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Abstract

This thesis is devoted to the study of quiver representations and the proof of Gabriel’s Theorem.
Quiver representations are collections of vector spaces and linear maps. Just like with decomposing
numbers into products of primes, one aims to decompose quiver representations into the smallest
possible building blocks, called indecomposable representations. Gabriel’s Theorem specifies the
quivers that have a finite number of indecomposable representations. Furthermore, it classifies
these indecomposable representations. I prove a decomposition theorem by Krull, Remak, and
Schmidt in Chapter 2. This theorem relies heavily on indecomposable representations, which form
the centerpiece of Chapter 3. In this chapter I introduce a variety of mathematical tools to analyze
quivers and their representations, culminating in the proof of Gabriel’s Theorem. I also show
how Gabriel’s Theorem can be used in topological data analysis to characterize the persistence of
topological features. To do this, I present the necessary quiver representation theory in Chapter 4
and I connect this theory with the topological aspects of persistent homology in Chapter 5. The
thesis is based on [1] and [2].
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Acronyms and Abbreviations

w.l.o.g.
w.r.t

point cloud
B, (z)

STL

1]

Q

Without loss of generality

With respect to

Finite metric space

Closed ball with center x and radius r

Sphere of dimension n, {(zg,z1,....7,) | 23 + 23 + ... 122 = 1} C R
Cardinality of the set X

Quiver with vertex set Qg and arrow set )y
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Chapter 1

Introduction

Topology is a mathematical discipline focused on investigating the characteristics of spaces that
remain unchanged under deformations. These deformations involve actions like bending, squish-
ing, shrinking and expanding, whereas tearing is prohibited. Homotopy equivalence emerges as a
formalism to precisely describe this equivalence between topological spaces.

A homotopy between two continuous maps f,g: X — Y is a continuous map H: X x [0,1] = Y
such that H(z,0) = f(z) and H(x,1) = g(x) for all z € X. The map H describes a family of
functions interpolating continuously between f and g as the parameter ¢ varies from 0 to 1. A
pair of continuous functions f: X — Y and ¢g: Y — X are called homotopy equivalences if there
exists a homotopy H between the maps g o f and idx, and there exists a homotopy K between
the maps f o g and idy. In this case, the topological spaces X and Y are called homotopy
equivalent. The circle S' and the punctured disk D’ = D\ {(0,0)} are homotopy equivalent. The
maps f: D' = S,z — ﬁ and g: S' = D',z — x are homotopy equivalences. Indeed, note that

fog=idg: and H(x,t) = (1 — t)ﬁ + tx is a homotopy between g o f and idp-.

1
2
Figure 1.1: The punctured disk D’ (left) and the circle S* (right) are homotopy equivalent. The
red and blue points represent H (z,t) for two points in D', where H(x,t) = (1 — t)ﬁ + tx denotes

the homotopy between the maps (go f)(z) = Tay and idp.

Properties of topological spaces that stay the same under deformations are called homotopy
invariants. These invariants are the main objects of study in the field of algebraic topology. One
such invariant is the presence of holes, voids and higher dimensional equivalents in a topological
space and counting how many there are. In Figure 1.1, the punctured disk and the circle are homo-
topy equivalent. Observe that the volumes of the spaces differ, however, the middle hole is present
throughout the deformation process. The mathematical formalization to measure holes and their
higher dimensional analogues is called homology. Homology and other invariants measure the
shape of topological spaces.

Recently, with a huge amount of data being generated, there have been efforts to adapt these
methods to measure the shape of data. Topological data analysis offers one potential approach



to address this challenge. However, since data is given by point clouds, its topology does not reveal
any information besides the number of points. To fix this problem, we consider triangulations of
point clouds that are called Cech complexes. To compute a Cech complex, we replace the points
with balls of a certain radius. If two balls intersect, we connect the corresponding points by
an edge. The non-trivial intersection of three balls results in a triangle and so on. A crucial

Figure 1.2: A point cloud with associated balls on the left and its associated Cech complex on the
right.

characteristic is that the Cech complex corresponding to a smaller radius is included in the Cech
complex associated with a larger radius. Figure 1.2 illustrates the construction of a Cech complex
from a point cloud. Using the inclusion property of Cech complexes of increasing radii, we get a
sequence of Cech complexes and inclusion maps between them, called a filtration. We then apply
homology to this filtration and track over which parameter values the topological features persist.
This yields a collection of intervals. Each interval [a, b] represents a topological feature born at time
a that disappears at time b. These intervals form a persistence module and they are visualized by a
persistence barcode. Figure 1.3 shows the persistence barcode for the point cloud in Figure 1.2.
Topological features that persist over a long parameter range are considered to be important with
short-lived features as noise. This adaptation of homology to the setting of point clouds is called
persistent homology.

Dimension — 0 — 1
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Figure 1.3: A persistence barcode coming from a point cloud.

The existence of persistence barcodes relies on a theorem from quiver representation theory,
called Gabriel’s Theorem. This discipline focuses on quivers and their corresponding representa-
tions. Quivers are directed graphs consisting of points and arrows connecting the points. A quiver
representation is an allocation of vector spaces to the points and linear maps are allocated to the
arrows. Figure 1.4 shows an example of a quiver and a possible representation. This quiver is
called a linear quiver. Quiver representation theory is built on a purely algebraic foundation which
offers distinct advantages. Firstly, the broad algebraic framework allows for versatile application in
various contexts without the necessity of introducing novel concepts. This flexibility will be used
to extend the theory of persistent homology to include zigzag persistent homology. Additionally,



it is worth noting that quiver representation theory finds applications beyond topology, such as in
the realms of Lie algebras and quantum groups [2]. However, these applications are beyond the
scope of this thesis.

a b c v vp v
° ° . Vi— sV <,

Figure 1.4: The linear quiver L,, (left) and a quiver representation (right).

The goal of this thesis is to prove Gabriel’s Theorem. In Chapter 2, we introduce quiver
representations and observe that they always possess a unique decomposition into the smallest
possible building blocks called indecomposable representations. This naturally leads to the question
of which quivers only have a finite number of indecomposable representations. Such quivers are
called finite-type quivers. The answer to this question is given by Gabriel’s Theorem, whose proof
is at the center of Chapter 3. It turns out that the persistence modules are quiver representations
of the linear quivers. Therefore, we can apply Gabriel’s Theorem in the setting of persistence
modules. This is the reason why a persistence barcode always exists. Chapter 4 focuses on the
algebraic aspects of the quiver theory of A,-type quivers, which are a broader generalization of
the linear quivers. In Chapter 5, we introduce the topological aspects of persistent homology while
using the theory from the previous chapters.



Chapter 2

Quiver Representations

In this chapter, we introduce quiver representations and we consider their morphisms and direct
sums of quiver representations. This culminates in a decomposition theorem by Krull, Remak, and
Schmidt (Theorem 2.33). This chapter is primarily based on the book ‘Persistence Theory: From
Quiver Representations to Data Analysis’ written by Steve Y. Oudot [1].

2.1 Quivers

Definition 2.1. A quiver @ consists of two sets Qq, Q1 and two maps h,t: Q1 — Qo. The
elements of Qqy are called the vertices of @), while those of Q1 are called the arrows. The head
map h and the tail map t assign a head hy and a tail t, to every arrow a € QQy.

Example 2.2. Consider the quiver QQ with vertices Qo = {1,2,3} and arrows Q1 = {a,b,c,d,e}.
le

Its head map h: Q1 — Qo is given by a — 2,b — 2,¢c — 3,d — l,e — 1 and its tail map
t: Q1 — Qo is given by a— 1,0 — 2,c— 2,d+— 3,e > 3.

Q is a directed graph, where the elements in Q) are the vertices and for every a € @1, the pair
(ta,hq) is a directed edge in our graph. There are no restrictions on the sets Qg and @1, so there
may be infinitely many points and edges and also multiple edges between two points, thus a quiver
is graphically represented by a directed multigraph. We denote by @ the underlying undirected

graph of Q.
Definition 2.3. A quiver Q is called finite if both Qy and Q1 are finite sets.

Definition 2.4. A quiver Q is called o Dynkin quiver if its underlying graph Q is one of the
graphs in Figure 2.1.

Dynkin quivers emerge in Gabriel’s Theorem (Theorem 3.2). They also play a fundamental
role in classifying semisimple Lie algebras [2, p. 29]. An important subset of the Dynkin quivers
are the linear quivers.

Definition 2.5. For each n € N, the following quiver is called the linear quiver L, :

[ o e e )
1 2 n—1 n

Definition 2.6. A quiver Q is called acyclic if there is no oriented cycle in Q.

Every Dynkin quiver is acyclic. An example of a non-acyclic quiver is the loop quiver.
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Figure 2.1: The Dynkin diagrams.

Definition 2.7. The loop quiver consists of a single vertex that loops to itself.
()
[ ]
1

Sometimes, it is interesting to consider a part of a given quiver as it allows us to consider a
property of the smaller quiver, and then extend it to the bigger quiver.

Definition 2.8. Let Q = (Qo, Q1) be a quiver and let Ag C Qo and A1 C Q1 such that for all
arrows a € Ay we have that h(a) € Ag and t(a) € Ag. Then A = (Ap, A1) defines a subquiver of
Q (A is a quiver). Moreover, if for all i,j € Ay we have that {a € Q1 | t(a) = i,h(a) = j} C Aq,
then A is called a full subquiver with support Ay. In addition, if we say that we delete a vertex
i from a quiver Q), then the resulting (sub)quiver is the full subquiver with support Qo \ {i}.

Example 2.9. Consider the quiver Q on the left. The quivers A (middle) and B (right) are both
subquivers of Q. However, B is a full subquiver whereas A is not full.

le 1le 1le

2.2 The Category of Quiver Representations

For a fixed quiver ), we define quiver representations and morphisms between them. This is
done in a way that turns them into a category. This category is called the category of quiver
representations.

Definition 2.10. A quiver representation of a quiver Q over a field k is a pair V = (V;,v,),
which consists of a set of k-vector spaces {V;|i € Qo} together with a set of k-linear maps
{ve: Vi, = Vi, | a € Q1}. We often abbreviate quiver representation to representation.

There are no restrictions on the vector spaces and the maps. Thus the maps generally do not
commute, i.e. if we have two different paths with the same starting point and end point, the
compositions of the maps along the two paths need not be the same. Also, the vector spaces can
be infinite-dimensional.



Definition 2.11. A quiver representation V of a quiver Q is called finite-dimensional if the sum
of the dimensions of the vector spaces Zier dim V; s finite. If Q is a finite quiver with vertex set
Qo={1,2,...,n} andV is a finite-dimensional representation, then we define the dimension
vector dimV and its dimension dimV as:

dimV = (dim V3, ..., dim V)%,
dimV = [[dimV|; = dim V;.
i=1

Example 2.12. A representation of the linear Ls-quiver
o—————> 0
1 2

is a set consisting of two vector spaces Vi, Vs together with a linear map v, : Vi — Va.

Example 2.13. [3] A representation of the loop quiver
()
[ ]
1

s a vector space Vy together with an endomorphism v,: Vi — Vi. If we restrict to the case where
the field k is algebraically closed and Vi is finite-dimensional, then we know from linear algebra
that the matriz of v, has a Jordan normal form (in a suitable basis)

A 0 0
0 Inars 0
0 0 R

where J,, » denotes the n x n-Jordan block:

Al
A1 0
0 Al

A

Definition 2.14. A representation W = (W;,w,) is a subrepresentation of a representation
V = (Vi,v,) if Wi is a subspace of V; for alli € Qo and if for all a € Q1, w, is the restriction of the
map v, to the subspace Wy, of the domain and the subspace Wh,, of the image, i.e. wq = v, |%“

We call W a proper subrepresentation of V if 0 C W C V.

Definition 2.15. A representation of a quiver Q is called stmple if it is non-trivial and it has no
proper subrepresentations.

Example 2.16. We fiz a vertexi € Qg of a quiver Q. We define the representation S; = (S@, s((li))

to be
, k oifj=i ,
S = Zf] Z and sal) =0
! 0 ifj#i
for 7 € Qo and a € Q1. This representation is simple. Indeed if W C S; is a subrepresentation,
then W; =0 for all j € Qo and thus W = 0 s trivial.

Our goal is not only to define quiver representations but also to compare and classify them. To
be able to do this, we need to define morphisms between quiver representations.

Definition 2.17. A morphism ¢ between two representations V,W of a quiver QQ is a set of
k-linear maps { ¢;: V; = W, | i € Qo} such that the following diagram commutes for each arrow

ate:



Va
Vi, —— Vh,

d)tal l(bha,

The morphism is called a monomorphism if every linear map ¢; is injective, an epimorphism
if every ¢; is surjective, and an isomorphism (denoted by =) if every ¢; is bijective. If p: V —V
maps onto itself, we call it an endomorphism. We denote the set of morphisms from V to W by
Hom(V,W). If we equip Hom(V, W) with pointwise multiplication and addition of linear maps, then
it is a k-vector space.

Example 2.18. A morphism between two representations V,W of the Lo-quiver is given by two
linear maps ¢1: Vi — W1, ¢o: Vo — Wy such that the following diagram commutes

VlL,Vz

ol ]

Wi &}WQ

Lemma 2.19. Every isomorphism ¢: V — W is snvertible, meaning that the map ¢ = ¢~ : W = V
is a morphism of quiver representations (where 1; = (¢;)~1). Thus the expressions isomorphism
and invertible morphism are exchangeable.

Proof. Tt is clear that v is pointwise well-defined. We need to check that for each arrow a € Q1
the following diagram commutes

Vi — =V

-

Now for each w € W; we have ¢;v,1;(w) = wa(w) since ; = (¢;)~! and using that the diagram
commutes with respect to the maps ¢;,¢;. But then va1);(w) = ¥;we(w). Thus the diagram
commutes. O

To turn quiver representations into a category, we need to define the composition of two mor-
phisms in an associative way that guarantees the existence of an identity morphism. We can define
such a composition by composing the maps ¢; at each point in our quiver.

Definition 2.20. The composition of two morphisms ¢: U — V and ¥: V — W is given by the
maps (1 o @); = ; o ¢; at each point i € Qg in our quiver.

This composition of morphisms is associative since it inherits the associativity of the composi-
tion of functions. Moreover, for each representation V we have the identity morphism 1y: V — V
which is the identity on each V;. Thus for a fixed quiver @ and a fixed field k, we get the cate-
gory of the quiver representations of ), denoted by Repy(Q). If we restrict ourselves to the
finite-dimensional representations we get the subcategory repy(Q).

Example 2.21. We give a description of the category repy(Q) for the loop quiver Q. A morphism
between two representations V = (Vi,v,),W = (W1,w,) of the loop quiver is a map ¢1: V3 — W1
such that wap1 = d1ve. In FExample 2.13 we saw that every representation is given by a map v,
which is in Jordan normal form in some suitable basis (if we restrict to an algebraically closed
field k and to finite-dimensional representations). We also know that two finite-dimensional endo-
morphisms A, B € End(V1) are equivalent if and only if their Jordan normal forms are the same
(up to reordering the Jordan blocks). Equivalence of matrices means that there exists a change of
basis matriz C' € End(V1) such that A = C~1BC. Notice that such a change of basis represents
an isomorphism between two representations given by the matrices A and B. Thus we have found
that all representations are (up to isomorphism) given by Jordan normal forms and that two repre-
sentations are isomorphic if and only if they have the same Jordan normal form (up to reordering
the Jordan blocks). This is a complete description of all the isomorphism classes of the category
repk(Q) for the loop quiver Q and an algebraically closed field k.



2.2.1 Direct Sums, Kernels and Cokernels

The categories Repk(Q) and repk(Q) have some properties that are useful towards our goal of
classifying quiver representations. We list them here to give an overview and then we describe the
second and third properties in detail.

Z0O: Both categories contain a zero object, called the trivial representation, with all spaces
and all maps equal to 0.

DS: We can combine representations to get new representations (of the same quiver). This is
called a direct sum.

KI: Every morphism between representations (of the same quiver) ¢: V — W has a kernel, an
image and a cokernel.

DS: The direct sum of two representations is defined for any representations V,W to be the
representation V@ W with spaces V; @ W; for i € Qg and maps v, Dw, = (”0“' u(z)a ) for a € Q1. This
definition explicitly shows what happens on vector spaces and linear maps, which is helpful if we
look at a given direct sum of representations. We give another equivalent definition of the direct

sum, which is especially useful in proofs.

Definition 2.22. [4, Def. 2.1] Let V1, ..., V, be representations. A direct sumV =V; @ ...dV,
s a representation V together with morphisms v;: V; =V and m;: V. — V; for 1 < i <r such that
Z:zl vy =idy and miu; =idy,. We write V- =V & ... @&V for the direct sum of r copies of V.

Remark 2.23. In the first definition of a direct sum, we can set the inclusion morphisms tyw to
be pointwise inclusion of subspaces and the projection morphisms myw are given pointwise by the
projection onto a subspace. One can easily check that those morphisms satisfy the above conditions.
Thus our second definition of a direct sum is equivalent to the first definition.

Definition 2.24. A non-trivial representation V is called decomposable if it is isomorphic to
the direct sum of two non-trivial representations which are called summands. FElse it is called
indecomposable. The trivial representation is neither decomposable nor indecomposable.

Example 2.25. Again, we consider the loop quiver. Moreover, we assume that the field k is
algebraically closed and we consider finite-dimensional representations in repx(Q). If vq,w, are
matrices in Jordan normal form then v, ® w, = (UO“ u?a) is also a matriz in Jordan normal form
and thus the direct sum is a representation of the loop quiver (see Example 2.21). In addition, if
vg has two or more Jordan blocks, then we can set v, to be the subrepresentation consisting only
of the first (upper left) Jordan block and vl to be all the other Jordan blocks (and in both cases
restricting to the proper subspaces). Then v, vl are actually summands and thus V = (Vi,v,) is
decomposable. This shows that the indecomposable representations of the loop quiver are given by
the representations that only have one Jordan block [3]. We later give a more robust argument for

this (see Example 2.39).
KI: Every morphism of quiver representations has a kernel, an image, and a cokernel.

Definition 2.26. Let ¢: V — W be a morphism of quiver representations. We define the kernel
of ¢ to be (ker ¢); = ker ¢; for all i € Qy. Moreover, the image of ¢ is given by (im ¢); = im ¢,
and the cokernel of ¢ is defined as (coker ¢); = coker ¢;. The maps between the vector spaces are
given by the induced subspace maps resp. quotient maps.

Lemma 2.27. For every morphism ¢: V — W, ker ¢ is a subrepresentation of V, im ¢ is a sub-
representation of W and coker ¢ is a representation.

Proof. Notice that for each point i € Qg, ker ¢; is a subspace of V; and im ¢; is a subspace of W;.
It remains to show that the maps restrict well. For each arrow a € Q1 we have the commutative
diagram

Vl,L)V}

o]

W L Wj



and we get that v, (ker ¢;) C ker ¢;, which shows that ker ¢ is a subrepresentation. Similarly, we get
that we(im ¢;) = ¢;(imv,) C im ¢; and thus im ¢ is a subrepresentation. Since w,(im ¢;) C im ¢;,
we have a well-defined map w,: W;/im ¢; = coker ¢; — coker ¢; = W, /im ¢;, which is given by
We (w +1m ¢;) = wy(w) + im ¢;. This shows that coker ¢ is a representation. O

Remark 2.28. A morphism ¢ is a monomorphism if and only if ker ¢ = 0, an epimorphism if
and only if coker ¢ = 0, and an isomorphism if and only if ¢ is both a monomorphism and an
epimorphism.

