representation is given by a map va
which is in Jordan normal form in some suitable basis (if we restrict to an algebraically closed
field k and to finite-dimensional representations). We also know that two finite-dimensional endo-
morphisms A,B ∈ End(V1) are equivalent if and only if their Jordan normal forms are the same
(up to reordering the Jordan blocks). Equivalence of matrices means that there exists a change of
basis matrix C ∈ End(V1) such that A = C−1BC. Notice that such a change of basis represents
an isomorphism between two representations given by the matrices A and B. Thus we have found
that all representations are (up to isomorphism) given by Jordan normal forms and that two repre-
sentations are isomorphic if and only if they have the same Jordan normal form (up to reordering
the Jordan blocks). This is a complete description of all the isomorphism classes of the category
repk(Q) for the loop quiver Q and an algebraically closed field k.
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2.2.1 Direct Sums, Kernels and Cokernels

The categories Repk(Q) and repk(Q) have some properties that are useful towards our goal of
classifying quiver representations. We list them here to give an overview and then we describe the
second and third properties in detail.

ZO: Both categories contain a zero object, called the trivial representation, with all spaces
and all maps equal to 0.

DS: We can combine representations to get new representations (of the same quiver). This is
called a direct sum.

KI: Every morphism between representations (of the same quiver) ϕ : V → W has a kernel, an
image and a cokernel.

DS: The direct sum of two representations is defined for any representations V,W to be the
representation V⊕W with spaces Vi⊕Wi for i ∈ Q0 and maps va⊕wa =

(
va 0
0 wa

)
for a ∈ Q1. This

definition explicitly shows what happens on vector spaces and linear maps, which is helpful if we
look at a given direct sum of representations. We give another equivalent definition of the direct
sum, which is especially useful in proofs.

Definition 2.22. [4, Def. 2.1] Let V1, . . . ,Vr be representations. A direct sum V = V1 ⊕ . . .⊕ Vr
is a representation V together with morphisms ιi : Vi → V and πi : V → Vi for 1 ≤ i ≤ r such that∑r
i=1 ιiπi = idV and πiιi = idVi

. We write Vr = V⊕ . . .⊕ V for the direct sum of r copies of V.

Remark 2.23. In the first definition of a direct sum, we can set the inclusion morphisms ιv,w to
be pointwise inclusion of subspaces and the projection morphisms πv,w are given pointwise by the
projection onto a subspace. One can easily check that those morphisms satisfy the above conditions.
Thus our second definition of a direct sum is equivalent to the first definition.

Definition 2.24. A non-trivial representation V is called decomposable if it is isomorphic to
the direct sum of two non-trivial representations which are called summands. Else it is called
indecomposable. The trivial representation is neither decomposable nor indecomposable.

Example 2.25. Again, we consider the loop quiver. Moreover, we assume that the field k is
algebraically closed and we consider finite-dimensional representations in repk(Q). If va, wa are
matrices in Jordan normal form then va ⊕ wa =

(
va 0
0 wa

)
is also a matrix in Jordan normal form

and thus the direct sum is a representation of the loop quiver (see Example 2.21). In addition, if
va has two or more Jordan blocks, then we can set v′a to be the subrepresentation consisting only
of the first (upper left) Jordan block and v′′a to be all the other Jordan blocks (and in both cases
restricting to the proper subspaces). Then v′a, v

′′
a are actually summands and thus V = (V1, va) is

decomposable. This shows that the indecomposable representations of the loop quiver are given by
the representations that only have one Jordan block [3]. We later give a more robust argument for
this (see Example 2.39).

KI: Every morphism of quiver representations has a kernel, an image, and a cokernel.

Definition 2.26. Let ϕ : V → W be a morphism of quiver representations. We define the kernel
of ϕ to be (kerϕ)i = kerϕi for all i ∈ Q0. Moreover, the image of ϕ is given by (imϕ)i = imϕi
and the cokernel of ϕ is defined as (cokerϕ)i = cokerϕi. The maps between the vector spaces are
given by the induced subspace maps resp. quotient maps.

Lemma 2.27. For every morphism ϕ : V → W, kerϕ is a subrepresentation of V, imϕ is a sub-
representation of W and cokerϕ is a representation.

Proof. Notice that for each point i ∈ Q0, kerϕi is a subspace of Vi and imϕi is a subspace of Wi.
It remains to show that the maps restrict well. For each arrow a ∈ Q1 we have the commutative
diagram

Vi Vj

Wi Wj

va

ϕi ϕj

wa
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and we get that va(kerϕi) ⊆ kerϕj , which shows that kerϕ is a subrepresentation. Similarly, we get
that wa(imϕi) = ϕj(im va) ⊆ imϕj and thus imϕ is a subrepresentation. Since wa(imϕi) ⊆ imϕj ,
we have a well-defined map w̃a : Wi/ imϕi = cokerϕi → cokerϕj =Wj/ imϕj , which is given by
w̃a(w + imϕi) = wa(w) + imϕj . This shows that cokerϕ is a representation.

Remark 2.28. A morphism ϕ is a monomorphism if and only if kerϕ = 0, an epimorphism if
and only if cokerϕ = 0, and an isomorphism if and only if ϕ is both a monomorphism and an
epimorphism.

Since both morphisms and the direct sum of quiver representations are defined pointwise, there
are many properties of vector spaces that carry over to quiver representations. E.g. if a morphism
ϕ : V → W is a monomorphism, then for each i ∈ Q0 we have dimVi ≤ dimWi. One important
property that does not carry over is semisimplicity: while each subspace W ⊆ V is a summand
(i.e. there exists a subspace W⊥ s.t. W ⊕ W⊥ = V ), not all subrepresentations of a given
representation V are summands of V. The lack of semisimplicity makes the classification of quiver
representations a lot harder since it does not suffice to find all representations with no proper
subrepresentations (which, for example, is enough to classify the complex finite-dimensional group
representations of a finite group).

Example 2.29. We consider representations of the L2-quiver from Example 2.12. Let V = k
1−→ k

and W = 0
0−→ k be two such representations. Then W is a subrepresentation of V, but it is not a

summand. Indeed, if U is a subrepresentation of V such that V = U ⊕W, then U = k → 0, which

can only be the zero map. But then U⊕W = k
0−→ k which is not isomorphic to V.

2.2.2 Properties of Hom(V,W)

We now decompose Hom(V,W) and look at morphisms between indecomposable representations.

Lemma 2.30. [4, Lemma 2.1.1] Let V = V1 ⊕ ...⊕ Vr and W = W1 ⊕ ...⊕Ws be two direct sums
of representations (of the same quiver). The decomposition of the representations induces vector
space decompositions

r⊕
i=1

Hom(Vi,W)
(1)∼= Hom(V,W)

(2)∼=
s⊕
j=1

Hom(V,Wj).

We associate the map ϕ ∈ Hom(V,W) with the collection of maps (ϕi)1≤i≤r where ϕi ∈ Hom(Vi,W)
and also with (ϕj)1≤j≤s where ϕj ∈ Hom(V,Wj) through the isomorphisms in (1) and (2).

Proof. 1. Let ιi : Vi → V and πi : V → Vi be the maps from the decomposition of V. For
1 ≤ i ≤ r we define the map ι̃i = π∗

i : Hom(Vi,W) → Hom(V,W), ϕ 7→ ϕπi and the map
π̃i = ι∗i : Hom(V,W)→ Hom(Vi,W), ϕ 7→ ϕιi. For ϕ ∈ Hom(V,W) we have

(

r∑
i=1

ι̃iπ̃i)ϕ =

r∑
i=1

π∗
i ι

∗
iϕ =

r∑
i=1

ϕιiπi = ϕ(

r∑
i=1

ιiπi) = ϕ idV = ϕ.

Thus we have
∑r
i=1 ι̃iπ̃i = idHom(V,W). In addition, for ϕ ∈ Hom(Vi,W) we have

π̃iι̃iϕ = ι∗i π
∗
i ϕ = ϕπiιi = ϕ idVi

= ϕ.

So π̃iι̃i = idHom(Vi,W). This shows the first decomposition.

2. Let ιj : Wj → W and πj : W → Wj be the maps from the decomposition of W. For 1 ≤ j ≤ s
we define the map ι̃j = ι∗j : Hom(V,Wj) → Hom(V,W), ϕ 7→ ιjϕ and we define the map
π̃j = π∗

j : Hom(V,W)→ Hom(V,Wj), ϕ 7→ πjϕ. For ϕ ∈ Hom(V,W) we have

(

s∑
j=1

ι̃j π̃j)ϕ =

s∑
j=1

ι∗jπ
∗
jϕ =

s∑
j=1

ιjπjϕ = (

s∑
j=1

ιjπj)ϕ = idW ϕ = ϕ.
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Therefore,
∑s
j=1 ι̃j π̃j = idHom(V,W). In addition, for ϕ ∈ Hom(V,Wj) we have

π̃j ι̃jϕ = πj,∗ιj,∗ϕ = πjιjϕ = idWj
ϕ = ϕ.

So π̃j ι̃j = idHom(V,Wj). This shows the second decomposition.

Lemma 2.31. [5, Lemma p. 112] Let U,V,W be indecomposable representations (of the same
quiver) and let ϕ : U → V and ψ : V → W be morphisms such that ψϕ is an isomorphism. Then
both ϕ and ψ are isomorphisms. In particular, the composition of a finite number of morphisms
between indecomposable representations is invertible if and only if each morphism is invertible.

Proof. Let U,V,W and ϕ : U→ V, ψ : V→ W be as in Lemma 2.31 (i.e. ψϕ is an isomorphism). We
show that both ϕ and ψ are isomorphisms. We set σ = (ψϕ)−1ψ : V→ U and observe that σϕ = idU

and thus ϕ is injective. We notice that U ∼= imϕ and we claim that V = imϕ⊕ kerσ. Indeed, for
any v ∈ V (meaning v ∈ Vi for some i ∈ Q0), we have that σ(v−ϕσ(v)) = σ(v)− idU σ(v) = 0 and
thus v − ϕσ(v) ∈ kerσ. Also if ϕ(u) ∈ kerσ, then u = σϕ(u) = 0 and thus imϕ ∩ kerσ = 0. Thus
we get the decomposition

v = ϕσ(v) + (v − ϕσ(v)) ∈ imϕ+ kerσ.

This decomposition gives rise to the morphisms πϕ = ϕσ : V→ imϕ and πσ = idV−ϕσ : V→ kerσ.
We denote by ιϕ : imϕ → V and ισ : kerσ → V the (pointwise) inclusion morphisms. Now we
have πϕιϕ = idimϕ and πσισ = idkerσ. Further, this decomposition yields that ιϕπϕ = ϕσ and
ισπσ = idV−ϕσ and thus we get ιϕπϕ + ισπσ = idV. This shows that V = imϕ⊕ kerσ. Since V is
indecomposable and imϕ ∼= U ̸= 0 we get that kerσ = 0 and therefore imϕ = V and thus both ϕ
and ψ are isomorphisms. The second claim follows by induction on the number of morphisms.

Remark 2.32. From Lemma 2.30 and Lemma 2.31 we have learned a lot about Hom(V,W). The
first lemma tells us that it suffices to consider Hom(V,W) for indecomposable representations.
Indeed, each morphism ϕ ∈ Hom(V,W) can be uniquely written as a block matrix (ϕi,j), where
ϕi,j : Vj → Wi are morphisms between indecomposable representations. Such morphisms (between
indecomposable representations) are characterized by the second lemma.

2.3 The Krull-Remak-Schmidt Theorem

Towards our goal of classifying quiver representations, we can ask if a quiver representation can
always be decomposed into a direct sum of finitely many indecomposable representations. We
call such a decomposition a Remak decomposition and it turns out that such a decomposition
always exists and it is unique up to isomorphism and permutation of the factors in the direct
sum. This section is primarily based on the lecture notes ‘Representations of quivers via reflection
functors’ written by Henning Krause [4].

Theorem 2.33 (Krull, Remak, Schmidt). Let Q be a finite quiver. Then for any V ∈ repk(Q)
there are indecomposable representations V1, . . . ,Vr such that V ∼= V1 ⊕ . . . ⊕ Vr. Moreover, for
indecomposable representations W1, . . . ,Ws such that V ∼= W1 ⊕ . . . ⊕ Ws, r = s and there is a
permutation σ such that Vi ∼= Wσ(i) for 1 ≤ i ≤ r.

Before we can prove Theorem 2.33, we observe a connection between the decomposability of a
representation V and the structure and property of the ring of its endomorphisms End(V).

Remark 2.34. Note that the composition of morphisms gives a ring structure on End(V), which
is the reason why we generally refer to End(V) as a ring. Hom(V,W) on the other hand does not
have a ring structure (with respect to the composition of morphisms).

Lemma 2.35 (Fitting’s Lemma). [5, Lemma p. 113] Let V be a finite-dimensional representation
and let ϕ be an endomorphism in End(V).

1. For large enough r, we have V = imϕr ⊕ kerϕr.

2. If V is indecomposable, then ϕ is either an automorphism or nilpotent.
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Proof. 1. Because V is finite-dimensional, we can choose r large enough, s.t. imϕr = imϕr+1.
This is possible since all the maps ϕi are endomorphisms on finite-dimensional vector spaces
and we can deduce the result pointwise: we have imϕri+1

i ⊆ imϕrii ⊆ . . . ⊆ imϕ2i ⊆ imϕi.
If all the inclusions were strict, then dim(imϕi) > dim(imϕ2i ) > . . . is an infinite, strictly
decreasing sequence of non-negative numbers, which is impossible since dim(imϕi) < ∞.
This also shows that w.l.o.g. ri ≤ dim(ϕi), where dim(ϕi) is the dimension of the vector
space on which ϕi operates. Thus we get the desired result for r ≥ dimV. For the same r
it also holds that kerϕr+1 = kerϕr. Thus ϕr : imϕr → imϕ2r is an isomorphism and we
denote by ψ its inverse. Let ι1 : imϕr → V and ι2 : kerϕr → V denote the inclusions. We
put

π1 = ψϕr : V→ imϕrandπ2 = idV−ψϕr : V→ kerϕr.

This is well-defined since ϕrπ2 = ϕr − ϕrψϕr = ϕr − idimϕr ϕr = 0. Then ι1π1 + ι2π2 = idV

and π1ι1 = idimϕr , π2ι2 = idkerϕr . Thus imϕr and kerϕr are summands and by the definition
of the direct sum we have: V = imϕr ⊕ kerϕr.

2. If V is indecomposable, then one of the factors in the decomposition in part (1) needs to be
0. If kerϕr = 0, then ϕ is an automorphism and if imϕr = 0, then ϕ is nilpotent.

Remark 2.36. Notice that V needs to be finite-dimensional. Otherwise the decomposition in part
(1) is not guaranteed, since there may not be any such r.

Definition 2.37. A ring is called local if the sum of two non-units is again a non-unit.

Proposition 2.38. [5, Proposition 3.1] A finite-dimensional representation V is indecomposable
if and only if End(V) is local.

Proof. =⇒ : Let V be indecomposable and let ϕ, ϕ′ ∈ End(V) such that ϕ + ϕ′ is invertible with
inverse ρ. If ϕ is non-invertible, so is ρϕ and thus by Lemma 2.35, ρϕ is nilpotent, say (ρϕ)r = 0.
The summation formula for geometric series yields:

(idV−ρϕ)(idV +ρϕ+ . . .+ (ρϕ)r−1) = idV−(ρϕ)r = idV .

Therefore ρϕ′ = idV−ρϕ is invertible and thus ϕ′ is invertible, which shows that End(V) is local.
⇐= : If V = U⊕W is decomposable, then the endomorphisms ιUπU, ιWπW have image U respectively

W and thus are not invertible. But ιUπU + ιWπW = idV is invertible and therefore End(V) is not
local.

Example 2.39. In Example 2.25 we have stated that the finite-dimensional indecomposable rep-
resentations of the loop quiver are given by the endomorphisms va, which only have one Jordan
block. Using Proposition 2.38 we can now prove that every indecomposable representation consists
of a single Jordan block (proof by contrapositive). Indeed if va has two or more Jordan blocks, then
we can define ϕ1 =

(
id 0
0 0

)
to be the identity on the subspace belonging to the first Jordan block.

Analogously, let ϕ2 =
(
0 0
0 id

)
be the identity on the subspace belonging to the other Jordan blocks.

Then ϕ1, ϕ2 are both non-invertible, but ϕ1 + ϕ2 = idV is invertible. Thus End(V) is not local and
therefore V is decomposable.

We use Proposition 2.38 to consider a subspace of the vector space Hom(V,W). To do this, we
use the Lemmas 2.30 and 2.31 from Section 2.2.

Definition 2.40. The radical of two representations V,W is defined to be

Rad(V,W) =

{
ϕ ∈ Hom(V,W)

∣∣∣∣∣ for every U indecomposable,U
σ−→ V and W

τ−→ U,

τϕσ is non-invertible

}
.

A morphism ϕ ∈ Rad(V,W) is called radical.

Lemma 2.41. Let V,W be two representations.

1. Rad(V,W) is a subspace of Hom(V,W).
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2. Rad(V,W1 ⊕W2) ∼= Rad(V,W1)⊕ Rad(V,W2).

3. Rad(V1 ⊕ V2,W) ∼= Rad(V1,W)⊕ Rad(V2,W).

4. If V,W are indecomposable, then Hom(V,W) \ Rad(V,W) is the set of isomorphisms V→ W.

Proof. 1. Let α, β ∈ k and let ϕ1, ϕ2 ∈ Rad(V,W) and let U
σ−→ V and W

τ−→ U for U indecom-
posable as in the definition of Rad(V,W). Then α · τϕ1σ, β · τϕ2σ are non-invertible and thus
τ(α · ϕ1 + β · ϕ2)σ = α · τϕ1σ + β · τϕ2σ is non-invertible since End(U) is a local ring. Thus
α · ϕ1 + β · ϕ2 ∈ Rad(V,W).

2. Let W = W1 ⊕ W2 and let ϕ = (ϕ1, ϕ2) ∈ Hom(V,W1) ⊕ Hom(V,W2) ∼= Hom(V,W). Let
U be indecomposable and let σ ∈ Hom(U,V) and τ = (τ1, τ2) ∈ Hom(W1,U)⊕Hom(W2,U).
Then τϕσ = (τ1, τ2)(ϕ1, ϕ2)σ = τ1ϕ1σ+ τ2ϕ2σ. This results directly from the decomposition
of Hom(V,W1 ⊕ W2) given in Lemma 2.30. If ϕi ∈ Rad(V,Wi) for i ∈ {1, 2}, then τ1ϕ1σ
and τ2ϕ2σ are non-invertible and thus τϕσ = τ1ϕ1σ + τ2ϕ2σ is non-invertible since End(U)
is local (since U is indecomposable). Thus ϕ ∈ Rad(V,W). On the other hand, if we fix
i ∈ {1, 2} and if ϕ ∈ Rad(V,W), then we can choose τ = (τ1, τ2) such that τj = 0 for j ̸= i
(and τi arbitrary) and we get that τiϕiσ = τϕσ is non-invertible. Therefore ϕi ∈ Rad(V,Wi).

3. Let V = V1 ⊕ V2 and let ϕ = (ϕ1, ϕ2) ∈ Hom(V1,W)⊕Hom(V2,W) ∼= Hom(V,W). Let U
be indecomposable and let σ = (σ1, σ2) ∈ Hom(U,V1) ⊕ Hom(U,V2) ∼= Hom(U,V) and
τ ∈ Hom(W,U). Then τϕσ = τ(ϕ1, ϕ2)(σ1, σ2) = τ1ϕ1σ + τ2ϕ2σ. This results directly from
the decomposition of Hom(V1⊕V2,W) given in Lemma 2.30. If ϕi ∈ Rad(Vi,W) for i ∈ {1, 2},
then τϕ1σ1 and τϕ2σ2 are non-invertible and thus τϕσ = τϕ1σ1 + τϕ2σ2 is non-invertible
since End(U) is local (since U is indecomposable). Thus ϕ ∈ Rad(V,W). On the other
hand, if we fix i ∈ {1, 2} and if ϕ ∈ Rad(V,W), then we can choose σ = (σ1, σ2) such that
σj = 0 for j ̸= i (and σi arbitrary) and we get that τϕiσi = τϕσ is non-invertible. Therefore
ϕi ∈ Rad(Vi,W).

4. Let ϕ ∈ Hom(V,W) be an isomorphism. Then we can choose U = V, σ = idV, τ = ϕ−1 and see
that τϕσ = idV is invertible and thus ϕ ̸∈ Rad(V,W). Now let ϕ ∈ Hom(V,W) \ Rad(V,W).
W.l.o.g we can assume that ϕ is non-invertible (else we are done). Now choose U indecom-
posable and σ ∈ Hom(U,V) and τ ∈ Hom(W,U) such that τϕσ is invertible. Since V,W
are indecomposable, this is impossible. Indeed, since ϕ is non-invertible, it follows from
Lemma 2.31 that τϕσ is non-invertible.

Remark 2.42. If ϕ : V → W is radical and ϕ = (ϕi,j) is written as a block matrix of mor-
phisms between indecomposable representations (see Lemma 2.30), then every such block ϕi,j is
non-invertible. Indeed if ϕi,j : Vj → Wi is invertible, then we can choose U = Wi indecomposable,
τ : W → Wi the projection onto the summand Wi and σ = ιVj (ϕi,j)

−1 : Wi → Vj → V where ιVj is
the inclusion of the summand Vj into V. But then τϕσ = ϕi,j is invertible, which is a contradiction
to the choice of ϕ.

Proof of Theorem 2.33. By induction on dimV we can show that a Remak decomposition exists:
for dimV = 0 all vector spaces are trivial and thus indecomposable. Therefore V is already
indecomposable. For the induction step, let dimV = n ≥ 1. If V is decomposable, then there exist
proper summands U,W. Since both dimU,dimW < n we know by the induction hypothesis that
they each have a Remak decomposition. The direct sum of these decompositions gives a Remak
decomposition for V. For the proof of uniqueness, we order isomorphic summands together, i.e. let
V = Va11 ⊕ . . .⊕ Varr be a direct sum decomposition of V where the Vi are pairwise non-isomorphic
representations and ai ≥ 1 for all 1 ≤ i ≤ r. For W indecomposable, we can consider the number

dimHom(V,W)− dimRad(V,W)

dimHom(W,W)− dimRad(W,W)
.

From Lemma 2.30 and Lemma 2.41 we know that for W = Vi this number is equal to:∑r
j=1(dimHom(Vajj ,Vi)− dimRad(Vajj ,Vi))

dimHom(Vi,Vi)− dimRad(Vi,Vi)
=

∑r
j=1 aj · dim(Hom(Vj ,Vi) \ Rad(Vj ,Vi))

dim(Hom(Vi,Vi) \ Rad(Vi,Vi))

=
ai · dim(Hom(Vi,Vi) \ Rad(Vi,Vi))
dim(Hom(Vi,Vi) \ Rad(Vi,Vi))

= ai.
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Here we used part (4) from Lemma 2.41 to see that dimHom(Vj ,Vi) − dimRad(Vj ,Vi) = 0 for
j ̸= i since Vj and Vi are non-isomorphic. We notice that this number is independent of the
decomposition of V and thus the decomposition is unique up to isomorphisms and reordering.