Since both morphisms and the direct sum of quiver representations are defined pointwise, there
are many properties of vector spaces that carry over to quiver representations. E.g. if a morphism
¢: V — W is a monomorphism, then for each i € Qg we have dimV; < dim W;. One important
property that does not carry over is semisimplicity: while each subspace W C V' is a summand
(i.e. there exists a subspace W= st. W @& WL = V), not all subrepresentations of a given
representation V are summands of V. The lack of semisimplicity makes the classification of quiver
representations a lot harder since it does not suffice to find all representations with no proper
subrepresentations (which, for example, is enough to classify the complex finite-dimensional group
representations of a finite group).

Example 2.29. We consider representations of the Ly-quiver from Example 2.12. LetV =k Lk

and W =0 % k be two such representations. Then W is a subrepresentation of V, but it is not a
summand. Indeed, if U is a subrepresentation of V such thatV =U ®W, then U = k — 0, which

can only be the zero map. But then U ®W =k S k which is not isomorphic to V.

2.2.2 Properties of Hom(V, W)

We now decompose Hom(V, W) and look at morphisms between indecomposable representations.

Lemma 2.30. [/, Lemma 2.1.1] Let V =V, ® ... &V, and W =W; & ... & W, be two direct sums
of representations (of the same quiver). The decomposition of the representations induces vector
space decompositions

r (1) 2 2
@ Hom(V;,W) = Hom(V, W) = @5 Hom(V,W;).

i=1 j=1

We associate the map ¢ € Hom(V, W) with the collection of maps (¢;)1<i<, where ¢; € Hom(V;, W)
and also with (¢;)1<;<s where ¢; € Hom(V,W;) through the isomorphisms in (1) and (2).

Proof. 1. Let ¢;: V;, =V and 7m;: V — V; be the maps from the decomposition of V. For
1 <4 <r we define the map &; = «: Hom(V;,W) — Hom(V,W),¢ — ¢m; and the map
7; = ¢f : Hom(V,W) — Hom(V;, W), ¢ — ¢¢;. For ¢ € Hom(V, W) we have

O am)e=> muo=>_ dum =) um)=didy = ¢.
i=1 i=1 i=1 i=1
Thus we have >\, 57 = idgom(v,w)- In addition, for ¢ € Hom(V;, W) we have
Tl = 1,7, ¢ = ¢ty = pidy, = ¢.

So it = idpom(v;,wy- This shows the first decomposition.

2. Let ¢;: W; — W and 7;: W — W, be the maps from the decomposition of W. For 1 <j <s
we define the map 5 = 5: Hom(V,W;) — Hom(V,W),$ +— 1;¢ and we define the map
7; =75 Hom(V,W) — Hom(V,W;), ¢ > m;p. For ¢ € Hom(V,W) we have

O aGrNe =Y ume=> mé= > 1,m)é=idwe=¢.
Jj=1 Jj=1 Jj=1 j=1



Therefore, ijl 57 = idgom(v,wy- In addition, for ¢ € Hom(V,W;) we have
ﬂerNj(b = Wj,*bj7*¢ = ﬂ'ij(b = ide (;5 = d)
So 7jtj = idHom(v,w;)- This shows the second decomposition. O

Lemma 2.31. /5, Lemma p. 112] Let U,V,W be indecomposable representations (of the same
quiver) and let ¢: U — V and ¥: V — W be morphisms such that V¢ is an isomorphism. Then
both ¢ and 1 are isomorphisms. In particular, the composition of a finite number of morphisms
between indecomposable representations is invertible if and only if each morphism is invertible.

Proof. Let U,V,Wand ¢: U — V,¢: V— W be as in Lemma 2.31 (i.e. ¥¢ is an isomorphism). We
show that both ¢ and 1) are isomorphisms. We set o = (¢) *1/: V — U and observe that o¢ = idy
and thus ¢ is injective. We notice that U = im ¢ and we claim that V = im ¢ ® ker o. Indeed, for
any v € V (meaning v € V; for some i € Qp), we have that o(v — ¢o(v)) = o(v) —idy o(v) = 0 and
thus v — ¢o(v) € kero. Also if ¢p(u) € kero, then v = o¢(u) = 0 and thus im ¢ Nkero = 0. Thus
we get the decomposition

v=¢o(v)+ (v—¢o(v)) €im¢+ kero.

This decomposition gives rise to the morphisms 74 = ¢o: V — im ¢ and 7, = idy —¢o: V — kero.
We denote by t4: im¢ — V and t,: kero — V the (pointwise) inclusion morphisms. Now we
have myty = idim¢ and 7yl = idkers. Further, this decomposition yields that tymy = ¢o and
LeTy = idy —¢o and thus we get 14Ty + 15Ty = idy. This shows that V =im ¢ @ kero. Since V is
indecomposable and im ¢ = U # 0 we get that ker 0 = 0 and therefore im ¢ = V and thus both ¢
and v are isomorphisms. The second claim follows by induction on the number of morphisms. [

Remark 2.32. From Lemma 2.30 and Lemma 2.31 we have learned a lot about Hom(V,W). The
first lemma tells us that it suffices to consider Hom(V,W) for indecomposable representations.
Indeed, each morphism ¢ € Hom(V,W) can be uniquely written as a block matriz (¢; ), where
¢i;: V; = W, are morphisms between indecomposable representations. Such morphisms (between
indecomposable representations) are characterized by the second lemma.

2.3 The Krull-Remak-Schmidt Theorem

Towards our goal of classifying quiver representations, we can ask if a quiver representation can
always be decomposed into a direct sum of finitely many indecomposable representations. We
call such a decomposition a Remak decomposition and it turns out that such a decomposition
always exists and it is unique up to isomorphism and permutation of the factors in the direct
sum. This section is primarily based on the lecture notes ‘Representations of quivers via reflection
functors’ written by Henning Krause [4].

Theorem 2.33 (Krull, Remak, Schmidt). Let Q be a finite quiver. Then for any V € repx(Q)
there are indecomposable representations V1,...,V, such that V=2V, & ... ®V,.. Moreover, for
indecomposable representations Wy, ..., Wy such that V=2 W; @& ... ®W,, r = s and there is a
permutation o such that V; = W, ;) for 1 <i <.

Before we can prove Theorem 2.33, we observe a connection between the decomposability of a
representation V and the structure and property of the ring of its endomorphisms End(V).

Remark 2.34. Note that the composition of morphisms gives a ring structure on End(V), which
is the reason why we generally refer to End(V) as a ring. Hom(V,W) on the other hand does not
have a ring structure (with respect to the composition of morphisms).

Lemma 2.35 (Fitting’s Lemma). [5, Lemma p. 113] LetV be a finite-dimensional representation
and let ¢ be an endomorphism in End(V).

1. For large enough r, we have V =im ¢" & ker ¢".

2. If V is indecomposable, then ¢ is either an automorphism or nilpotent.
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Proof. 1. Because V is finite-dimensional, we can choose r large enough, s.t. im¢” = im ¢" 1.
This is possible since all the maps ¢; are endomorphisms on finite-dimensional vector spaces
and we can deduce the result pointwise: we have im (;5?"’1 Cim¢l* C...Cim¢? Cimg;.
If all the inclusions were strict, then dim(im ¢;) > dim(im ¢?) > ... is an infinite, strictly
decreasing sequence of non-negative numbers, which is impossible since dim(im¢;) < oo.
This also shows that w.l.o.g. r; < dim(¢;), where dim(¢;) is the dimension of the vector
space on which ¢; operates. Thus we get the desired result for r > dimV. For the same r
it also holds that ker ¢! = ker¢”. Thus ¢": im¢" — im ¢>" is an isomorphism and we
denote by 9 its inverse. Let ¢1: im¢" — V and to: ker " — V denote the inclusions. We
put

m =Y¢": V= im¢ and o = idy —1p¢" : V — ker ¢".

This is well-defined since ¢"my = ¢" — ¢"P@" = ¢" — idim ¢~ ¢" = 0. Then ¢1m1 + 1o = idy
and m¢1 = idim ¢r, T2t2 = idker ¢-- Thus im ¢” and ker ¢" are summands and by the definition
of the direct sum we have: V =1im ¢" @ ker ¢".

2. If V is indecomposable, then one of the factors in the decomposition in part (1) needs to be
0. If ker ¢" = 0, then ¢ is an automorphism and if im ¢" = 0, then ¢ is nilpotent. O

Remark 2.36. Notice that V needs to be finite-dimensional. Otherwise the decomposition in part
(1) is not guaranteed, since there may not be any such r.

Definition 2.37. A ring is called local if the sum of two non-units is again a non-unit.

Proposition 2.38. [5, Proposition 3.1] A finite-dimensional representation V is indecomposable
if and only if End(V) is local.

Proof. = : Let V be indecomposable and let ¢, ¢ € End(V) such that ¢ + ¢’ is invertible with
inverse p. If ¢ is non-invertible, so is p¢ and thus by Lemma 2.35, p¢ is nilpotent, say (p¢)" = 0.
The summation formula for geometric series yields:

(idv —pg)(idv +p¢ + ... + (p$)" ") = idv = (p¢)" = idy .

Therefore p¢’ = idy —p¢ is invertible and thus ¢’ is invertible, which shows that End(V) is local.
< :If V= UaW is decomposable, then the endomorphisms cymy, twmw have image U respectively

W and thus are not invertible. But wymy + twmw = idy is invertible and therefore End(V) is not
local. O

Example 2.39. In Example 2.25 we have stated that the finite-dimensional indecomposable rep-
resentations of the loop quiver are given by the endomorphisms v,, which only have one Jordan
block. Using Proposition 2.38 we can now prove that every indecomposable representation consists
of a single Jordan block (proof by contrapositive). Indeed if v, has two or more Jordan blocks, then
we can define ¢1 = (ig 8) to be the identity on the subspace belonging to the first Jordan block.
Analogously, let ¢po = (8 191) be the identity on the subspace belonging to the other Jordan blocks.
Then ¢1, ¢ are both non-invertible, but ¢1 + ¢o = idy is invertible. Thus End(V) is not local and
therefore V is decomposable.

We use Proposition 2.38 to consider a subspace of the vector space Hom(V,W). To do this, we
use the Lemmas 2.30 and 2.31 from Section 2.2.

Definition 2.40. The radical of two representations V,W is defined to be

Rad(V,W) = < ¢ € Hom(V, W) } , )
Too is non-invertible

for every U indecomposable,U =V and W = U,}

A morphism ¢ € Rad(V,W) is called radical.
Lemma 2.41. Let V,W be two representations.

1. Rad(V,W) is a subspace of Hom(V,W).
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2. Rad(V,W; & W3) = Rad(V,W;) & Rad(V, W,).
3. Rad(V1 & V2, W) =2 Rad(Vy, W) @& Rad(Vz, W).
4. If V,W are indecomposable, then Hom(V, W) \ Rad(V,W) is the set of isomorphisms V — W.

Proof. 1. Let a, 8 € k and let ¢1, ¢ € Rad(V,W) and let U = V and W = U for U indecom-
posable as in the definition of Rad(V,W). Then « - 7¢10, 8- 70 are non-invertible and thus
T(a 1+ B d2)o =a-TP10 + B - Tdo0 is non-invertible since End(U) is a local ring. Thus
a- o1+ f- ¢2 € Rad(V,W).

2. Let W =W; W, and let ¢ = (¢1,¢2) € Hom(V,W;) & Hom(V,Ws) = Hom(V,W). Let
U be indecomposable and let 0 € Hom(U, V) and 7 = (71, 72) € Hom(W;, U) & Hom(Ws, U).
Then Too = (11, 72) (1, ¢2)o = T1d10 + Ta¢po0. This results directly from the decomposition
of Hom(V,W; ® W) given in Lemma 2.30. If ¢; € Rad(V,W;) for i € {1,2}, then m¢i0
and To¢o0 are non-invertible and thus 7¢o = T1¢10 + Tad20 is non-invertible since End(U)
is local (since U is indecomposable). Thus ¢ € Rad(V,W). On the other hand, if we fix
i € {1,2} and if ¢ € Rad(V,W), then we can choose 7 = (71, 72) such that 7; = 0 for j # i
(and 7; arbitrary) and we get that 7;,¢;0 = T¢o is non-invertible. Therefore ¢; € Rad(V, W,).

3. Let V = V; @& Vy and let ¢ = (¢1,¢2) € Hom(Vy, W) @ Hom(V2, W) =2 Hom(V,W). Let U
be indecomposable and let ¢ = (01,02) € Hom(U,V;) @ Hom(U, V) = Hom(U,V) and
7 € Hom(W, U). Then 7¢c = 7(¢1, ¢2)(01,02) = 1110 + Tapoo. This results directly from
the decomposition of Hom(V; &Va, W) given in Lemma 2.30. If ¢; € Rad(V;,W) for i € {1, 2},
then 7¢101 and T¢o09 are non-invertible and thus 7¢o = T7¢101 + TP202 is non-invertible
since End(U) is local (since U is indecomposable). Thus ¢ € Rad(V,W). On the other
hand, if we fix ¢ € {1,2} and if ¢ € Rad(V,W), then we can choose o = (01, 02) such that
oj =0 for j # i (and o; arbitrary) and we get that 7¢;0; = T¢o is non-invertible. Therefore
¢; € Rad(Vz,W)

4. Let ¢ € Hom(V, W) be an isomorphism. Then we can choose U =V, 0 = idy,7 = ¢! and see
that 7¢o = idy is invertible and thus ¢ ¢ Rad(V,W). Now let ¢ € Hom(V,W) \ Rad(V,W).
W.lo.g we can assume that ¢ is non-invertible (else we are done). Now choose U indecom-
posable and ¢ € Hom(U,V) and 7 € Hom(W, U) such that 7¢o is invertible. Since V,W
are indecomposable, this is impossible. Indeed, since ¢ is non-invertible, it follows from
Lemma 2.31 that T7¢o is non-invertible. O

Remark 2.42. If ¢:V — W is radical and ¢ = (¢ ;) is written as a block matriz of mor-
phisms between indecomposable representations (see Lemma 2.30), then every such block ¢;; is
non-invertible. Indeed if ¢; j: V; — W; is invertible, then we can choose U = W; indecomposable,
7: W — W; the projection onto the summand W; and o = vy, ((bi)j)_l: W; — V; — V where vy, is
the inclusion of the summand V; into V. But then T¢o = ¢; ; is invertible, which is a contradiction
to the choice of ¢.

Proof of Theorem 2.33. By induction on dimV we can show that a Remak decomposition exists:
for dimV = 0 all vector spaces are trivial and thus indecomposable. Therefore V is already
indecomposable. For the induction step, let dimV =n > 1. If V is decomposable, then there exist
proper summands U, W. Since both dim U, dimW < n we know by the induction hypothesis that
they each have a Remak decomposition. The direct sum of these decompositions gives a Remak
decomposition for V. For the proof of uniqueness, we order isomorphic summands together, i.e. let
V=V{*®...0V be a direct sum decomposition of V where the V; are pairwise non-isomorphic
representations and a; > 1 for all 1 < i < r. For W indecomposable, we can consider the number

dim Hom(V, W) — dim Rad(V, W)
dim Hom (W, W) — dim Rad(W, W)

From Lemma 2.30 and Lemma 2.41 we know that for W =V, this number is equal to:
>i_i(dimHom(V§7,V;) — dim Rad(V57, Vi) >27_; a; - dim(Hom(V;, V;) \ Rad(V;, Vi)
dim Hom(V;, V;) — dim Rad(V;, V;) B dim(Hom(V;,V;) \ Rad(V;, V;))

dim(Hom(V;,V;) \ Rad(V;,V;)) ai'
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Here we used part (4) from Lemma 2.41 to see that dim Hom(V;,V;) — dim Rad(V;,V;) = 0 for
Jj # i since V; and V; are non-isomorphic. We notice that this number is independent of the
decomposition of V and thus the decomposition is unique up to isomorphisms and reordering. [

Remark 2.43. In this section we restricted our focus to finite quivers and finite-dimensional rep-
resentations. Moreover, we assumed that the quivers are connected. Those restrictions are sensible.
Indeed, if a quiver Q is the disjoint union of two quivers Q' and Q", then any representation of
Q is the same as a pair of representations, one of Q' and one of Q”, and any morphism acts on
each component of the representation separately. Therefore, repy(Q) is isomorphic to the product
category repk(Q’) x repk(Q”). From the viewpoint of topological data analysis, restricting to finite
quivers and finite-dimensional representations is somewhat justified since one looks at persistence

modules, which generally are finite-dimensional representations of finite quivers. This is done in
Chapter 5.
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Chapter 3

Gabriel’s Theorem

In this chapter, we consider quivers that have a finite number of indecomposable representations.

Definition 3.1. Let QQ be a quiver and let k be a field. The quiver Q is of finite-type if it has
finitely many isomorphism classes of indecomposable finite-dimensional representations.

This leads to the question of whether there are quivers of finite-type and if so, which quivers are
of finite-type. The answer to this question is given by Gabriel’s Theorem. Proving Gabriel’s The-
orem is our main goal in this chapter. Sections 3.1 to 3.4 introduce important results, which help
understand quiver representations. These sections are written with the goal of proving Gabriel’s
Theorem. Therefore, we generally only introduce what is needed to prove Gabriel’s Theorem.

Theorem 3.2 (Gabriel, version 1). Let Q be a finite connected quiver and let k be a field. Then
Q s of finite type if and only if Q is a Dynkin quiver.

The Krull-Remak-Schmidt Theorem guarantees that every finite-dimensional quiver represen-
tation admits a unique decomposition into indecomposable summands. Therefore, for a quiver
of finite-type, it suffices to characterize the finitely many indecomposable representations. Using
the indecomposable representations, one can then classify all quiver representations. The general
outline of this chapter follows the book ‘Persistence Theory: From Quiver Representations to Data
Analysis’ written by Steve Y. Oudot [1]. Some of the more technical details and proofs are based
on the book ‘Finite dimensional algebras and quantum groups’ written by Bangming Deng [2].

Remark 3.3. Note that Gabriel’s Theorem is true for any field k. In addition, the classification of
finite-type quivers happens on the level of the underlying graph, thus the orientations of the arrows
do not matter.

3.1 Dynkin and Euclidean Diagrams

In this section, we introduce the Tits form. Using the Tits form, we then divide all quivers into
three distinct classes.

3.1.1 Tits Form

For a finite quiver, we look at a special quadratic form on Z", called the Tits form. We later apply
the Tits form to the dimension vectors of finite-dimensional representations.

Definition 3.4. A vector in Z" is called positive if it belongs to N \ {0}. This means that every
coordinate is non-negative and the vector is non-trivial (not all coordinates are 0). We write x > 0
if x is positive and we write x > y if x —y is positive. For example, the dimension vectors of non-
trivial representations are positive. Dually, a vector x € Z" is called negative if —x is positive. A
vector x € Z™ is called sincere if x; # 0 for all 1 < i < n. Finally,we denote by e; € Z" the i-th
coordinate vector, i.e. (e;); = 0;; (0 here denotes the Kronecker-delta).
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Definition 3.5. The Euler form of o finite quiver Q is the bilinear form (-,-)g: Z" x Z" — Z,

given by:
(,9)q = Z Lili — Z LtoYha-
1€Qo ac@Q

The symmetrization of the Euler form is called the symmetric Euler form and is given by:

(z,9)q = (z.y)q + (¥, 2)q

Lemma 3.6. If we view elements in Z™ as column vectors and if the finite number of edges (in Q)
joining the vertices i and j is denoted by d;; = dj;, then the symmetric Euler form can be expressed
as:

(:TJ, y)Q = zTCQy7
where Cg = (¢ij)ijeq, S the symmetric matriz with the entries
2 — 2|{loops at i}| =2 — 2d;; if i =7,
Cij = . . o .
! — {arrows between i and j}| = —d;; if i # j.
Proof. We need to check that for all 1 <i,j < n we have: (e;,ej)g = el Cge; = ¢;j. For i = j we
have: (e;,e;)o =2(1-1—d;;) =2 — ddy;. For i # j we have:
(eirej)o = (ei,ej)q + (€j,€i) o = (0 — |[{arrows from i to j}|) + (0 — [{arrows from j to i}|)

= —|{arrows between ¢ and j}| = —d;;. =

Example 3.7. We consider the Ls-quiver

1 2.