Remark 2.43. In this section we restricted our focus to finite quivers and finite-dimensional rep-
resentations. Moreover, we assumed that the quivers are connected. Those restrictions are sensible.
Indeed, if a quiver Q is the disjoint union of two quivers Q′ and Q′′, then any representation of
Q is the same as a pair of representations, one of Q′ and one of Q′′, and any morphism acts on
each component of the representation separately. Therefore, repk(Q) is isomorphic to the product
category repk(Q

′)× repk(Q
′′). From the viewpoint of topological data analysis, restricting to finite

quivers and finite-dimensional representations is somewhat justified since one looks at persistence
modules, which generally are finite-dimensional representations of finite quivers. This is done in
Chapter 5.
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Chapter 3

Gabriel’s Theorem

In this chapter, we consider quivers that have a finite number of indecomposable representations.

Definition 3.1. Let Q be a quiver and let k be a field. The quiver Q is of finite-type if it has
finitely many isomorphism classes of indecomposable finite-dimensional representations.

This leads to the question of whether there are quivers of finite-type and if so, which quivers are
of finite-type. The answer to this question is given by Gabriel’s Theorem. Proving Gabriel’s The-
orem is our main goal in this chapter. Sections 3.1 to 3.4 introduce important results, which help
understand quiver representations. These sections are written with the goal of proving Gabriel’s
Theorem. Therefore, we generally only introduce what is needed to prove Gabriel’s Theorem.

Theorem 3.2 (Gabriel, version 1). Let Q be a finite connected quiver and let k be a field. Then
Q is of finite type if and only if Q is a Dynkin quiver.

The Krull-Remak-Schmidt Theorem guarantees that every finite-dimensional quiver represen-
tation admits a unique decomposition into indecomposable summands. Therefore, for a quiver
of finite-type, it suffices to characterize the finitely many indecomposable representations. Using
the indecomposable representations, one can then classify all quiver representations. The general
outline of this chapter follows the book ‘Persistence Theory: From Quiver Representations to Data
Analysis’ written by Steve Y. Oudot [1]. Some of the more technical details and proofs are based
on the book ‘Finite dimensional algebras and quantum groups’ written by Bangming Deng [2].

Remark 3.3. Note that Gabriel’s Theorem is true for any field k. In addition, the classification of
finite-type quivers happens on the level of the underlying graph, thus the orientations of the arrows
do not matter.

3.1 Dynkin and Euclidean Diagrams

In this section, we introduce the Tits form. Using the Tits form, we then divide all quivers into
three distinct classes.

3.1.1 Tits Form

For a finite quiver, we look at a special quadratic form on Zn, called the Tits form. We later apply
the Tits form to the dimension vectors of finite-dimensional representations.

Definition 3.4. A vector in Zn is called positive if it belongs to Nn0 \ {0}. This means that every
coordinate is non-negative and the vector is non-trivial (not all coordinates are 0). We write x > 0
if x is positive and we write x > y if x− y is positive. For example, the dimension vectors of non-
trivial representations are positive. Dually, a vector x ∈ Zn is called negative if −x is positive. A
vector x ∈ Zn is called sincere if xi ̸= 0 for all 1 ≤ i ≤ n. Finally,we denote by ei ∈ Zn the i-th
coordinate vector, i.e. (ei)j = δij (δ here denotes the Kronecker-delta).
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Definition 3.5. The Euler form of a finite quiver Q is the bilinear form ⟨·, ·⟩Q : Zn × Zn → Z,
given by:

⟨x, y⟩Q =
∑
i∈Q0

xiyi −
∑
a∈Q1

xtayha .

The symmetrization of the Euler form is called the symmetric Euler form and is given by:

(x, y)Q = ⟨x, y⟩Q + ⟨y, x⟩Q.

Lemma 3.6. If we view elements in Zn as column vectors and if the finite number of edges (in Q̄)
joining the vertices i and j is denoted by dij = dji, then the symmetric Euler form can be expressed
as:

(x, y)Q = xTCQy,

where CQ = (cij)i,j∈Q0 is the symmetric matrix with the entries

cij =

{
2− 2|{loops at i}| = 2− 2dii if i = j,

− |{arrows between i and j}| = −dij if i ̸= j.

Proof. We need to check that for all 1 ≤ i, j ≤ n we have: (ei, ej)Q = eTi CQej = cij . For i = j we
have: (ei, ei)Q = 2(1 · 1− dii) = 2− ddii. For i ̸= j we have:

(ei, ej)Q = ⟨ei, ej⟩Q + ⟨ej , ei⟩Q = (0− |{arrows from i to j}|) + (0− |{arrows from j to i}|)
= −|{arrows between i and j}| = −dij .

Example 3.7. We consider the L2-quiver

1 2 .

The Euler form of L2 is ⟨x, y⟩L2
= x1y1 + x2y2 − x1y2. Its symmetric Euler form is given by

(x, y)L2
= 2x1y1 + 2x2y2 − x1y2 − x2y1.

Example 3.8. The Euler form of the loop quiver is ⟨x, y⟩Q = x1y1 − x1y1 = 0. Its symmetric
Euler form is (x, y)Q = 0.

Definition 3.9. For a finite quiver Q, the Tits form of Q is the quadratic form qQ : Zn → Z
associated with the Euler form

qQ(x) = ⟨x, x⟩Q =
1

2
(x, x)Q =

1

2
xTCQx =

1

2

∑
i,j

cijxixj =
1

2

∑
i

(2− 2dii)x
2
i −

∑
i<j

dijxixj .

The radical of the quadratic form qQ is the set rad qQ = {x ∈ Zn | (x, ·)Q = 0} and x ∈ rad qQ is
called a radical vector.

Definition 3.10. Let q : Zn → Z be a quadratic form.

1. q is called positive definite if q(x) > 0 for all non-zero x ∈ Zn.

2. q is called positive semi-definite if q(x) ≥ 0 for all x ∈ Zn.

3. q is called indefinite if it takes on both positive and negative values, i.e. there exist x, y ∈ Zn

such that q(x) > 0, q(y) < 0.

We use the same terminology for quadratic forms Qn → Q respectively Rn → R.
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Example 3.11. The Tits forms of the Dynkin quivers (respectively Dynkin graphs) are:

An : qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xtaxha =

n∑
i=1

x2i −
n−1∑
i=1

xixi+1 =
1

2
[x21 + x2n +

n−1∑
i=1

(xi − xi+1)
2]

Dn : qQ(x) =

n∑
i=1

x2i −
n−2∑
i=1

xixi+1 − xn−2xn =
1

2
[x21 + x2n + (xn−2 − xn)2 +

n−2∑
i=1

(xi − xi+1)
2]

E6 : qQ(x) =

6∑
i=1

x2i − x1x3 − x2x4 − x3x4 − x4x5 − x5x6

E7 : qQ(x) =

7∑
i=1

x2i − x1x3 − x2x4 − x3x4 − x4x5 − x5x6 − x6x7

E8 : qQ(x) =

8∑
i=1

x2i − x1x3 − x2x4 − x3x4 − x4x5 − x5x6 − x6x7 − x7x8

We observe that the Tits forms of the Dynkin graphs An and Dn are positive definite. We will
later see that the Tits forms of the other Dynkin graphs are also positive definite, but this is not
obvious from our calculations above.

Lemma 3.12. Let Q be a finite quiver. Then neither its symmetric Euler form nor its Tits form
depends on the orientations of the arrows in Q.

Proof. Let Q be a finite quiver and let a = (ta, ha) ∈ Q1 be an arrow. If we consider the quiver Q̃
resulting from Q by exchanging a with ã = (ha, ta) (reverse its direction), we get:

(x, y)Q̃ =
∑
i∈Q̃0

xiyi −
∑
b∈Q̃1

xtbyhb
+

∑
i∈Q̃0

yixi −
∑
b∈Q̃1

ytbxhb

=
∑
i∈Q0

xiyi −
∑
b∈Q1
b ̸=a

xtbyhb
− xhayta +

∑
i∈Q0

yixi −
∑
b∈Q1
b̸=a

ytbxhb
− yhaxta

=
∑
i∈Q0

xiyi −
∑
b∈Q1
b ̸=a

xtbyhb
− yha

xta +
∑
i∈Q0

yixi −
∑
b∈Q1
b̸=a

ytbxhb
− xha

yta

=
∑
i∈Q0

xiyi −
∑
b∈Q1

xtbyhb
+

∑
i∈Q0

yixi −
∑
b∈Q1

ytbxhb
= (x, y)Q.

The result for the Tits form is an immediate consequence: qQ(x) = (x, x)Q = (x, x, )Q̃ = qQ̃(x).

3.1.2 Dynkin, Tame and Wild Quivers

We want to understand for which quivers Q, its Tits form qQ is positive-definite respectively
positive semi-definite. This divides all quivers into three distinct classes. The following lemma
marks the first step towards this goal.

Lemma 3.13. [2, Claim p. 53] Let Q be a finite connected quiver and let y ∈ rad qQ be a positive
radical vector. Then y is sincere and qQ is positive semi-definite. Moreover for x ∈ Zn we have

qQ(x) = 0⇔ x ∈ Qy, i.e. ∃a ∈ Q s.t. x = a · y ⇔ x ∈ rad qQ.

Proof. We denote by ei the i-th coordinate vector, i.e. (ei)j = δij . The assumption on y gives:

0 = (y, ei)Q = yTCQei =

n∑
j=1

yjcji = (2− 2dii)yi −
n∑
j=1
j ̸=i

djiyj for 1 ≤ i ≤ n. (3.1)

If yi = 0, then
∑n
j=1,j ̸=1 djiyj = 0 and since each term is non-negative (y is positive), we get that

yj = 0 for all j s.t. i and j are joined by an edge (in Q̄). Using that Q̄ is connected, we get that
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y = 0. Indeed, let i, j1, . . . , jk, j be a path from i to j (meaning that there are edges in Q̄ connecting
the pairs (i, j1), (j1, j2), . . . , (jk, j)). Since i and j1 are connected by an edge, we have yj1 = 0 by
the observation above. Using the same observation again we get yj2 = 0. We conclude the claimed
result using the observation inductively on the set i, j1, . . . , jk, j. This is a contradiction because
y is positive and therefore sincere. We now show that qQ is positive semi-definite. For x ∈ Zn we
have:

qQ(x) =
1

2
(x, x)Q =

∑
i

(2− 2dii)yi
1

2yi
x2i −

∑
i<j

dijxixj

=
∑
i

∑
j ̸=i

dijyj
1

2yi
x2i −

∑
i<j

dijxixj

=
∑
i<j

dij
yj
2yi

x2i +
∑
j<i

dij
yj
2yi

x2i −
∑
i<j

dijxixj

=
∑
i<j

dij
yj
2yi

x2i +
∑
i<j

dij
yi
2yj

x2j −
∑
i<j

dijxixj

=
∑
i<j

dij
yiyj
2

(
x2i
y2i

+
x2j
y2j
− 2

xixj
yiyj

)

=
∑
i<j

dij
yiyj
2

(
xi
yi
− xj
yj

)2 ≥ 0.

In the second line, we used Equality (3.1). Now if qQ(x) = 0, then xi

yi
=

xj

yj
whenever i and j are

joined by an edge. By a similar argument as above, we use that Q̄ is connected and conclude that
xi

yi
=

xj

yj
= a ∈ Q (for all i, j). Thus x ∈ Qy. Now if x ∈ Qy we use that y is radical and get

(x, ·)Q = a(y, ·)Q = 0. Therefore, x ∈ rad qQ and x ∈ rad qQ implies qQ(x) = (x, x)Q = 0.

Definition 3.14. A graph is called Euclidean if it is one of the graphs in Figure 3.1.

Ã0 0

1 2 n− 1 n

0

Ãn(n ≥ 1)

0

1

2
n− 2

n− 1

n

D̃n(n ≥ 4)

0

1

2

3 4 5 6
Ẽ6

1

2

3 4 5 6
Ẽ7

0 7

1

2

3 4 5 6
Ẽ8

7 8 0

Figure 3.1: The Euclidean diagrams.

Lemma 3.15. [2, Observation p. 52] Let Q̄ be a graph that is neither Dynkin nor Euclidean. Then
Q̄ contains an Euclidean graph Γ as a subgraph.
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Proof. Note that if Q̄ contains a loop, then Γ = Ã0 is the desired subgraph. If Q̄ contains a cycle,
then the desired subgraph is of the type Ãn. Thus w.l.o.g., we can assume that Q̄ does not contain
any loops or cycles. We also notice that Q̄ has at least one branch vertex (= vertex connected
to at least 3 different vertices by edges). Else Q̄ is of type An, which is a Dynkin quiver. We do a
proof by cases on the number of branch vertices.

Case 1. Let us consider the case that Q̄ has exactly one branch vertex. There must be another
vertex attached to the graph, or else we have the Dynkin graph D4. If the additional vertex is
attached to our branch vertex, we have the Euclidean graph D̃4 as a subgraph and we are done.
If the additional vertex is not attached to the branch vertex, then we actually have at least two
additional vertices, which are attached to different branches. Else Q̄ = Dn is a Dynkin graph (for
some n). Thus Q̄ contains a subgraph that looks like this:

a

b c
.

But this is the Dynkin graph E6, thus there needs to be another vertex d attached to a, b or c
(notice that we only have one branch vertex!). If d is attached to a, then our desired subgraph is
Ẽ6. If there is no additional vertex attached to a, then by gradually attaching vertices to the ends
at b or c we get the graphs E7, Ẽ7, E8 or Ẽ8. Thus we eventually get an Euclidean subgraph as
claimed. Case 2. Q̄ has at least two different branch vertices a and b as illustrated in the following
picture:

a ba1

a2

a3

b1

b2

b3

Since Q̄ is connected, we find a path between a1 and b1. By taking Γ to be this path (dotted line)
and the ‘forks’ in the picture above, we get an Euclidean subgraph Γ = D̃n for some n ≥ 6.

Theorem 3.16. [2, Theorem 1.11] Let Q be a finite connected quiver and let qQ be its Tits form.

1. Q is a Dynkin quiver if and only if qQ is positive definite.

2. The underlying graph Q̄ is Euclidean if and only if qQ is positive semi-definite but not positive
definite. In that case, there is a unique positive vector δ ∈ Zn s.t. rad qQ = Zδ.

Proof. Step 1. If Q̄ is Euclidean, then qQ is positive semi-definite and rad qQ = Zδ: For each
Euclidean graph, we explicitly give a positive radical vector δ (we enumerate the vertices as in
Definition 3.14).

Ã0: δ = (1),

Ãn: δ = (1, 1, . . . , 1),

D̃n: δ = (1, 1, 2, . . . , 2, 1, 1),

Ẽ6: δ = (1, 1, 2, 2, 3, 2, 1),

Ẽ7: δ = (1, 2, 2, 3, 4, 3, 2, 1),

Ẽ8: δ = (1, 2, 3, 4, 6, 5, 4, 3, 2).

To check that δ is radical, we check that (see proof of Lemma 3.13):

0 = (δ, ei)Q = (2− 2dii)δi −
n∑
j=1
j ̸=i

djiδj for 1 ≤ i ≤ n. (3.2)

If Q̄ has no loops or multiple edges this is equivalent to (use dii = 0 and dij ∈ {0, 1}):

0 = (δ, ei)Q = 2δi −
n∑
j=1
dij ̸=0

δj for 1 ≤ i ≤ n. (3.3)
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We do the calculation for Ã0, Ãn, D̃n. The other cases can also be checked by calculation.

Ã0: (δ, e1)
(3.2)
= (2− 2d11)δ1 = (2− 2) · 1 = 0.

Ãn: (δ, ei)
(3.3)
= 2δi − δi−1 − δi+1 = 2− 1− 1 = 0 (we consider the indices mod n+ 1).

D̃n: For i ∈ {0, 1, n− 1, n}: (δ, ei)
(3.3)
= 2δi − 2 = 2− 2 = 0.

For i ∈ {3, . . . , n− 3}: (δ, ei)
(3.3)
= 2δi − δi−1 − δi+1 = 2 · 2− 2− 2 = 0.

For i ∈ {2, n− 2}: (δ, ei)
(3.3)
= 2δi − 2− 1− 1 = 2 · 2− 2− 1− 1 = 0.

From Lemma 3.13 it follows that qQ is positive semi-definite. It also follows that rad qQ = Qδ ∩ Zn.
Since every δ above has δi = 1 for some i, we know that for a ∈ Q \ Z we have a · δi = a ̸∈ Z and
thus Qδ ∩ Zn = Zδ = rad qQ. From Lemma 3.13 also follows that qQ(δ) = 0 and thus qQ is not
positive definite. The uniqueness of δ is a consequence of the property rad qQ = Zδ.

Step 2. If Q is Dynkin, then qQ is positive definite: We first notice that for every Dynkin

graph Q̄, there exists an Euclidean graph Q̄′ s.t. Q̄ results from Q̄′ by deleting the vertex 0 (and
its incident edges). An results from Ãn, Dn from D̃n and so on. We can extend x ∈ Zn to
x′ = (0, x) ∈ Zn+1 and from step 1 we get that qQ̄(x) = qQ̄′(x′) ≥ 0. Thus qQ̄ is positive semi-
definite. To see that it is actually positive definite, let x ∈ Zn be such that qQ̄(x) = qQ̄′(x′) = 0.
From Lemma 3.13 we get that x′ = a · δ for a ∈ Q and δ defined in step 1. But since x′0 = 0 we
have that a = 0 (since δ0 ̸= 0 for all the Euclidean graphs) and thus x = 0 is trivial.

Step 3. If Q̄ is neither Dynkin nor Euclidean, then qQ is indefinite, i.e. qQ(x) < 0 for some

X ∈ Zn: Let Γ be the proper Euclidean subgraph of Q̄ (use Lemma 3.15 and let δ be the positive
radical vector for Γ (see step 1).

• If Γ0 = Q̄0 (the vertices coincide) and Γ1 ⊊ Q̄1 (edges do not coincide), we put x = δ ∈ Nn

and have qQ̄(x) < qΓ(x) = 0. The inequality comes from the fact that there exists an edge
a = (i, j) ∈ Q̄1 \ Γ1. Notice that this yields an additional term −xixj < 0 in qQ̄(x).

• If Γ0 ⊊ Q̄0, then let i be a vertex in Q̄0 \ Γ0 which is connected to Γ by an edge a (such a
vertex exists since Q̄ is connected). Now let δ′ be an extension of δ (δ′j = 0 for j ∈ Q̄0 \ Γ0)

and define x = 2δ′ + ei. We have qQ̄(x) ≤ 4qΓ(δ) + x2i − xtaxha
≤ 0 + 1− 2 = −1 < 0.

Definition 3.17. A quiver Q is called a tame quiver if its underlying graph Q̄ is Euclidean. If Q
is neither a Dynkin quiver nor a tame quiver, it is called a wild quiver.

This definition classifies all finite connected quivers into three different categories: Dynkin quiv-
ers, tame quivers, and wild quivers. Theorem 3.16 yields the same classification, but it considers
the Tits forms qQ rather than classifying the quivers based on underlying graphs Q̄. The Tits form
of the Dynkin quivers is positive definite, the Tits form of the tame quivers is positive semi-definite
and the Tits form of the wild quivers is indefinite.

Remark 3.18. In Gabriel’s Theorem, there is no distinction between tame and wild quivers. But
in the theory beyond Gabriel’s Theorem, there are some interesting differences between the two
categories, which is why we differentiate between the two categories.

Example 3.19. The loop quiver is a tame quiver since its underlying graph is the Euclidean graph
Ã0. This matches with our calculation in Example 3.8: qQ(x) =

1
2 (x, x)Q = 0, which is a positive

semi-definite form.

3.2 Weyl Groups and Root Systems

In this section, we introduce the Weyl group and the root system of a finite quiver. This section
is based on the book ‘Finite dimensional algebras and quantum groups’ by B. Deng [2].

Definition 3.20. Let Q be a finite quiver and let i ∈ Q0 = {1, . . . , n} be a vertex such that Q has
no loops at i, i.e. dii = 0. Then we say that the vector ei ∈ Zn is a simple root. We denote by
ΠQ the set of all simple roots.
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Definition 3.21. Let Q be a finite quiver and let i be a vertex such that Q has no loops at i. The
simple reflection at the vertex i is the map

σi : Zn → Zn, x 7→ x− (x, ei)Qei,

where (x, y)Q is the symmetric Euler form of Q and ei is the i-th coordinate vector. Using that
(ej , ei)Q = −dij for j ̸= i and (ei, ei)Q = 2− 2dii = 2 we get σi(x)j = xj for j ̸= i and

σi(x)i = xi −
n∑
j=1

xj(ej , ei)Q = xi −
n∑
j=1
j ̸=i

−djixj − 2xi =

n∑
j=1
j ̸=i

djixj − xi.

Example 3.22. We consider the L2-quiver. We have (ei, ei)Q = 2− 2dii = 2 for i ∈ {1, 2}. Also
(x, e1)Q = x1(e1, e1)Q+x2(e2, e1)Q = 2x1−d12x2 = 2x1−x2. Similarly, we get (x, e2)Q = 2x2−x1.
Thus we get the maps σ1, σ2 : Z2 → Z2 given by:

σ1((x1, x2)
T ) =

(
x1
x2

)
−
(
2x1 − x2

0

)
=

(
x2 − x1
x2

)
=

(
−1 1
0 1

)(
x1
x2

)
,

σ2((x1, x2)
T ) =

(
x1
x2

)
−
(

0
2x2 − x1

)
=

(
x1

x1 − x2

)
=

(
1 0
1 −1

)(
x1
x2

)
.

Lemma 3.23. The simple reflections σi are automorphisms of order two and they preserve the
symmetric Euler form (·, ·)Q and the Tits form qQ.

Proof. We show that σ2
i = idZn . Indeed, for j ̸= i we have σ2

i (x)j = σi(x)j = xj and we also have

σi(σi(x))i =

n∑
j=1
j ̸=i

djiσi(x)j − σi(x)i =
n∑
j=1
j ̸=i

djixj − σi(x)i =
n∑
j=1
j ̸=i

djixj − (

n∑
j=1
j ̸=i

djixj − xi) = xi.

We now show that for any quiver Q and for all x, y ∈ Zn, we have (σi(x), σi(y))Q = (x, y)Q. First,
we notice that

σi(ek) = ek − (ei, ek)Qei =

{
ei − (2− 2dii)ei = −ei if k = i,

ek + dikei if k ̸= i.

Thus we get (σi(ei), σi(ei))Q = (−ei,−ei)Q = (ei, ei)Q and for k ̸= i we get:

(σi(ek), σi(ei))Q = (ek + dikei,−ei)Q = −(ek, ei)Q − dik(ei, ei)Q = dik − 2dik = −dik = (ek, ei)Q.

Also for k ̸= i, j ̸= i we get:

(σi(ek), σi(el))Q = (ek + dikei, el + dilei)Q = (ek, el)Q + dik(ei, el)Q + dil(ek, ei)Q + dikdil(ei, ei)Q

= (ek, el)Q − dikdil − dildik + 2dikdil = (ek, el)Q.

Now, using linearity of σi and bilinearity of (·, ·)Q, we get that:

(σi(x), σi(y))Q = (σi(
∑
j

xjej), σi(
∑
k

ykek))Q =
∑
j

∑
k

xjyk(σi(ej), σi(ek))Q

=
∑
j

∑
k

xjyk(ej , ek)Q = (
∑
j

xjej ,
∑
k

ykek)Q = (x, y)Q.

Finally, this implies:

qQ(σi(x)) =
1

2
(σi(x), σi(x))Q =

1

2
(x, x)Q = qQ(x).

Definition 3.24. For a finite quiver Q, we define the Weyl group W (Q) to be the subgroup of
the automorphism group Aut(Zn) generated by the simple reflections σi. The set

Φre(Q) =
⋃

w∈W (Q)

w(ΠQ) =
⋃

w∈W (Q)
α∈ΠQ

w(α)

is called the set of real roots of Q.
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Because the symmetric Euler form is independent of the orientations of the arrows in Q, both
the simple representations σi and the Weyl group W (Q) are also independent of the orientations
of the arrows in Q.

Definition 3.25. For each x =
∑n
i=1 xiei ∈ Zn we define the support of x to be the set

suppx = {i ∈ Q0 | xi ̸= 0}.

We say that suppx is connected if the full subquiver of Q with vertex set suppx is connected.

Definition 3.26. For a finite quiver Q, the fundamental set FQ is defined to be the set

FQ = {0 ̸= x ∈ Nn | (x, ei)Q ≤ 0 for all ei ∈ ΠQ, and suppx is connected}.

Then the set
Φim(Q) =

⋃
w∈W (Q)

w(FQ) ∪ w(−FQ) =
⋃

w∈W (Q)
x∈FQ

w(x) ∪ w(−x)

is called the set of imaginary roots of Q. Finally, the root system of Q is defined to be the set

Φ(Q) = Φre(Q) ∪ Φim(Q).

An element x ∈ Φ(Q)∩Nn is called a positive root. We denote by Φ+(Q) (resp. Φ+
re(Q),Φ+

im(Q))
the set of all positive (resp. positive real, positive imaginary) roots.

Example 3.27. Let Q be the loop quiver. Then no simple root exists and thus ΠQ = ∅ and
W (Q) = {id}. We also have that FQ = N and thus Φ(Q) = Φim(Q) = Z \ {0}.

For a better understanding of the definitions above, we prove some elementary properties of
our root systems Φre(Q),Φim(Q) and Φ(Q).

Lemma 3.28. Let Q be a finite quiver.

1. If Q has no loops at i ∈ Q0, then ei is a real root.

2. If Q has a loop at i ∈ Q0, then ei ∈ FQ and thus ei is an imaginary root.

3. If x ∈ Φre(Q), then qQ(x) = 1.

4. If x ∈ Φim(Q), then qQ(x) ≤ 0.

5. Φre(Q) ∩ Φim(Q) = ∅.
6. If Q is a Dynkin or a tame quiver, then every root is either positive or negative. Therefore,

we have Φ(Q) = Φ+(Q) ∪ (−Φ+(Q)).

Proof. 1. Taking w = id ∈ w(Q), we get that w(ei) = ei ∈ Φre(Q).

2. In this case, supp ei is just one point and thus connected. Moreover, for all ej ∈ ΠQ, we
have:

(ei, ej)Q =

{
2− 2dii ≤ 0 if j = i,

− dij ≤ 0 if j ̸= i.

3. Each w ∈ W (Q) is of the form w = σik . . . σi1 for σij simple reflections (possibly k = 0 and
w = id). By Lemma 3.23, we have:

qQ(x) = qQ(σik . . . σi1(ej)) = qQ(σik−1
. . . σi1(ej)) = . . . = qQ(ej) =

1

2
(ej , ej)Q = 1− djj = 1.

4. We have x = w(y) or x = w(−y) for w ∈ W (Q) and y ∈ FQ. In both cases, we have
qQ(x) = qQ(w(±y)) = qQ(±y) = qQ(y). Since y ∈ Nn, we have:

qQ(x) = qQ(y) =
1

2

n∑
i=1

yi(y, ei)Q =
1

2

∑
dii=0

yi (y, ei)Q︸ ︷︷ ︸
≤0

+
1

2

∑
dii ̸=0

yi

n∑
j=1

yj (ej , ei)Q︸ ︷︷ ︸
≤0 by part 2

≤ 0.
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5. This immediately follows from parts 3 and 4.

6. Let x be a root and write x = x+−x− where x+ is the positive part of x and x− is the negative
part of x, i.e. x+, x− ≥ 0 and they have disjoint support. Then we have (x+, x−)Q ≤ 0 since
they have disjoint support. We then have:

1 ≥ qQ(x) =
1

2
(x+ − x−, x+ − x−)Q =

1

2
[(x+, x+)Q + (x−, x−)Q − 2(x+, x−)Q]

= qQ(x
+) + qQ(x

−)− (x+, x−)Q ≥ qQ(x+) + qQ(x
−) ≥ 0.

In the last inequality, we used that qQ is positive semi-definite since Q is Dynkin or tame.
We conclude that either qQ(x

+) = 0 or qQ(x
−) = 0. If Q is Dynkin, then either x+ = 0 or

x− = 0 since qQ is positive definite. If Q is tame, then we know from Lemma 3.13 that either
x+ or x− is a radical vector and thus it is sincere. But then the other vector is trivial, which
shows that x is either positive or negative.

Remark 3.29. Part (6) of Lemma 3.28 is true for any quiver Q. In addition, one can show that
for any root x ∈ Φ(Q), suppx is connected. We do not prove these statements because they are
not needed to prove Gabriel’s Theorem. A proof can be found on page 7 in Chapter 1 of [6].

An immediate consequence of this lemma is that Φ(Q) ⊆ {0 ̸= x ∈ Zn | qQ(x) ≤ 1}. We will
later see that if Q is a Dynkin quiver, then these two sets are equal. Although the characterization
qQ(x) ≤ 1 looks a lot simpler than the definition of the root systems Φre(Q) and Φim(Q), the latter
give a more explicit description of the roots and are therefore useful in proofs. Moreover, the latter
descriptions of Φre(Q) and Φim(Q) are closely related to the Weyl group, which plays an important
role in the proof of Gabriel’s Theorem (see Lemma 3.68 and Proposition 3.69).

3.2.1 Root Systems of Dynkin, Tame and Wild Quivers

We show an explicit characterization of the roots of a Dynkin quiver. In particular, we show that
the root system Φ(Q) is finite for all Dynkin quivers. We also mention some results about the root
systems of tame and wild quivers.

Lemma 3.30. If Q is a Dynkin quiver, then Φ(Q) is finite.

Proof. We prove that the set {x ∈ Zn | qQ(x) = 1} is finite. First, we can view qQ also as a
quadratic form on Qn and Rn. Since qQ is positive definite on Zn it is also positive definite on Qn.
Indeed, if 0 ̸= x = (aibi )

n
i=1 ∈ Qn such that qQ(x) ≤ 0, then we have that qQ(ax) ≤ 0, where a is the

least common multiple of the bi and 0 ̸= ax ∈ Zn. Now, we can take limits in Qn to extend qQ to
Rn and get that qQ is positive semi-definite on Rn. However, since qQ is positive definite on Qn, we
know that its matrix CQ is positive definite and symmetric (with values in Q), thus it is invertible in
Q and therefore also invertible in R. Therefore, qQ is also positive definite on Rn (since it is positive
semi-definite and CQ is invertible). Now consider the subset S1 = {x = (xi) ∈ Rn | ∥x∥ = 1}.
Here, ∥·∥ is the Euclidean norm. Since S1 is compact and qQ is positive definite and continuous,
there exists c > 0 such that qQ(x) ≥ c for all x ∈ S1. Indeed, we have that qQ(S

1) is compact and
thus infx∈S1(qQ(x)) = c > 0. Therefore, for all 0 ̸= x ∈ Rn, we have:

qQ(x) = ∥x∥2qQ(
x

∥x∥
) ≥ c∥x∥2.

Therefore, x ∈ Φ(Q) implies qQ(x) = 1, which again implies ∥x∥2 ≤
√

1
c . But there are only

finitely many x ∈ Zn such that the last inequality holds.

Corollary 3.31. If Q is a Dynkin quiver, then

1. the Weyl group W (Q) is finite,

2. Φ(Q) = {x ∈ Zn | qQ(x) = 1}.
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Proof. 1. By the theorem above, Φ(Q) = Φre(Q) is finite. For any w ∈ W (Q), the induced
map Φre(Q) → Φre(Q), w′(ei) 7→ w ◦ w′(ei) is a permutation on the set Φ(Q) of roots since
w is an automorphism. Since Φ(Q) contains the basis {ei | i ∈ Q0} of Zn, it follows that
the permutation maps that are induced by w1, w2 ∈W (Q) are equal if and only if w1 = w2.
Therefore, W (Q) can be embedded into the permutation group of Φ(Q), which is finite since
Φ(Q) is finite.

2. We have already shown that each x ∈ Φ(Q) = Φre(Q) satisfies qQ(x) = 1. Now let x ∈ Zn

be such that qQ(x) = 1. We know from Lemma 3.28 that x is either positive or negative.
Since Φ(Q) = Φ+(Q) ∪ (−Φ+(Q)), it suffices to show that x or −x is a root. Thus w.l.o.g.,
we assume that x is positive. We use induction of the number lx =

∑
i∈Q0

. If lx = 1, then
x = ei ∈ ΠQ ⊆ Φ(Q). Now let lx ≥ 2. We claim that there exists an i ∈ Q0 such that
0 < σi(x) < x. Suppose this is not the case, i.e. for each i ∈ Q0 we have either 0 ̸< σi(x) or
σi(x) ̸< x. We consider the following formula:

2 = 2qQ(x) = (x, x)Q =
∑
i∈Q0

xi(x, ei)Q.

It implies that there exists an i0 ∈ Q0 such that xi0 > 0 and (x, ei0)Q > 0. Thus we get
σi0(x) = x − (x, ei0)Qei0 < x. But this forces 0 ̸< σi0(x), i.e. xi0 − (x, ei0)Q < 0. On the
other hand,

0 ≤ qQ(x− xi0ei0) = qQ(x) + qQ(xi0ei0) + (x,−xi0ei0)Q
= 1 + x2i0 − xi0(x, ei0)Q = 1 + xi0(xi0 − (x, ei0)Q).

This forces xi0 = 1 and xi0−(x, ei0)Q = −1. But then qQ(x−xi0ei0) = 0, i.e. x = xi0ei0 = ei0
which contradicts lx ≥ 2. Therefore, there exists an i ∈ Q0 such that 0 < σi(x) < x. But
then qQ(σi(x)) = qQ(x) = 1 and lσi(x) < lx and thus by the induction hypothesis, we have
σi(x) ∈ Φ(Q). We conclude that x = σi(σi(x) ∈ Φ(Q).

Remark 3.32. To get a sense of the size of the finite root system Φ(Q) for a Dynkin quiver Q,
we list the sizes. If Q is a Dynkin quiver of type An(n ≥ 1), Dn(n ≥ 4), E6, E7 or E8, then the
number of roots in Φ(Q) is n(n+ 1), 2n(n− 1), 72, 126, or 240, respectively.

We now have proven everything about the root system Φ(Q) and the Weyl groupW (Q) that we
need to prove Gabriel’s Theorem. Thus, if you are only interested in the proof of Gabriel’s Theorem,
you can continue reading Section 3.3. However, we have already done (almost) everything to prove
a really nice theorem that connects different types of quivers and their root systems. Therefore,
we spend the remaining part of this section proving the following theorem.

Theorem 3.33. [2, Theorem 1.13] Let Q be a finite connected quiver without loops. Then

1. Q is a Dynkin quiver ⇐⇒ Φ(Q) is finite ⇐⇒ Φim(Q) = ∅.
2. Q is a tame quiver ⇐⇒ Φim(Q) = Zδ \ {0} for the unique positive radical vector δ ∈ Nn

from Theorem 3.16.

3. Q is a wild quiver ⇐⇒ there exists x ∈ Φ+(Q) such that suppx = Q and such that
(x, ei)Q < 0 for all i ∈ Q0.

To prove this theorem, we need to consider the following lemma.

Lemma 3.34. Let Q be a finite connected quiver without loops. Then Q is wild if and only if there
exists a positive, sincere x ∈ Nn such that CQx is negative and sincere, i.e. (CQx)i < 0. Here, CQ
denotes the matrix belonging to the symmetric Euler form. This means that for all x, y ∈ Zn we
have (x, y)Q = xTCQy.

Proof. The proof of this lemma can be found on page 59 of [2]. We skip it since it mainly consists
of algebraic manipulations.
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Proof of Theorem 3.33. 1. We know that Q is a Dynkin quiver if and only if its Tits form qQ
is positive definite. We use this to show that Q is Dynkin if and only if FQ = ∅. Indeed,
if Q is Dynkin, then x ∈ FQ implies that qQ(x) = 1

2 (x, x)Q = 1
2

∑n
i=1 xi(x, ei) ≤ 0 and

since qQ is positive definite, this implies that x = 0 and thus FQ = ∅. We prove the other
implication via contraposition. Therefore, we consider the cases for a tame resp. a wild
quiver Q. If Q is a tame quiver, then we know from Theorem 3.16 that the unique smallest
positive radical vector δ is in FQ. In the case that Q is a wild quiver, we know from the
proof of Theorem 3.16 that there exists a positive vector δ (with connected support) such
that qQ(δ) < 0. We show that δ ∈ FQ. First, notice that if x ∈ Nn and j ̸∈ suppx, then
(x, ej)Q ≤ 0. Indeed (x, ej)Q =

∑
k∈supp x xk(ek, ej)Q =

∑
k∈supp x−xkdkj ≤ 0. Moreover,

using the case distinction from the proof of Theorem 3.16, we get that for i ∈ suppx, we
either have (δ, ei)Q = (δ′, ei)Q = 0 or (δ, ei)Q = (ej , ei)Q ≤ 0 (since Q has no loops). Using
that FQ = ∅ ⇐⇒ Φim(Q) = ∅, we get that Q is Dynkin ⇐⇒ Φim(Q) = ∅. From
Lemma 3.30 we know that if Q is Dynkin, then Φ(Q) is finite. Notice that x ∈ FQ implies
ax ∈ FQ for all 0 < a ∈ Z. Therefore, if Φ(Q) is finite, this implies that Φim(Q) = ∅ and
therefore Q is Dynkin.

2. Let Q be a tame quiver. We show that Φim(Q) = rad qQ \{0} = Zδ\{0}. Let 0 ̸= x ∈ rad qQ.
Then we have (x, ei)Q = 0 for all i ∈ Q0 and from Lemma 3.13, we know that x is sincere
and therefore suppx = Q is connected. Thus we have x ∈ Φim(Q). Now let 0 ̸= x ∈ Φim(Q).
Then we have qQ(x) ≤ 0 but since qQ is positive semi-definite (Q is tame), we have qQ(x) = 0
and from Lemma 3.13, we know that x ∈ rad qQ. Finally, from Theorem 3.16, we know that
rad qQ = Zδ. Note that if Q is Dynkin, we know that Φim(Q) = ∅. Therefore, it remains to
show that for a wild quiver Q, we have that Φim(Q) ̸= Zδ \ {0}. Let Q be wild and let x
be as in Lemma 3.34. For any y ∈ Zn, there exists a suitably large positive integer m such
that y −mx ∈ FQ ⊆ Φim(Q). Indeed, since suppx is connected, we have that supp(y −mx)
is connected (for m large enough). Moreover, we can find m large enough such that for all
i ∈ Q0 we have (note that Q0 is finite):

(y −mx, ei)Q = (y, ei)Q −m(x, ei)Q = (y, ei)Q −m (CQx)i︸ ︷︷ ︸
<0

≤ 0.

But then, Φim(Q) cannot be equal to Zδ \ {0} for a single δ. Otherwise we had that for
any y, z ∈ Zn and all m1,m2 large enough, there would be a1, a2 such that y −m1x = a1δ,
z −m2x = a2δ. This yields

(m2a1 −m1a2)δ = m2y −m2m1x−m1z +m1m1x = m2y −m1z.

However, this is not possible if y, z are linearly independent. Therefore, if we have that
Φim(Q) = Zδ \ {0}, then Q can only be a tame quiver.

3. This follows immediately from Lemma 3.34. Indeed, notice that x is sincere if and only if
suppx = Q. In addition, (x, ei)Q = (CQx)i.

3.3 Reflection Functors

In this section, we introduce reflection functors, which are a useful tool to analyze and compare
representations.

Definition 3.35. A vertex i ∈ Q0 is called a sink if there does not exist an edge starting at i, i.e.
for all a ∈ Q1 we have ta ̸= i. In contrast, a vertex j ∈ Q0 is called a source if there is no edge
ending at j, i.e. ha ̸= j. For any vertex i ∈ Q0 we denote by Qi1 ⊆ Q1 the subset of all the arrows
which are incident to i, i.e. a ∈ Qi1 if a either starts or ends at i.

Definition 3.36. Let i ∈ Q0 be a vertex. We call si the reflection at vertex i. This means that
siQ is the quiver obtained by reversing all the arrows that start or end at i.
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Example 3.37. Consider the following quiver Q:

1 2 3 4 5

The vertices 1 and 4 are sources, the vertices 2 and 5 are sinks and vertex 3 is neither a source
nor a sink. We list all possible reflections of Q:

1 2 3 4 5
s1Q:

1 2 3 4 5
s2Q:

1 2 3 4 5
s4Q:

1 2 3 4 5
s5Q:

Definition 3.38. Let Q be a quiver and let i ∈ Q0 be a sink. Notice that for each a ∈ Qi1 we have
ha = i. We define a covariant functor R+

i from the category repk(Q) to the category repk(siQ).
For every representation V = (Vi, va) ∈ repk(Q), we define a representation R+

i V = (V ′
i , v

′
a) in the

category repk(siQ) as follows. For all j ̸= i we set V ′
j = Vj, and define V ′

i to be the kernel of the
map

ξi :
⊕
a∈Qi

1

Vta → Vi, (xta)a∈Qi
1
7→

∑
a∈Qi

1

va(xta).

For R+
i V to be a representation, we need to define linear maps belonging to the arrows in siQ. For

each arrow a ̸∈ Qi1 we set v′a = va. For a ∈ Qi1, let b be the reverse arrow and we define v′b to be
the composition of maps

V ′
tb
= V ′

i = ker ξi ↪→
⊕
c∈Qi

1

Vtc → Vta = V ′
ta = V ′

hb
.

Here the map before the direct sum is the canonical inclusion and the map after the direct sum is
the canonical projection onto the component Vta . To better understand what happens, we look at
the following picture. The red vertices belong to the summands of the space

⊕
a∈Qi

1
Vta . Outside

of the circle, everything stays the same.

Q

Vi

V1 V2

V3

va1
va2

va3

siQ

kerξi

V1 V2

V3

v′b1 v′b2

v′b3

R+
i

va4
va4

va5
va5

Now let ϕ : V → W be a morphism between two representations V,W ∈ repk(Q). We define the
morphism ϕ′ = R+

i ϕ : R
+
i V→ R+

i W by ϕ′j = ϕj for j ̸= i and ϕ′i to be the restriction of the map⊕
a∈Qi

1

ϕta :
⊕
a∈Qi

1

Vta →
⊕
a∈Qi

1

Wta

to the subspace V ′
i = ker ξi.

Definition 3.39. Let Q be a quiver and let i ∈ Q0 be a source. Notice that for each a ∈ Qi1 we have
ta = i. We define a covariant functor R−

i from the category repk(Q) to the category repk(siQ).
For every representation V = (vi, va) ∈ repk(Q), we define a representation R−

i V = (V ′
i , v

′
a) in the

category repk(siQ) as follows. For all j ̸= i we set V ′
j = Vj, and define V ′

i to be the cokernel of the
map

ζi : Vi →
⊕
a∈Qi

1

Vha , x 7→ (va(x))a∈Qi
1
.
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For R−
i V to be a representation, we need to define linear maps belonging to the arrows in siQ. For

each arrow a ̸∈ Qi1 we set v′a = va. For a ∈ Qi1, let b be the reverse arrow and we define v′b to be
the composition of maps

V ′
tb
= V ′

ha
= Vha ↪→

⊕
c∈Qi

1

Vhc → coker ζi = V ′
i = V ′

hb
.

Here the map before the direct sum is the canonical inclusion and the map after the direct sum is
the canonical quotient map (i.e. the quotient map modulo the image of ζi). Consider the following
picture. The red vertices belong to the summands of the space

⊕
a∈Qi

1
Vha

. Outside of the circle,

everything stays the same.

Q

Vi

V1 V2

V3

va1
va2

va3

siQ

cokerζi

V1 V2

V3

v′b1 v′b2

v′b3

R−i

va4
va4

va5
va5

Now let ϕ : V → W be a morphism between two representations V,W ∈ repk(Q). We define the
morphism ϕ′ = R−

i ϕ : R
−
i V→ R−

i W by ϕ′j = ϕj for j ̸= i and ϕ′i to map induced by⊕
a∈Qi

1

ϕha
:

⊕
a∈Qi

1

Vha
→

⊕
a∈Qi

1

Wha

on the quotient space V ′
i = coker ζi.

Remark 3.40. Note that we consider the category repk(Q) of finite-dimensional representations.
By doing this, we ensure that the sums in the definitions of the maps ξi and ζi are finite sums
(resp. there are only finitely many non-zero summands). Note that this is necessary for the well-
definition of the maps ξi and ζi because else the order of summation may not be negligible. To
fix this issue, one could also restrict to the case of finite quivers, as we sometimes do. Especially
when considering dimension vectors of representations (which is important for Gabriel’s Theorem)
restricting to finite quivers is the right choice of restriction.

Before giving an example for R+
i and R−

i , we prove that they are covariant functors.

Lemma 3.41. R+
i and R−

i are well-defined covariant functors.

Proof. We show thatR+
i is a functor. Let ξWi denote the map

⊕
a∈Qi

1
Wta →Wi from the definition

of R+
i W. First notice that R+

i V is indeed a representation of the quiver siQ. This means that for
all arrows b ∈ siQ1 we have that v′b maps from V ′

tb
to V ′

hb
. This is true by observing the definition.

Similarly, we need to check that ϕ′ = R+
i ϕ is a morphism between the representations R+

i V and
R+
i W. First, we observe that all the maps ϕ′j are well-defined, i.e. ϕ′j maps from R+

i Vj to R+
i Wj .

This is clearly true for j ̸= i and in the case j = i, we notice that for x = (xta)a∈Qi
1
∈ ker ξi = V ′

i

we have:

ξWi (
⊕
a∈Qi

1

ϕta(x)) = ξWi ((ϕta(xta))a∈Qi
1
) =

∑
a∈Qi

1

wa(ϕta(xta)) =
∑
a∈Qi

1

ϕha
(va(xta))

=
∑
a∈Qi

1

ϕi(va(xta)) = ϕi
∑
a∈Qi

1

(va(xta)) = ϕi(0) = 0.