The Euler form of Ly is (x,y)r, = T1y1 + Taya — X1y2. Its symmetric Euler form is given by
(T,Y)L, = 221y1 + 2T2Y2 — T1Y2 — Tay1.

Example 3.8. The Euler form of the loop quiver is (z,y)q = x1y1 — x1y1 = 0. Its symmetric
Euler form is (x,y)g = 0.

Definition 3.9. For a finite quiver Q, the Tits form of Q is the quadratic form qq: Z" — Z
associated with the Euler form
1 1
Q(x) = (z,2)g = i(x,x)Q fxTC'Qx = Zc”x x;= 2(2 —2d;;)x? — Zdijxixj.

i i<j

The radical of the quadratic form qq is the set radqg = {x € Z" | (z,-)g = 0} and x € rad qq is
called a radical vector.

Definition 3.10. Let q: Z™ — Z be a quadratic form.

1. q is called positive definite if q(x) > 0 for all non-zero x € Z™.
2. q is called positive semi-definite if g(x) > 0 for all x € Z".

3. q is called indefinite if it takes on both positive and negative values, i.e. there exist x,y € Z"
such that q(x) > 0,q(y) < 0.

We use the same terminology for quadratic forms Q™ — Q respectively R™ — R.
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Example 3.11. The Tits forms of the Dynkin quivers (respectively Dynkin graphs) are:

An:qq(z) = Z x; — Z T4, Th, Zx - mewl 9:1 + 22 + Z i — Tig1)?

1€Qo acQ1
n n 1 n—2
Dy, qq(x) = Zfﬂf - Z TiTiy1 — Tp_olp = i[xf + 22 + (Tpo2 —n)* + z;(xz —zi11)°]
- — =

) _ 2
Es: qo(x) = E X — T1T3 — Tokg — T3Ty — T4T5 — T5Te
B _ 2 _ o o o o
7 qo(x) = mi T1T3 — Toly — T3T4 — TaTs — T5Te — Lex7

2
Eg: qq(x E Ti — T1T3 — TaTy — T3T4 — T4T5 — TsTe — TeTr — T7L8

We observe that the Tits forms of the Dynkin graphs A, and D, are positive definite. We will
later see that the Tits forms of the other Dynkin graphs are also positive definite, but this is not
obvious from our calculations above.

Lemma 3.12. Let Q be a finite quiver. Then neither its symmetric Fuler form nor its Tits form
depends on the orientations of the arrows in Q.

Proof. Let @ be a finite quiver and let a = (¢4, ha) € Q1 be an arrow. If we consider the quiver Q
resulting from @ by exchanging a with a@ = (hg,t,) (reverse its direction), we get:

(T, y)g = Z iy — Z Tt,Yhy, + Z Yiti — Z Yty Thy,

i€Qo beQu i€Qo bEQ:
= Z TiYi — Z Tty Yhy, — ThoYt, + Z YiTi — Z Yto Thy — YhoTt,
1€Qo beQ: 1€Qo be@n
b#a b#a
= Tl — Y T Yhy — YnaTe, + Y Yili — Y Yo, Thy — Th U,
1€Qo beQ: i€Qo be@
b#a b#a
= Z TilYi — Z T, Yny, + Z Yii — Z Yt Thy = (7,Y)Q-
1€Qo beQ: 1€Q0o beQ

The result for the Tits form is an immediate consequence: qq(z) = (2,7)q = (z,2,)5 = ¢5(z). O

3.1.2 Dynkin, Tame and Wild Quivers

We want to understand for which quivers @, its Tits form ¢q is positive-definite respectively
positive semi-definite. This divides all quivers into three distinct classes. The following lemma
marks the first step towards this goal.

Lemma 3.13. [2, Claim p. 53] Let Q be a finite connected quiver and let y € rad qg be a positive
radical vector. Then y is sincere and qq is positive semi-definite. Moreover for x € Z™ we have

@) =0 2€Qy, i.e. Ia€Q s.t. x=a-y < x €radqg.

Proof. We denote by e; the i-th coordinate vector, i.e. (e;); = d;;. The assumption on y gives:

0=(y,e)g = yTC'Qel z:y]c]Z = (2 — 2d;;)y; Zdﬂy] for 1 <i<n. (3.1)
Jj=1 j=1
i

If y; = 0, then E;‘L:I, j+1d5iy; = 0 and since each term_is non—negative_(y is positive), we get that
y; = 0 for all j s.t. 4 and j are joined by an edge (in Q). Using that @) is connected, we get that
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y = 0. Indeed, let i, j1, ..., ji, j be a path from i to j (meaning that there are edges in @) connecting
the pairs (¢, 41), (J1,72)s- -, (Jk,J)). Since ¢ and j; are connected by an edge, we have y;, = 0 by
the observation above. Usmg the same observation again we get y;, = 0. We conclude the claimed
result using the observation inductively on the set 4, j1,...,jk,j. This is a contradiction because
y is positive and therefore sincere. We now show that gqg is positive semi-definite. For x € Z" we
have:

1
QQ(IIJ) = 5(.’17,.’1))@ = 2(2 — 2d;; yl - Zdljxlmj

i i<j
- zzdw% S
PRy i<j
Yj
i<j 7j<t 1<J
:ZdUQ x; —|—Zd132 ; —Zdijiﬂi.rj
i<j i<j 1<J
yzy] .’L‘? TiT;
=2 di (4 g =20
i<y 1‘ Y; YiY;
ST T,
i<y Yi Yj

i Zj

In the second line, we used Equality (3.1). Now if go(x) = 0, then 7t = 72 whenever i and j are

joined by an edge. By a similar argument as above, we use that @ is connected and conclude that
5—1 = i—j =a € Q (for all 4,5). Thus = € Qy. Now if z € Qy we use that y is radical and get
(z,)o = al(y,-)o = 0. Therefore, z € rad gg and z € rad ¢g implies gg(z) = (z,x)g = 0. O

Definition 3.14. A graph is called Euclidean if it is one of the graphs in Figure 3.1.

1 2 n—1 n
1 n—1
.\ /.
D, (n>4) /5 -n\72
. Oe °
0 | n
2e
ES . . l . .
1 3 4 5 6
20
E7 07070717.707-
0 1 3 4 5 6 7
2e
ES .7.7l7.7.7.7.7.
1 3 4 5 6 7 8 0

Figure 3.1: The Euclidean diagrams.

Lemma 3.15. [2, Observation p. 52] Let Q be a graph that is neither Dynkin nor Euclidean. Then
Q contains an Euclidean graph T' as a subgraph.



Proof. Note that if Q contains a loop, then I' = Ay is the desired subgraph. If Q) contains a cycle,
then the desired subgraph is of the type A,,. Thus w.l.o.g., we can assume that Q does not contain
any loops or cycles. We also notice that @ has at least one branch vertex (= vertex connected
to at least 3 different vertices by edges). Else Q is of type A,,, which is a Dynkin quiver. We do a
proof by cases on the number of branch vertices.

Case 1. Let us consider the case that @ has exactly one branch vertex. There must be another
vertex attached to the graph, or else we have the Dynkin graph Dy. If the additional vertex is
attached to our branch vertex, we have the Euclidean graph Dy as a subgraph and we are done.
If the additional vertex is not attached to the branch vertex, then we actually have at least two
additional vertices, which are attached to different branches. Else Q = D,, is a Dynkin graph (for
some n). Thus @ contains a subgraph that looks like this:

a e

b c

L] ° [ ] L] °
But this is the Dynkin graph FEg, thus there needs to be another vertex d attached to a,b or ¢
(notice that we only have one branch vertex!). If d is attached to a, then our desired subgraph is
F. If there is no additional vertex attached to a, then by gradually attaching vertices to the ends
at b or ¢ we get the graphs Ey, E7, Es or Eg. Thus we eventually get an Euclidean subgraph as
claimed. Case 2. Q has at least two different branch vertices a and b as illustrated in the following
picture:

e Ao by @
\ P /
. ao/ \\ /b. (]
/a 1 N b\
e a3 by e

Since @ is connected, we find a path between a;, and b;. By taking I to be this path (dotted line)
and the ‘forks’ in the picture above, we get an Euclidean subgraph I' = D,, for some n > 6. O

Theorem 3.16. [2, Theorem 1.11] Let Q be a finite connected quiver and let qq be its Tits form.

1. @Q is a Dynkin quiver if and only if qq is positive definite.

2. The underlying graph Q is Euclidean if and only if qq is positive semi-definite but not positive
definite. In that case, there is a unique positive vector 6 € Z™ s.t. rad qq = Z9.

Proof. Step 1. If Q is Euclidean, then qq is positive semi-definite and radqg = Z&: For each
Euclidean graph, we explicitly give a positive radical vector § (we enumerate the vertices as in
Definition 3.14).

1),

= (
A =151,
Dn: (1,1 2,...,2,1,1),
= (
=1,

1,1,2,2,3,2,1),
1,2,2,3,4,3,2,1),
Es: 6= (1,2,3,4,6,5,4,3,2).
To check that ¢ is radical, we check that (see proof of Lemma 3.13):

0=(d,e)g = (2—2dy)d; Zdﬂ(S for 1 <i<n. (3.2)

j=1
J#i

If Q has no loops or multiple edges this is equivalent to (use d;; = 0 and d;; € {0,1}):

0=(5e)g=20— »_ djforl<i<n. (3.3)

Jj=1
di]‘#o
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We do the calculation for Ay, A,,, D,,. The other cases can also be checked by calculation.

Ag: (Be1) 2 (2210 = (2-2)-1=0.
A, (6,€;) 3 26; — ;-1 —di+1 =2—1—1 =0 (we consider the indices mod n + 1).
Dy: Forie {0,1,n—1,n}: (6,¢,) & 25, —2=2-2=0.

Fori e {3,...,n—3}: (d,e;) 33 20; —0i—1 — 041 =2-2—2—-2=0.

Forie {2,n—2): (de) 225, —2-1-1=2.2-2-1-1=0.
From Lemma 3.13 it follows that g¢ is positive semi-definite. It also follows that rad gg = Q6 N Z".
Since every ¢ above has ¢; = 1 for some 4, we know that for a € Q\ Z we have a - §; = a € Z and
thus Q6 N Z™ = Z§ = rad qg. From Lemma 3.13 also follows that ¢g(d) = 0 and thus ¢ is not
positive definite. The uniqueness of § is a consequence of the property rad gg = Z9.

Step 2. If @ is Dynkin, then qg 1is positive definite: We first notice that for every Dynkin
graph Q, there exists an Euclidean graph Q' s.t. Q results from @’ by deleting the vertex 0 (and
its incident edges). A, results from An, D,, from D,, and so on. We can extend x € Z" to
2/ = (0,2) € Z"*" and from step 1 we get that go(x) = qg/(2’) > 0. Thus qg is positive semi-
definite. To see that it is actually positive definite, let z € Z™ be such that gg(z) = g5/ (") = 0.
From Lemma 3.13 we get that 2’ = a - ¢ for a € Q and J defined in step 1. But since z(; = 0 we
have that a = 0 (since dp # 0 for all the Euclidean graphs) and thus z = 0 is trivial.

Step 3. If Q is neither Dynkin nor Euclidean, then qg is indefinite, i.e. qg(z) < 0 for some
X € Z": Let I be the proper Euclidean subgraph of ) (use Lemma 3.15 and let & be the positive
radical vector for ' (see step 1).

e If 'y = Qq (the vertices coincide) and I'y € Q1 (edges do not coincide), we put x = § € N*
and have gg(z) < gr(z) = 0. The inequality comes from the fact that there exists an edge
a = (i,7) € Q1 \ 1. Notice that this yields an additional term —x;z; < 0 in ggo(x).

o If I'y € Qo, then let i be a vertex in Qo \ T'y which is connected to I' by an edge a (such a
vertex exists since @) is connected). Now let ¢’ be an extension of § (67 = 0 for j € Qo \ I'o)
and define z = 26’ + e;. We have qg(x) < 4gr(6) + 27 —xp,2p, <0+1-2=-1<0. O

Definition 3.17. A quiver Q is called a tame quiver if its underlying graph Q is Fuclidean. If Q
s neither a Dynkin quiver nor a tame quiver, it is called a wild quiver.

This definition classifies all finite connected quivers into three different categories: Dynkin quiv-
ers, tame quivers, and wild quivers. Theorem 3.16 yields the same classification, but it considers
the Tits forms g rather than classifying the quivers based on underlying graphs Q. The Tits form
of the Dynkin quivers is positive definite, the Tits form of the tame quivers is positive semi-definite
and the Tits form of the wild quivers is indefinite.

Remark 3.18. In Gabriel’s Theorem, there is no distinction between tame and wild quivers. But
in the theory beyond Gabriel’s Theorem, there are some interesting differences between the two
categories, which is why we differentiate between the two categories.

Example 3.19. The loop quiver is a tame quiver since its underlying graph is the Euclidean graph
Ag. This matches with our calculation in Ezample 3.8: qq(x) = +(z,2)q = 0, which is a positive
semi-definite form.

3.2 Weyl Groups and Root Systems

In this section, we introduce the Weyl group and the root system of a finite quiver. This section
is based on the book ‘Finite dimensional algebras and quantum groups’ by B. Deng [2].

Definition 3.20. Let Q be a finite quiver and let i € Qo = {1,...,n} be a vertex such that Q has
no loops at 1, i.e. dj; = 0. Then we say that the vector e; € Z™ is a simple root. We denote by
Ilg the set of all simple roots.
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Definition 3.21. Let QQ be a finite quiver and let i be a vertex such that Q has no loops at i. The
simple reflection at the vertexr i is the map

02" = Z" x — x — (z,e;)06i,

where (x,y)q is the symmetric Euler form of Q and e; is the i-th coordinate vector. Using that
0=

(ej,€:) —d;; for j #1i and (e;,€;)g =2 — 2d;; = 2 we get 0;(x); = x; for j #1i and
oi(x); = x; — ij(ej, ei)g =x; — Z —djiz; — Zdﬂx] ;.
j=1 j=1
J#i J#z

Example 3.22. We consider the Ly-quiver. We have (e;,e;)o =2 — 2d;; = 2 fori € {1,2}. Also
(z,e1)g = z1(e1,e1)o+xza(e2, e1)g = 2x1 —di2xe = 2x1 — 2. Similarly, we get (z,e2)q = 2z —1.
Thus we get the maps o1,09: Z2 — Z2 given by:

= (2) - () = () - (3 1) ()
o3((1,02)") = (i;) - (2962()_3,1) = (le_l@) = G _01) (i;) '

Lemma 3.23. The simple reflections o; are automorphisms of order two and they preserve the
symmetric Euler form (-,-)q and the Tits form qq.

Proof. We show that o7 = idz». Indeed, for j # i we have 02(z); = 0;(x); = x; and we also have

ZdﬂoZ —oi(x Zdﬂx] oi( Zdﬂx] Zdﬂmj x;) = ;.
J#l ]7’51 37’51 J#l

We now show that for any quiver Q and for all z,y € Z", we have (0;(z),0,(y))g = (2, y)q. First,

we notice that
( ) ( ) €; — (2 — th)ei = —€; if k= 7:,
i\Ck) = €k — \€i, €k )QCi = . .
ilCk b k)G er + d;e; if k #1.

Thus we get (04(€;),0i(e:))g = (—ei, —€i)o = (ei,e:)q and for k # i we get:

(diler), oilei))Q = (e + direi, —€i)Q = —(ex, €i)q — dik(€i, €i)q = dir — 2dir, = —dix = (ex, €)q-

Also for k # 4, j # i we get:

(oiler),oi(er))g = (ex + direi, er + diyei)g = (ex, e1)g + dir(ei, e1) + diu(ex, ;) g + dindi(ei, €:) g
= (er,e1)Q — dikdir — dudix, + 2dixdis = (e, €1)q-

Now, using linearity of o; and bilinearity of (-,-)q, we get that:

(0i(2),0i(y))q = (0 ij 0 Zykek Q= szﬂ/k ai(ej),oiler))qQ
= ZZx]yk e],ek = ijej,zykek)cz = (337?/)62
J k

Finally, this implies:

1 1

1q(0i(2)) = 5(0i(2), 05(2)) = 5(x,2)@ = 9q(x). O

Definition 3.24. For a finite quiver Q, we define the Weyl group W (Q) to be the subgroup of
the automorphism group Aut(Z™) generated by the simple reflections ;. The set

®.e(Q) = U w(lly) = U w(a)
weW(Q) weW(Q)
a€llg

1s called the set of real roots of Q.
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Because the symmetric Euler form is independent of the orientations of the arrows in (), both
the simple representations o; and the Weyl group W(Q) are also independent of the orientations
of the arrows in Q.

Definition 3.25. For each x = Z?:l xie; € Z™ we define the support of x to be the set

suppz = {i € Qo | z; # 0},
We say that supp = is connected if the full subquiver of Q with vertex set supp x is connected.

Definition 3.26. For a finite quiver Q, the fundamental set F¢ is defined to be the set
Fo={0#zeN"|(z,e;)q <O for all e; € Ilg, and suppx is connected}.

Then the set
(@)= |J wFuuw-Fo)= |J w)vw(-2)

weW(Q) UJE;V}_(Q)
z Q

18 called the set of tmaginary roots of Q. Finally, the root system of Q is defined to be the set

(I)(Q) = (I)re(Q) U (I)lm(Q)

An element x € ®(Q)NN" is called a positive root. We denote by ®+(Q) (resp. ®(Q), 7 (Q))
the set of all positive (resp. positive real, positive imaginary) roots.

Example 3.27. Let Q) be the loop quiver. Then no simple root exists and thus Ilg = 0 and
W(Q) = {id}. We also have that Fo = N and thus ®(Q) = 0;,(Q) = Z\ {0}.

For a better understanding of the definitions above, we prove some elementary properties of
our root systems ®..(Q), Pim(Q) and P(Q).

Lemma 3.28. Let Q be a finite quiver.

If Q has no loops at i € Q, then e; is a real root.

If Q has a loop at i € Qo, then e; € Fg and thus e; is an imaginary root.

If £ € ®,6(Q), then qo(z) = 1.

Ifﬂ? € (I)im(Q); then QQ($) <0.

(I)re(Q) N (I)im(Q) = @

If Q is a Dynkin or a tame quiver, then every root is either positive or negative. Therefore,
we have B(Q) = ¥+(Q) U (—0*(Q)).

Proof. 1. Taking w =id € w(Q), we get that w(e;) = e; € Pre(Q).

2. In this case, suppe; is just one point and thus connected. Moreover, for all e; € Ilg, we
have:

S Tt o o~

2—2d; <0 ifj=1i,

(eises)Q = { —dy <0 it

3. Each w € W(Q) is of the form w = oy, ...0;, for o;; simple reflections (possibly £ = 0 and
w = id). By Lemma 3.23, we have:

9Q (%) = qq(0iy, - .- 0i,(€))) = 4@(0iy_, - 0iy(e5)) = ... = qqle;) = %(%%‘)Q =1-dj; =1

4. We have z = w(y) or ¢ = w(—y) for w € W(Q) and y € Fg. In both cases, we have
q0(z) = go(w(xy)) = go(£y) = qg(y). Since y € N, we have:

1 «— 1 1 -
qQ(r) = qqy) = 5 E vi(y,ei)g = 5 § vi (4, ei)g +3 E Yi E y;i (ej,ei)g <0.

d;;=0 di;#0  g=1

<0 <0 by part 2
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5. This immediately follows from parts 3 and 4.