In the third equality we used that ϕ is a morphism (i.e. ϕha
va = waϕta). Thus we have that

imϕ′i ⊆ ker ξWi and this means that ϕ′i is well-defined. We also need to check that ϕ′ is a morphism,
i.e. for each b ∈ siQ1 we have ϕ′hb

v′b = w′
bϕ

′
tb
. Once again the case for a ̸∈ Qi1 is clear since this

part of the representations (and morphisms) stays the same (in the picture in the definition, this is
the part on the outside of the circle). For a ∈ Qi1 (with inverse arrow b) we have that the following
diagram commutes
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V ′
i V ′

hb
= Vta

W ′
i W ′

hb
=Wta .

v′b

ϕ′
i ϕ′

hb
=ϕta

w′
b

Indeed, for x = (xtc)c∈Qi
1
∈ ker ξi = V ′

i we have:

w′
bϕ

′
i(x) = w′

b((ϕtc(xtc))c∈Qi
1
) = ϕta(xta) = ϕ′hb

(xta) = ϕ′hb
(v′b(xtc)c∈Qi

1
) = ϕ′hb

(v′b(x)).

So far, we have shown that R+
i V ∈ repk(siQ) and R+

i ϕ : R
+
i V → R+

i W are well-defined. Thus
it remains to show that R+

i preserves identity morphisms and composition of morphisms. Let
V ∈ repk(Q) be a representation and let idV be the identity morphism. For j ̸= i we have that
(R+

i idV)j = idVj
and for j = i we have (R+

i idV)i =
⊕

a∈Qi
1
idVta

|ker ξi = idker ξi = id′Vi
. Thus we

have that R+
i idV = idR+

i V. Now let ϕ : U→ V and ψ : V→ W be morphisms. We want to show that

R+
i (ψϕ) = (R+

i ψ)(R
+
i ϕ). For j ̸= i we have that (R+

i (ψϕ))j = (ψϕ)j = ψjϕj = (R+
i ψ)j(R

+
i ϕ)j .

For j = i we have:

(R+
i (ψϕ))i =

⊕
a∈Qi

1

(ψϕ)ta |
ker ξWi
ker ξUi

=
⊕
a∈Qi

1

ψtaϕta |
ker ξWi
ker ξUi

=
⊕
a∈Qi

1

ψta |
ker ξWi
ker ξVi

ϕta |
ker ξVi
ker ξUi

= (
⊕
a∈Qi

1

ψta |
ker ξWi
ker ξVi

)(
⊕
a∈Qi

1

ϕta |
ker ξVi
ker ξUi

) = (R+
i ψ)i(R

+
i ϕ)i.

This concludes the proof that R+
i is a covariant functor. The proof that R−

i is a functor is
analogous.

Example 3.42. We consider the quiver Q from Example 3.37. Let V be a representation given by

V1
va−→ V2

vb←− V3
vc←− V4

vd−→ V5.

By applying R+
5 to V, we get the representation R+

5 V

V1
va−→ V2

vb←− V3
vc←− V4 ←↩ ker(vd).

Notice that only the vector space at the vertex 5 and the incident edge between the vertices 4 and 5
change! This is true in general by looking at the pictures in the definition of R+

i and R−
i . There,

only the vector space and the maps inside the (imaginary) circle change. Now we apply R−
5 to

R+
5 V (the vertex 5 is now a source!) and get:

V1
va−→ V2

vb←− V3
vc←− V4

mod ker(vd)−−−−−−−→ V4/ ker(vd)

We conclude that R−
5 R

+
5 V ∼= V if and only V5 = im(vd). Indeed, by the first isomorphism theorem,

if V5 = im(vd) ∼= V4/ ker(vd), then the vector spaces at vertex 5 coincide and the map vd and
the projection map modker(vd) are the same map! In the case that im(vd) ⊊ V5, we have that
V5 ∼= im(vd)⊕ kr for some r ∈ N. Moreover, the projection map modker(vd) is isomorphic to the
restriction of vd to its image im(vd) ∼= V4/ ker(vd). Therefore, we have that V ∼= R−

5 R
+
5 V ⊕ Sr5,

where S5 is the simple representation defined in Example 2.16. Now we apply R+
2 to V and get the

top row of the following commutative diagram:

V1 ker(va + vb) V3 V4 V5

V1 ⊕ V3

vc vd

π1 π3

The maps π1 and π3 denote the canonical projections of V1⊕V3 to its summands. Again we notice
that only the vector space at the vertex 2 and the maps belonging to the edges a and b change.
Now, by applying R−

2 to R+
2 V we get the middle row of the following commutative diagram, where

the lower vertical arrow is the canonical map from V1 ⊕ V3 onto V1⊕V3

ker(va+vb)
= coker ζ2. By the first

isomorphism theorem, we get an injective map ϕ2 :
V1⊕V3

ker(va+vb)
→ V2.
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V2

V1
V1⊕V3

ker(va+vb)
V3 V4 V5

V1 ⊕ V3
(−,0)

va ϕ2

(0,−)

vb

vc vd

We thus conclude that R−
2 R

+
2 V ∼= V if and only if V2 = im(va+vb). Indeed, by the first isomorphism

theorem, if V2 = im(va+vb) ∼= (V1⊕V3)/ ker(va+vb), then the vector spaces at the vertex 2 coincide.
Moreover, the map V1 → V1⊕V3

ker(va+vb)
in the middle row and the map va are isomorphic. Also the

map V1⊕V3

ker(va+vb)
← V3 in the middle row and the map vb are isomorphic. Therefore, we have that

R−
2 R

+
2 V ∼= V. In the case that im(va + vb) ⊊ V2, we have that V2 ∼= im(va + vb)⊕ kr for some

r ∈ N. Moreover, the maps from V1 resp. V3 to R−
2 R

+
2 V ∼= V (in the middle row) are isomorphic

the restriction of va to its image im(va) resp. to the restriction of vb to its image im(vb). Therefore,
we have V ∼= R−

2 R
+
2 V⊕ Sr2.

3.3.1 Composition of Reflection Functors

Since sisiQ = Q (for a sink or source i) it is sensible to ask if the functors R+
i and R−

i are inverse
to each other. This is not the case! Indeed, Example 3.42 is a counterexample in the cases where
V5 ̸= im(vd) resp. v2 ̸= im(va + vb). Moreover, one can see that for the simple representation Si
we have R+

i Si = 0 (for a sink i), respectively R−
i Si = 0 (for a source i). In the following example,

we show this for an explicit quiver Q, however, the proof for a general quiver Q is analogous.

Example 3.43. We again consider the quiver Q from Example 3.37. From Example 3.42 we get
that (R+

5 S5)5 = ker(vd) ⊆ V4 but V4 = 0. Thus we have that R+
5 S5 = 0. For the sink vertex 2, we

get that (R+
2 S2)2 = ker(va + vb) ⊆ V1 ⊕ V3 = 0 and thus R+

2 S2 = 0.

Even though R+
i and R−

i are not inverse to each other, we consider their compositions and
observe what is missing to be equal to the identity. The following lemma marks a first step towards
that.

Lemma 3.44. Let Q be a quiver and let V be a finite-dimensional representation of Q.

1. Let i be a sink of Q. There exists a canonical monomorphism ιiV : R−
i R

+
i V→ V .

2. Let i be a source of Q. There exists a canonical epimorphism πiV : V→ R+
i R

−
i V.

Proof. Since sisiQ = Q we have that R−
i R

+
i V,R+

i R
−
i V ∈ repk(sisiQ) = repk(Q). We now prove

that the maps are indeed morphisms (of representations) with the desired properties (monomor-
phism resp. epimorphism).

1. Let (ιiV)j = idVj for j ̸= i and consider

(R−
i R

+
i V)i = coker ζi = coker(ker ξi →

⊕
a∈(siQ)i1

V ′
ha
) = coker(ker ξi ↪→

⊕
a∈Qi

1

Vta)

= (
⊕
a∈Qi

1

Vta)/ ker ξi
ϕ∼= im ξi ⊆ Vi.

Using the canonical isomorphism ϕ, we set (ιiV)i : (R−
i R

+
i V)i

ϕ→ im ξi ↪→ Vi. First notice
that all the maps (ιiV)j are well-defined. Indeed, for j ̸= i we have (R−

i R
+
i V)j = Vj and

thus (ιiV)j = idVj
is well-defined. For j = i, we have that (ιiV)i is well-defined by definition.

Notice that all the maps are injective. Therefore, ιiV is a monomorphism, if we can show
that it is a morphism. Let us now consider an arrow a ∈ Q1. If a ̸∈ Qi1 we have that the
following commutative diagram.
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(R−
i R

+
i V)ta = Vta Vha = (R−

i R
+
i V)ha

Vta Vha

va

idVta
idVha

va

For a ∈ Qi1 we have the following diagram.

(R−
i R

+
i V)ta = Vta im ξi ∼= (R−

i R
+
i V)i

Vta Vi

f

idVta (ιiV)i

va

Using the isomorphism (R−
i R

+
i V)i

ϕ∼= im ξi, (xtc)c∈Qi
1
+ ker ξi 7→

∑
c∈Qi

1
vc(xtc) we get that

f(xta) = va(xta) +
∑
c∈Qi

1,c ̸=a
vc(0) = va(xta) ∈ im ξi. Therefore, the above diagram com-

mutes. This shows that ιiV is a morphism (and thus a monomorphism).

2. Let (πiV)j = idVj for j ̸= i. Now consider

(R+
i R

−
i V)i = ker ξi = ker(

⊕
a∈(siQ)i1

V ′
ta → coker ζi) = ker(

⊕
a∈Qi

1

Vha
→ coker ζi)

= ker(
⊕
a∈Qi

1

Vha
→

⊕
a∈Qi

1

Vha
/ im ζi)

ψ∼= im ζi ⊆
⊕
a∈Qi

1

Vha
.

Using the canonical isomorphism ψ, we set (πiV)i : Vi
ζi→ im ζi

ψ−1

→ (R+
i R

−
i V)i. First notice

that all the maps (πiV)j are well-defined. Indeed, for j ̸= i we have (R+
i R

−
i V)j = Vj and

thus (πiV)j = idVj is well-defined. For j = i, we have that (πiV)i is well-defined by definition.
Notice that all the maps are surjective. Therefore, πiV is an epimorphism, if we can show
that it is a morphism. Let us now consider an arrow a ∈ Q1. If a ̸∈ Qi1 we have that the
following commutative diagram.

Vta Vha

(R+
i R

−
i V)ta = Vta Vha

= (R+
i R

−
i V)ha

va

idVta
idVha

va

For a ∈ Qi1 we have the following diagram.

Vi Vha

(R+
i R

−
i V)i ∼= im ζi Vha

= (R+
i R

−
i V)ha

va

(πiV)i idVha

g

Using the isomorphism (R+
i R

−
i V)i

ψ∼= im ζi we get that g((vc(x))c∈Qi
1
) = va(x) ∈ Vha

(for
x ∈ Vi). Therefore, the above diagram commutes. This shows that πiV is a morphism (and
thus an epimorphism).

Example 3.45. We have already seen examples for the canonical monomorphism ιiV in Exam-
ple 3.42. Indeed, for the sink vertex 5, we have an inclusion ϕ5 : V4/ ker(vd) ↪→ V5. By setting
ϕi = idVi

for i ∈ {1, 2, 3, 4}, we get that ι5V = (ϕi)1≤i≤5. For the sink vertex 2, we also have a
canonical inclusion at the vertex 2, given by the map ϕ2 :

V1⊕V3

ker(va+vb)
→ V2. Now we set ϕi = idVi

for i ∈ {1, 3, 4, 5} and get that ι2V = (ϕi)1≤i≤5.

To better understand the morphisms defined in Lemma 3.44, we observe, where ιiV fails to be
surjective. Notice that this is described by the representation coker(ιiV). Analogously we observe,
where πiV fails to be injective by looking at the representation ker(πiV).
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Lemma 3.46. Let Q be a quiver and let V be a finite-dimensional representation of Q.

1. Let i be a sink of Q. Then the representation coker(ιiV) is supported at the vertex i. This
means that coker(ιiV)j = 0 for all j ̸= i and thus all maps ṽa = 0 are trivial (for a ∈ Q1).
Moreover, we have that coker(ιiV)i ∼= coker ξi, where ξi is the map given in the definition of
R+
i V.

2. Let i be a source of Q. Then the representation ker(πiV) is supported at the vertex i. This
means that ker(πiV)j = 0 for all j ̸= i and thus all maps ṽa = 0 are trivial (for a ∈ Q1).
Moreover, we have that ker(πiV)i ∼= ker ζi, where ζi is the map given in the definition of
R−
i V.

Proof. 1. For j ̸= i we have (ιiV)j = idVj
and thus coker(ιiV)j = Vj/Vj = 0. This shows that

coker(ιiV) is supported at the vertex i. Moreover, in the proof of Lemma 3.44 we showed
that we have (R−

i R
+
i V)i ∼= im ξi. Thus coker(ιiV)i ∼= Vi/ im ξi = coker ξi.

2. For j ̸= i we have (πiV)j = idVj and thus ker(πiV)j = Vj/Vj = 0. This shows that ker(πiV)
is supported at the vertex i. Moreover, in the proof of Lemma 3.44 we showed that we have
(R+

i R
−
i V)i ∼= im ζi. Thus ker(πiV)i = ker(Vi → im ζi) = ker ζi.

Remark 3.47. Since coker(ιiV) and ker(πiV) are supported at the vertex i, they are both direct
sums of copies of the simple representation Si.

Example 3.48. Again, we consider the quiver from Example 3.42 and the induced monomor-
phisms ι2V and ι5V that are described in Example 3.45. Using Lemma 3.46, we get the following
representations.

R−
5 R

+
5 V : V1 V2 V3 V4

V4

ker(vd)
∼= im(vd)

coker(ι5V) : 0 0 0 0 coker(vd)

va vb vc mod ker(vd)

0 0 0 0

We observe that V ∼= R−
5 R

+
5 V⊕ coker(ι5V). Similarly, we get the representations.

V2

R+
2 R

−
2 V : V1

V1⊕V3

ker(va+vb)
V3 V4 V5

V1 ⊕ V3

coker(ι2V) : 0 coker(va + vb) 0 0 0

(−,0)

va ϕ2

(0,−)

vb

vc vd

0 0 00

Again, we have V ∼= R−
2 R

+
2 V ⊕ coker(ι2V). This shows that the representations coker(ι2V) and

coker(ι5V) are supported at the vertex 2 resp. 5 and that they are of the form described in
Lemma 3.46. In addition, we see that they are summands of V.

We are now finally ready to investigate how R+
i , R

−
i and the compositions R−

i R
+
i and R+

i R
−
i

operate on the summands of a representation V. We have seen before that R+
i and R−

i are not
inverse to each other. However, in Example 3.42, we have already seen that R−

i R
+
i V (if i is a sink)

resp. R+
i R

−
i V (if i is a source) is a summand of V and their ‘difference’ is a direct sum of copies of

the simple representation Si. This suggests that R−
i R

+
i resp. R+

i R
−
i annihilates the summands

isomorphic to Si. Since coker(ιiV) and ker(πiV) are direct sums of copies of Si, we suspect that
coker(ιiV) and ker(πiV) are those missing copies of Si in R−

i R
+
i V resp. R+

i R
−
i V. Note that we

have already seen this in Example 3.48. It turns out that this is true in general, which is the
content of the following theorem.
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Theorem 3.49. Let Q be a finite connected quiver and let V,W be representations of Q. Then for
any sink or source i we have:

1. R±
i (V⊕W) ∼= R±

i V⊕R±
i W.

2. If i is a sink, then we have V ∼= (R−
i R

+
i V)⊕ coker(ιiV).

3. If i is a source, then we have V ∼= (R+
i R

−
i V)⊕ ker(πiV).

4. If V is finite-dimensional and coker(ιiV) = 0, then dimR+
i V = σi(dimV).

5. If V is finite-dimensional and ker(πiV) = 0, then dimR−
i V = σi(dimV).

Proof. 1. We refer to this property as ‘preserving direct sums’. We show that it is true for
vector spaces, but also for morphisms. For the vector spaces, we observe that for j ̸= i we
have (R±

i (V ⊕W))j = (V ⊕W)j = Vj ⊕Wj = Vj ⊕Wj = (R±
i V)j ⊕ (R±

i W)j . For j = i we
have

(R+
i (V⊕W))i = ker(ξV⊕W

i :
⊕
a∈Qi

1

(V⊕W)ta → (V⊕W)i)

= ker(ξV⊕W
i :

⊕
a∈Qi

1

Vta ⊕Wta → Vi ⊕Wi)

= ker(ξVi :
⊕
a∈Qi

1

Vta → Vi)⊕ ker(ξWi :
⊕
a∈Qi

1

Wta →Wi) = (R+
i V)i ⊕ (R+

i W)i.

Similarly, for j = i we have

im(ζV⊕W
i : (V⊕W)i →

⊕
a∈Qi

1

(V⊕W)ha) = im(ζV⊕W
i : Vi ⊕Wi →

⊕
a∈Qi

1

Vha ⊕Wha)

im(ζVi : Vi →
⊕
a∈Qi

1

Vha
)⊕ im(ζWi : Wi →

⊕
a∈Qi

1

Wha
).

This yields the equation

(R−
i (V⊕W))i = coker ζV⊕W

i = (
⊕
a∈Qi

1

(V⊕W)ha)/ im ζV⊕W
i

= [(
⊕
a∈Qi

1

Vha)/ im ζVi ]⊕ [(
⊕
a∈Qi

1

Wha)/ im ζWi ]

= coker ζVi ⊕ coker ζWi = (R−
i V)i ⊕ (R−

i W)i.

We now consider a pair of morphisms ϕ : V1 → W1, ψ : V2 → W2. For j ̸= i we have
(R±

i (ϕ+ ψ))j = (ϕ+ ψ)j = ϕj + ψj = (R±
i ϕ)j + (R±

i ψ)j . Now for j = i we have

(R+
i (ϕ+ ψ))i =

⊕
a∈Qi

1

(ϕ+ ψ)ta |ker ξV1⊕V2
i

=
⊕
a∈Qi

1

ϕta + ψta |ker ξV1⊕V2
i

=
⊕
a∈Qi

1

ϕta |ker ξV1
i

+ ψta |ker ξV2
i

=
⊕
a∈Qi

1

ϕta |ker ξV1
i

+
⊕
a∈Qi

1

ψta |ker ξV2
i

= (R+
i ϕ)i + (R+

i ψ)i.

Here, we used that ker ξV1⊕V2
i splits into ker ξV1

i ⊕ ker ξV2
i . We already showed this in the

splitting part of the vector spaces. Similarly for j = i we have

(R−
i (ϕ+ ψ))i =

⊕
a∈Qi

1

(ϕ+ ψ)ha
|
coker ζ

V1⊕V2
i

=
⊕
a∈Qi

1

ϕha
+ ψha

|
coker ζ

V1⊕V2
i

=
⊕
a∈Qi

1

ϕha
|
coker ζ

V1
i

+ ψha
|
coker ζ

V2
i

=
⊕
a∈Qi

1

ϕha
|
coker ζ

V1
i

+
⊕
a∈Qi

1

ψha
|
coker ζ

V2
i

= (R−
i ϕ)i + (R−

i ψ)i.

In the third equality, we used that the coker ζV1⊕V2
i splits into coker ζV1

i ⊕ coker ζV2
i (already

proven in the splitting part of the vector spaces).

31



2. To prove the direct sum decomposition, we first need to define two inclusion morphisms
ιiV : R−

i R
+
i V → V (already defined) and ρ : coker(ιiV) → V. We also need to define two

projection morphisms π1 : V→ R−
i R

+
i V and π2 : V→ coker(ιiV). From Lemma 3.46 we have

coker(ιiV)i ∼= coker ξi. We notice that the projection map ρ′i : Vi → coker ξi = Vi/(im ξi) has
a section, i.e. a map ρi : coker ξi → Vi s.t. ρ

′
iρi = idcoker ξi . Indeed, let {vj + im ξi}j∈I be a

basis of coker(ιiV). Using the surjectivity of ρ′i, we can choose ṽj ∈ Vi s.t. ρ′i(ṽj) = vj + im ξi
for all j ∈ I. Then the map induced by vj + im ξi 7→ ṽj for j ∈ I is a well-defined linear map
and we have that ρ′iρi(vj+im ξi) = ρ′i(ṽj) = vj+im ξi. Using the map ρi, we get a morphism
ρ : coker(ιiV)→ V by setting ρj = 0 for j ̸= i and for j = i we set ρi : coker ξi → Vi. Notice
that ρ defines a morphism since the following diagram commutes for every a ∈ Qi1 (for all
other edges a from j1 to j2, the commutativity condition follows directly from ρj1 = 0 and
ρj2 = 0).

coker ξi 0

Vi Vta

ρi

0

ρta=0

va

We also have projection morphisms π1 : V → R−
i R

+
i V and π2 : V → coker(ιiV) defined

as follows. In the proof of Lemma 3.44 we have seen that (R−
i R

+
i V)i ∼= im ξi ⊆ Vi.

Thus we can view R−
i R

+
i V as a subrepresentation of V and we can define π1 to be the

projection morphism. We define (π2)j : Vj → 0 to be the trivial map for j ̸= i and
(π2)i = ρ′i : Vi → coker ξi = Vi/ im ξi is the canonical projection map. Now we check that this
indeed yields a direct sum decomposition. We have that π1ιiV = idR−

i R+
i V since R−

i R
+
i V can

be viewed as a subrepresentation of V. Moreover, we have

(π2ρ)j =

{
ρ′iρi = idcoker ξi if j = i,

0 = id0 = idcoker(ιiV)j if j ̸= i.

This shows that π2ρ = idcoker(ιiV). It remains to show that ιiVπ1 + ρπ2 = idV. Indeed, for
j ̸= i we compute (ιiVπ1)j = idVj

and (ρπ2)j = 0. We also have (ιiVπ1)i : Vi → im ξi ↪→ Vi
and (ρπ2)i : Vi → coker ξi ↪→ Vi. Thus for all v = v1 + v2 ∈ im ξi ⊕ (im ξi)

⊥ = Vi we have

(ιiVπ1 + ρπ2)i(v) = ιi(v1) + ρ(v2 + im ξi) = v1 + v2 = v.

Therefore, we conclude that V ∼= (R−
i R

+
i V)⊕ coker(ιiV).

3. Again, we need to define two inclusion morphisms and two projection morphisms. We have
already defined the projection morphism πiV : V → R+

i R
−
i V. Using that ker(πiV)i ∼= ker ζi

(Lemma 3.46), we can view ker(πiV) as a subrepresentation of V and thus we can define
the morphism π2 : V → ker(πiV) to be the canonical projection onto the subrepresentation.
We now define two inclusion morphisms ι1 : R+

i R
−
i V → V and ι2 : ker(πiV) → V as follows.

We know from the proof of Lemma 3.46 that (R+
i R

−
i V)i ∼= im ζi. We claim that the map

ζi : Vi → im ζi has a section, i.e. a map ϕ : im ζi → Vi s.t. ζiϕ = idim ζi . Similarly, as
in part 2, we can define such a map on a basis of im ζi using the surjectivity of ζi on the
subspace im ζi ∼= (R+

i R
−
i V)i. Using the map ϕ, we get a morphism ι1 : R+

i R
−
i V → V by

setting (ι1)j = idVj for j ̸= i and for j = i, we use the map ϕ. This defines a morphism since
the following diagram commutes for every a ∈ Qi1

im ζi Vha

Vi Vha
.