6. Let = be aroot and write x = T —x~ where 27 is the positive part of z and ™~ is the negative

part of z, i.e. 7,2~ > 0 and they have disjoint support. Then we have (z*, 27 ) < 0 since
they have disjoint support. We then have:
1
12 qq(r) = 5" a7, 2" —a7)q = 5[(@",27)o + (27,27 )g — 2™, 27)q)
=qo(z") +aq(z7) — (27,27 ) = go(z™) +gq(z™) 2 0.

In the last inequality, we used that gg is positive semi-definite since @ is Dynkin or tame.
We conclude that either gg(zt) = 0 or gg(z~) = 0. If Q is Dynkin, then either 2+ = 0 or

2~ = 0 since qq is positive definite. If @) is tame, then we know from Lemma 3.13 that either
xT or 7 is a radical vector and thus it is sincere. But then the other vector is trivial, which
shows that z is either positive or negative. O

Remark 3.29. Part (6) of Lemma 3.28 is true for any quiver Q. In addition, one can show that
for any root x € ®(Q), suppx is connected. We do not prove these statements because they are
not needed to prove Gabriel’s Theorem. A proof can be found on page 7 in Chapter 1 of [6].

An immediate consequence of this lemma is that ®(Q) C {0 # = € Z" | go(z) < 1}. We will
later see that if ) is a Dynkin quiver, then these two sets are equal. Although the characterization
g (z) < 1looks a lot simpler than the definition of the root systems ®,¢(Q) and @;,,(Q), the latter
give a more explicit description of the roots and are therefore useful in proofs. Moreover, the latter
descriptions of ®,.(Q) and ®;, (Q) are closely related to the Weyl group, which plays an important
role in the proof of Gabriel’s Theorem (see Lemma 3.68 and Proposition 3.69).

3.2.1 Root Systems of Dynkin, Tame and Wild Quivers

We show an explicit characterization of the roots of a Dynkin quiver. In particular, we show that
the root system ®(Q) is finite for all Dynkin quivers. We also mention some results about the root
systems of tame and wild quivers.

Lemma 3.30. If Q is a Dynkin quiver, then ®(Q) is finite.

Proof. We prove that the set {x € Z" | gg(x) = 1} is finite. First, we can view ¢g also as a
quadratic form on Q" and R™. Since qq is positive definite on Z" it is also positive definite on Q™.
Indeed, if 0 #£ x = (%)?:1 € Q" such that gg(z) < 0, then we have that gg(ax) < 0, where a is the
least common multiple of the b; and 0 # axz € Z". Now, we can take limits in Q™ to extend ¢¢ to
R™ and get that q¢ is positive semi-definite on R™. However, since gq is positive definite on Q", we
know that its matrix C¢ is positive definite and symmetric (with values in Q), thus it is invertible in
Q and therefore also invertible in R. Therefore, ¢ is also positive definite on R™ (since it is positive
semi-definite and Cg is invertible). Now consider the subset S' = {z = (z;) € R" | ||z| = 1}.
Here, ||-|| is the Euclidean norm. Since S’ is compact and qq is positive definite and continuous,
there exists ¢ > 0 such that gg(z) > ¢ for all z € S*. Indeed, we have that go(S!) is compact and
thus inf,cs1(gg(z)) = ¢ > 0. Therefore, for all 0 # z € R™, we have:

x
) > cllal.

9Q(z) = ||af||2qQ(m

Therefore, z € ®(Q) implies gg(x) = 1, which again implies ||z||? < \/g But there are only
finitely many = € Z™ such that the last inequality holds. O

Corollary 3.31. If Q is a Dynkin quiver, then
1. the Weyl group W(Q) is finite,
2. 2(Q) ={zr € Z" | go(x) = 1}.
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Proof. 1. By the theorem above, ®(Q) = P,(Q) is finite. For any w € W(Q), the induced
map @..(Q) — D (Q), w'(e;) — wow'(e;) is a permutation on the set ®(Q) of roots since
w is an automorphism. Since ®(Q) contains the basis {e; | ¢ € Qo} of Z", it follows that
the permutation maps that are induced by wq,ws € W(Q) are equal if and only if wy = ws.
Therefore, W(Q) can be embedded into the permutation group of ®(Q), which is finite since
®(Q) is finite.

2. We have already shown that each x € ®(Q) = ®,(Q) satisfies ¢qo(z) = 1. Now let x € Z"
be such that gg(z) = 1. We know from Lemma 3.28 that x is either positive or negative.
Since ®(Q) = ¢T(Q) U (—P1(Q)), it suffices to show that x or —z is a root. Thus w.l.o.g.,
we assume that x is positive. We use induction of the number [, = Zier' If I, =1, then
x =¢; € Ilg C &(Q). Now let I, > 2. We claim that there exists an i € Qp such that
0 < gy(x) < x. Suppose this is not the case, i.e. for each i € @y we have either 0 £ o;(z) or
o;(x) £ x. We consider the following formula:

2=2qg(z) = (z,2)g = Z zi(z,e).
1€Qo

It implies that there exists an ig € Qo such that z;,, > 0 and (z,e;,)g > 0. Thus we get
oip(x) = — (z, e55)0€s, < x. But this forces 0 £ o0y, (x), i.e. z;, — (z,e;,)0 < 0. On the

other hand,
0 < gqe = wieiy) = 40(7) + 4 (Tiseio) + (T, —Tigeis)Q
=1+ 37120 - xio('r’eio)Q =1+ xio(ajio - (‘T7eio)Q)'
This forces x;, = 1 and x;, —(, €;,)o = —1. But then qg(z—xi,e:,) =0, l.e. © = x;,€;, = €5

which contradicts I, > 2. Therefore, there exists an ¢ € Qg such that 0 < ¢;(z) < z. But
then qq(0i(x)) = qo(x) = 1 and l,,(;) < I, and thus by the induction hypothesis, we have
oi(x) € ®(Q). We conclude that = g;(0;(x) € D(Q). O

Remark 3.32. To get a sense of the size of the finite root system ®(Q) for a Dynkin quiver @,
we list the sizes. If Q is a Dynkin quiver of type A,(n > 1), D,(n > 4), Es, E7 or Eg, then the
number of roots in ®(Q) is n(n+ 1),2n(n — 1),72,126, or 240, respectively.

We now have proven everything about the root system ®(Q) and the Weyl group W (Q) that we
need to prove Gabriel’s Theorem. Thus, if you are only interested in the proof of Gabriel’s Theorem,
you can continue reading Section 3.3. However, we have already done (almost) everything to prove
a really nice theorem that connects different types of quivers and their root systems. Therefore,
we spend the remaining part of this section proving the following theorem.

Theorem 3.33. [2, Theorem 1.13] Let Q be a finite connected quiver without loops. Then

1. Q is a Dynkin quiver <= ®(Q) is finite < @;,(Q) = 0.

2. Q is a tame quiver < ®;,(Q) = Z4d \ {0} for the unique positive radical vector § € N™
from Theorem 3.16.

3. Q is a wild quiver <= there exists ¥ € ®T(Q) such that suppz = Q and such that
(z,ei)q <0 for all i € Q.

To prove this theorem, we need to consider the following lemma.

Lemma 3.34. Let QQ be a finite connected quiver without loops. Then Q is wild if and only if there
exists a positive, sincere x € N™ such that Cox is negative and sincere, i.e. (Cox); < 0. Here, Cq
denotes the matrix belonging to the symmetric Fuler form. This means that for all x,y € Z™ we
have (z,y)q = 2T Cqy.

Proof. The proof of this lemma can be found on page 59 of [2]. We skip it since it mainly consists
of algebraic manipulations. O
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Proof of Theorem 3.33. 1. We know that @ is a Dynkin quiver if and only if its Tits form gq
is positive definite. We use this to show that @ is Dynkin if and only if 7o = (). Indeed,
if @ is Dynkin, then z € Fg implies that go(z) = (z,2)g = 131 zi(z,e;) < 0 and
since qq is positive definite, this implies that 2 = 0 and thus Fg = 0. We prove the other
implication via contraposition. Therefore, we consider the cases for a tame resp. a wild
quiver . If @ is a tame quiver, then we know from Theorem 3.16 that the unique smallest
positive radical vector § is in Fg. In the case that @ is a wild quiver, we know from the
proof of Theorem 3.16 that there exists a positive vector § (with connected support) such
that go(d) < 0. We show that § € Fg. First, notice that if x € N and j ¢ suppz, then
(z,ej)Q < 0. Indeed (7,€;)Q = D pesupps Tk(€k:€)Q = D kesuppe —Thdkj < 0. Moreover,
using the case distinction from the proof of Theorem 3.16, we get that for ¢ € suppz, we
either have (d,e;)g = (8',e;)g = 0 or (d,e;)q = (€j,€i)g < 0 (since @ has no loops). Using
that Fo = 0 <= ®in(Q) = 0, we get that @ is Dynkin <= &;,,(Q) = 0. From
Lemma 3.30 we know that if @) is Dynkin, then ®(Q) is finite. Notice that x € Fg implies
ar € Fq for all 0 < a € Z. Therefore, if ®(Q) is finite, this implies that ®;;,(Q) = 0 and
therefore ) is Dynkin.

2. Let @ be a tame quiver. We show that @, (Q) = rad ¢o \ {0} = Z5\{0}. Let 0 # = € rad q¢.
Then we have (z,¢;)g = 0 for all i € Qp and from Lemma 3.13, we know that x is sincere
and therefore supp z = @ is connected. Thus we have x € ®;,(Q). Now let 0 # = € 3, (Q).
Then we have gg(x) < 0 but since gq is positive semi-definite (@ is tame), we have gg(z) =0
and from Lemma 3.13, we know that x € rad gg. Finally, from Theorem 3.16, we know that
rad go = ZJ. Note that if @ is Dynkin, we know that ®;,,(Q) = (. Therefore, it remains to
show that for a wild quiver @, we have that @;,(Q) # Zd \ {0}. Let Q be wild and let =
be as in Lemma 3.34. For any y € Z", there exists a suitably large positive integer m such
that y — mz € Fg C 04, (Q). Indeed, since supp z is connected, we have that supp(y — mx)
is connected (for m large enough). Moreover, we can find m large enough such that for all
i € Qo we have (note that Q) is finite):

(y —mz,ei)q = (y,ei)q —m(z,e)g = (y,e)g —m (Cox); <0.
——
<0

But then, ®;,,(Q) cannot be equal to Z§ \ {0} for a single 6. Otherwise we had that for
any y,z € Z™ and all my, ms large enough, there would be a1, as such that y — mix = a10,
z — maox = a9d. This yields

(maa; — myas)d = may — Mamix — M1z + MMmiT = Mol — My 2.

However, this is not possible if y, z are linearly independent. Therefore, if we have that
D (Q) = Z5\ {0}, then @Q can only be a tame quiver.

3. This follows immediately from Lemma 3.34. Indeed, notice that x is sincere if and only if
suppz = @. In addition, (z,e;)g = (Cox);. O

3.3 Reflection Functors

In this section, we introduce reflection functors, which are a useful tool to analyze and compare
representations.

Definition 3.35. A vertex i € Qq is called a sink if there does not exist an edge starting at i, i.e.
for all a € Q1 we have t, # i. In contrast, a vertex j € Qq is called a source if there is no edge
ending at j, i.e. hy # j. For any verter i € Qo we denote by Qi C Q1 the subset of all the arrows
which are incident to i, i.e. a € QY if a either starts or ends at i.

Definition 3.36. Let i € Qy be a verter. We call s; the reflection at vertex i. This means that
$iQ 1is the quiver obtained by reversing all the arrows that start or end at i.
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Example 3.37. Consider the following quiver Q:

L] L] [ ]

1 2 3 4 5
The vertices 1 and 4 are sources, the vertices 2 and 5 are sinks and vertex 3 is neither a source
nor a sink. We list all possible reflections of Q:

51Q: . . ° . .
1 2 3 4 5
$2Q): . ° . . .
@ 2 3 4 5
S4Q: o o ° (] °
1 2 3 4 5
S{,QZ [ [] [ ° °
1 2 3 4 5

Definition 3.38. Let Q be a quiver and let i € Qq be a sink. Notice that for each a € Q% we have
he =1i. We define a covariant functor R} from the category repy(Q) to the category rep(s;Q).
For every representation V = (Vi,v,) € repx(Q), we define a representation RV = (V/,v)) in the
category repk(siQ) as follows. For all j # i we set V] =V}, and define V/ to be the kernel of the
map
& @ Vi, = Vi (Tt.)acqi — Z Vo (1, )
a€Q? acQl

For R;FV to be a representation, we need to define linear maps belonging to the arrows in s;Q. For
each arrow a ¢ Q% we set v/, = v,. For a € Qi, let b be the reverse arrow and we define v}, to be
the composition of maps

Vo, =Vi=ker& > P Vi = Vi, =V, =V,
cEQi
Here the map before the direct sum is the canonical inclusion and the map after the direct sum is

the canonical projection onto the component Vi,. To better understand what happens, we look at
the following picture. The red vertices belong to the summands of the space @ang Vi, Outside

of the circle, everything stays the same.

Q 5iQ
Vay- \‘/1 ‘/2 Vay- \Vl ‘/2
/ ) &~ / ) o~
o/ 1 Vs o/ 1 Va5
/ /
/ RT [
N S N
. .
L]
Vs V3

Now let ¢: V — W be a morphism between two representations V,W € repx(Q). We define the
morphism ¢' = R} ¢: RFV — RIW by ¢ = ¢; for j # i and ¢; to be the restriction of the map

@¢ta5 @ Vie = @ Wi,

a€Q? acQ? acqQy
to the subspace V; = ker&;.

Definition 3.39. Let Q be a quiver and let i € Qo be a source. Notice that for each a € Q% we have
te = i. We define a covariant functor R; from the category repx(Q) to the category repx(s;Q).
For every representation V = (v;,v,) € repk(Q), we define a representation R;V = (V/,vl,) in the
category repk(siQ) as follows. For all j # i we set V) =V;, and define V/ to be the cokernel of the
map
G Vi— @ Ve T+ (Va(Z))aeq: -
aeQ}
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For RV to be a representation, we need to define linear maps belonging to the arrows in s;Q). For
each arrow a ¢ QY we set v, = v,. For a € QY, let b be the reverse arrow and we define v, to be
the composition of maps

Vi =V =Vi, < @D Vi — coker¢; =V/ =V},
ceQy
Here the map before the direct sum is the canonical inclusion and the map after the direct sum is
the canonical quotient map (i.e. the quotient map modulo the image of (;). Consider the following
picture. The red vertices belong to the summands of the space eaaeQ’i Vi, Outside of the circle,
everything stays the same.

Now let ¢: V — W be a morphism between two representations V,W € repx(Q). We define the
morphism ¢' =R; ¢: R;V — Ry W by ¢ = ¢; for j # i and ¢; to map induced by

@(bha: @Vhaﬁ @Wha

aeQ? aeQ? aeQ?
on the quotient space V; = coker ;.

Remark 3.40. Note that we consider the category repk(Q) of finite-dimensional representations.
By doing this, we ensure that the sums in the definitions of the maps & and (; are finite sums
(resp. there are only finitely many non-zero summands). Note that this is necessary for the well-
definition of the maps & and (; because else the order of summation may not be negligible. To
fix this issue, one could also restrict to the case of finite quivers, as we sometimes do. Especially
when considering dimension vectors of representations (which is important for Gabriel’s Theorem,)
restricting to finite quivers is the right choice of restriction.

Before giving an example for Rj and R; , we prove that they are covariant functors.
Lemma 3.41. R} and R; are well-defined covariant functors.

Proof. We show that R;L is a functor. Let £/ denote the map € acQi W, — W, from the definition
of ’RTW. First notice that RjV is indeed a representation of the quiver s;@. This means that for
all arrows b € 5;Q1 we have that v, maps from V;, to V; . This is true by observing the definition.

Similarly, we need to check that ¢’ = Rj'gb is a morphism between the representations R;-"V and
R;"W. First, we observe that all the maps (b; are well-defined, i.e. gb} maps from R;‘Vj to R;'Wj.
This is clearly true for j # ¢ and in the case j = i, we notice that for z = (fta)ang €kerg =V,
we have:

V(D (@) = & (b1, (@e))acqy) = D waldr, (@) = D dn,(val,))

acQi acQl acQ?
= bilval@r,)) =i Y (valzr,)) = ¢:(0) = 0.
acQl aeQR?

In the third equality we used that ¢ is a morphism (i.e. ¢p, v, = we¢yr,). Thus we have that
im ¢, C ker £}V and this means that ¢/, is well-defined. We also need to check that ¢’ is a morphism,
i.e. for each b € s;Q1 we have ¢, v, = w,¢;, . Once again the case for a ¢ Q! is clear since this
part of the representations (and morphisms) stays the same (in the picture in the definition, this is
the part on the outside of the circle). For a € Q! (with inverse arrow b) we have that the following
diagram commutes
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’
v,
‘/i/ : V}:b = ‘/tn,

¢;l ld”hb = b,

wy,

W s Wy, =W,
Indeed, for x = (24.)ceqi € ker&; =V, we have:

wh¢5 (@) = wy (e (Te.))ceqi) = Pt (w1,) = I, (Te,) = &, (Vh (%) ceqi) = Sh, (Vh(2))-

So far, we have shown that RV € repi(s;Q) and R ¢: RfV — R} W are well-defined. Thus
it remains to show that Rj preserves identity morphisms and composition of morphisms. Let
V € repk(Q) be a representation and let idy be the identity morphism. For j # ¢ we have that
(R idy); = idy, and for j = i we have (R idy); = @aeQ§ idv,, |kere; = idkere, = id’Vi. Thus we
have that Rj' idy = idg+,. Nowlet ¢: U — Vand ¢: V — W be morphisms. We want to show that
R (Vo) = (REP)(R] ). For j # i we have that (R (V9)); = (¥¢); = v;é; = (RI¥); (R ¢);.

For j = i we have:

ker £} ker & kerg!” | kerg)
(Rj(lﬁ@)i = @ (Vo)e, |kZ§£U @ Y, P, |k:§§’ = @ Vo kzgy (bta'kZig}’
acQi acQj a€Q]
ker ker
= (B b [P 60, [5) = (RFV)(RT ).
& &
acQl acQi

This concludes the proof that R} is a covariant functor. The proof that R; is a functor is
analogous. O

Example 3.42. We consider the quiver Q) from Example 3.37. Let V be a representation given by
Vi 2% Vo < V3 <25 Vg =4 V.
By applying ’R;‘ to V, we get the representation R;’V
Vi 25 Vo 2 Vi ¢V 4= ker(vg).

Notice that only the vector space at the vertex 5 and the incident edge between the vertices 4 and 5
change! This is true in general by looking at the pictures in the definition of R;r and R; . There,
only the vector space and the maps inside the (imaginary) circle change. Now we apply Ry to
RV (the vertez 5 is now a source!) and get:

mod ker(vq)

Vi 22 Vo <2 Vs &2V, Vi/ ker(vg)

We conclude that RS_R;V =~V if and only V5 = im(vg). Indeed, by the first isomorphism theorem,
if Vs = im(vq) = Va/ker(vg), then the vector spaces at vertex 5 coincide and the map vq and
the projection map modker(vy) are the same map! In the case that im(vg) C Vs, we have that
Vs 2 im(vq) @ k" for some r € N. Moreover, the projection map modXker(vq) is isomorphic to the
restriction of vq to its image im(vy) = Vy/ker(vg). Therefore, we have that V = R RIV @ S,
where Sy is the simple representation defined in Example 2.16. Now we apply R;‘ toV and get the
top row of the following commutative diagram:

Vi «—— ker(vg + vp) Vi =V, 45 Vs
] A
VieVs

The maps m and w3 denote the canonical projections of V1 @ Vs to its summands. Again we notice
that only the vector space at the verter 2 and the maps belonging to the edges a and b change.
Now, by applying Ry to RyV we get the middle row of the following commutative diagram, where

the lower vertical arrow is the canonical map from Vi & V3 onto I(QL%) = coker (5. By the first

r(ve+vp
Vi®Vs

isomorphism theorem, we get an injective map ¢s: Tor(oe o) Vs.
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4 Keroton) R A
<N | %)
VieVs

We thus conclude that Ry Ry V =V if and only if Vo = im(va+v,). Indeed, by the first isomorphism
theorem, if Vo = im(vg+vp) = (Vi®V3)/ ker(vg+up), then the vector spaces at the vertex 2 coincide.