πVha

ϕ (ι1)ha=idVha

va

Indeed, using that va = πVha
ζi (where πVha

:
⊕

c∈Qi
1
Vhc
→ Vha

is the projection map), we

get that vaϕ = πVha
ζiϕ = πVha

idim ζi = πVha
|im ζi . Finally, using that ker(πiV)i ∼= ker ζi, we
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can view ker(πiV) as a subrepresentation of V and thus we can define ι2 : ker(πiV) → V to
be the canonical inclusion morphism. Now we check that these four morphisms indeed yield
a direct sum decomposition. We have that

(πiV)(ι1) =

{
πiVϕ = ζiϕ = idim ζi if j = i,

idVj (ι1)j = idVj idVj = idVj if j ̸= i.

This shows that (πiV)(ι1) = idR+
i R−

i V. We also have that π2ι2 = idker(πiV) since ker(πiV) is a

subrepresentation of V. It remains to show that (ι1)(πiV) + ι2π2 = idV. Indeed, for j ̸= i we
compute (ι1)j(πiV)j = idVj idVj = idVj and (ι2π2)j = 0. We have (ι2π2)i : Vi → ker ζi ↪→ Vi
and (ι1)i(πiV)i : V1 → im ζi ↪→ Vi and thus for all v = v1 + v2 ∈ ker ζi ⊕ (ker ζi)

⊥ = Vi we
have

(ι1)i(πiV)i(v) + (ι2π2)i(v) = ϕ(v2) + ι2(v1) = v2 + v1 = v,

where we used that (ker ζi)
⊥ ∼= Vi/ ker ζi ∼= im ζi. We conclude that V ∼= (R+

i R
−
i V)⊕ker(πiV).

4. If coker(ιiV) = 0, then we have coker(ιiV)i ∼= coker ξi = 0 and thus we have that im ξi = Vi.
Using the dimension formula for finite-dimensional linear maps we get

dim(R+
i V)i = dimker ξi = dim(

⊕
a∈Qi

1

Vta)− dim im ξi = dim(
⊕
a∈Qi

1

Vta)− dimVi

=
∑
a∈Qi

1

dimVta − dimVi
(1)
=

∑
j=1
j ̸=i

dji dimVj − dimVi = σi(dimV)i,

where dji is the number of arrows between the vertices i and j. In Equation (1), we used that
there are no loops at i since i is a sink. Therefore, we have that Vta ̸= Vi for all a ∈ Qi1. For all
j ̸= i we also have dim(R+

i V)j = dimVj = σi(dimV)j and thus we have dimR+
i V = σi(dimV).

5. If ker(πiV) = 0, we then have ker(πiV)i = ker ζi = 0 and from the dimension formula, we get:

dim(R−
i V)i = dim coker ζi = dim(

⊕
a∈Qi

1

Vha)− dim im ζi

= dim(
⊕
a∈Qi

1

Vha)− (dimVi − dimker ζi) =
∑
a∈Qi

1

dimVha − dimVi

=
∑
j=1
j ̸=i

dji dimVj − dimVi = σi(dimV)i

For j ̸= i we have dim(R−
i V)j = dimVj = σi(dimV)j and thus we get dimR−

i V = σi(dimV).

3.3.2 Reflection Functors on Indecomposable Representations

We always have a decomposition into indecomposable representations by Theorem 2.33. By part (1)
of Theorem 3.49, it suffices to observe how R+

i and R−
i operate on indecomposable representations.

Corollary 3.50. Let Q be a finite connected quiver and V be an indecomposable representation.

1. If i is a sink, then we have two cases:

• If V ∼= Si, then R+
i V = 0 and qsiQ(dimR+

i V) = 0.

• If V ̸∼= Si, then R+
i V is non-zero and indecomposable, R−

i R
+
i V ∼= V and the dimension

vectors of V and R+
i V are related by qsiQ(dimR+

i V) = qQ(dimV).

2. If i is a source, then we have two cases:

• If V ∼= Si, then R−
i V = 0 and qsiQ(dimR−

i V) = 0.

• If V ̸∼= Si, then R−
i V is non-zero and indecomposable, R+

i R
−
i V ∼= V and the dimension

vectors of V and R−
i V are related by qsiQ(dimR−

i V) = qQ(dimV).
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Proof. If V ∼= Si, we have already seen that R+
i V = 0, respectively R−

i V = 0. Then clearly
qsiQ(dimR±

i V) = qsiQ(0) = 0. Now let V ̸∼= Si. If i is a sink, V ∼= (R−
i R

+
i V)⊕ coker(ιiV). Since

V is irreducible, one of those summands needs to be trivial and since coker(ιiV) is isomorphic to
a direct sum of Si, we conclude that coker(ιiV) = 0 and V ∼= R−

i R
+
i V. This also proves that

R+
i V is indecomposable. Indeed, if R+

i V = W1 ⊕ W2, then V ∼= R−
i W1 ⊕ R−

i W2 is not indecom-
posable. Moreover, we have qsiQ(dimR+

i V) = qsiQ(σi(dimV)) = qQ(dimV) (using Lemma 3.23).
Analogously, if i is a source, we use that V ∼= (R+

i R
−
i V)⊕ker(πiV) and that ker(πiV) is isomorphic

to a direct sum of Si and thus ker(πiV) = 0 and V ∼= R+
i R

−
i V. Using Lemma 3.23, we get that

qsiQ(dimR−
i V) = qsiQ(σi(dimV)) = qQ(dimV).

Theorem 3.49 and Corollary 3.50 show that R+
i and R−

i are inverse everywhere except on
the simple representation Si. To state this precisely, we consider the subcategory consisting of
representations, which do not have a summand equal to Si.

Definition 3.51. Let Q be a quiver and let i ∈ Q0 be any vertex. We denote by Repk(Q)⟨i⟩
the full subcategory of Repk(Q) consisting of representations that do not have summands that are
isomorphic to the simple representation Si. Analogously, we define the full subcategory repk(Q)⟨i⟩
of repk(Q).

Corollary 3.52. Let Q be a quiver and let i ∈ Q0 be a sink or a source. Then R+
i and R−

i

induce mutually inverse equivalences repk(Q)⟨i⟩ → repk(siQ)⟨i⟩ and repk(siQ)⟨i⟩ → repk(Q)⟨i⟩. In
particular, there is a one-to-one correspondence between the isomorphism classes of indecomposable
representations of Q and those of siQ.

Proof. The first part follows directly from Corollary 3.50 and Theorem 3.49. Indeed, for a repre-
sentation V = V1 ⊕ . . . ⊕ Vr ∈ Repk(Q)⟨i⟩, where Vi are the indecomposable summands that are
all non-isomorphic to Si. If i is a sink, we have:

R−
i R

+
i V ∼= (R−

i R
+
i V1)⊕ . . .⊕ (R−

i R
+
i Vr) ∼= V1 ⊕ . . .⊕ Vr = V.

Similarly, if i is a source, we have:

R+
i R

−
i V ∼= (R+

i R
−
i V1)⊕ . . .⊕ (R+

i R
−
i Vr) ∼= V1 ⊕ . . .⊕ Vr = V.

The one-to-one correspondence between the isomorphism classes of indecomposable representations
in Repk(Q) and Repk(siQ) is given by:

Si 7→ Si,V 7→
{R+

i V if i is a sink,

R−
i V if i is a source.

where V ∈ Repk(Q) is indecomposable and V ̸∼= Si.

The subcategories Repk(Q)⟨i⟩ and repk(Q)⟨i⟩ are interesting because on those categories,
R−
i R

+
i and R+

i R
−
i are the identity (up to isomorphism of representations). Moreover, if we

classify all indecomposable representations in Repk(Q)⟨i⟩, we also classify all indecomposable rep-
resentations in Repk(Q) since the only additional indecomposable representation is Si. However,
the subcategory Repk(Q)⟨i⟩ has the crucial disadvantage that morphisms in Repk(Q)⟨i⟩ do (in
general) not have kernels and cokernels. This means that for a morphism ϕ : V → W between
representations V,W ∈ Repk(Q)⟨i⟩ it can happen that one (or both) of the representations kerϕ
or cokerϕ is not in Repk(Q)⟨i⟩, meaning that the representation kerϕ or cokerϕ has a summand
that is isomorphic to Si.

Example 3.53. We give an example, illustrating that the category Repk(Q)⟨i⟩ does (in general)
not have kernels and cokernels. Let Q be the linear L3-quiver and let ϕ : V → W be the morphism
represented by the following commutative diagram

V : 0 k k

W : k k k.

0

ϕ1=0

id

ϕ2=id ϕ3=id

id id
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Note that the representations V and W are indecomposable and thus do not have a summand that
is isomorphic to a simple representation Si. The indecomposability of V and W is proven in Sec-
tion 4.1. However, the representation cokerϕ is given by the following picture

k 0 0.0 0

Therefore, cokerϕ = S1 which shows that Repk(Q)⟨i⟩, in general, does not have cokernels. Analo-
gously, we consider the ‘reverse diagram’:

Ṽ : k k k

W̃ : k k 0.

id

ψ1=id

id

ψ2=id ψ3=0

id 0

Here, we get kerψ = S3, showing that Repk(Q)⟨i⟩ does not necessarily have kernels.

3.4 Coxeter Functors

In this section, we introduce a notion of ordered vertices and we introduce the sequence of reflection
functors belonging to this ordering. This notion of ordering coincides with the one given in [2],
but is different from the one given in [1].

3.4.1 Admissible Orderings

We introduce a notion of a preferred ordering and show for which quivers such an ordering exists.
The existence of such an ordering is closely related to the existence of cycles in the quiver.

Definition 3.54. An ordering i1, i2, . . . , in of the vertices of a quiver Q is called (+)-admissible
if i1 is a sink in Q and for each 2 ≤ t ≤ n, it is a sink in sit−1

. . . si1Q. Dually, an ordering
i1, i2, . . . , in is called (−)-admissible if i1 is a source in Q and for each 2 ≤ t ≤ n, it is a source
in sit−1

. . . si1Q. It is required that each vertex of Q appears exactly once in our ordering.

Example 3.55. We consider the following quiver Q:

1 2 4

3

5

The ordering 1, 4, 2, 3, 5 is (+)-admissible. Indeed, 1 is a sink in Q, 4 is a sink in s1Q, 2 is a sink
in s4s1Q, 3 is a sink in s2s4s1Q and 5 is a sink in s3s2s4s1Q. One can also check that 3, 2, 1, 5, 4
is a (−)-admissible ordering.

Lemma 3.56. There exists a (+)-admissible ordering of the vertices of a quiver Q if and only if
Q is acyclic, i.e. there are no oriented cycles in Q.

Proof. We prove one implication by induction on the number of vertices. Let n be the number of
vertices of Q and suppose that Q is acyclic. Since the base case n = 1 is clear, we can assume that
n ≥ 2. Now let in be the starting vertex of an oriented path of maximal length. Since Q is acyclic
there are no infinite ordered paths and thus such a path exists. Then in is a source, else we have
a bigger ordered path. Now we remove in from the quiver (we also remove all its incident edges).
By induction, the smaller quiver has an admissible ordering i1, . . . , in−1. Now i1, . . . , in−1, in is an
admissible ordering of the original quiver Q. Indeed, each incident edge a = (in, it) once reverses
direction by applying sit and then reverses the direction back by applying sin . Therefore, it is also
a sink in sit−1

. . . si1Q (notice that here, we apply the sij to the whole quiver Q) and also in is a
sink in sin−1

. . . si1Q.
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In the induction step of the proof, we have chosen a vertex in. This hints at the fact that
there is generally not a unique (+)/(−)-admissible ordering. A possible algorithm to choose a (+)-
admissible ordering is the following. For an acyclic quiver Q, there always exists a sink i1. Now
we can delete the vertex i1 (and its incident edges) and the resulting quiver is again acyclic, which
allows us to pick a sink i2. Doing this inductively yields an (+)-admissible ordering i1, . . . , in.

Lemma 3.57. Let i1, i2, . . . , in be an ordering of the vertices of a quiver Q. Then i1, i2, . . . , in is
(+)-admissible if and only if in, in−1, . . . , i1 is (−)-admissible. In particular, a quiver Q admits a
(+)-admissible ordering if and only if it admits an (−)-admissible ordering. Therefore, we often
just refer to an admissible ordering, meaning a (+)-admissible ordering with induced (−)-admissible
ordering.

Proof. Let i1, . . . , in be (+)-admissible. Then, in is a sink in sin−1
. . . si1Q. But in the process of

going from Q to sin−1
. . . si1Q, every incident arrow of in is flipped once and thus in is a source in

Q. Similarly, because in−1 is a sink in sin−2
. . . si1Q, we know the following for all 1 ≤ k ≤ n− 2.

If a is an arrow (in Q) between in−1 and ik, then a must point away from in−1 (since it points
towards in−1 in sin−1 . . . si1Q). Therefore, a also points away from in−1 in sinQ. In addition, if
b is an arrow (in Q) between in−1 and in, then b must point away from in−1 in sinQ since in is
a source in Q. Repeating this argument inductively yields that in, in−1, . . . , i1 is (−)-admissible.
The other implication can be proven analogously.

Example 3.58. We consider the quiver from Example 3.55. We observe that the sequence
5, 3, 2, 4, 1 is a (−)-admissible ordering and that 4, 5, 1, 2, 3 is a (+)-admissible ordering. In addi-
tion, this also shows that there can be multiple admissible orderings.

Remark 3.59. There is another way to think about admissible orderings. If a quiver Q is acyclic,
then Q represents a partial order on the vertex set Q0. Indeed, for two vertices i and j, we can
define i ≤ j if and only if there exists a directed path from i to j (we say that there is a path from
each vertex i to itself). This indeed defines a partial order since there are no oriented cycles in
Q. Then we can choose a total order that extends our partial order and this yields an ordering
of the vertices. It can be shown that this ordering is (−)-admissible. This point of view helps to
understand why Q needs to be acyclic for it to admit an admissible ordering. Indeed, if Q would
have an oriented cycle, then we would get a chain i1 ≤ i2 ≤ . . . ≤ ir ≤ i1 which would imply that
i1 = i2 = . . . = ir. Notice that an increasing ordering (with respect to our total order) yields a
(−)-admissible ordering and a decreasing ordering yields a (+)-admissible ordering.

Example 3.60. We consider the quiver from Example 3.55. As explained in the remark above,
we get the following partial order: 2 < 1, 2 < 4, 3 < 2, 3 < 4, 5 < 4. We see that the (+)-admissible
orderings 1, 4, 2, 3, 5 and 4, 5, 1, 2, 3 are total orders that extend our partial order (the total orderings
are in decreasing order).

We notice that each arrow in sin . . . si1Q results from an arrow in Q by changing its orientation
exactly twice and therefore, we have that sin . . . si1Q = Q. This motivates the following definition.

Definition 3.61. Let Q be an acyclic quiver and let i1, . . . , in be a (+)-admissible ordering of
the vertices of Q. The two following functors are called Coxeter functors (with respect to this
ordering).

C+ = R+
in
. . .R+

i1
: Repk(Q)→ Repk(Q)

C− = R−
i1
. . .R−

in
: Repk(Q)→ Repk(Q)

Lemma 3.62. The Coxeter functors C+ and C− do not depend on the choice of the admissible
ordering of the vertices of a quiver Q.

Proof. First, we claim that R+
i R

+
j = R+

j R
+
i if i and j are sinks that are not adjacent to each

other. Indeed, notice thatR+
i andR+

j change different vector spaces and linear maps, and therefore
the order of operation does not matter. Now let i1, . . . , in and i′1, . . . , i

′
n be two (+)-admissible

orderings of the vertices of Q. Let i1 = i′m. Then i1 is a sink in Q and in si′m−1
. . . si′1Q. Therefore,

i1 is not adjacent to any of the vertices i′1, . . . , i
′
m−1 and we get that:

R+
i′m
R+
i′m−1

. . .R+
i′1

= R+
i′m−1
R+
i′m
. . .R+

i′1
= . . . = R+

i′m−1
. . .R+

i′1
R+
i′m

= R+
i′m−1

. . .R+
i′1
R+
i1
.
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Now let i2 = i′k. We denote by R+
i′k
. . . R̂+

i1
. . .R+

i′1
the sequence R+

i′k
. . .R+

i′1
with R+

i1
omitted. If

R+
i1

does not occur in the sequence, we just leave the sequence as is. We know that i2 is a sink in
si1Q and in si′k−1...si′1

Q. Therefore, i2 is not adjacent to any of the vertices i′k−1, . . . , i
′
1 apart from

maybe i1 = i′m. We do not know if i1 is a vertex in the list of i′k−1, . . . , i
′
1, however, by possibly

excluding R+
i1

we get that

R+
i′k
. . . R̂+

i1
. . .R+

i′1
= R+

i′k−1
. . . R̂+

i1
. . .R+

i′1
R+
i2
.

Therefore, we can first move R+
i1

to the right and then move R+
i2

to the right and get

R+
i′n
. . .R+

i′1
= R+

i′n
. . . R̂+

i1
. . . R̂+

i2
. . .R+

i′1
R+
i2
R+
i1
.

Doing this inductively yields
R+
i′n
. . .R+

i′1
= R+

in
. . .R+

i1
.

The case of the Coxeter functor C− can be proven analogously.

Since only acyclic quivers admit admissible orderings, we restrict our attention to acyclic quivers
in the rest of this section. Moreover, in the acyclic case, we have an admissible ordering and because
the Coxeter functors C+ and C− are independent of the choice of admissible ordering, we assume
w.l.o.g. that the vertices in Q0 = {1, . . . , n} already depict an admissible ordering, i.e. that 1, . . . , n
is a (−)-admissible ordering. Now we use the results about reflection functors to better understand
the Coxeter functors.

Corollary 3.63. Let Q be a finite, connected, and acyclic quiver and let C± be the Coxeter functors.
Then for any indecomposable representation V of Q, either C±V is indecomposable or C±V = 0. In
the first case, we have qQ(dimC±V) = qQ(dimV), while in the second case we have qQ(dimC±V) = 0.

Proof. This proof directly follows from Corollary 3.50. Since the case C±V = 0 is trivial we can
w.l.o.g. assume that C±V ̸= 0. From Corollary 3.50 we know that R+

i1
V is indecomposable. Using

this argument inductively shows that C+V is indecomposable. Similarly, we can conclude that C−V
is indecomposable. Moreover, we have

qQ(dimC+V) = qsin ...si1Q(dimR
+
in
. . .R+

i1
V) = qsin−1

...si1Q
(dimR+

in−1
. . .R+

i1
V)

= . . . = qsi1Q(dimR
+
i1

V) = qQ(dimV).

Analogously, it follows that qQ(dimC−V) = qQ(dimV).

Example 3.64. To see an example of the Coxeter functor, we refer to Section 4.2. There, it is
demonstrated how the Coxeter functor operates on the linear Ln-quiver. Explicitly, it is calculated,
what happens to the dimension vector of an indecomposable representation, when applying C+.

Definition 3.65. Let Q be an acyclic quiver and fix a (+)-admissible ordering i1, . . . , in of its
vertices. The automorphism c = σin . . . σi1 ∈W (Q) ⊆ Aut(Zn) is called a Coxeter transforma-
tion.

The Coxeter transformation and the Coxeter functor are related by the following property.

Lemma 3.66. Let Q be an acyclic quiver and let C+ be the Coxeter functor and c be the Coxeter
transformation (w.r.t. any admissible ordering). Let V be an indecomposable representation of
Q that is not isomorphic to the simple representation Si for any i ∈ Q0. We then have that
dim(C+)rV = cr(dimV).

Proof. This is an immediate consequence of dimR+
i V = σi(dim)V from Theorem 3.49.

Remark 3.67. The Coxeter transformation is independent of the choice of admissible ordering.
However, since the Coxeter functor C+ is independent of the choice of admissible ordering and we
only use the above property of the Coxeter transformation, it is not important that the Coxeter
transformation is independent of the choice of admissible ordering. Therefore, we do not prove it.
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Lemma 3.68. Let Q be a Dynkin quiver.

1. The Coxeter transformation c has no non-zero fixed vectors, that is cx ̸= x for all 0 ̸= x ∈ Zn.

2. For each positive x ∈ Zn, there exists an integer r ≥ 1 such that cr(x) is not positive.

Proof. First notice that since Q is Dynkin ( =⇒ acyclic), both the Coxeter functors C+, C− and
the Coxeter transformation c exist.

1. Suppose that x ∈ Zn such that cx = x. Because σi2 , . . . , σin do not change the i1-th
coordinate, we must have σi(x)i = xi and thus σi(x) = x. Doing this inductively, yields that
σij (x) = x for all 1 ≤ j ≤ n. From the definition of σi, we get that (x, ej)Q = 0 for all
1 ≤ j ≤ n. This implies that qQ(x) = 0 and thus x = 0.

2. We know from Corollary 3.31 that W (Q) is finite. Therefore, there exists some h ≥ 1 such
that ch = id (e.g. h = |W (Q)| is the cardinality of W (Q)). If x, cx, c2x, . . . , ch−1x are all
positive, then y = x + cx + c2x + . . . + ch−1x is positive ( =⇒ y ̸= 0) and cy = y which
contradicts part 1. But then one of the cx, c2x, . . . , ch−1x is not positive.

Proposition 3.69. Let Q be a Dynkin quiver, and let V be an indecomposable representation of
Q. Then there is a finite r such that C+ . . . C+︸ ︷︷ ︸

r times

V = 0.

Proof. Let x = dimV. If V = Si (for some i ∈ Q0), then we have C+V = 0 since R+
i Si = 0.

Thus let V ̸= Si for all i ∈ Q0. Then Lemma 3.68 yields an integer r such that the vector
cr(x) = cr(dimV) = dim(C+)rV is not positive. Therefore, we have (C+)rV = C+ . . . C+︸ ︷︷ ︸

r times

V = 0.

Example 3.70. In Section 4.2, Proposition 3.69 is shown in the example of the linear Ln-quiver.
Then, we can take r = n.

3.5 The Proof of Gabriel’s Theorem

We first state the version of Gabriel’s Theorem that we prove. This version of the theorem is
superior to Theorem 3.2 since it gives a characterization of the isomorphism classes of the inde-
composable representations for the Dynkin quivers. This section is based on [2].

Theorem 3.71 (Gabriel, version 2). Let Q be a connected quiver and let k be an arbitrary field.
Then:

1. Q is of finite-type if and only if Q is a Dynkin quiver.

2. When the equivalent conditions in (1) are satisfied, the correspondence V 7→ dimV induces a
bijection between the set of isomorphism classes of indecomposable representations of Q and
the set Φ+(Q) = Φ(Q) ∩ Nn of positive roots of Q.

Proof. Step 1: First, we assume that Q is a Dynkin quiver. We show that Q is of finite-type and
that (2) holds. For simplicity, we set Q0 = {1, 2 . . . , n} and we assume that 1, 2, . . . , n is a (+)-
admissible ordering. Let V be an indecomposable representation of Q. Then dimV is positive. By
Lemma 3.68, we know that there exists r such that cr(dimV) is non-positive which implies that
(C+)rV = 0 by Proposition 3.69. Here, c = σn . . . σ2σ1 denotes the Coxeter transformation. We
consider the sequence

(i1, i2, . . . , in, in+, . . . , irn) = (1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . , n),

where the sequence 1, 2, . . . , n is repeated r times. Let 0 ≤ t < rn such that σit . . . σi1(dimV)
is positive but σit+1

. . . σi1(dimV) is non-positive and thus 0. This is equivalent to saying that
R+
it+1

. . .R+
i1

is the smallest subsequence of (C+)r, which sends V to the trivial representation.