Moreover, the map Vi — % in the middle row and the map v, are isomorphic. Also the
VidVs

Map oto oy V3 in the middle row and the map vy are isomorphic. Therefore, we have that
RQR;V =~ V. In the case that im(v, + vp) C Vo, we have that Vo = im(v, + vp) ® k" for some
r € N. Moreover, the maps from Vi resp. V3 to R;R;V =V (in the middle row) are isomorphic
the restriction of v, to its image im(v,) resp. to the restriction of vy to its image im(wvy). Therefore,
we have V= Ry, RV & Sh.

3.3.1 Composition of Reflection Functors

Since s;5;Q = Q (for a sink or source 7) it is sensible to ask if the functors R} and R; are inverse
to each other. This is not the case! Indeed, Example 3.42 is a counterexample in the cases where
Vs # im(vg) resp. ve # im(v, + vp). Moreover, one can see that for the simple representation S;
we have R;'S; = 0 (for a sink 4), respectively R;'S; = 0 (for a source 7). In the following example,
we show this for an explicit quiver ), however, the proof for a general quiver @ is analogous.

Example 3.43. We again consider the quiver @ from Example 3.37. From Example 3.42 we get
that (RiSs)s = ker(vq) C Vi but Vy = 0. Thus we have that RESs = 0. For the sink vertez 2, we
get that (R;‘Sg)g =ker(v, +vp) C V1 ® V3 =0 and thus R;‘Sg =0.

Even though RZ'-" and R; are not inverse to each other, we consider their compositions and
observe what is missing to be equal to the identity. The following lemma marks a first step towards
that.

Lemma 3.44. Let Q be a quiver and let V be a finite-dimensional representation of Q.

1. Let i be a sink of Q. There exists a canonical monomorphism t;V: R;R;FV —-V.

2. Let i be a source of Q. There exists a canonical epimorphism wV:V — R;"’R;V.

Proof. Since s;5,Q = Q we have that R; RV, R R,V € repk(s;s;Q) = repx(Q). We now prove
that the maps are indeed morphisms (of representations) with the desired properties (monomor-
phism resp. epimorphism).

1. Let (¢;V); = idy; for j # i and consider

(R; RfV); = coker (; = coker(ker&; — @ Vi) = coker(ker & — @ Vi)
a€(siQ)} a€Qj

¢
=im¢; C V.

= (P Vi.)/ keré;

acQ?

Using the canonical isomorphism ¢, we set (¢;,V);: (R; R V); % im & — V;. First notice
that all the maps (1;V); are well-defined. Indeed, for j # i we have (R; RfV); = V; and
thus (4;V); = idy, is well-defined. For j = i, we have that (4;V); is well-defined by definition.
Notice that all the maps are injective. Therefore, +;V is a monomorphism, if we can show
that it is a morphism. Let us now consider an arrow a € Q. If a € Q% we have that the
following commutative diagram.
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idvtal lidvha

Va
Vi

a

For a € Q} we have the following diagram.

(RyRIV)., = Vi, —L im& = (R; R V),

itha,J( J{(MV)'&
Vi

Vi

a

¢
Using the isomorphism (R; R;V); =im¢;, (Tt.)ceqi + ker&; — ZceQi ve(zy,) we get that
f@e,) = va(@e,) + X ceqi ea Ve(0) = va(wt,) € im§&;. Therefore, the above diagram com-
mutes. This shows that ¢;V is a morphism (and thus a monomorphism).

2. Let (m;V); = idy; for j # i. Now consider

(RIR;V); = ker&; = ker( EB Vi — coker (;) = ker( @ Vh, — coker ¢;)

ae(siQ){ aEQi
. Y.
= ker(@ Vh, — @ W, /im () 2 im¢; C @ Vi, -
acQi acQi a€Q]

Using the canonical isomorphism 1), we set (m;V);: V; C% im¢; w—; (’R;rR; V);. First notice
that all the maps (m;V); are well-defined. Indeed, for j # i we have (R R; V); = V; and
thus (m;V); = idy, is well-defined. For j = i, we have that (m;V); is well-defined by definition.
Notice that all the maps are surjective. Therefore, 7;V is an epimorphism, if we can show
that it is a morphism. Let us now consider an arrow a € Q. If a ¢ Q} we have that the
following commutative diagram.

Via Vha

itha J{ J{idvha

(RIR; V)i, = Vi, — Vi, = (RFR; V),

For a € Q% we have the following diagram.

Vi Vi

(mV)QJ( J{idvha

(RIR;7 V)i =im ¢ —2— Vi, = (RyR; V),

P
Using the isomorphism (R}R;V); 2im(; we get that 9((ve(2))eeqi) = valz) € Vi, (for
x € V;). Therefore, the above diagram commutes. This shows that m;V is a morphism (and
thus an epimorphism). O

Example 3.45. We have already seen examples for the canonical monomorphism v;V in Exam-
ple 3.42. Indeed, for the sink vertex 5, we have an inclusion ¢5: Vy/ker(vg) — Vis. By setting
¢; = idy, for i € {1,2,3,4}, we get that 15V = (¢i)1<i<s. For the sink vertex 2, we also have a
canonical inclusion at the vertex 2, given by the map ¢s: % — Va. Now we set ¢; = idy,
fori€{1,3,4,5} and get that 12V = (¢i)1<i<s-

To better understand the morphisms defined in Lemma 3.44, we observe, where ¢;V fails to be
surjective. Notice that this is described by the representation coker(¢;V). Analogously we observe,
where 7;V fails to be injective by looking at the representation ker(m;V).
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Lemma 3.46. Let Q be a quiver and let V be a finite-dimensional representation of Q).

1. Let i be a sink of Q. Then the representation coker(t;V) is supported at the vertex i. This
means that coker(¢;V); = 0 for all j # i and thus all maps v, = 0 are trivial (for a € Q).
Moreover, we have that coker(;V); = coker &;, where &; is the map given in the definition of
RIV.

2. Let i be a source of Q. Then the representation ker(mw;V) is supported at the vertex i. This
means that ker(m;V); = 0 for all j # i and thus all maps v, = 0 are trivial (for a € Q1).

Moreover, we have that ker(m;V); = ker(;, where (; is the map given in the definition of
R; V.

Proof. 1. For j # i we have (1;V); = idy, and thus coker(¢;V); = V;/V; = 0. This shows that
coker(¢;V) is supported at the vertex i. Moreover, in the proof of Lemma 3.44 we showed
that we have (R; R V); 2 im¢;. Thus coker(¢;V); = V;/im&; = coker ;.

2. For j # i we have (m;V); = idy, and thus ker(r;V); = V;/V; = 0. This shows that ker(r;V)

is supported at the vertex 1. Moreover in the proof of Lemma 3.44 we showed that we have
(R;FRZ»_V)i >~ im ;. Thus ker(m;V); = ker(Vi — im¢;) = ker ;. O

Remark 3.47. Since coker(t;V) and ker(m;V) are supported at the vertex i, they are both direct
sums of copies of the simple representation S;.

Example 3.48. Again, we consider the quiver from Ezxample 3.42 and the induced monomor-
phisms 1oV and 15V that are described in Example 3.45. Using Lemma 3.46, we get the following
representations.

_ Vg v Ve od ker(v
R5 Rg'V V1 V2 b V3 Vm ¢ df(e:%)d) = 1m(vd)
coker(t5V): 0—250+2—0+2—0 0 coker(vq)

We observe that V = Rz RV @ coker(15V). Similarly, we get the representations.

/T\

+ -\ VIpV:
R3R;V: er(ljf e Vi Vs
(=,0) 0,—-)
|4 @ Vs
0 0 0 0
coker(:oV): 0 —— coker(v, + vp) 0 0 0

Again, we have V = R; RFV @ coker(15V). This shows that the representations coker(1aV) and
coker(t5V) are supported at the verter 2 resp. & and that they are of the form described in
Lemma 3.46. In addition, we see that they are summands of V.

We are now finally ready to investigate how R, R; and the compositions R; R; and R R;
operate on the summands of a representation V. We have seen before that R:r and R; are not
inverse to each other. However, in Example 3.42, we have already seen that R; RZFV (if i is a sink)
resp. R R;V (if i is a source) is a summand of V and their ‘difference’ is a direct sum of copies of
the simple representation S;. This suggests that R, R; resp. R; R; annihilates the summands
isomorphic to S;. Since coker(:;V) and ker(m;V) are direct sums of copies of S;, we suspect that
coker(1;V) and ker(m;V) are those missing copies of S; in R; RV resp. R R; V. Note that we
have already seen this in Example 3.48. It turns out that this is true in general, which is the
content of the following theorem.
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Theorem 3.49. Let Q be a finite connected quiver and let V,W be representations of QQ. Then for
any sink or source v we have:

1. RE(Vew) = RIVe REW.
2. If i is a sink, then we have V= (R; R} V) @ coker(1;V).
3. If i is a source, then we have V= (Rf R; V) @ ker(m;V).
4. IfV is finite-dimensional and coker(1;V) = 0, then dimR;V = o;(dimV).
5. IfV is finite-dimensional and ker(m;V) = 0, then dimR; V = o;(dimV).
Proof. 1. We refer to this property as ‘preserving direct sums’. We show that it is true for

vector spaces, but also for morphisms. For the vector spaces, we observe that for j # i we
have (RE(V@W)); = (VW) =V;aW, =V, oW, = (RFV); ® (REW);. For j = i we

have
(RS (Ve W), =ker(¢)*V: P (Ve W), - (VaWw),)
a€Qi
=ker(&*V: PV, @W, = VioW))
a€Qi
=ker(&/: P Vi, = Vi) dker(&: @ Wi, = Wi) = (R}V); @ (RFW),.
acQy acQy

Similarly, for j = ¢ we have
im(¢O": (VoW); — @ (Ve W),,) =im(*": Vo Wi - @ Vi, & Wa,)
acQ? a€Qj
im(¢): Vi = @D Vi) @im(¢V: Wi — @ Wa,).
acQ? acQ’
This yields the equation
(R (V@ W)); = coker ¢/®W = ( EB (Ve W)y, )/ im ¢} ®W
aeQl
= (D Va)/im T @ (D Wh,)/im ("]
aeQ? aeqQ?
= coker ¢} @ coker ¢V = (R;V); @ (R; W),.
We now consider a pair of morphisms ¢: Vi — Wy,9: Vo — W5, For j # i we have
(RE(6+0)); = (6 +); = ¢ + ¥ = (RF¢); + (R ¥);. Now for j =i we have

(R;‘— (¢) + w))i = @ ((b + 1/))15{1 ‘ker 51_"169‘/2 = @ ¢ta, + tha ‘ker 51_"169‘/2

aeQR! acqQy

= @ ¢t"'|ker£lyl +wt“‘ker§y2 = @ ¢t’1|ker§:/1 + @ wt“'kerfz/2
aeQR? aeR? aeQRl

= (R )i + (R ).

Here, we used that ker 51-‘/1@‘/2 splits into ker @Vl @ ker fz-VQ. We already showed this in the
splitting part of the vector spaces. Similarly for j = i we have

(Rz_ (0+4))i = @ (¢ + ﬂ})ha'coker(ivl@% = @ bn, + wha|coker cheve

aeQ? a€Qi
= @ ¢h“'|coker§';/1 —*—lll)ha‘cokerg“iv2 = @ d)h‘l|cokercjivl + @ wh“‘cokerCiVZ
acQi a€Q} a€qQ]

= (Ri ¢)i + (R )i

In the third equality, we used that the coker QV 10Ve splits into coker Q-V ! @ coker Civ 2 (already
proven in the splitting part of the vector spaces).
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2. To prove the direct sum decomposition, we first need to define two inclusion morphisms
1V: Ry RV — V (already defined) and p: coker(:;V) — V. We also need to define two
projection morphisms 7 : V — R;R;FV and m2: V — coker(¢;V). From Lemma 3.46 we have
coker(¢;V); = coker §;. We notice that the projection map p}: V; — coker §; = V;/(im&;) has
a section, i.e. a map p;: coker&; — V; s.t. pip; = ideokere;. Indeed, let {v; +1im&;}jer be a
basis of coker(¢;V). Using the surjectivity of p}, we can choose v; € V; s.t. pi(v;) = v; +imé;
for all j € I. Then the map induced by v; +im¢&; — v; for j € I is a well-defined linear map
and we have that p}p;(v; +1m&;) = p(v;) = v; +im¢;. Using the map p;, we get a morphism
p: coker(;V) — V by setting p; = 0 for j # i and for j =i we set p;: coker{; — V;. Notice
that p defines a morphism since the following diagram commutes for every a € Q} (for all
other edges a from j; to jo, the commutativity condition follows directly from p;, = 0 and

Pjz = 0)'

coker &; +2 0

Pi\[ J{l)tﬂ =0

Va
Vie——W,

We also have projection morphisms 7: V — R;R?‘V and mo: V — coker(s;V) defined
as follows. In the proof of Lemma 3.44 we have seen that (R;R;/V); = im¢& C V.
Thus we can view R; RZ'-"V as a subrepresentation of V and we can define m; to be the
projection morphism. We define (m2);: V; — 0 to be the trivial map for j # ¢ and
(m2); = p}: Vi — coker§; = V;/im¢; is the canonical projection map. Now we check that this
indeed yields a direct sum decomposition. We have that m¢;V = idjs- 5+ since R; RV can
be viewed as a subrepresentation of V. Moreover, we have o

p;pz = id-coker & lf] = i7

(m2p)j = {0 =ido = idcoker(ipv); 1f J # i

This shows that map = idcoker(,,v)- It remains to show that (;Vmr; + pme = idy. Indeed, for
J # i we compute (1;V71); = idy, and (pm2); = 0. We also have (,;Vmy);: Vi — im&; — V;
and (pma);: Vi — coker & < V;. Thus for all v = vy +ve € im&; @ (im&;)+ = V; we have

(t;V1 + pma)i(v) = ti(v1) + p(vg +1m&;) = v1 + vy = v.

Therefore, we conclude that V 22 (R; R;V) @ coker(t;V).

3. Again, we need to define two inclusion morphisms and two projection morphisms. We have
already defined the projection morphism 7;V: V — R R; V. Using that ker(m;V); = ker (;
(Lemma 3.46), we can view ker(m;V) as a subrepresentation of V and thus we can define
the morphism 7o: V — ker(m;V) to be the canonical projection onto the subrepresentation.
We now define two inclusion morphisms ¢ : RTRT V — V and t9: ker(m;V) — V as follows.
We know from the proof of Lemma 3.46 that (R R;V); = im(;. We claim that the map
Ci: Vi — im(; has a section, i.e. a map ¢: im(; — V; s.t. (¢ = idim¢,. Similarly, as
in part 2, we can define such a map on a basis of im (; using the surjectivity of {; on the
subspace im¢; = (R R;V);. Using the map ¢, we get a morphism ¢;: RfR;V — V by
setting (v1); = idy, for j # i and for j = i, we use the map ¢. This defines a morphism since
the following diagram commutes for every a € Q)

. ™Vha
im¢ —— Vi,

4{ J/(Ll)ha =idy,,

Va
Vi—— Vh,.

Indeed, using that v, = 7y, (; (where 7y, : EBcng Vi, — Vi, is the projection map), we
get that va¢ = Ty, (¢ = 7y, idim¢, = Tv,, lim¢,- Finally, using that ker(m;V); = ker (;, we

32



can view ker(m;V) as a subrepresentation of V and thus we can define to: ker(m;V) — V to
be the canonical inclusion morphism. Now we check that these four morphisms indeed yield
a direct sum decomposition. We have that

idy, (11); = idy, idy, =idy, if j # .

This shows that (m;V)(t1) = idg+z-y. We also have that mary = idier(x,v) since ker(m;V) is a

mv)(e) = {

subrepresentation of V. It remains to show that (¢1)(m;V) 4 tame = idy. Indeed, for j # i we

compute (¢1);(m;V); = idy, idy, = idy, and (t2ma); = 0. We have (1ams);: V; — ker §; — V;

and (11);(mV);: Vi — im¢; < V; and thus for all v = v; + vy € ker (; @ (ker ;)* = V; we

have

(t1)i(mV)i(v) + (t2m2)i(v) = P(v2) + t2(v1) = v2 +v1 = v,

where we used that (ker ¢;)* = V;/ ker ¢; = im (;. We conclude that V = (R} R; V)@ker(m;V).
4. If coker(1;V) = 0, then we have coker(:;V); = coker §; = 0 and thus we have that im¢&; = V.

Using the dimension formula for finite-dimensional linear maps we get

dim(RV); = dimker¢; = dim( @) Vi,) — dimim&; = dim( P Vi,) — dim V;
acQ? acQl
= Y dimV, —dimV; € 3" djs dim V; — dim V; = o (dimV),,
a€Qj i=1
JFi

where d;; is the number of arrows between the vertices ¢ and j. In Equation (1), we used that
there are no loops at i since i is a sink. Therefore, we have that V;, # V; for alla € Q%. For all
j # i we also have dim(R;V); = dim V; = 0;(dimV); and thus we have diim’Rj'V = o;(dimV).

5. If ker(m;V) = 0, we then have ker(m;V); = ker (; = 0 and from the dimension formula, we get:

dim(R;V); = dim coker ¢; = dim( @ Vi, ) — dimim ¢;

aEQi
=dim( @ Vi,) — (dimV; — dimker¢;) = »  dimV, — dimV;
aEQi aEQﬁ
=Y " d;; dimV; — dimV; = o;(dimV);
j=1
J#i

For j # ¢ we have dim(R; V); = dim V; = 0;(dimV); and thus we get dimR;V = o;(dimV).
O

3.3.2 Reflection Functors on Indecomposable Representations

We always have a decomposition into indecomposable representations by Theorem 2.33. By part (1)
of Theorem 3.49, it suffices to observe how Rj and R; operate on indecomposable representations.

Corollary 3.50. Let @ be a finite connected quiver and V' be an indecomposable representation.
1. Ifi is a sink, then we have two cases:

o IfVS;, then RfV =0 and gs,o(dimR;V) = 0.
e IfV 'S, then RIV is non-zero and indecomposable, R; RV = V and the dimension
vectors of V and R?‘V are related by qsiQ(@RjV) = go(dimV).