Since R+
it
. . .R+

i1
V is indecomposable and R+

it+1
. . .R+

i1
V = 0, we know from Corollary 3.50 that

R+
it
. . .R+

i1
V = Sit+1

, where Sit+1
is the simple representation (at the vertex it+1) of sit . . . si2si1Q.

Applying the same corollary inductively yields that

V ∼= R−
i1
R−
i2
. . .R−

it
R+
it
. . .R+

i1
V = R−

i1
R−
i2
. . .R−

it
Sit+1 .
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Note that the sequence R−
i1
R−
i2
. . .R−

it
R+
it
. . .R+

i1
is well-defined since for all 1 ≤ j ≤ t, we have

that ij is a sink in sij−1
. . . si1Q and ij is a source in sij+1

. . . sitsit . . . si1Q = sij . . . si1Q because
1, 2, . . . , n is (+)-admissible. Moreover, Theorem 3.49 yields that

dimV = dimR−
i1
R−
i2
. . .R−

it
Sit+1

= σi1σi2 . . . σit(dimSit+1
) = σi1σi2 . . . σit(eit+1

).

Therefore, all dimension vectors of indecomposable representations are (positive) roots of Q. More-
over, let V,W be two indecomposable representations such that dimV = dimW. We get that
dimR+

it
. . .R+

i1
W = σit . . . σi1(dimW) = σit . . . σi1(dimV) = eit+1 = dimSit+1 . But Sit+1 is the only

representation with dimension vector eit+1
and therefore R+

it
. . .R+

i1
W = Sit+1

. Now, applying the
mirrored sequence of reflection functors, we get

W ∼= R−
i1
. . .R−

it
R+
it
. . .R+

i1
W ∼= R−

i1
. . .R−

it
Sit+1

∼= V.

Therefore, we get a well-defined map

ϕ : I → Φ+(Q), [V] 7→ dimV,

where I denotes the set of isomorphism classes of indecomposable representations V of Q and
[V] denotes the isomorphism class of V. Note that we have shown that ϕ is an injective map.
Since Φ+(Q) is finite (Lemma 3.30) this shows that Q is of finite-type. We now show that ϕ is
surjective and thus proving (2). Let x ∈ Φ+(Q) be a positive root of qQ. From Lemma 3.68, we
get an m such that cm(x) is not positive. Similarly as before, let 0 ≤ t < mn be minimal such
that σit . . . σi1(x) is positive, but σit+1σit . . . σi1(x) is not positive. But since σit+1σit . . . σi1(x) is
a root, it is either negative or positive. However, σit+1

only changes the it+1-th coordinate and
thus we conclude that σit . . . σi1(x) = eit+1

and therefore we have x = σi1 . . . σit(eit+1
). But the

representation V = R−
i1
. . .R−

it
Sit+1

is indecomposable by Corollary 3.50 and has dimension vector
x. This shows that ϕ is surjective.

Step 2: For any quiver Q and a subquiver Q′, we have that Repk(Q
′) is a full subcategory of

Repk(Q). Indeed, if V is a representation of Q′, then we get a representation Ṽ of Q by adding
zero spaces and zero maps to vertices and arrows in Q \Q′. The subcategory is full because every
morphism ϕ̃ : Ṽ → W̃ induces a morphism ϕ : V → W. Indeed, if i ∈ Q0 \ Q′

0, then ϕ̃i = 0: 0→ 0
and therefore ϕ = (ϕ̃i)i∈Q′

0
is a morphism between representations of Q′. If two representations

Ṽ, W̃ of Q are isomorphic, then the induced representations V,W of Q′ are also isomorphic. Indeed,
for an isomorphism ϕ̃ : Ṽ→ W̃ we have that the induced morphism ϕ : V→ W is in Repk(Q

′) (since
the subcategory is full) and it is also an isomorphism. Therefore, if Q is of finite-type, then Q′ ⊆ Q
is also of finite-type. But from Lemma 3.15, we know that each wild quiver Q has a tame subquiver
Q′. Therefore, it suffices to show that all tame quivers are not of finite-type.

Step 3: We now go through the list of tame quivers resp. Euclidean graphs and show that they
have infinitely many isomorphism classes of indecomposable representations.

Ã0: Let Q be a quiver of type Ã0. In Example 2.21 and Example 2.25 we have shown that
(for k an algebraically closed field), the isomorphism classes of indecomposable representations are
given by the Jordan normal blocks. For an arbitrary field k, we still get that the different Jordan
blocks Jλ,n for λ ∈ k give pairwise non-isomorphic indecomposable representations. Indeed, from

Example 2.21, we know that two representations V = kn
M→ kn,W = kn

N→ kn are isomorphic if
and only if there exists an invertible matrix A such that NA = AM . By a generalized version of
the Jordan normal form for an arbitrary field k, this implies that M and N have the same Jordan
normal form. If k is an infinite field, then for each n ∈ N, we get an infinite number of isomorphism
classes of indecomposable representations. If k is finite, we can vary over n ∈ N and still get an
infinite number of isomorphism classes.

Ãn, n ≥ 1: Let Q be a quiver of type Ãn. For an arbitrary λ ∈ k, we define a representation Vλ
by setting Vi = k for all vertices and by setting the maps va = id for all a ∈ Q1, except one map
vb = λ id. Vλ is given by the following picture.

1 2 n− 1 n

0

id id id id

λ id id
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Since all the vector spaces are 1-dimensional and the quiver is connected, Vλ is indecomposable.
Indeed if Vλ = V1⊕V2 and (V1)i = k for some vertex i, then we have a vertex j such that the map
between i and j is the identity, which implies that (V1)j = k. Now, using that Q is connected,
we conclude that V = V1. Moreover, for a morphism ϕ : Vλ1 → Vλ2 we have that ϕi = ϕj for all
vertices i, j. This can be shown using a similar argument as for the part that Vλ is indecomposable.
But then we have the following commutative diagram.

k k

k k

λ1 id

ϕ0 ϕ0

λ2 id

Therefore, if λ1 ̸= λ2 we have that ϕ0 = 0 which shows that Vλ1
∼= Vλ2

if and only if λ1 = λ2. More
generally, for any n ∈ N, we can define a representation by putting kn at each vertex and by letting
all maps be the identity, apart from one map which is given by a Jordan block Jλ,n. Similarly,
as in the first case (n = 1), it can be shown that this defines an indecomposable representation
since each Jordan block is indecomposable. The same argument as above also shows that different
choices of λ ∈ k give pairwise non-isomorphic indecomposable representations. Therefore, we have
an infinite number of indecomposable representations.

D̃n, n ≥ 4: We first consider the following quiver of type D̃4:

0

1

2

3

4

For an arbitrary λ ∈ k we consider the following representation, called Vλ:

k k

k2

k k

1

0

 1

1



0

1

 1

λ


We claim that Vλ is indecomposable and that different choices of λ ∈ k give pairwise non-isomorphic
representations. Indeed, let W be a summand of Vλ and notice that W needs to have a non-trivial
vector space at one of the outer vertices 0,1,3 or 4 (else W is trivial). But this implies that the
vector spaces at all the other outer vertices must be equal to k (and thus W = V). To see this,

consider the images of the four maps

(
1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
1
λ

)
. Notice that for any choice of three

of the four maps, their images generate k2. Also, for any partition into two pairs, the images of
one pair (of maps) always generate k2. Therefore, if we split the four copies of the vector spaces
k (at the outer vertices) into two different summands of V (either split it 2 to 2 or 3 to 1), we
have that one summand must have k2 at the middle vertex. But then the other summand has 0
at the middle vertex, which is impossible because none of the maps is trivial. This shows that Vλ
is indecomposable. Moreover, if there is an isomorphism ϕ : Vλ1

→ Vλ2
, we have(

1
0

)
ϕ2 = ϕ2|k⊕0 = ϕ1

(
1
0

)
=

(
α
0

)
,(

0
1

)
ϕ2 = ϕ2|0⊕k = ϕ0

(
0
1

)
=

(
0
β

)
.
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This implies that ϕ2 =

(
α 0
0 β

)
. But since

(
1
1

)
ϕ3 = ϕ2

(
1
1

)
=

(
α
β

)
we have ϕ2 =

(
α 0
0 α

)
. This

yields

(
1
λ1

)
ϕ4 = ϕ2

(
1
λ2

)
=

(
α
αλ2

)
, which implies λ1 = λ2. More generally, for any n ∈ N, one

can show that the following representations are indecomposable and are pairwise non-isomorphic
for different choices of λ ∈ k (here Jλ,n denotes the n× n-Jordan block).

kn kn

k2n

kn kn

1kn

0

 1kn

1kn



 0

1kn

 1kn

Jλ,n


Therefore, for any field k, the above quiver has infinitely many isomorphism classes of indecom-
posable representations. We can extend this argument to the following quiver Qsp of type D̃n.

0

1

2 3 n− 2

n− 1

n

Indeed, for n ∈ N, one can show that the following representations are indecomposable and pairwise
non-isomorphic for different λ ∈ k.

kn kn

k2n k2n k2n k2n

kn kn

1kn

0

 1kn

1kn


id id

 0

1kn

 1kn

Jλ,n


Now we use Corollary 3.52 to conclude that any quiver of type D̃n has infinitely many isomorphism
classes of indecomposable representations. Using the corollary, it remains to show that any quiver
of type D̃n results from the quiver Qsp by applying a sequence of R+

i respectively R−
i (meaning

that we apply si to the quiver itself (but only if i is a sink or a source) and we apply R±
i to

representations). Indeed, one can proceed as follows:

1. First, we fix the direction of the arrow between 2 and 3 (if it does not have the right direction)
by applying R−

2 R
−
1 R

−
0 .

2. Then we fix the arrows 0→ 2 and 1→ 2 by possibly applying R−
0 resp. R−

1 .

3. Now we sequentially fix the arrows i → i + 1 for 3 ≤ i ≤ n − 3 (i.e. the horizontal arrows).
First notice that the sequenceR+

i+1 . . .R
+
n−3R+

nR+
n−1R

+
n−2 is well-defined and it only changes

the direction of the arrow i→ i+1. Thus applying this sequence over and over (for increasing
i), we can fix the direction of the horizontal arrows.

4. Finally, we can fix the direction of the arrows n − 1 → n − 2 and n → n − 2 by possibly
applying R−

n−1 resp. R−
n .
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To illustrate this algorithm, consider the following quiver Q:

0

1

2 3 n− 2

n− 1

n

We have that snsn−1s0s2s1s0Qsp = Q and therefore an indecomposable representation V ̸∼= Si of
Qsp yields an indecomposable representation R−

nR−
n−1R

−
0 R

−
2 R

−
1 R

−
0 V of Q. In general, by Corol-

lary 3.52, there is a one-to-one correspondence between the isomorphism classes of indecomposable
representations of Qsp and any other quiver Q of type D̃n which shows that all quivers of type D̃n

are not of finite-type.
Ẽ6: We first reduce the problem to the following quiver Qsp of type Ẽ6.

0

1

2

3 4 5 6

Similarly as in the D̃n-case, for any quiverQ of type Ẽ6, we can find a sequence of reflection functors
such that applying this sequence toQsp yields the quiverQ. Thus, using Corollary 3.52, it is enough
to prove that Qsp is not of finite-type. Now, instead of just giving a family of indecomposable
representations, we show how we find such indecomposable representations. This is useful since
this idea can then be extended to the cases Ẽ7 and Ẽ8. First, we note that by deleting the vertex
0, we get a Dynkin quiver Q′ (see proof of Theorem 3.16). We also notice that the unique smallest
positive radical vector δ = (1, 1, 2, 2, 3, 2, 1) ∈ N7 yields a vector δ′ = (1, 2, 2, 3, 2, 1) ∈ N6 (take
δi = δ′i for all i ∈ Q′

0) such that qQ′(δ′) = 1 and thus δ′ is a root of Q′. From part (1) we know that
there exists an indecomposable representation V of Q′ that has dimension vector δ′. Now, for any
λ ∈ k, we get an indecomposable representation Vλ of Q by setting V0 = k and the map between

V0 and V2 = k2 to be

(
1
λ

)
.

k

V2 = k2

V1 = k V3 = k2 V4 = k3 V5 = k2 V6 = k

1

λ



vb

va vc vd ve

Since V is an indecomposable representation of Q′, we conclude that Vλ is also indecomposable.

Moreover, if ϕ : Vλ1

∼=→ Vλ2
, we have that (w.l.o.g) ϕi = idVi

for i ∈ {1, 2, 3, 4, 5, 6}. Thus, we get(
1
λ2

)
ϕ0 = ϕ2

(
1
λ1

)
= idV2

(
1
λ1

)
=

(
1
λ1

)
,

which implies λ1 = λ2. Therefore, Vλ are indecomposable, pairwise non-isomorphic (for different
choices of λ ∈ k) representations of Q. More generally, for any n ∈ N, we get that the following
representations are indecomposable and pairwise non-isomorphic.
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kn

k2n

kn k2n k3n k2n kn

1kn

Jλ,n



vb⊗1kn

va⊗1kn vc⊗1kn vd⊗1kn ve⊗1kn

The tensor notation vα ⊗ 1kn comes from the fact that for all vertices i ∈ {1, 2, 3, 4, 5, 6} we have
that the vector space at vertex i is isomorphic to Vi ⊗ kn and for all arrows α ∈ {a, b, c, d, e} we
have that the map is given by vα ⊗ 1kn . The maps are explicitly given by the block matrices

vα ⊗ 1kn =


vα 0 . . . 0
0 vα . . . 0
...

...
. . . 0

0 0 . . . vα

 for α ∈ {a, b, c, d, e}.

Ẽ7 and Ẽ8: The cases for quivers of type Ẽ7 and Ẽ8 are analogous to the case of Ẽ6-quivers.
Indeed, by deleting the vertex 0, we get the roots δ′ = (2, 2, 3, 4, 3, 2, 1) resp. δ′ = (2, 3, 4, 6, 5, 4, 3, 2)
of a quiver of type E7 resp. E8. Then, we can use the same arguments as above.

Remark 3.72. In the proof of Gabriel’s Theorem (step 1), we only needed that for a Dynkin quiver
Q and any indecomposable representation V, there exists a sequence of indices i1, . . . , is (possibly
with repetitions) such that R+

is
. . .R+

i1
is well-defined and R+

is
. . .R+

i1
V = 0. This explains why one

does not need to consider the Weyl group W (Q) to prove the ‘if part’ of Gabriel’s Theorem in the
special case of the An-type quivers. Indeed, we mainly need the Weyl group to prove the existence
of a finite number r such that C+ . . . C+︸ ︷︷ ︸

r times

V = 0 for any indecomposable representation V of a Dynkin

quiver Q. In Chapter 4, we explicitly show how we can construct such a sequence of indices for
An-type quivers.
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Chapter 4

The Special Case: An-type Quivers

In this chapter, we focus on the special case of An-type quivers (n ≥ 1), a subset of the Dynkin
quivers. These quivers are crucial in topological data analysis as we will see in Chapter 5. The
theory in Chapters 2 and 3 is more explicit for An-type quivers. In this chapter we build inde-
composable representations for An-type quivers, explore Coxeter functors on them, and establish
the ‘if part’ of Gabriel’s Theorem, demonstrating the finiteness of An-type quivers. This chapter
is based on Appendix A of the book ’Persistence Theory: From Quiver Representations to Data
Analysis’ written by Steve Y. Oudot [1].

4.1 Interval Representations

We denote the set {b, b+ 1, . . . , d} by [b, d]. Recall that a quiver Q is of type An if its underlying
graph Q̄ is of the following form.

1 2 n− 1 n

An important example is the linear quiver Ln.

1 2 n− 1 n

A morphism ϕ = (ϕi)1≤i≤n between two quiver representations V and W of an An-type quiver Q
is given by the following commutative diagram.

V1 V2 V3 · · · Vn

W1 W2 W3 · · · Wn

v1

ϕ1

v2

ϕ2

v3

ϕ3

vn−1

ϕn

w1 w2 w3 wn−1

Lemma 4.1. For all An-type quivers Q, the set of positive roots of qQ is given by the vectors of
the form x = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)T with the first and last 1’s occurring at positions b ≤ d in
the range [1, n].

Proof. First, we recall that the Tits form qQ is independent of the orientations of the arrows of
Q, which allows us to simultaneously find the roots of all An-type quivers (for a fixed n). From
Example 3.11, we know the Tits form for An-type quivers Q:

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xtaxha
=

n∑
i=1

x2i −
n−1∑
i=1

xixi+1 =
1

2
[x21 + x2n +

n−1∑
i=1

(xi − xi+1)
2].

Since qQ is positive definite (Q is Dynkin), we know from Corollary 3.31, that the roots of qQ
are exactly given by the set {x ∈ Zn | qQ(x) = 1}. Thus for any positive root x ∈ Zn, we have
xi ∈ {0, 1} for all coordinates/vertices i and that there can be at most two pairs of consecutive
vertices/coordinates (xi, xi+1) with difference 1. This shows that the roots are of the desired form
x = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)T .
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We know from Gabriel’s Theorem that for every An-type quiver Q, we have a bijection between
the isomorphism classes of indecomposable representations and the positive roots of qQ:

ϕ : I → Φ+(Q), [V] 7→ dimV.

Therefore, we use Lemma 4.1 to identify the indecomposable representations of the An-type quivers.

Proposition 4.2. For all An-type quivers Q, each indecomposable representation is isomorphic to
one of the representations in Figure 4.1 for some interval [b, d] ⊆ [1, n].

0
0

—– · · · 0
—– 0︸ ︷︷ ︸

[1,b−1]

0
—– k

id
—– · · · id

—– k︸ ︷︷ ︸
[b,d]

0
—– 0

0
—– · · · 0

—– 0.︸ ︷︷ ︸
[d+1,n]

Figure 4.1: The interval representation IQ[b, d].

Definition 4.3. The representations in Figure 4.1 are called interval representations and are
denoted by IQ[b, d].

Proof of Proposition 4.2. Using Gabriel’s Theorem, let V be the indecomposable representation
of Q that belongs to the positive root x = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)T with the 1’s occurring in
the interval [b, d] (see Lemma 4.1). The representation V has the vector space k at every vertex
i ∈ [b, d]. The maps from and to 0 vector spaces are 0.

0 · · · 0 Vb = k k · · · k = Vd 0 · · · 00 0 0 vb vb+1 vd−1 0 0 0

Moreover, the maps between successive copies of k need to be isomorphisms, because otherwise

V could be decomposed further. Indeed, if k
va

—— k is not an isomorphism, then va = 0 and we
have the decomposition V = V1 ⊕ V2, where the representations V1 and V2 are as follows.

V : · · · Vb = k k Va = k k = Va+1 k = Vd · · ·

V1 : · · · V ′
b = k k V ′

a = k 0 = V ′
a+1 0 = V ′

d · · ·

V2 : · · · V ′′
b = 0 0 V ′′

a = 0 k = V ′′
a+1 k = V ′′

d · · ·

0 vb va=0 0

0 vb 0 0 0

0 0 0 0 0

In addition, V is isomorphic to the interval representation IQ[b, d]. Indeed, for any isomorphism

k
va→ k, consider the following commutative diagram.

k k

k k

va=α

ϕta=α ϕha=id

id

Notice that this allows us to successively define the maps ϕb, ϕb+1, . . . , ϕd so that the resulting
morphism ϕ = (ϕi)

n
i=1 is an isomorphism between V and IQ[b, d].

Now, we can use the Krull-Remak-Schmidt Theorem to decompose any representation of an
An-type quiver.

Definition 4.4. For an An-type quiver Q and a finite-dimensional representation V, the following
decomposition is called the interval decomposition of V:

V ∼=
r⊕
j=1

IQ[bj , dj ].
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We have now found all isomorphism classes of indecomposable representations of an An-type
quiver Q. Since there are only finitely many possible choices for b ≤ d in [1, n], we have also
shown that An-type quivers are of finite-type. However, we have used Gabriel’s Theorem, thus
our argument above is a circular argument. Therefore, we want to prove the ‘if part’ of Gabriel’s
Theorem for An-type quivers, i.e. that quivers of type An are of finite-type and that the map
ϕ : I → Φ+(Q), [V] 7→ dimV is an isomorphism. To do this, we first observe the action of reflection
functors and Coxeter functors on An-type quivers.

4.2 Coxeter Functors on An-Type Quivers

In Remark 3.72, we noticed the following: in the proof of Gabriel’s Theorem we only needed that
for a Dynkin quiver Q and any indecomposable representation V, there exists a sequence of indices
i1, . . . , is (possibly with repetitions) such that R+

is
. . .R+

i1
is well-defined and R+

is
. . .R+

i1
V = 0. For

an An-type quiver Q, we now construct such a sequence explicitly. We first consider the linear
quiver Ln.

1 2 n− 1 n

Proposition 4.5. [1, Ex. A.19] For every finite-dimensional representation V of the linear quiver
Ln, we have C+ . . . C+︸ ︷︷ ︸

n times

V = 0. Here, C+ is the Coxeter functor belonging to the (+)-admissible

ordering n, n− 1, . . . , 1.

Proof. Notice that the natural ordering of the vertices is a (−)-admissible ordering and therefore,
the ordering n, n−1, . . . , 1 is (+)-admissible. Now, let V be an indecomposable representation of Ln
and let x = (x1, x2, . . . , xn)

T = dimV. We now apply the Coxeter functor C+ and by Theorem 3.49,
we get:

dimR+
nV = 0 or σn(x) = (x1, x2, . . . , xn−1, xn−1 − xn)T ,

dimR+
n−1R+

nV = 0 or σn−1σn(x) = (x1, x2, . . . , xn−2 − xn, xn−1 − xn)T .
...

dimR+
2 . . .R

+
n−1R+

nV = 0 or σ2 . . . σn−1σn(x) = (x1, x1 − xn, . . . , xn−2 − xn, xn−1 − xn)T .
dimR+

1 R
+
2 . . .R

+
n−1R+

nV = 0 or σ1σ2 . . . σn−1σn(x) = (−xn, x1 − xn, . . . , xn−2 − xn, xn−1 − xn)T .

Since dimension vectors are non-negative, we conclude that either C+V = R+
1 R

+
2 . . .R

+
n−1R+

nV = 0
or that xn = 0. We can iterate this process successively and get:

dimC+V = 0 or (0, x1, x2, . . . , xn−2, xn−1)
T ,

dimC+C+V = 0 or (0, 0, x1, . . . , xn−3, xn−2)
T ,

...

dim C+ . . . C+︸ ︷︷ ︸
n−1 times

V = 0 or (0, 0, 0, . . . , 0, x1)
T ,

dim C+ . . . C+︸ ︷︷ ︸
n times

V = 0.

We now generalize the statement of Proposition 4.5 to be true for all An-type quivers.

Proposition 4.6. For an An-type quiver Q and a finite-dimensional representation V, there exists
a sequence of reflection functors such that

C+ . . . C+︸ ︷︷ ︸
n times

R+
1 . . .R

+
ir
R+

1 . . .R
+
ir−1

. . .R+
1 . . .R

+
i1

V = 0.
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Proof. If Q is not the linear quiver Ln, let i1 < i2 < . . . < ir be the heads of the backward arrows.

1 2 i1 iri1 + 1 ir + 1 n

If we apply the sequence s1 . . . si1 on Q, we get the same quiver, but the arrow between i1 and
i1 + 1 has changed direction.

1 2 i1 iri1 + 1 ir + 1 n

Also, notice that the sequence of reflection functors R+
1 . . .R

+
i1

is well-defined. We can repeat
this process for i2, . . . , ir and get that s1 . . . sirs1 . . . sir−1

. . . s1 . . . si1Q is the linear quiver Ln. In
addition, from Corollary 3.50, we get that for any indecomposable representation V of Q, the rep-
resentation R+

1 . . .R
+
ir
R+

1 . . .R
+
ir−1

. . .R+
1 . . .R

+
i1

V is either 0 or an indecomposable representation
of Ln. Using Proposition 4.5, we conclude that

C+ . . . C+︸ ︷︷ ︸
n times

R+
1 . . .R

+
ir
R+

1 . . .R
+
ir−1

. . .R+
1 . . .R

+
i1

V = 0.

4.3 Proof of Gabriel’s Theorem for An-Type Quivers

We are now ready to prove the following theorem.

Theorem 4.7 (Gabriel’s Theorem for An-type quivers). Let Q be a quiver of type An and
let k be an arbitrary field. Then:

1. Q is of finite-type.

2. The correspondence V 7→ dimV induces a bijection between the set of isomorphism classes of
indecomposable representations of Q and the set Φ+(Q) = Φ(Q) ∩ Nn of positive roots of Q.

Proof. The proof is analogous to Step 1 of the proof of Theorem 3.71. Indeed, we have shown that
there exists a minimal sequence of reflection functors R+

it+1
. . .R+

it
, such that R+

it+1
. . .R+

it
V = 0

and R+
it
. . .R+

it
V ̸= 0. The same argument as in the proof of Theorem 3.71 now yields a well-

defined and injective map ϕ : I → Φ+(Q), [V] 7→ dimV. This shows that Q is of finite-type since
we have shown that the set of positive roots Φ+(Q) is finite for an An-type quiver. Notice that
we do not need the result for a general Dynkin quiver (Lemma 3.30). In addition, proving the
surjectivity of ϕ can be done explicitly in the case of An-type quivers. Indeed, we know that every
positive root x ∈ Φ+(Q) is of the form x = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)T and we have that the
interval representation IQ[b, d] has this dimension vector for a suitable choice of b ≤ d. It remains
to show that the interval representations are indeed indecomposable. This can be either seen by
direct observation or we can show that the endomorphism ring End(IQ[b, d]) is local and then apply
Proposition 2.38. Now, let ψ ∈ End(IQ[b, d]) and observe the following commutative diagram.

0 0 k k · · · k 0 0

0 0 k k · · · k 0 0

0

0

0

0

id

ψb

id

ψb+1

id 0

ψd

0

0 0

0 0 id id id 0 0

By commutativity, we have ψb = ψb+1 = . . . = ψd = α ∈ k. Therefore, we can embed End(IQ[b, d])
in the field k. However, since End(IQ[b, d]) is a k-vector space, it follows that End(IQ[b, d]) = k
which is local because fields are local. This shows that ϕ : I → Φ+(Q) is an isomorphism.

Remark 4.8. We highlight the results from Chapter 3 that are needed in the proof above, and
which results are not needed. We do this by sections:

3.1: We have used the explicit form of the Tits form qQ for an An-type quiver and the fact that
the Tits form is independent of the orientation. We did not need radical vectors and results
about tame and wild quivers.
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3.2: We have used the central property of simple reflections: dimR±
i V = σi(dimV) (for inde-

composable representations V ̸= Si). However, we did not use the Weyl group and it was
sufficient to consider the set {x ∈ Zn | qQ(x) = 1} as our root system. Indeed, we were able
to describe the roots explicitly, which showed that {x ∈ Zn | qQ(x) = 1} is finite.

3.3: The proof relied heavily on reflection functors. Therefore, the whole Section 3.3 is needed in
the proof above.

3.4: We have used Coxeter functors. However, we did not use its connection to the Coxeter
transformation and the Weyl group.

4.4 The Diamond Principle

Let Q be an An-type quiver and let i ∈ Q0 be a sink. Then, any representation V and its reflection
W = R+

i V can be expressed by the following diagram, because R+
i only changes the vector space

at the vertex i and its incident arrows resp. the maps corresponding to those arrows.

Vi

V1 · · · Vi−1 Vi+1 · · · Vn

Wi

Lemma 4.9. We have the following transformation rules for the interval representations:

R+
i IQ[i, i] = 0,

R+
i IQ[i, d] = IQ[i+ 1, d] if i < d,

R+
i IQ[b, i] = IQ[b, i− 1] if b < i,

R+
i IQ[i+ 1, d] = IQ[i, d] if i+ 1 ≤ d,
R+
i IQ[b, i− 1] = IQ[b, i] if b ≤ i− 1,

R+
i IQ[b, d] = IQ[b, d] otherwise.

The following picture visualizes this result. The black interval represents the interval represen-
tation IQ[b, d] and the red dot shows the position of the vertex i.

i

i d

R+
i

di+ 1

i i− 1bb

i+ 1 d i+ 1 di

b i− 1 b i− 1 i

b d b d

Proof. The result follows directly from the definition of the reflection functor R+
i . We have already

seen the first rule and we prove the second and fifth rule, thus proving one case each, where
the interval gets shorter resp. longer. The other cases are analogous. Using that R+

i IQ[i, d] is
indecomposable (Corollary 3.50) and thus isomorphic to an interval representation, it suffices to
prove that (R+

i IQ[i, d])i = 0. Indeed, we have:

(R+
i IQ[i, d])i = ker ξi = ker(0⊕ k → k) = ker(k

id→ k) = 0.

48



For the fifth rule, it suffices to prove that (R+
i IQ[b, i− 1])i = k. Indeed, we have:

(R+
i IQ[b, i− 1])i = ker ξi = ker(k ⊕ 0→ 0) = ker(k

0→ k) = k.

Now, we understand how reflection functors operate on interval decomposition. Using this, we
consider the above diagram and we construct a general setting, which behaves similarly to the
transformation rules in Lemma 4.9.

Definition 4.10. Let Q be an An-type quiver and let i be a sink. Given two finite-dimensional
representations V ∈ repk(Q) and W ∈ repk(siQ), that differ only at the spaces Vi,Wi, and their
incident maps, we get the following diagram, where the central rhombus is called a diamond:

Vi

V1 · · · Vi−1 Vi+1 · · · Vn

Wi

vc vd

wa wb

The diamond is called exact if im f = ker g in the following sequence

Wi Vi−1 ⊕ Vi+1 Vi,
f g

where f : x 7→ (wa(x), wb(x)) and g : (x, y) 7→ vc(x) + vd(y).

Theorem 4.11 (Diamond principle). Let Q be an An-type quiver and let i be a sink. Let
V ∈ repk(Q) and W ∈ repk(siQ) be two finite-dimensional representations, that differ only at the
spaces Vi,Wi, and their incident maps. If we suppose that the diamond is exact, then the interval
decompositions of V and W are related to each other through the following matching rules:

• summands IQ[i, i] and IsiQ[i, i] are unmatched,

• summands IQ[b, i] are matched with summands IsiQ[b, i− 1], and IQ[b, i− 1] with IsiQ[b, i],

• summands IQ[i, d] are matched with summands IsiQ[i+ 1, d], and IQ[i+ 1, d] with IsiQ[i, d],

• every other summand IQ[b, d] is matched with the summand IsiQ[b, d].

Figure 4.2: The matching rules from the diamond principle. The top row illustrates the second,
third, and fourth matching rules. The bottom row shows the two unmatched cases.

The transformation result for the interval representations (Lemma 4.9) and the diamond prin-
ciple look quite similar. Indeed, we prove that the results naturally imply each other.

Proof of the equivalence of Lemma 4.9 and the diamond principle. Step 1: We show Lemma 4.9
assuming the diamond principle. First, we prove the exactness of the diamond for the repre-
sentations V = IQ[b, d] and W = R+

i IQ[b, d].
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Vi

V1 · · · Vi−1 Vi+1 · · · Vn

Wi = ker ξi

vc vd

wa wb

Notice that g = ξi. Thus, we get im f = Wi = ker ξi = ker g and thus the diamond is exact. Now
observe that the first matching in the diamond principle implies the first transformation in the
lemma. The second matching implies the second and fourth transformations. The third matching
implies the third and fifth transformations and the last matching implies the last transformation.

Step 2: We now assume Lemma 4.9. Let V,W be as in the diamond principle and such that the

diamond is exact. We claim that W ∼= U⊕ K, where U = R+
i V and K =

⊕r
j=1 IsiQ[i, i] =

⊕r
j=1 Si

is the representation of siQ made from r = dimker f copies of the representation IsiQ[i, i] = Si.
Indeed, from the definition of R+

i V and the exactness of the diamond, we have Uj = Vj for all j ̸= i
and Ui = ker ξi = ker g = im f . Now let C = ker f⊥ ⊆ Wi. From the first isomorphism theorem,
we conclude that the map

f |C : C → im f = Ui

is an isomorphism. We can also take an arbitrary isomorphism h : ker f → Ki (here, we need
r = dimker f) and we can define an isomorphism of representations ϕ : W→ U⊕ K as follows

ϕj =

{
f |C ⊕ h =

(
f |C 0
0 h

)
if j = i,

1Vj
if j ̸= i.

One can explicitly check that this is an isomorphism of representations. Now, using the transfor-
mation rules in Lemma 4.9, we get the matching rules in the diamond principle.

Using the equivalence of Lemma 4.9 and Theorem 4.11, one may attempt to proof the ‘if part’
of Gabriel’s Theorem for An-type quivers using the diamond principle. It turns out that this is
possible [1, Section 4.4.2.]. It also turns out that the diamond principle is helpful because it is
easier to check if im f = ker g rather than compute reflections of representations and check if they
are isomorphic. We use the diamond principle in the setting of zigzag persistence in Section 5.3.
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Chapter 5

Applications of Quiver
Representation Theory to
Persistent Homology

In this chapter, we explain the connection between topological data analysis and quiver represen-
tation theory. We first introduce simplicial complexes and homology groups. Using these concepts
we establish a connection between the persistence of topological spaces and quiver representations.
In Section 5.2 we focus on the topological aspect of this connection. Section 5.3 is devoted to the
algebraic aspects of this connection. In particular, we show a connection between zigzag persistent
homology and the diamond principle from Chapter 4.

5.1 Simplicial Complexes and Homology

In this section, we introduce simplicial complexes which are topological spaces that can be built
from simple building blocks called simplices. We then introduce simplicial homology. This section
roughly follows the outline of Chapters III.1 and IV.1 of the book ‘Computational Topology: An
Introduction’ by Herbert Edelsbrunner and John Harer [7] and Chapter 1 of the paper ‘Barcodes:
The persistent topology of data’ by Robert Ghrist [8].

Definition 5.1. Let A = {v0, v1, . . . , vn} ⊆ Rm. We say that A is in general position if A is
not contained in an affine hyperplane of dimension less than n. This is equivalent to the condition
that the vectors v1−v0, . . . , vn−v0 are linearly independent resp. to the condition that the subspace
generated by A has dimension at least n.

Definition 5.2. Let A = {v0, v1, . . . , vn} ⊆ Rm be points in general position. The n-simplex
σ = [v0, v1, . . . , vn] is defined to be the convex hull of A, i.e. the smallest subset of Rm that contains
all the points v0, v1, . . . , vn. We can also represent the n-simplex using linear combinations:

[v0, . . . , vn] = {
n∑
i=0

λivi |
n∑
i=0

λi = 1, ∀ 0 ≤ j ≤ n : λj ≥ 0}.

We say that the points vi span σ. The dimension of σ is dimσ = n.

Definition 5.3. For A in general position and the associated n-simplex σ, the points vi ∈ A are
called vertices and for each subset B ⊆ A, the convex hull of B, denoted by τ , is called a face
of σ. Notice that B is also in general position and therefore, τ is a simplex itself. We often write
τ ≤ σ. A face is called proper if B ⊊ A and is denoted by τ < σ. Moreover, the boundary of σ
is denoted by ∂σ and it is the union of all proper faces of σ. The interior is given by σ − ∂σ.

We observe that a point x ∈ σ lies in the interior of σ if and only if all its coefficients λi are
positive. Indeed, if some coefficient λi = 0, then we have that x lies in the face [v0, . . . , v̂i, . . . , vn],
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Figure 5.1: The simplices of dimensions 0, 1, 2, and 3 have special names and are called vertex,
edge, triangle, and tetrahedron (from left to right).

where the hat indicates that the vertex vi is omitted in the list of vertices. We conclude that every
point x ∈ σ lies in the interior of exactly one of the faces of σ. The vertices corresponding to this
face are exactly the vertices vj , for which λj > 0.

5.1.1 Geometric and Abstract Simplicial Complexes

We combine simplices to create a broader variety of topological spaces, called simplicial complexes.
We do this in a way such that it is closed under taking faces and such that it has no improper
intersections.

Definition 5.4. A (geometric) simplicial complex K is a finite union of simplices such that for
each simplex σ ∈ K and any face τ ≤ σ, we have τ ∈ K. Moreover, for two simplices σ1, σ2 ∈ K,
we have that σ1 ∩ σ2 is either empty of a face of both simplices σ1 and σ2. A subcomplex of K
is a simplicial complex L ⊆ K. The dimension of K is given by the maximum dimension of its
simplices.

Definition 5.5. For each j ≤ dimK, we define a particular subcomplex K(j), called the j-skeleton
which consists of all simplices of dimension j or less. The 0-skeleton is usually called the vertex
set K(0) = VertK.

A simplicial complex K is just a set of simplices and thus lacks a topology. We fix this by
considering the topological space given by the union of the simplices together with the subspace
topology inherited from the ambient Euclidean space Rm in which the simplices live. We denote
this topological space by |K|. Because every point of a simplex belongs to the interior of one of its
faces, we conclude that every point x ∈ |K| belongs to the interior of exactly one simplex in K.
This allows us to give the following description of |K|.

Definition 5.6. Let K be a simplicial complex with vertices v0, v1, . . . , vn. Every point x ∈ |K|
belongs to the interior of exactly one simplex σ = [v0, v1, . . . , vk] ∈ K. Therefore, we have

x =
∑k
i=0 λivi with

∑k
i=0 λi = 1 and λi > 0 for all i. Setting bi(x) = λi for 0 ≤ i ≤ k and

bi(x) = 0 for k + 1 ≤ i ≤ n, we have x =
∑n
i=0 bi(x)vi and we call the bi(x) the barycentric

coordinates of x in K.

Remark 5.7. If it is clear from the context that we consider a topological space, we often write K
instead of |K|.

It is often easier to describe or construct a simplicial complex abstractly instead of giving a full
geometric description of its simplices.

Definition 5.8. An abstract simplicial complex A is a finite collection of sets such that for
all α ∈ A and all β ⊆ α, we have β ∈ A. The sets in A are the simplices and the dimension of a
simplex is dimα = |α| − 1. The dimension of the complex A is given by the maximum dimension
of its simplices. A face of α ∈ A is a non-empty subset β ⊆ α and it is proper if β ⊊ α. A
subcomplex is an abstract simplicial complex B ⊆ A.

We notice that this condition looks quite similar to the condition that for each simplex σ ∈ K
and each face τ ≤ σ, we have that τ ∈ K. However, there is no explicit condition on the intersection
of simplices. We now describe how one can switch from a geometric simplicial complex to an
abstract simplicial complex (and vice versa).
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Figure 5.2: Simplicial complex with vertices A,B,C,D,E, F,G and simplices [A,B], [A,C],
[A,D], [B,C], [B,D], [B,E], [C,D], [C,E], [F,G], [A,B,C], [A,B,D], [A,C,D], [B,C,D], [B,C,E]
and [A,B,C,D].

Definition 5.9. Let K be a geometric simplicial complex. For each simplex σ ∈ K we take its
vertex set α. Those sets form an abstract simplicial complex A. We call A a vertex scheme of
K. Analogously, we call K a geometric realization of A.

Notice that for τ ≤ σ, we have an inclusion of vertex sets ατ ⊆ ασ and thus ατ ∈ A because
τ ∈ K. This proves that a vertex scheme is an abstract simplicial complex. We can also construct
a geometric realization for an abstract simplicial complex if the dimension of the ambient space is
high enough.

Theorem 5.10 (Geometric Realization Theorem). Every abstract simplicial complex of di-
mension d has a geometric realization in R2d+1 [7, p. 64].

Since simplicial complexes are topological spaces, we can consider continuous maps between
them. Favourable maps between simplicial complexes are the maps that respect the underlying
simplicial complex structure.

Definition 5.11. A vertex map is a function ϕ : VertK → VertL such that it sends the vertices
of every simplex in K to vertices of a simplex in L.

Definition 5.12. Every vertex map ϕ : VertK → VertL can be extended to a continuous map
f : |K| → |L| which is defined by:

f(x) =

n∑
i=0

bi(x)ϕ(vi).

This map is called the simplicial map induced by ϕ. Note that f is linear one each simplex in K.
Therefore, we say that f is piecewise linear. To abbreviate notation, we often write f : K → L.

Since linear maps are continuous and f : K → L is piecewise linear, it is indeed continuous.
Per definition, simplicial maps map simplices to simplices. For a simplex σ ∈ K, we now consider
the dimension of f(σ) and observe how the faces of σ and f(σ) are related.

Lemma 5.13. Let σ be a p-simplex in K. Then f(σ) is a simplex in L that has dimension less
or equal than p. Moreover, we have

• If f(σ) has dimension p, then the (p − 1)-dimensional faces of σ map to the corresponding
(p− 1)-dimensional faces of f(σ).

• If f(σ) has dimension p − 1, then exactly two of the (p − 1)-dimensional faces of σ map to
f(σ) and all the other (p− 1)-dimensional faces of σ map to faces of dimension p− 2.

• If f(σ) has dimension less than p− 1, then the images of all faces of σ also have dimension
less than p− 1.

Proof. Let σ = [v0, v1, . . . , vp]. We know that f(σ) = [ϕ(v0), ϕ(v1), . . . , ϕ(vp)] is a simplex in L,
which has dimension less or equal than p since it is spanned by p+ 1 vertices.

• If f(σ) has dimension p, then the vertices ϕ(v0), ϕ(v1), . . . , ϕ(vp) are pairwise different and
the (p−1)-dimensional faces of σ map to the corresponding (p−1)-dimensional faces of f(σ):

f([v0, v1, . . . , v̂j , . . . , vp] = [ϕ(v0), ϕ(v1), . . . , ϕ̂(vj), . . . , ϕ(vp)].
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• If f(σ) has dimension p−1, then exactly two of the vertices in ϕ(v0), ϕ(v1), . . . , ϕ(vp) coincide.
Let ϕ(vi) = ϕ(vj). Then f([v0, v1, . . . , v̂i, . . . , vp]) = f([v0, v1, . . . , v̂j , . . . , vp]) and the images
of all other (p− 1)-dimensional faces have dimension p− 2 since they contain the coinciding
vertices ϕ(vi) and ϕ(vj).

• If f(σ) has dimension less than p − 1, then the images of all faces of σ also have dimension
less than p− 1.

5.1.2 Homology

Homology groups are the mathematical description of holes and higher dimensional analogues in
a topological space. We introduce homology for simplicial complexes (called simplicial homology
with Z/2Z-coefficients) and develop the necessary theory that is used in persistent homology. Using
the simplices of a simplicial complex, we create abelian groups. We then combine them, creating
a so-called chain complex, which forms the foundation for homology.

Definition 5.14. Let K be a simplicial complex and let p ∈ Z. A p-chain c is a formal finite
sum of p-simplices in K. We can write

c =
∑

aiσi,

where ai ∈ Z/2Z are the coefficients and σi are the p-simplices. Note that since the coefficients are
either 0 or 1, we can assume w.l.o.g. that a p-chain is of the form c = σ1 + . . .+ σn. We can add
two p-chains together componentwise: if c =

∑
aiσi and c

′ =
∑
biσi, then c+ c′ =

∑
(ai + bi)σi,

where the coefficients are added modulo 2, i.e. 1 + 1 = 0. The p-chains together with this addition
form an abelian group, called the group of p-chains, denoted by Cp = Cp(K). We have such
a group for all p ∈ Z, however, for p negative or bigger than dimK, we have that Cp(K) = 0 is
trivial.

Definition 5.15. The boundary of a p-simplex is defined to be the sum of its (p−1)-dimensional
faces. If we write σ = [v0, v1, . . . , vn] for the p-simplex which is spanned by the listed vertices, then
the boundary is given by

∂pσ =

p∑
j=0

[v0, v1, . . . , v̂j , . . . , vn].

We extend this definition by linearity to define the boundary of a p-chain c =
∑
aiσi to be

∂pc =
∑
ai∂pσi. Therefore we get a map ∂p : Cp(K) → Cp−1(K), which is called the boundary

map for chains. Notice that the boundary map commutes with addition, i.e. ∂p(c+c
′) = ∂pc+∂pc

′,
therefore ∂p is a homomorphism. The chain complex is the infinite sequence of chain groups con-
nected by their boundary maps:

. . . Cp+1(K) Cp(K) Cp−1(K) . . .
∂p+2 ∂p+1 ∂p ∂p−1

We often drop the index of the boundary map because it is implied by the dimension of the chain
to which it is applied.

We now consider two special types of chains called cycles and boundaries. We observe how
they are related to each other.

Definition 5.16. A p-cycle is a p-chain with empty boundary, i.e. ∂c = 0. Because ∂ com-
mutes with addition, we have that the p-cycles form an abelian subgroup of Cp(K), denoted by
Zp = Zp(K). Notice that Zp = ker ∂p.

For p = 0, we have that each vertex is mapped to 0 and thus Z0 = ker ∂0 = C0. For higher
p, it is generally not true that Zp = Cp. However, one finds that a p-chain c = σ1 + . . . + σn is a
p-cycle if and only if each (p− 1)-dimensional face of some σi occurs to an even number in the set
of the (p− 1)-dimensional faces of σ1, . . . , σn.

Definition 5.17. A p-boundary is a p-chain that is the boundary of a (p+ 1)-chain, i.e. c = ∂d
for some d ∈ Cp+1(K). Because ∂ commutes with addition, we have that the group of p-boundaries
forms an abelian subgroup of Cp(K) and it is denoted by Bp = Bp(K). We have that Bp = im ∂p+1.
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We now look at the following lemma that connects cycles and boundaries. This lemma is the
fundamental property that makes homology work.

Lemma 5.18 (Fundamental Lemma of Homology). For each integer p and every (p+1)-chain
d, we have ∂p∂p+1d = 0.

Proof. Because the boundary map is a homomorphism, it is enough to show ∂p∂p+1τ = 0 for every
(p+ 1)-simplex τ = [v0, . . . , vp+1]:

∂p∂p+1τ = ∂p(

p+1∑
j=0

[v0, . . . , v̂j , . . . , vp]) =

p+1∑
i,j=0
i ̸=j

[v0, . . . , v̂i, . . . , v̂j , . . . , vp]

=

p+1∑
i,j=0
i<j

[v0, . . . , v̂i, . . . , v̂j . . . vp] +

p+1∑
i,j=0
j<i

[v0, . . . , v̂j , . . . , v̂i, . . . , vp] = 0.