2. If i is a source, then we have two cases:

o IfVXS,, then RV =0 and ¢s,o(dimR; V) = 0.
o IfV 2£'S;, then RV is non-zero and indecomposable, R;FR;V =V and the dimension
vectors of V and R; V are related by qs,o(dimR; V) = ¢o(dimV).
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Proof. It V =2 S,;, we have already seen that R;-"V = 0, respectively R;V = 0. Then clearly
4s;@(dIMREV) = ¢4,0(0) = 0. Now let V £ S,. If i is a sink, V = (R; R V) @ coker(1;V). Since
V is irreducible, one of those summands needs to be trivial and since coker(;V) is isomorphic to
a direct sum of S;, we conclude that coker(¢;V) = 0 and V = R;R;V. This also proves that
RZFV is indecomposable. Indeed, if RZFV =W; & W,, then V=R, W; & R; Wy is not indecom-
posable. Moreover, we have gs,o(dimR; V) = g5,¢g(0;(dimV)) = gg(dimV) (using Lemma 3.23).
Analogously, if 7 is a source, we use that V = (R R V) @ ker(m;V) and that ker(m;V) is isomorphic
to a direct sum of S; and thus ker(m;V) = 0 and V = R} R; V. Using Lemma 3.23, we get that
Ges@(dIR] V) = g4, (03 (dimV) = g (dimV). O

Theorem 3.49 and Corollary 3.50 show that Rj' and R; are inverse everywhere except on
the simple representation S;. To state this precisely, we consider the subcategory consisting of
representations, which do not have a summand equal to S;.

Definition 3.51. Let Q be a quiver and let i € Qo be any vertex. We denote by Repk(Q)({i)
the full subcategory of Repx(Q) consisting of representations that do not have summands that are
isomorphic to the simple representation S;. Analogously, we define the full subcategory repi(Q)(z)

of repk(Q).

Corollary 3.52. Let @ be a quiver and let i € Qg be a sink or a source. Then R;" and R;
induce mutually inverse equivalences repy (Q) (i) — repk(s;Q) (i) andrepk(s;Q){(i) — repk(Q){(i). In
particular, there is a one-to-one correspondence between the isomorphism classes of indecomposable
representations of Q and those of s;Q.

Proof. The first part follows directly from Corollary 3.50 and Theorem 3.49. Indeed, for a repre-
sentation V. =V; @ ... ® V, € Repk(Q)(i), where V; are the indecomposable summands that are
all non-isomorphic to S;. If 7 is a sink, we have:

R, RIVE (R, RiIVI)&...®& (R, RiV,) 2V &...8V, =V.
Similarly, if 4 is a source, we have:
RIRIVE(RRVI)@...® (RIR;V,) 2V1&...0V, =V.

The one-to-one correspondence between the isomorphism classes of indecomposable representations
in Repk(®) and Repy(s;Q) is given by:

RV if ¢ is a sink,

Si — Si,V — {
R;V ifiis a source.

where V € Repk(Q) is indecomposable and V % S;. O

The subcategories Repk(Q)(i) and repx(Q)(i) are interesting because on those categories,
R;R; and RIR; are the identity (up to isomorphism of representations). Moreover, if we
classify all indecomposable representations in Repy(Q)(i), we also classify all indecomposable rep-
resentations in Repy(Q) since the only additional indecomposable representation is S;. However,
the subcategory Repk(Q)(i) has the crucial disadvantage that morphisms in Repy(Q)(i) do (in
general) not have kernels and cokernels. This means that for a morphism ¢: V — W between
representations V,W € Repy(Q)(i) it can happen that one (or both) of the representations ker ¢
or coker ¢ is not in Repy(Q)(i), meaning that the representation ker ¢ or coker ¢ has a summand
that is isomorphic to S;.

Example 3.53. We give an example, illustrating that the category Repi(Q)(i) does (in general)
not have kernels and cokernels. Let Q) be the linear Ls-quiver and let ¢: V' — W be the morphism
represented by the following commutative diagram

V: 025k 4y
l¢1:0 lfﬁz:id l%—ld
w Fdy g dd g



Note that the representations V and W are indecomposable and thus do not have a summand that
is isomorphic to a simple representation S;. The indecomposability of V and W is proven in Sec-
tion 4.1. However, the representation coker ¢ is given by the following picture

E—250-—-"50.

Therefore, coker ¢ = Sy which shows that Repk(Q)(i), in general, does not have cokernels. Analo-
gously, we consider the ‘reverse diagram’:

V: s g g
J{lﬂlzid Po=id P3=0
W: E—dy 950,

Here, we get kert = S3, showing that Repk(Q) (i) does not necessarily have kernels.

3.4 Coxeter Functors

In this section, we introduce a notion of ordered vertices and we introduce the sequence of reflection
functors belonging to this ordering. This notion of ordering coincides with the one given in [2],
but is different from the one given in [1].

3.4.1 Admissible Orderings

We introduce a notion of a preferred ordering and show for which quivers such an ordering exists.
The existence of such an ordering is closely related to the existence of cycles in the quiver.

Definition 3.54. An ordering i1,12,...,i, of the vertices of a quiver Q is called (+)-admissible
if i1 4s a sink in @ and for each 2 < t < n, it is a sink in S;,_, ..., Q. Dually, an ordering
1,92, .- ,0n 18 called (—)-admissible if i1 is a source in Q and for each 2 <t < mn, i; is a source
in S, ,...8,Q. It is required that each vertex of Q) appears exactly once in our ordering.

Example 3.55. We consider the following quiver Q:
3
[ ]

AN

1 2 4 5

The ordering 1,4,2,3,5 is (+)-admissible. Indeed, 1 is a sink in Q, 4 is a sink in $1Q, 2 is a sink
i $481Q, 3 is a sink in s95481Q and 5 is a sink in $3525481Q. One can also check that 3,2,1,5,4
is a (—)-admissible ordering.

Lemma 3.56. There exists a (+)-admissible ordering of the vertices of a quiver Q if and only if
Q is acyclic, i.e. there are no oriented cycles in Q.

Proof. We prove one implication by induction on the number of vertices. Let n be the number of
vertices of () and suppose that ) is acyclic. Since the base case n = 1 is clear, we can assume that
n > 2. Now let i,, be the starting vertex of an oriented path of maximal length. Since @ is acyclic
there are no infinite ordered paths and thus such a path exists. Then 4,, is a source, else we have
a bigger ordered path. Now we remove 4, from the quiver (we also remove all its incident edges).
By induction, the smaller quiver has an admissible ordering i1,...,4,_1. Now i1,...,%,_1,, iS an
admissible ordering of the original quiver ). Indeed, each incident edge a = (i, ;) once reverses
direction by applying s;, and then reverses the direction back by applying s; . Therefore, i; is also
a sink in s;,_, ...s;; @ (notice that here, we apply the s;; to the whole quiver Q) and also i, is a
sink in s;, ,...8;,@. O
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In the induction step of the proof, we have chosen a vertex i,. This hints at the fact that
there is generally not a unique (4)/(—)-admissible ordering. A possible algorithm to choose a (+)-
admissible ordering is the following. For an acyclic quiver @, there always exists a sink i;. Now
we can delete the vertex 41 (and its incident edges) and the resulting quiver is again acyclic, which

allows us to pick a sink i5. Doing this inductively yields an (+)-admissible ordering i1, ..., i,.
Lemma 3.57. Let i1,is,...,1, be an ordering of the vertices of a quiver Q. Then 11,13, ... 1%, s
(+)-admissible if and only if iy, in_1,...,41 is (—)-admissible. In particular, a quiver Q admits a

(4+)-admissible ordering if and only if it admits an (—)-admissible ordering. Therefore, we often
Just refer to an admissible ordering, meaning a (+)-admissible ordering with induced (—)-admissible
ordering.

Proof. Let i1,...,i, be (+)-admissible. Then, i, is a sink in s;,_, ...s;; Q. But in the process of
going from @ to s;, , ...s;, @, every incident arrow of i, is flipped once and thus 4, is a source in
. Similarly, because %,—; is a sink in s;,_, ... s;,Q, we know the following for all 1 <k <n — 2.
If a is an arrow (in @) between i, 1 and i, then a must point away from ¢,_; (since it points
towards ip—1 in s;,_, ...$; Q). Therefore, a also points away from 4,1 in s; Q. In addition, if
b is an arrow (in Q) between 4,1 and i,, then b must point away from 4,1 in s;, Q since i, is
a source in Q). Repeating this argument inductively yields that i,,%,—1,...,%1 is (—)-admissible.
The other implication can be proven analogously. O

Example 3.58. We consider the quiver from Ezample 3.55. We observe that the sequence
5,3,2,4,1 is a (—)-admissible ordering and that 4,5,1,2,3 is a (+)-admissible ordering. In addi-
tion, this also shows that there can be multiple admissible orderings.

Remark 3.59. There is another way to think about admissible orderings. If a quiver Q is acyclic,
then @) represents a partial order on the vertex set Qq. Indeed, for two wvertices i and j, we can
define i < j if and only if there exists a directed path from i to j (we say that there is a path from
each vertez i to itself). This indeed defines a partial order since there are no oriented cycles in
Q. Then we can choose a total order that extends our partial order and this yields an ordering
of the vertices. It can be shown that this ordering is (—)-admissible. This point of view helps to
understand why Q) needs to be acyclic for it to admit an admissible ordering. Indeed, if QQ would
have an oriented cycle, then we would get a chain iy < i < ... <1, < iy which would imply that
i1 =9 = ... = i,. Notice that an increasing ordering (with respect to our total order) yields a
(=)-admissible ordering and a decreasing ordering yields a (4)-admissible ordering.

Example 3.60. We consider the quiver from Example 3.55. As explained in the remark above,
we get the following partial order: 2 < 1,2 < 4,3 < 2,3 < 4,5 < 4. We see that the (+)-admissible
orderings 1,4,2,3,5 and 4,5,1,2, 3 are total orders that extend our partial order (the total orderings
are in decreasing order).

We notice that each arrow in s;, ... s;, @ results from an arrow in ) by changing its orientation
exactly twice and therefore, we have that s, ...s;,; @ = Q. This motivates the following definition.

Definition 3.61. Let Q) be an acyclic quiver and let i1,...,i, be a (4)-admissible ordering of
the vertices of Q. The two following functors are called Coxeter functors (with respect to this
ordering).

Ct =R} ...R}: Repu(Q) = Repr(Q)
C” =R, ..-R; : Rep(Q) — Repx(Q)

Lemma 3.62. The Coxeter functors C* and C~ do not depend on the choice of the admissible
ordering of the vertices of a quiver Q.

Proof. First, we claim that R;er = R;“Rj if ¢ and j are sinks that are not adjacent to each

other. Indeed, notice that R;r and R;r change different vector spaces and linear maps, and therefore
the order of operation does not matter. Now let 41,...,4, and 4{,...,4, be two (+)-admissible

r'n
orderings of the vertices of Q). Let iy =4,,. Then 4; is a sink in @ and in it . -8t Q. Therefore,

i1 is not adjacent to any of the vertices ¢, ...,/ _; and we get that:

RIRY ..RY=RY Rf ..Ri=..=Ri .. .RIRI =R}
m v 1 m—1 m 1 1 m —

m—1 m—1 m—1

+0+
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Now let iy = i},. We denote by R RZ RZ the sequence R}/ R7+’1 with RZ omitted. If
i A j

RZ does not occur in the sequence, we just leave the sequence as is. We know that i is a sink in

$;, @ and in Sif_yonsyy Q. Therefore, i is not adjacent to any of the vertices ¢}_,, ..., apart from

maybe i1 = i],,. We do not know if 4; is a vertex in the list of 4j,_,,... 4], however, by possibly
excluding RI we get that

+ Pt +_pt o+ ot
Ri; Ry "'Ril _Ri;c—l R ...Ri,lRm.
Therefore, we can first move RI to the right and then move R;Z to the right and get
+ + _pt  pt ot ot ot
R ...’RZ.,1 =Ry - Ri Ry "'RigRuRil'

D()lng thlS lnduCtl \% el y y lelds
1,/’ Tt 273 1

in

+
R
The case of the Coxeter functor C~ can be proven analogously. O

Since only acyclic quivers admit admissible orderings, we restrict our attention to acyclic quivers
in the rest of this section. Moreover, in the acyclic case, we have an admissible ordering and because
the Coxeter functors C* and C~ are independent of the choice of admissible ordering, we assume
w.l.o.g. that the vertices in Qo = {1, ...,n} already depict an admissible ordering, i.e. that 1,...,n
is a (—)-admissible ordering. Now we use the results about reflection functors to better understand
the Coxeter functors.

Corollary 3.63. Let Q be a finite, connected, and acyclic quiver and let C* be the Cozeter functors.
Then for any indecomposable representation V of Q, either CtV is indecomposable or CTV = 0. In
the first case, we have qg (dimC*V) = g (dimV), while in the second case we have qg (dimC*V) = 0.

Proof. This proof directly follows from Corollary 3.50. Since the case C*V = 0 is trivial we can
w.l.o.g. assume that C*V # 0. From Corollary 3.50 we know that RIV is indecomposable. Using
this argument inductively shows that CTV is indecomposable. Similarly, we can conclude that C~V
is indecomposable. Moreover, we have

qQ (@C+V) = QSlnsllQ(dlimR;; T RZV) = (Isi,,hl "'SilQ(mRIL—l e RIV)
=...= QSilQ(@RIV) = go(dimV).
Analogously, it follows that gg(dimC~V) = gg(dimV). O

Example 3.64. To see an example of the Coxeter functor, we refer to Section 4.2. There, it is
demonstrated how the Coxeter functor operates on the linear L, -quiver. Explicitly, it is calculated,
what happens to the dimension vector of an indecomposable representation, when applying C.

Definition 3.65. Let Q be an acyclic quiver and fix a (+)-admissible ordering iy,...,i, of its
vertices. The automorphism ¢ = o, ...0; € W(Q) C Aut(Z"™) is called a Cozeter transforma-
tion.

The Coxeter transformation and the Coxeter functor are related by the following property.

Lemma 3.66. Let Q be an acyclic quiver and let Ct be the Cozeter functor and c be the Coxeter
transformation (w.r.t. any admissible ordering). Let V' be an indecomposable representation of
Q that is not isomorphic to the simple representation S; for any i € Qu. We then have that
dim(C*)"V = ¢"(dimV).

Proof. This is an immediate consequence of diimR:rV = 0;(dim)V from Theorem 3.49. O]

Remark 3.67. The Cozeter transformation is independent of the choice of admissible ordering.
However, since the Coxeter functor CT is independent of the choice of admissible ordering and we
only use the above property of the Coxeter transformation, it is not important that the Coxeter
transformation is independent of the choice of admissible ordering. Therefore, we do not prove it.
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Lemma 3.68. Let (Q be a Dynkin quiver.

1. The Cozxeter transformation ¢ has no non-zero fixed vectors, that is cx # x for all0 # x € Z™.

2. For each positive x € Z"™, there exists an integer r > 1 such that c"(x) is not positive.

Proof. First notice that since @ is Dynkin ( = acyclic), both the Coxeter functors C*,C~ and
the Coxeter transformation c exist.

1. Suppose that x € Z" such that cx = x. Because 0;,,...,0;, do not change the i;-th
coordinate, we must have o;(x); = x; and thus o;(x) = z. Doing this inductively, yields that
oi;(x) = x for all 1 < j < n. From the definition of o;, we get that (z,e;)q = 0 for all
1 < j < n. This implies that gg(z) = 0 and thus z = 0.

2. We know from Corollary 3.31 that W (Q) is finite. Therefore, there exists some h > 1 such
that ¢" = id (e.g. h = |[W(Q)| is the cardinality of W(Q)). If x,cz,c?x,...,c" 1z are all
positive, then y = x + cx + c?z + ... + ¢~z is positive ( = y # 0) and cy = y which
contradicts part 1. But then one of the cx, c?z, ..., c" 'z is not positive. O

Proposition 3.69. Let Q be a Dynkin quiver, and let V be an indecomposable representation of
Q. Then there is a finite v such that CT...CTV = 0.
N—

r times

Proof. Let x = dimV. If V = S; (for some i € Qq), then we have C*V = 0 since RjSi = 0.
Thus let V # S; for all ¢ € Qy. Then Lemma 3.68 yields an integer r such that the vector
c"(z) = ¢"(dimV) = dim(C*)"V is not positive. Therefore, we have (Ct)'V=C"...CTV=0. O

T times

Example 3.70. In Section 4.2, Proposition 3.69 is shown in the example of the linear L, -quiver.
Then, we can take r = n.

3.5 The Proof of Gabriel’s Theorem

We first state the version of Gabriel’s Theorem that we prove. This version of the theorem is
superior to Theorem 3.2 since it gives a characterization of the isomorphism classes of the inde-
composable representations for the Dynkin quivers. This section is based on [2].

Theorem 3.71 (Gabriel, version 2). Let Q be a connected quiver and let k be an arbitrary field.
Then:

1. Q is of finite-type if and only if Q is a Dynkin quiver.
2. When the equivalent conditions in (1) are satisfied, the correspondence V — dimV induces a

bijection between the set of isomorphism classes of indecomposable representations of Q and
the set ®T(Q) = ®(Q) NN™ of positive roots of Q.

Proof. Step 1: First, we assume that @) is a Dynkin quiver. We show that @ is of finite-type and
that (2) holds. For simplicity, we set Qo = {1,2...,n} and we assume that 1,2,...,n is a (4)-
admissible ordering. Let V be an indecomposable representation of @). Then dimV is positive. By
Lemma 3.68, we know that there exists r such that ¢"(dimV) is non-positive which implies that
(CT)"V = 0 by Proposition 3.69. Here, ¢ = 0, ...020;1 denotes the Coxeter transformation. We
consider the sequence

(i1,02, -« yinyings - sipn) = (1,2,...,n,1,2,...,n,1,2,... . n),

where the sequence 1,2,...,n is repeated r times. Let 0 < t < rn such that oy, ...o;, (dimV)
is positive but oy, , ... (dimV) is non-positive and thus 0. This is equivalent to saying that
R;:H RZ is the smallest subsequence of (CT)", which sends V to the trivial representation.
Since R;-t e RZV is indecomposable and RZH RZV = 0, we know from Corollary 3.50 that
R: . .RZV =Si,,,,» where S;, | is the simple representation (at the vertex i;;1) of s, ... 54,5, Q.
Applying the same corollary inductively yields that

Te41”

VR R, ...R;Rf..RfV=R; R, ...R;S
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Note that the sequence R; R, R;R: .. .RZ is well-defined since for all 1 < j < ¢, we have
that i; is a sink in s;;,_, ...s;, @ and i; is a source in s;,,, ...8;8;, ...8,Q = s, ... 8;,Q because
1,2,...,n is (4+)-admissible. Moreover, Theorem 3.49 yields that
dimV = dimR; R;, ... R; Si,,, = 04,04, ... 04, (dimS;, ) = 04,04, ... 04, (€4, )-

Therefore, all dimension vectors of indecomposable representations are (positive) roots of Q. More-
over, let VW be two indecomposable representations such that dimV = dimW. We get that
dimR} ... RfW =0y, ...04, (dimW) = 0y, ... 0, (dimV) = ¢;,,, = dimS;,,,. But S;,,, is the only
representation with dimension vector e;,,, and therefore R;t . .RIW =S

i1 - Now, applying the
mirrored sequence of reflection functors, we get

W=R,.RIRS..RIW=R, .RTS;, =V

Tt41
Therefore, we get a well-defined map
¢: T — T(Q), V] — dimV,

where Z denotes the set of isomorphism classes of indecomposable representations V of @ and
[V] denotes the isomorphism class of V. Note that we have shown that ¢ is an injective map.
Since ®T(Q) is finite (Lemma 3.30) this shows that @ is of finite-type. We now show that ¢ is
surjective and thus proving (2). Let x € ®*(Q) be a positive root of go. From Lemma 3.68, we
get an m such that ¢"™(z) is not positive. Similarly as before, let 0 < ¢t < mn be minimal such
that oy, ... 04, () is positive, but o, ., 0, ... 04, (¢) is not positive. But since oy, 04, ... 04, () is
a root, it is either negative or positive. However, o;,, only changes the i;;1-th coordinate and
thus we conclude that o, ...0;, () = €;,,, and therefore we have x = 0y, ... 0y, (e;,,,). But the
representation V.="R; ...R; S;,,, is indecomposable by Corollary 3.50 and has dimension vector
x. This shows that ¢ is surjective.

Step 2: For any quiver @ and a subquiver Q’, we have that Repy(Q’) is a full subcategory of

Repk(Q). Indeed, if V is a representation of @Q’, then we get a representation V of Q by adding
zero spaces and zero maps to vertices and arrows in @ \ Q'. The subcategory is full because every
morphism (b V — W induces a morphism ¢:V — W. Indeed, if i € Qo \ @), then ¢Z =0:0—=0
and therefore ¢ = (qﬁz)ze% is a morphism between representations of QQ'. If two representations

V,W of Q are isomorphic, then the induced representations V, W of @’ are also isomorphic. Indeed,
for an isomorphism ¢: V — W we have that the induced morphism ¢: V — W is in Repy(Q’) (since
the subcategory is full) and it is also an isomorphism. Therefore, if @ is of finite-type, then @’ C @
is also of finite-type. But from Lemma 3.15, we know that each wild quiver @) has a tame subquiver
Q'. Therefore, it suffices to show that all tame quivers are not of finite-type.

Step 3: We now go through the list of tame quivers resp. Euclidean graphs and show that they
have infinitely many isomorphism classes of indecomposable representations.

Ao Let Q be a quiver of type Ag. In Example 2.21 and Example 2.25 we have shown that
(for k an algebraically closed field), the isomorphism classes of indecomposable representations are
given by the Jordan normal blocks. For an arbitrary field k, we still get that the different Jordan
blocks Jy , for A € k give pairwise non-isomorphic indecomposable representations. Indeed, from

Example 2.21, we know that two representations V = k™ M kK" W = k™ K kn are isomorphic if
and only if there exists an invertible matrix A such that NA = AM. By a generalized version of
the Jordan normal form for an arbitrary field k, this implies that M and N have the same Jordan
normal form. If k£ is an infinite field, then for each n € N, we get an infinite number of isomorphism
classes of indecomposable representations. If k is finite, we can vary over n € N and still get an
infinite number of isomorphism classes.

A,,n > 1: Let Q be a quiver of type A,,. For an arbitrary A € k, we define a representation V)
by setting V; = k for all vertices and by setting the maps v, = id for all a € @1, except one map
vp = Aid. V), is given by the following picture.

0
S e ’ id

[ ] [ ] EEECE) [ ] [ ]

1 g 2 i an 1l
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Since all the vector spaces are 1-dimensional and the quiver is connected, V, is indecomposable.
Indeed if V) = Vi @ V3 and (V1); = k for some vertex ¢, then we have a vertex j such that the map
between i and j is the identity, which implies that (Vi); = k. Now, using that @ is connected,
we conclude that V = V;. Moreover, for a morphism ¢: V), — V), we have that ¢; = ¢; for all
vertices ¢, j. This can be shown using a similar argument as for the part that V is indecomposable.
But then we have the following commutative diagram.

A1 id
E2=k

oLl
—— k

Therefore, if A1 # Ay we have that ¢y = 0 which shows that Vy, = V,, if and only if \; = A2. More
generally, for any n € N, we can define a representation by putting k™ at each vertex and by letting
all maps be the identity, apart from one map which is given by a Jordan block Jy ,. Similarly,
as in the first case (n = 1), it can be shown that this defines an indecomposable representation
since each Jordan block is indecomposable. The same argument as above also shows that different
choices of )\ € k give pairwise non-isomorphic indecomposable representations. Therefore, we have
an infinite number of indecomposable representations.
D,,,n > 4: We first consider the following quiver of type Dy:

For an arbitrary A € k we consider the following representation, called V:

We claim that V) is indecomposable and that different choices of A € k give pairwise non-isomorphic
representations. Indeed, let W be a summand of V) and notice that W needs to have a non-trivial
vector space at one of the outer vertices 0,1,3 or 4 (else W is trivial). But this implies that the
vector spaces at all the other outer vertices must be equal to k (and thus W = V). To see this,
consider the images of the four maps (é) , (1) , (2) , (/1\> Notice that for any choice of three
of the four maps, their images generate k2. Also, for any partition into two pairs, the images of
one pair (of maps) always generate k2. Therefore, if we split the four copies of the vector spaces
k (at the outer vertices) into two different summands of V (either split it 2 to 2 or 3 to 1), we
have that one summand must have k2 at the middle vertex. But then the other summand has 0
at the middle vertex, which is impossible because none of the maps is trivial. This shows that Vy
is indecomposable. Moreover, if there is an isomorphism ¢: V5, — Vy,, we have

(rmrhe= ()= 5
(Qomoi=n()- ()



This implies that ¢o = (g g) But since (1) ¢3 = ¢Po (1) = (g) we have ¢o = (g g) This

yields ! 04 = G2 ! (¢ , which implies A\; = Ay. More generally, for any n € N, one
A1 A2 aly

can show that the following representations are indecomposable and are pairwise non-isomorphic
for different choices of A € k (here J) ,, denotes the n x n-Jordan block).

- (5) )
N 1xn

) ()

Therefore, for any field &, the above quiver has infinitely many isomorphism classes of indecom-
posable representations. We can extend this argument to the following quiver @, of type D,,.
1 n—1

\ /

/5 471’2\

0 n

we

Indeed, for n € N, one can show that the following representations are indecomposable and pairwise
non-isomorphic for different A\ € k.

1yn in

1pn

E2n 1—d> k2o s k2n 1—d> L2n
1k” J)\,n

Now we use Corollary 3.52 to conclude that any quiver of type D,, has infinitely many isomorphism
classes of indecomposable representations. Using the corollary, it remains to show that any quiver
of type D,, results from the quiver Qsp by applying a sequence of Rj respectively R, (meaning
that we apply s; to the quiver itself (but only if ¢ is a sink or a source) and we apply Rli to
representations). Indeed, one can proceed as follows:

1. First, we fix the direction of the arrow between 2 and 3 (if it does not have the right direction)
by applying R, R1 R, -
2. Then we fix the arrows 0 — 2 and 1 — 2 by possibly applying R, resp. R .

3. Now we sequentially fix the arrows ¢ — i+ 1 for 3 <7 < mn — 3 (i.e. the horizontal arrows).
First notice that the sequence R;’;l L REGRIRY (R, is well-defined and it only changes
the direction of the arrow ¢ — i+1. Thus applying this sequence over and over (for increasing
i), we can fix the direction of the horizontal arrows.

4. Finally, we can fix the direction of the arrows n — 1 — n — 2 and n — n — 2 by possibly
applying R,,_; resp. R, .
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To illustrate this algorithm, consider the following quiver Q:

1 n—1

we
3

\
)

2

\ .
./ .
0 n
We have that s,s,_150525150Qsp = @ and therefore an indecomposable representation V 2 S; of
Qsp yields an indecomposable representation R, R, Ry Ry R Ry V of Q. In general, by Corol-
lary 3.52, there is a one-to-one correspondence between the isomorphism classes of indecomposable
representations of ()5, and any other quiver @ of type D,, which shows that all quivers of type D,

are not of finite-type. 5
Fg: We first reduce the problem to the following quiver @, of type Fs.

Oe

}

20

}
. ° . . °
1 3 4 5 6

Similarly as in the D,,-case, for any quiver @ of type FEg, we can find a sequence of reflection functors
such that applying this sequence to @, yields the quiver ). Thus, using Corollary 3.52, it is enough
to prove that Qs is not of finite-type. Now, instead of just giving a family of indecomposable
representations, we show how we find such indecomposable representations. This is useful since
this idea can then be extended to the cases F7 and Eg. First, we note that by deleting the vertex
0, we get a Dynkin quiver @’ (see proof of Theorem 3.16). We also notice that the unique smallest
positive radical vector § = (1,1,2,2,3,2,1) € N7 yields a vector & = (1,2,2,3,2,1) € N° (take
9; = ¢} for all i € Q))) such that gg/(6") = 1 and thus ¢’ is a root of Q. From part (1) we know that
there exists an indecomposable representation V of @)’ that has dimension vector ¢’. Now, for any
A € k, we get an indecomposable representation V) of @ by setting Vo = k and the map between

Vo and Va = k2 to be <}\>

k

1)

Vo=k

Ve Vd Ve

Vi=k 2 Ve=k? Lo V=k3 2 Vs=k? = Vs=k

Since V is an indecomposable representation of @', we conclude that V), is also indecomposable.
Moreover, if ¢: V5, = Va,, we have that (w.l.o.g) ¢; = idy, for i € {1,2,3,4,5,6}. Thus, we get

()ee=enln) =0 ()= ()

which implies Ay = Aa. Therefore, V) are indecomposable, pairwise non-isomorphic (for different
choices of A € k) representations of Q). More generally, for any n € N, we get that the following
representations are indecomposable and pairwise non-isomorphic.
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k;'fl
l 1pn
I
k2n
vpR@1Lgn

g Ve ®@1pn k_Qn Ve®1pn /4;3" v/d®lkn an Ve®@Lgn En

The tensor notation v, ® 1g» comes from the fact that for all vertices ¢ € {1,2,3,4,5,6} we have
that the vector space at vertex i is isomorphic to V; ® k™ and for all arrows o € {a,b,c,d, e} we
have that the map is given by v, ® 1x». The maps are explicitly given by the block matrices

Vo 0 ... 0
0 vo ... O
Vg @ Lgn = . for o € {a,b,c,d, e}.
: : -0
0 0 ... v,

F7 and Eg: The cases for quivers of type E; and Fy are analogous to the case of Eﬁ—quivers.
Indeed, by deleting the vertex 0, we get the roots 8’ = (2,2, 3,4,3,2,1) resp. ' = (2,3,4,6,5,4,3,2)
of a quiver of type F; resp. Eg. Then, we can use the same arguments as above. O

Remark 3.72. In the proof of Gabriel’s Theorem (step 1), we only needed that for a Dynkin quiver
Q and any indecomposable representation V, there exists a sequence of indices iy, ...,is (possibly
with repetitions) such that ’R,+ 7?,+ s well-defined and R+ ’R+V 0. This explams why one
does not need to consider the Weyl group W(Q) to prove the “af part’ of Gabriel’s Theorem in the
special case of the A, -type quivers. Indeed, we mainly need the Weyl group to prove the existence
of a finite number r such that C*...CTV =0 for any indecomposable representation V of a Dynkin

r times
quiver Q. In Chapter 4, we explicitly show how we can construct such a sequence of indices for
A, -type quivers.
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Chapter 4

The Special Case: A,-type Quivers

In this chapter, we focus on the special case of A,-type quivers (n > 1), a subset of the Dynkin
quivers. These quivers are crucial in topological data analysis as we will see in Chapter 5. The
theory in Chapters 2 and 3 is more explicit for A,-type quivers. In this chapter we build inde-
composable representations for A,-type quivers, explore Coxeter functors on them, and establish
the ‘if part’ of Gabriel’s Theorem, demonstrating the finiteness of A,-type quivers. This chapter
is based on Appendix A of the book "Persistence Theory: From Quiver Representations to Data
Analysis’ written by Steve Y. Oudot [1].

4.1 Interval Representations

We denote the set {b,b+1,...,d} by [b,d]. Recall that a quiver @ is of type A, if its underlying
graph @ is of the following form.

o o e e
1 2 n—1 n

An important example is the linear quiver L,,.

o o e e
1 2 n—1 n

A morphism ¢ = (¢;)1<i<n between two quiver representations V and W of an A,-type quiver @
is given by the following commutative diagram.

Vi Vo —— V3 — Vi

oo e e Jon

Wy —— Wy —2 g — W,

Lemma 4.1. For all A, -type quivers Q, the set of positive roots of qqg is given by the vectors of

the form x = (0,...,0,1,...,1,0,...,0)T with the first and last 1’s occurring at positions b < d in
the range [1,n].

V1 Un—1

Wn—1

Proof. First, we recall that the Tits form qg is independent of the orientations of the arrows of
@, which allows us to simultaneously find the roots of all A, -type quivers (for a fixed n). From
Example 3.11, we know the Tits form for A,-type quivers Q:

n n—1 n—1
1
go)=> a7 = > wyan, = le“f - zﬂfﬂiﬂ = 5[1’% + ), + ;(ﬂ% —zi11)?).
1= 1= 1=

1€Qo a€Q1

Since qg is positive definite (@ is Dynkin), we know from Corollary 3.31, that the roots of ¢q
are exactly given by the set {x € Z" | gqo(z) = 1}. Thus for any positive root z € Z", we have
x; € {0,1} for all coordinates/vertices ¢ and that there can be at most two pairs of consecutive
vertices/coordinates (z;, x;41) with difference 1. This shows that the roots are of the desired form
z=(0,...,0,1,...,1,0,...,0)7. O
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We know from Gabriel’s Theorem that for every A,,-type quiver @), we have a bijection between
the isomorphism classes of indecomposable representations and the positive roots of gq:

¢: T — T(Q), V] — dimV.
Therefore, we use Lemma 4.1 to identify the indecomposable representations of the A, -type quivers.

Proposition 4.2. For all A, -type quivers Q, each indecomposable representation is isomorphic to
one of the representations in Figure 4.1 for some interval [b,d] C [1,n].

[1,6—1] [b,d] [d+1,n]

Figure 4.1: The interval representation lg[b, d).

Definition 4.3. The representations in Figure 4.1 are called interval representations and are
denoted by 1g[b, d].

Proof of Proposition 4.2. Using Gabriel’s Theorem, let V be the indecomposable representation
of @ that belongs to the positive root = (0,...,0,1,...,1,0,...,0)7 with the 1’s occurring in
the interval [b,d] (see Lemma 4.1). The representation V has the vector space k at every vertex
i € [b,d]. The maps from and to 0 vector spaces are 0.

0—0 .0 g0 Ly, 0 g0 0

Moreover, the maps between successive copies of k need to be isomorphisms, because otherwise
V could be decomposed further. Indeed, if k —*_ kis not an isomorphism, then v, = 0 and we
have the decomposition V = V; @& V5, where the representations Vi and Vs, are as follows.

V: AP B /Ay Ly Vo=k =0 = Vg - =V -2 .
Vi P VL Ny — Vi=k—2 0=V, -L-0=V -2 ...
Va: /A J ey ) R (N B Ry P A — k=Vvy -9

In addition, V is isomorphic to the interval representation lg[b,d]. Indeed, for any isomorphism
k 28 k, consider the following commutative diagram.

k=% k
¢>ta:al l(ﬁh,l:id
k4
Notice that this allows us to successively define the maps ¢y, ¢pt1,...,¢qa so that the resulting
morphism ¢ = (¢;)7—; is an isomorphism between V and lg[b, d]. O

Now, we can use the Krull-Remak-Schmidt Theorem to decompose any representation of an
A,-type quiver.

Definition 4.4. For an A, -type quiver Q and a finite-dimensional representation V, the following
decomposition is called the interval decomposition of V:

VPl dj].
j=1
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We have now found all isomorphism classes of indecomposable representations of an A, -type
quiver Q. Since there are only finitely many possible choices for b < d in [1,n], we have also
shown that A,-type quivers are of finite-type. However, we have used Gabriel’s Theorem, thus
our argument above is a circular argument. Therefore, we want to prove the ‘if part’ of Gabriel’s
Theorem for A,-type quivers, i.e. that quivers of type A, are of finite-type and that the map
¢: T — ®T(Q), [V] — dimV is an isomorphism. To do this, we first observe the action of reflection
functors and Coxeter functors on A, -type quivers.

4.2 Coxeter Functors on A,-Type Quivers

In Remark 3.72; we noticed the following: in the proof of Gabriel’s Theorem we only needed that
for a Dynkin quiver @@ and any indecomposable representation V, there exists a sequence of indices
i1,...,1s (possibly with repetitions) such that ’R+ R+ is well-defined and R+ R+V = 0. For
an A -type quiver ), we now construct such a sequence explicitly. We first con51der the linear
quiver L,,.

) o« e e )
1 2 n—1 n

Proposition 4.5. [1, Ex. A.19] For every finite-dimensional representation V of the linear quiver
L,, we have C*...CtV = 0. Here, C* is the Coxeter functor belonging to the (+)-admissible

n times
ordering n,m —1,...,1

Proof. Notice that the natural ordering of the vertices is a (—)-admissible ordering and therefore,
the ordering n,n—1,...,1is (+)-admissible. Now, let V be an indecomposable representation of L,
and let = (x1,22,...,2,)T = dimV. We now apply the Coxeter functor C* and by Theorem 3.49,
we get:

T _ T
dimR 'V =0 or o,(z) = (T1,%2, .., 1, Tn—1 — Tn)
N +yv _ T
dimR" RV =0or o,_10,(x) = (1,22, ..., Tn—2 — Tn, Tn_1 — Tn)
. T
dimRy ... RS RIV=0o0roy...00_10,(%) = (21,21 — Tn, -+, Tp—2 — Ty Tn—1 — Tp)

. T
dlme’R; e ’R:_leV =0oro102...0p—10n(2) = (—Tp, 1 — Tpy- o, T — Ty, Tp—1 — Tp)"

Since dimension vectors are non-negative, we conclude that either C*V =R{RS ... R} RV =0
or that x,, = 0. We can iterate this process successively and get:
dimC™V =0 or (0,21, %2,...,Tn_o2,Tn_ 1),
dimCTC*V=0o0r (0,0,21,...,Tn_3,Tpn_2)",

dimC*...CtV=0or (0,0,0,...,0,2)7,
N——
n—1 times

dimC*...ctV=o0. O
N——

n times
We now generalize the statement of Proposition 4.5 to be true for all A, -type quivers.

Proposition 4.6. For an A, -type quiver Q and a finite-dimensional representation V, there exists
a sequence of reflection functors such that

Ct..CtRY..RfRY..RF ...Rf..RIV=0.
— r r—1 1

n times
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Proof. If @Q is not the linear quiver L,, let i; < is < ... < 2, be the heads of the backward arrows.

1 2 11 1 +1 i i+ 1 n

If we apply the sequence s;...s;, on @, we get the same quiver, but the arrow between 7; and
i1 + 1 has changed direction.

]_ 2 il ’Ll—|—1 ir Zr"'l n

Also, notice that the sequence of reflection functors Ry ...R; is well-defined. We can repeat
this process for is,...,7, and get that s1...s;. 51...8;._,...51...5;,@Q is the linear quiver L,,. In
addition, from Corollary 3.50, we get that for any indecomposable representation V of @), the rep-
resentation R ... RZRf . .Rit_l LR .RIV is either 0 or an indecomposable representation

of L,. Using Proposition 4.5, we conclude that

. .C*RYRIRT.RELRY LRV =0 m

n times

4.3 Proof of Gabriel’s Theorem for A,-Type Quivers

We are now ready to prove the following theorem.

Theorem 4.7 (Gabriel’s Theorem for A,-type quivers). Let Q be a quiver of type A, and
let k be an arbitrary field. Then:

1. Q is of finite-type.
2. The correspondence V +— dimV induces a bijection between the set of isomorphism classes of
indecomposable representations of Q and the set ®T(Q) = ®(Q) NN" of positive roots of Q.

Proof. The proof is analogous to Step 1 of the proof of Theorem 3.71. Indeed, we have shown that
there exists a minimal sequence of reflection functors R}  ...R:}, such that RZH RZV =0

Tt41 1t

and RI .. .RZV # 0. The same argument as in the proof of Theorem 3.71 now yields a well-
defined and injective map ¢: Z — ®1(Q), [V] — dimV. This shows that @ is of finite-type since
we have shown that the set of positive roots ®¥(Q) is finite for an A,-type quiver. Notice that
we do not need the result for a general Dynkin quiver (Lemma 3.30). In addition, proving the
surjectivity of ¢ can be done explicitly in the case of A,-type quivers. Indeed, we know that every
positive root € ®T(Q) is of the form x = (0,...,0,1,...,1,0,...,0)7 and we have that the
interval representation lg[b, d] has this dimension vector for a suitable choice of b < d. It remains
to show that the interval representations are indeed indecomposable. This can be either seen by
direct observation or we can show that the endomorphism ring End(lg[b, d]) is local and then apply
Proposition 2.38. Now, let ¢ € End(lg[b, d]) and observe the following commutative diagram.