Therefore, every p-boundary is also a p-cycle and we have that Bp is a subgroup of Zp. This
allows us to take the quotients Zp/Bp. Note that two elements c + Bp, c

′ + Bp are the same in
Zp/Bp if and only if their difference c − c′ is a boundary. We now use this connection between
cycles and boundaries to define homology groups.

Definition 5.19. The p-th homology group of a simplicial complex K is the quotient group,
Hp(K) = Hp = Zp/Bp. The p-th Betti number is the rank of this group, βp = rankHp. A coset
[c] = c + Bp of Hp is called a homology class. Two cycles that are in the same homology class
are called homologous, denoted by c ∼ c′.

Note that Zn is an abelian group and thus the subgroup Bn is a normal subgroup. Therefore,
Hp = Zp/Bp is actually a group and it is abelian since Zn is. Note thatHp is actually a Z/2Z-vector
space.

Lemma 5.20. For every simplicial complex K, Hp(K) is a finite-dimensional Z/2Z-vector space
for each integer p.

Proof. Note that Cp is isomorphic to the free abelian group over all the p-simplices σi in K:

Cp =
⊕

Z/2Z · σi.

Because K consists of only finitely many simplices, Cp is finite-dimensional. Therefore the homo-
morphism ∂p is a a Z/2Z-linear map between the two finite-dimensional Z/2Z-vector spaces Cp
and Cp−1. This shows that Zp = ker ∂p and Bp = im∂p+1 are Z/2Z-vector spaces and thus so is
the quotient Hp = Zp/Bp.

5.1.3 Maps in Homology and Homotopy Invariance

We have now defined the homology groups Hp(K) for a simplicial complex K. Next, we observe
how simplicial maps behave when passing to homology.

Definition 5.21. Let K and L be two simplicial complexes. We know that a simplicial map
f : K → L takes each simplex of K linearly to a simplex in L. For every integer p, it induces a
map from the p-chains of K to the p-chains in L. For a p-chain c =

∑
aiσi, we have that

f#(c) =
∑
aiτi, where τi = f(σi) if it has dimension p and τi = 0 if f(σi) has dimension less than

p.

Lemma 5.22. For two simplicial complexes K and L, f : K → L a simplicial map and ∂K and
∂L the boundary maps of the two chain complexes of K and L, we have

f# ◦ ∂K = ∂L ◦ f#.
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Proof. We use Lemma 5.13. If f(σi) has dimension p, then all (p − 1)-dimensional faces of σi
map to the corresponding (p − 1)-dimensional faces of τi = f(σi). By linearity, we conclude that
f# ◦ ∂K(σi) = ∂L ◦ f#(σi). If f(σi) has dimension less than p, then the (p − 1)-dimensional
faces of σi map to simplices of dimension less than (p− 1), with the possible exception of exactly
two (p− 1)-dimensional faces that map to the same simplex and therefore their images cancel.
Therefore, we have f#(∂Kσi) = ∂Lf#(σi) = 0. We conclude using the linearity of f#, ∂K and
∂L.

Lemma 5.23. We have f#(Zp(K)) ⊆ Zp(L) and f#(Bp(K)) ⊆ Bp(L) for all simplicial maps
f : K → L. This induces a map in homology, denoted by f∗ : Hp(K)→ Hp(L).

Proof. For a p-cycle c in K, the following map is well-defined:

f∗([c]K) = f∗(c+Bp(K)) = f#(c) +Bp(L) = [f#(c)]L.

This defines a well-defined map because f#(c) is a p-cycle in L and if c and c′ differ by a boundary
in K, then their difference is mapped to a boundary in L.

Remark 5.24. The fact that simplicial maps induce maps in homology is often referred to as
‘homology is functorial (for every p)’. This makes sense since the assignment

K 7→ Hp(K), (f : K → L) 7→ (f∗ : Hp(K)→ Hp(L)

is a covariant functor from the category of simplicial complexes (with simplicial maps) to the
category of Z/2Z-vector spaces (with Z/2Z-linear maps).

Considering induced maps in homology, one can ask, when (and if) such maps are isomorphisms.
The following result answers a part of this question and explains, why homology is useful.

Theorem 5.25. [9, Corollary 2.11] If a simplicial map f : K → L is a homotopy equivalence,
then the induced maps f∗ : Hp(K)→ Hp(L) are isomorphisms for all p ≥ 0.

Therefore, if two simplicial complexes K and L are both triangulations of a space X, meaning
that both K and L are homotopy equivalent to X, then we do not need to worry about which one
is used since they yield isomorphic homology groups. This result is proven using a more general
homology theory called singular homology. Singular homology can be applied to any topological
space. In addition, singular homology can be defined with coefficients in any abelian group and
not only for Z/2Z-coefficients. In the general case, homology groups are groups and not vector
spaces. This explains why we talk about homology groups and not homology vector spaces (even
though in our setting, they are always vector spaces). However, simplicial homology and singular
homology are equivalent (on simplicial complexes) and therefore, we do not introduce singular
homology here.

Example 5.26. We have claimed that homology groups measure the holes and higher-dimensional
analogues of a topological space. To explain this claim, we consider the homology of the sphere
Sn ⊆ Rn+1. In particular, we look at Hn(S

n). For n = 1, S1 is homotopy equivalent to the left
simplicial complex in Figure 5.3. Its chain complex is (⟨a, b, c⟩ denotes Z/2Z·a⊕Z/2Z·b⊕Z/2Z·c).

. . . 0 C1 = ⟨a, b, c⟩ C0 = ⟨v0, v1, v2⟩ 0 . . .
∂2 ∂1 ∂0

We have B1 = im∂2 = 0, Z1 = ker ∂1 = ⟨a + b + c⟩. Therefore H1(S
1) = Z/2Z (using that

homology is homotopy invariant). For n = 2, S2 is homotopy equivalent to the right simplicial
complex in Figure 5.3. Notice that this simplicial complex is not a single 3-dimensional simplex, but
four 2-dimensional simplices. We denote them by S = [v0, v1, v2], T = [v0, v1, v3], U = [v0.v2, v3],
V = [v1, v2, v3]. Its chain complex is (all the other chain groups and boundary maps are zero).

0 C2 = ⟨S, T, U, V ⟩ C1 = ⟨a, b, c, d, e, f⟩ C0 = ⟨v0, v1, v2, v3⟩ 0
∂3 ∂2 ∂1 ∂0
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We have B2 = im∂3 = 0 and to compute Z2 = ker ∂2, we look at its matrix (left) and compute its
reduced row-echelon form (right) with Z/2Z-coefficients.

∂2 =


1 1 0 0
1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 1
0 0 1 1

 ∼=

1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

We conclude that Z2 = ker ∂2 = ⟨S + T + U + V ⟩ and therefore H2(S
2) = Z/2Z. It turns out

that this is true for all n ≥ 1, i.e. Hn(S
n) = Z/2Z. Therefore, the homology group Hn detects

the single n-dimensional hole inside Sn. We conclude that in general, the p-th Betti number
βp = rankHp = dimHp counts the number of p-dimensional holes in our simplicial complex.

v0 v1

v2

a

b c

v0

v1

v2

v3

a
b

c

d e
f

=

Figure 5.3: Two simplicial complexes that are homotopy equivalent to S1 (left) resp. S2 (right).
The simplicial complex on the right has four 2-dimensional simplices and no 3-dimensional simplex.

5.2 Filtrations and Persistence

In this section, we use homology to finally show the connection between topological data analysis
and quiver representation theory. First, we describe a method to construct a simplicial complex
from a point cloud. We then apply homology to these simplicial complexes and obtain persistence
modules, which are quiver representations of the linear Ln-quiver. We then analyze and visualize
its interval decomposition. This section is based on Chapters III.1 and VII.1 of [7] and Chapter 2
of [8].

5.2.1 Point Cloud Triangulations

We describe a method to construct a simplicial complex from a point cloud.

Definition 5.27. Let {xi} = X be a finite set of points in Rm and let ϵ > 0. The Čech complex
Č(X, ϵ) is the abstract simplicial complex whose n-simplices are the sets {xi0 , . . . , xin} ⊆ X such
that the closed balls of radius ϵ/2, centered at the xik , have a non-trivial intersection, i.e.

n⋂
j=0

B̄ϵ/2(xij ) ̸= ∅.

Note that the Čech complex is an abstract simplicial complex. However, since there always exists
a geometric realization, we can consider the Čech complex to be a geometric simplicial complex.

We now have a method to construct simplicial complexes from point clouds. However, it
requires a choice of some parameter ϵ. For ϵ small enough, there are no non-trivial intersections,
and thus Č(X, ϵ) is a discrete set given by the vertices {xi}. If ϵ is really big, all intersections are
non-trivial, and therefore, Č(X, ϵ) is a single high-dimensional simplex (and all of its faces). This
leads to the question if there is a best-suited choice for ϵ, such that Č(X, ϵ) is a good representation
of our point cloud. Consider the point cloud and the Čech complexes in Figure 5.5. This point
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ε

Figure 5.4: From a fixed set of points with balls of radius ϵ (left), one can construct the Čech
complex Č(X, ϵ), represented by its geometric realization (right).

cloud is a sample of points on an annulus. If ϵ is too small (left and middle), Č(X, ϵ) does not
yet represent the fact, that an annulus has a hole in the middle. For ϵ big enough (right), the
hole suddenly appears. However, if ϵ is too big, then all balls intersect and the hole disappears.
This example illustrates that there is generally no single preferred choice for the parameter ϵ and
even if there was an optimal ϵ, we would already need to have a rough understanding of our point
cloud to figure out the optimal value for ϵ. Instead of considering one value for ϵ, we can choose
two values for ϵ and observe how the associated Čech complexes differ. We do this by considering
simplicial maps between Čech complexes.

Lemma 5.28. For ϵ1 ≤ ϵ2 there exists an injective simplicial map ι : Č(X, ϵ1) ↪→ Č(X, ϵ2). For
any simplex σ ∈ Č(X, ϵ1), its image ι(σ) is σ itself, but now viewed in Č(X, ϵ2).

Proof. For a simplicial complex L and a subcomplex K, the inclusion map VertK ↪→ VertL is
a vertex map and thus, there exists a simplicial map ι : K → L. Moreover, for any simplex σ =
[v0, v1, . . . , vp], we have ι(σ) = [v0, v1, . . . , vp] and therefore this map is injective since ι is piecewise
linear. Now we apply this to the simplicial complex Č(X, ϵ2) with subcomplex Č(X, ϵ1).

Figure 5.5: A sequence of Čech complexes for three different increasing choices of radius ϵ, coming
from a point cloud that is a sample of an annulus. The 2-dimensional simplices are yellow, the
3-dimensional simplices are green and the 4-dimensional simplices are violet.
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5.2.2 Persistence Vector Spaces and Persistence Barcodes

Using the inclusion maps from Lemma 5.28, we can construct a sequence of Čech complexes (for
a sequence of radii ϵ1 < ϵ2 < . . . < ϵn).

Č(X, ϵ1) Č(X, ϵ2) Č(X, ϵ3) . . . Č(X, ϵn)

Definition 5.29. A sequence of simplicial complexes K1 ↪→ K2 ↪→ . . . ↪→ Kn is called a filtration
of simplicial complexes.

Notice that the sequence above is a filtration. Now, we apply the homology functor(s) H∗.
This means that we do not just consider the homology of the Čech complexes Č(X, ϵi), but for
all the inclusion maps Č(X, ϵi) ↪→ Č(X, ϵi+1), we consider the corresponding map in homol-
ogy H∗(Č(X, ϵi))→ H∗(Č(X, ϵi+1)). We know that all homology groups H∗(Č(X, ϵi)) are finite-
dimensional vector spaces. Moreover, all maps between homology groups are linear maps. This
yields the following sequence in homology

H∗(Č(X, ϵ1)) H∗(Č(X, ϵ2)) H∗(Č(X, ϵ3)) . . . H∗(Č(X, ϵn)).

As a sequence of vector spaces, this is a representation of the Ln-quiver!

Definition 5.30. The representation H∗(Č(X, ϵ1)) → H∗(Č(X, ϵ2)) → . . . → H∗(Č(X, ϵn)) is
called a persistence module. Note that it is a finite-dimensional representation since all the
vector spaces are finite-dimensional.

Remark 5.31. By saying ‘we apply the homology functor H∗’, we mean that we apply the functor
Hp for some integer p ≥ 0. We use the notation H∗ to illustrate that any choice of p ≥ 0 is valid.

Applying Gabriel’s Theorem for An-type quivers (Theorem 4.7) yields that the persistence
module is isomorphic to its interval decomposition

⊕r
j=1 IQ[bj , dj ].

Remark 5.32. Note that this construction works for any filtration of simplicial complexes:

K1 K2 K3 . . . Kn.
f1 f2 f3 fn−1

Indeed, applying homology yields a persistence module that can be decomposed using Gabriel’s
Theorem:

H∗(K1) H∗(K2) H∗(K3) . . . H∗(Kn).
f1,∗ f2,∗ f3,∗ fn−1,∗

Moreover, we can also consider simplicial complexes that are not finite-dimensional (they consist of
an infinite number of simplices). In this case, the vector spaces may not be finite-dimensional and
thus the persistence module may not be finite-dimensional. However, there exists a more powerful
version of Gabriel’s Theorem, which works in the infinite-dimensional case (see Chapter 1.1 of [1]).

As we go from Č(X, ϵi) to Č(X, ϵj) in a filtration (for i < j), we gain new homology classes
or we lose some when they become trivial or merge with each other [7, p. 179]. To observe this,
consider the images of the induced maps in homology, f i,jp : Hp(Č(X, ϵi))→ Hp(Č(X, ϵj)).

Definition 5.33. The p-th persistent homology groups are the images of the homomorphisms
induced by inclusion, Hi,j

p = im f i,jp , for 1 ≤ i ≤ j ≤ n. The corresponding p-th persistent Betti

numbers are the ranks of these groups, βi,jp = rankHi,j
p .

If we consider a homology class [c] in Hp(Č(X, ϵb)) that is not in any of the p-th persistent
homology groups Hi,b

p for all i < b, then this homology class appears for the first time at parameter
b. Moreover, there exists a parameter d for which this homology class is non-trivial for the last
time. This means that f b,jp [c] ̸= 0 for all j ≤ d and that f b,d+1

p [c] = 0 (or d = n). In the
persistence module, this homology class (which describes a topological feature) corresponds to
the interval representation I[b, d]. We conclude that each interval representation in the interval
decomposition

⊕r
j=1 IQ[bj , dj ] corresponds to the evolution of a homology class and therefore

describes the persistence of some topological feature. Given a parameterized family of spaces,
those topological features that persist over a significant parameter range are to be considered as
signal (resp. important features) with short-lived features as noise [8, p. 5]. This motivates the
following definition.
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Definition 5.34. The lifetime of an interval representation IQ[b, d] is given by d− b. Moreover,
b is called the birth time and d is called the death time.

We conclude that the p-th persistent Betti number βi,jp counts the number of p-dimensional
holes (features) that persist over the parameter interval [i, j]. Using the interval decomposition,
we present a visualization of the p-th persistent homology groups and the corresponding intervals.

Definition 5.35. If a persistence module has the interval decomposition
⊕r

j=1 IQ[bj , dj ], then its
persistence barcode is the multiset of intervals {[bj , dj ]}rj=1. The horizontal axis corresponds to
the parameter ϵ and the vertical axis ranges over an arbitrary ordering of the homology generators
of the p-th persistent homology groups of the persistence module.

Figure 5.6 gives an example of the barcode of the persistence module coming from the point
cloud from Figure 5.5. This point cloud is a sample of points from a planar annulus. We observe
that there are 18 different 0-dimensional homology classes for ϵ small enough. They correspond to
the 18 points in our sample. We also observe some small intervals in dimension 1 that represent
noise. Moreover, we can see the big interval in dimension 1, which represents the 1-dimensional
hole in the middle of the annulus. The long length of this interval corresponds to the fact that this
middle hole is a significant feature of the planar annulus.
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Figure 5.6: The persistence barcode for the point cloud from Figure 5.5.

Theorem 5.36. [7, p. 181] The p-th persistent Betti number βi,jp is equal to the number of intervals
in the barcode spanning the whole interval [i, j] (or more).

This means that a barcode is not just a great tool to visualize the decomposition of a persistence
module, it also encodes the entire information about persistent homology groups.

5.3 Zigzag Persistent Homology

In this section, we generalize the setting from persistent homology to introduce zigzag persistent
homology. We use zigzag persistent homology to show a connection to the diamond principle from
quiver representation theory. This section is based on the paper ‘Zigzag Persistence’ by Gunnar
Carlsson and Vin Silva [10].

Similarly, as in Section 5.2, we start with a sequence of simplicial complexes.

Definition 5.37. The following sequence of simplicial complexes is called a zigzag diagram:

K1 K2 K3 . . . Kn.
f1 f2 f3 fn−1
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1

2 3

4

←↩ ↪→

Figure 5.7: A zigzag diagram K ←↩ K ∩K ′ ↪→ K ′. The red lines form a 1-cycle that is non-trivial
in homology in all three complexes.

The major difference to the setting of persistent homology is that here, the maps fi can go in
either direction. Again, we apply the homology functors H∗ and get a sequence in homology:

H∗(K1) H∗(K2) H∗(K3) . . . H∗(Kn).
f1,∗ f2,∗ f3,∗ fn−1,∗

This is again a sequence of vector spaces with linear maps connecting them. However, since the
maps fi,∗ can go from left to right or the other way around, this is a representation of an An-type
quiver. Specifically, it is the An-type quiver that matches the direction of the arrows.

Definition 5.38. The representation H∗(K1) ↔ H∗(K2) ↔ . . . ↔ H∗(Kn) is called a zigzag
persistence module.

Using Gabriel’s Theorem, this representation decomposes into its interval decomposition and
yields a persistence barcode analogous to any persistence module. Therefore, the theory of zigzag
persistence is a generalization of the persistence theory from Section 5.2. However, since we cannot
observe homology classes from their birth time to their death time (because not all maps point in
the same direction), understanding the intervals in the barcode is more involved. The following
example illustrates this.

Example 5.39. Let K and K ′ be the simplicial complexes shown in Figure 5.7 and let K ∩K ′ be
the simplex-wise intersection. This defines a zigzag diagram

K K ∩K ′ K ′.

Applying homology in dimension 1 (i.e. H1), we get a zigzag persistence module

Z/2Z ∼= H1(K) H1(K ∩K ′) ∼= Z/2Z⊕ Z/2Z H1(K
′) ∼= Z/2Z.

The 1-cycle [1, 2]+ [1, 3]+ [2, 3]+ [3, 4] (red lines) is non-trivial in homology in all three complexes.
Therefore, one may think that this cycle corresponds to an interval representation IQ[1, 3] that
spans all three vertices. However, this is not the case. For H1(K ∩ K ′) we choose the following
basis

{[1, 2] + [1, 3] + [2, 3], [2, 3] + [2, 3] + [3, 4]}.

This gives the following decomposition, which consists of the two interval representations IQ[1, 2]
and IQ[2, 3].

Z/2Z Z/2Z⊕ Z/2Z Z/2Z
[1,0] [0,1]

We now generalize the setting of Example 5.39 to observe two interesting zigzag persistence
modules. For a finite collection of simplicial complexes X = {Ki}ni=0, consider the following zigzag
diagram

K0 ∩K1 K1 ∩K2 . . .

K0 K1 K2 Kn.

Applying homology yields a zigzag persistence module
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H∗(K0) H∗(K0 ∩K1) H∗(K1) H∗(K1 ∩K2) . . . H∗(Kn).

We can also consider the zigzag diagram associated with the union of simplicial complexes

K0 ∪K1 K1 ∪K2 . . .

K0 K1 K2 Kn.

We obtain another zigzag persistence module

H∗(K0) H∗(K0 ∪K1) H∗(K1) H∗(K1 ∪K2) . . . H∗(Kn).

The motivation behind these zigzag persistence modules is the following: if the complexes in
X correspond to different areas of a point cloud, these two zigzag persistence modules roughly
correspond to the persistence of topological features over different parts of the point cloud. The
following theorem gives a set of matching rules for the interval representations of their respective
interval decomposition.

Theorem 5.40 (Strong diamond principle). Let V+ = H∗(X∪) and V− = H∗(X∩) be the two
zigzag persistence modules corresponding to the following zigzag diagrams.

X∪ : K0 . . . Kk−1 Kk−1 ∪Kk+1 Kk+1 . . . Kn

X∩ : K0 . . . Kk−1 Kk−1 ∩Kk+1 Kk+1 . . . Kn

The interval decompositions of V− and V+ are related to each other through the following matching
rules:

• summands IQ[k, k]p+1 and IskQ[k, k]
p are matched,

• summands IQ[b, k] are matched with summands IskQ[b, k− 1], and IQ[b, k− 1] with IskQ[b, k],

• summands IQ[k, d] are matched with summands IskQ[k+1, d], and IQ[k+1, d] with IskQ[k, d],

• every other summand IQ[b, d] is matched with the summand IskQ[b, d].

The superscripts p+1 and p in the first matching rule denote a ±1 shift of homological dimension.
This means that IQ[k, k] in the zigzag persistence module of dimension p + 1 (of V+) is matched
with ISkQ[k, k] in the zigzag persistence module of dimension p (of V−).

p+ 1

p

Figure 5.8: The matching rules from the strong diamond principle. The top row illustrates the
second and third matching rules. The bottom row shows the first and last matching rules.
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Proof of Theorem 5.40. For any p ∈ N0, the following diamond is exact:

Hp(Kk−1 ∪Kk+1)

. . . Hp(Kk−1) Hp(Kk+1) . . .

Hp(Kk−1 ∩Kk+1)

This follows directly from the exactness of the Mayer-Vietoris sequence [9, p. 149ff]:

. . . Hp(Kk−1 ∩Kk+1) Hp(Kk−1)⊕Hp(Kk+1) Hp(Kk−1 ∪Kk+1) . . .

Thus, the second, third, and fourth matching rules follow from the diamond principle (Theo-
rem 4.11). It remains to prove the first matching rule. This follows from the Mayer-Vietoris
sequence:

. . . Hp+1(Kk−1)⊕Hp+1(Kk+1) Hp+1(Kk−1 ∪Kk+1)

Hp(Kk−1 ∩Kk+1) Hp(Kk−1)⊕Hp(Kk+1) . . .

f

∂

g

Using exactness and the first isomorphism theorem, we conclude that

coker(f) = Hp+1(Kk−1 ∪Kk+1)/ im(f) = Hp+1(Kk−1 ∪Kk+1)/ ker(∂) ∼= im(∂) = ker(g).

We notice that coker(f) is spanned by homology classes that do not come from homology classes
in Hp+1(Kk−1) or Hp+1(Kk+1). These homology classes (of dimension p + 1) correspond exactly
to the representations IQ[k, k]. Similarly, elements in ker(g) are homology classes (of dimension p)
that are trivial when observed in Hp(Kk−1) and Hp(Kk+1). Therefore ker(g) corresponds to the
interval representations IskQ[k, k]. This proves the first matching rule.

We have proven the diamond principle using results about reflection functors. Therefore, using
results from quiver representation theory, we have shown a result about the interval decomposition
(and thus the barcode) of zigzag persistence modules.
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