0.0 g0 4o 4o _id o _id .0 g 0

lo lo J/wb lﬂl b+1 J/wd lo lo

0.0 g0 4o ,o_id o _id .0 g 0
By commutativity, we have 1, = ¢p41 = ... = g = o € k. Therefore, we can embed End(lg[b, d])
in the field k. However, since End(lg[b,d]) is a k-vector space, it follows that End(lg[b,d]) = k
which is local because fields are local. This shows that ¢: Z — ®T(Q) is an isomorphism. O

Remark 4.8. We highlight the results from Chapter 3 that are needed in the proof above, and
which results are not needed. We do this by sections:

3.1: We have used the explicit form of the Tits form qq for an A,-type quiver and the fact that
the Tits form is independent of the orientation. We did not need radical vectors and results
about tame and wild quivers.
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8.2: We have used the central property of simple reflections: @RfV = o;(dimV) (for inde-
composable representations V # S;). However, we did not use the Weyl group and it was
sufficient to consider the set {x € Z™ | qo(x) = 1} as our root system. Indeed, we were able
to describe the roots explicitly, which showed that {x € Z™ | qo(x) = 1} is finite.

3.83: The proof relied heavily on reflection functors. Therefore, the whole Section 3.3 is needed in
the proof above.

3.4: We have used Coxeter functors. However, we did not use its connection to the Coxeter
transformation and the Weyl group.

4.4 The Diamond Principle

Let @ be an A,-type quiver and let i € Qg be a sink. Then, any representation V and its reflection
W= RZFV can be expressed by the following diagram, because Rf only changes the vector space
at the vertex ¢ and its incident arrows resp. the maps corresponding to those arrows.

/\

. z+1

\/

Lemma 4.9. We have the following transformation rules for the interval representations:

i

R gli,i] =

le@[l,d]: [l+1 d] if i < d,

Rilgb, i) = lg[b,i — 1] if b <1,
RElgli + 1,d] = lgli,d] if i + 1 < d,
Rilglb,i — 1] = lg[b,i] if b<i—1,

Rilgb,d] = lg[b,d] otherwise.

The following picture visualizes this result. The black interval represents the interval represen-
tation lg[b, d] and the red dot shows the position of the vertex 1.

°
7

i d it1 d
L] L] L] L] L]
b i R b io1
:
L] L] L] L] L] L] L] L]
i+1 d P it d
L] L] L] L] L] L] . L]
b i—1 b i—1 i
L] L] L] L] L] L] L] L]
b d b d

Proof. The result follows directly from the definition of the reflection functor R;-". We have already
seen the first rule and we prove the second and fifth rule, thus proving one case each, where
the interval gets shorter resp. longer. The other cases are analogous. Using that le@[i,d] is
indecomposable (Corollary 3.50) and thus isomorphic to an interval representation, it suffices to
prove that (R} Ig[i,d]); = 0. Indeed, we have:

(Riloli,d]); = ker& = ker(0 & k — k) = ker(k 3 k) = 0.
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For the fifth rule, it suffices to prove that (R 1g[b,i — 1]); = k. Indeed, we have:

(R¥lg[b,i — 1]); = ker & = ker(k @ 0 — 0) = ker(k > k) = k. O

Now, we understand how reflection functors operate on interval decomposition. Using this, we
consider the above diagram and we construct a general setting, which behaves similarly to the
transformation rules in Lemma 4.9.

Definition 4.10. Let Q be an A, -type quiver and let i be a sink. Given two finite-dimensional
representations V € repx(Q) and W € repk(s;Q), that differ only at the spaces V;, W;, and their
incident maps, we get the following diagram, where the central rhombus is called a diamond:

Vi

7
1—1
i

V1 VviJrl

W,

The diamond is called exact if im f = ker g in the following sequence
Wi o Vi@ Vi —2o Vi,

where [: x— (we(z),wp(z)) and g: (z,y) — ve(z) + v4(y).

Theorem 4.11 (Diamond principle). Let Q be an A, -type quiver and let i be a sink. Let
V € repk(Q) and W € repk(s;Q) be two finite-dimensional representations, that differ only at the
spaces Vi, W;, and their incident maps. If we suppose that the diamond is exact, then the interval
decompositions of V and W are related to each other through the following matching rules:

o summands lg[i,i] and ls,q[i, ] are unmatched,

o summands lg[b,i] are matched with summands lg,q[b,i — 1], and lg[b,i — 1] with l,q[b, 1],

o summands lg[i,d] are matched with summands ls,q[i +1,d], and lg[i + 1,d] with ls,¢[4, d],

e cvery other summand 1g[b, d] is matched with the summand l5,q[b, d].

N SN

Figure 4.2: The matching rules from the diamond principle. The top row illustrates the second,
third, and fourth matching rules. The bottom row shows the two unmatched cases.

The transformation result for the interval representations (Lemma 4.9) and the diamond prin-
ciple look quite similar. Indeed, we prove that the results naturally imply each other.

Proof of the equivalence of Lemma 4.9 and the diamond principle. Step 1: We show Lemma 4.9
assuming the diamond principle. First, we prove the exactness of the diamond for the repre-
sentations V = lg[b,d] and W = R 15[b, d].
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Vi

Vi1

/
\

Wi =

g
_
L

&

Notice that g = ;. Thus, we get im f = W,; = ker§; = ker g and thus the diamond is exact. Now
observe that the first matching in the diamond principle implies the first transformation in the
lemma. The second matching implies the second and fourth transformations. The third matching
implies the third and fifth transformations and the last matching implies the last transformation.

Step 2: We now assume Lemma 4.9. Let V, W be as in the diamond principle and such that the

diamond is exact. We claim that W = U @ K, where U = RV and K = @_, I5,qli,i] = @)_; S;
is the representation of s;,Q) made from r = dimker f copies of the representation lg,¢[i,1] = S;.
Indeed, from the definition of RV and the exactness of the diamond, we have Uj=V;forall j #i
and U; = ker&; = kerg = im f. Now let C' = ker f+ C W;. From the first isomorphism theorem,

we conclude that the map

f|c: C*)lmf:UZ

is an isomorphism. We can also take an arbitrary isomorphism h: ker f — K, (here, we need
r = dimker f) and we can define an isomorphism of representations ¢: W — U ¢ K as follows

¢j{f|c€9h=<foc 2) it =i,

1y, if j # 1.
One can explicitly check that this is an isomorphism of representations. Now, using the transfor-
mation rules in Lemma 4.9, we get the matching rules in the diamond principle. O

Using the equivalence of Lemma 4.9 and Theorem 4.11, one may attempt to proof the ‘if part’
of Gabriel’s Theorem for A, -type quivers using the diamond principle. It turns out that this is
possible [1, Section 4.4.2.]. It also turns out that the diamond principle is helpful because it is
easier to check if im f = ker g rather than compute reflections of representations and check if they
are isomorphic. We use the diamond principle in the setting of zigzag persistence in Section 5.3.
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Chapter 5

Applications of Quiver
Representation Theory to
Persistent Homology

In this chapter, we explain the connection between topological data analysis and quiver represen-
tation theory. We first introduce simplicial complexes and homology groups. Using these concepts
we establish a connection between the persistence of topological spaces and quiver representations.
In Section 5.2 we focus on the topological aspect of this connection. Section 5.3 is devoted to the
algebraic aspects of this connection. In particular, we show a connection between zigzag persistent
homology and the diamond principle from Chapter 4.

5.1 Simplicial Complexes and Homology

In this section, we introduce simplicial complexes which are topological spaces that can be built
from simple building blocks called simplices. We then introduce simplicial homology. This section
roughly follows the outline of Chapters IT1.1 and IV.1 of the book ‘Computational Topology: An
Introduction’ by Herbert Edelsbrunner and John Harer [7] and Chapter 1 of the paper ‘Barcodes:
The persistent topology of data’ by Robert Ghrist [8].

Definition 5.1. Let A = {vg,v1,...,v,} € R™. We say that A is in general position if A is
not contained in an affine hyperplane of dimension less than n. This is equivalent to the condition
that the vectors v1 — vy, . . ., v, —vg are linearly independent resp. to the condition that the subspace
generated by A has dimension at least n.

Definition 5.2. Let A = {vp,v1,...,v,} C R™ be points in general position. The n-simplex
o = [vg,v1,...,0,] is defined to be the convex hull of A, i.e. the smallest subset of R™ that contains
all the points vg,v1,...,v,. We can also represent the n-simplex using linear combinations:

[UQ,...,UTL] = {Z/\Z"Ui | Z)\Z = 1,V0§j <n: )\j ZO}
=0 =0

We say that the points v; span o. The dimension of ¢ is dimo = n.

Definition 5.3. For A in general position and the associated n-simplex o, the points v; € A are
called vertices and for each subset B C A, the convex hull of B, denoted by 7, is called a face
of 0. Notice that B is also in general position and therefore, T is a simplex itself. We often write
T < 0. A face is called proper if B C A and is denoted by 7 < 0. Moreover, the boundary of o
is denoted by 0o and it is the union of all proper faces of o. The interior is given by o — Jo.

We observe that a point = € o lies in the interior of ¢ if and only if all its coefficients \; are
positive. Indeed, if some coefficient A; = 0, then we have that x lies in the face [vg, ..., ;,...,Vs],
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Figure 5.1: The simplices of dimensions 0, 1, 2, and 3 have special names and are called vertex,
edge, triangle, and tetrahedron (from left to right).

where the hat indicates that the vertex v; is omitted in the list of vertices. We conclude that every
point x € o lies in the interior of exactly one of the faces of o. The vertices corresponding to this
face are exactly the vertices v;, for which A; > 0.

5.1.1 Geometric and Abstract Simplicial Complexes

We combine simplices to create a broader variety of topological spaces, called simplicial complexes.
We do this in a way such that it is closed under taking faces and such that it has no improper
intersections.

Definition 5.4. A (geometric) simplicial complex K is a finite union of simplices such that for
each simplex 0 € K and any face T < o, we have T € K. Moreover, for two simplices 01,09 € K,
we have that o1 N oy is either empty of a face of both simplices 01 and o2. A subcomplex of K
1s a simplicial complex L C K. The dimension of K is given by the mazimum dimension of its
simplices.

Definition 5.5. For each j < dim K, we define a particular subcomplex KU | called the j-skeleton
which consists of all simplices of dimension j or less. The 0-skeleton is usually called the vertex
set KO = Vert K.

A simplicial complex K is just a set of simplices and thus lacks a topology. We fix this by
considering the topological space given by the union of the simplices together with the subspace
topology inherited from the ambient Euclidean space R™ in which the simplices live. We denote
this topological space by |K|. Because every point of a simplex belongs to the interior of one of its
faces, we conclude that every point 2 € |K| belongs to the interior of exactly one simplex in K.
This allows us to give the following description of | K]|.

Definition 5.6. Let K be a simplicial complex with vertices vg,v1,...,v,. Every point x € |K|
belongs to the interior of exactly one simplex o = [vg,v1,...,v;] € K. Therefore, we have
T = Zf:o Aiv; with Z;C:O Ai = 1 and \; > 0 for all i. Setting bj(x) = X\; for 0 < i < k and
bi(z) =0 for k+1 < i <n, we have x = >\ bi(x)v; and we call the b;(z) the barycentric
coordinates of x in K.

Remark 5.7. If it is clear from the context that we consider a topological space, we often write K
instead of |K|.

It is often easier to describe or construct a simplicial complex abstractly instead of giving a full
geometric description of its simplices.

Definition 5.8. An abstract simplicial complex A is a finite collection of sets such that for
alla € A and all 8 C «, we have € A. The sets in A are the simplices and the dimension of a
simplezx is dim o = || — 1. The dimension of the complex A is given by the maximum dimension
of its simplices. A face of a € A is a non-empty subset § C « and it is proper if 3 C a. A
subcomplex is an abstract simplicial complexr B C A.

We notice that this condition looks quite similar to the condition that for each simplex o € K
and each face 7 < o, we have that 7 € K. However, there is no explicit condition on the intersection
of simplices. We now describe how one can switch from a geometric simplicial complex to an
abstract simplicial complex (and vice versa).
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A
B F

Figure 5.2: Simplicial complex with vertices A, B,C,D,E,F,G and simplices [A, B], [A,C],
[A, D], [B,C], [B,D],[B,E][C,D],[C,E],[F.G],[A,B,C],[A, B, D], [A,C,D],[B,C, D], [B,C, E]
and [4, B,C, D].

Definition 5.9. Let K be a geometric simplicial complex. For each simplexr o € K we take its
vertex set . Those sets form an abstract simplicial compler A. We call A a vertex scheme of
K. Analogously, we call K a geometric realization of A.

Notice that for 7 < o, we have an inclusion of vertex sets o, C «, and thus a, € A because
7 € K. This proves that a vertex scheme is an abstract simplicial complex. We can also construct
a geometric realization for an abstract simplicial complex if the dimension of the ambient space is
high enough.

Theorem 5.10 (Geometric Realization Theorem). Every abstract simplicial complex of di-
mension d has a geometric realization in R**L [7, p. 64].

Since simplicial complexes are topological spaces, we can consider continuous maps between
them. Favourable maps between simplicial complexes are the maps that respect the underlying
simplicial complex structure.

Definition 5.11. A vertex map is a function ¢: Vert K — Vert L such that it sends the vertices
of every simplex in K to vertices of a simplex in L.

Definition 5.12. FEvery vertex map ¢: Vert K — Vert L can be extended to a continuous map
I+ |K| — |L| which is defined by:

fa) = bi(x)d(vs).
i=0

This map is called the simplicial map induced by ¢. Note that f is linear one each simplex in K.
Therefore, we say that f is piecewise linear. To abbreviate notation, we often write f: K — L.

Since linear maps are continuous and f: K — L is piecewise linear, it is indeed continuous.
Per definition, simplicial maps map simplices to simplices. For a simplex ¢ € K, we now consider
the dimension of f(o) and observe how the faces of o and f(c) are related.

Lemma 5.13. Let o be a p-simplex in K. Then f(o) is a simplex in L that has dimension less
or equal than p. Moreover, we have

e If f(o) has dimension p, then the (p — 1)-dimensional faces of o map to the corresponding
(p — 1)-dimensional faces of f(o).

o If f(o) has dimension p — 1, then exactly two of the (p — 1)-dimensional faces of ¢ map to
f(o) and all the other (p — 1)-dimensional faces of o map to faces of dimension p — 2.

e If f(o) has dimension less than p — 1, then the images of all faces of o also have dimension
less than p — 1.

Proof. Let o = [vg,v1,...,0p]. We know that f(o) = [¢(vo), ¢(v1),...,¢(vp)] is a simplex in L,
which has dimension less or equal than p since it is spanned by p + 1 vertices.

e If f(o) has dimension p, then the vertices ¢(vg), ¢(v1),...,d(v,) are pairwise different and
the (p—1)-dimensional faces of ¢ map to the corresponding (p — 1)-dimensional faces of f(o):

—

f([Uo,Ul,.u,@',.n,Up] = [¢(UO)7¢(U1)a'~'7 (Uj)7"'7¢(vp)]'
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o If f(o) has dimension p—1, then exactly two of the vertices in ¢(vg), ¢(v1), ..., ¢(vp) coincide.
Let ¢(v;) = ¢(vj). Then f([vo,v1,...,0;,...,vp]) = f([vo,v1,...,7j,...,vp]) and the images
of all other (p — 1)-dimensional faces have dimension p — 2 since they contain the coinciding
vertices ¢(v;) and ¢(v;).

e If f(o) has dimension less than p — 1, then the images of all faces of o also have dimension
less than p — 1. O

5.1.2 Homology

Homology groups are the mathematical description of holes and higher dimensional analogues in
a topological space. We introduce homology for simplicial complexes (called simplicial homology
with Z/2Z-coefficients) and develop the necessary theory that is used in persistent homology. Using
the simplices of a simplicial complex, we create abelian groups. We then combine them, creating
a so-called chain complex, which forms the foundation for homology.

Definition 5.14. Let K be a simplicial complex and let p € Z. A p-chain c is a formal finite
sum of p-simplices in K. We can write
C = Z a;0;,

where a; € Z/2Z are the coefficients and o; are the p-simplices. Note that since the coefficients are
either 0 or 1, we can assume w.l.o.g. that a p-chain is of the formc =01+ ...+ 0,. We can add
two p-chains together componentwise: if ¢ =Y a;o; and ¢ = b0y, then ¢+ ¢ = (a; + b;)oy,
where the coefficients are added modulo 2, i.e. 14+ 1= 0. The p-chains together with this addition
form an abelian group, called the group of p-chains, denoted by C, = Cp(K). We have such
a group for all p € Z, however, for p negative or bigger than dim K, we have that C,(K) = 0 is
trivial.

Definition 5.15. The boundary of a p-simplex is defined to be the sum of its (p—1)-dimensional
faces. If we write o = [vg,v1,...,0,] for the p-simplex which is spanned by the listed vertices, then

the boundary is given by
P

Opo = Z[vo,vl,...,ﬁ},...,vn}.
j=0
We extend this definition by linearity to define the boundary of a p-chain ¢ = Y a;0; to be
Opc = > a;0p0;. Therefore we get a map 9,: Cp(K) — Cp_1(K), which is called the boundary
map for chains. Notice that the boundary map commutes with addition, i.e. Op(c+c') = Opc+0,¢,
therefore 0y, is a homomorphism. The chain complex is the infinite sequence of chain groups con-
nected by their boundary maps:
Ip+2 Op+1 9 Op-1
L/ Cpi(K) —— Cp(K) —— Cp1(K) —— ...

We often drop the index of the boundary map because it is implied by the dimension of the chain
to which it is applied.

We now consider two special types of chains called cycles and boundaries. We observe how
they are related to each other.

Definition 5.16. A p-cycle is a p-chain with empty boundary, i.e. Oc = 0. Because 0 com-
mutes with addition, we have that the p-cycles form an abelian subgroup of Cp(K), denoted by
Zy = Zp(K). Notice that Z, = ker 0,.

For p = 0, we have that each vertex is mapped to 0 and thus Zy = ker dy = Cy. For higher
p, it is generally not true that Z, = C,. However, one finds that a p-chainc =01+ ...+ 0, is a
p-cycle if and only if each (p — 1)-dimensional face of some o; occurs to an even number in the set
of the (p — 1)-dimensional faces of o1, ...,0,.

Definition 5.17. A p-boundary is a p-chain that is the boundary of a (p+ 1)-chain, i.e. ¢ = 9d
for some d € Cpy1(K). Because O commutes with addition, we have that the group of p-boundaries
forms an abelian subgroup of Cp(K) and it is denoted by B, = B,(K). We have that B, = im Op41.
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We now look at the following lemma that connects cycles and boundaries. This lemma is the
fundamental property that makes homology work.

Lemma 5.18 (Fundamental Lemma of Homology). For each integer p and every (p+1)-chain
d, we have 0,0,41d = 0.

Proof. Because the boundary map is a homomorphism, it is enough to show 9,0,417 = 0 for every
(p+ 1)-simplex 7 = [vg, ..., Vpt1]:

p+1 p+1
3p8p+17:8p(§ [V0, ..., 0j,...,0p]) = E [V0, ..., Oy vy Uy, Up

§=0 i,j=0
i#]

p+1 p+1

= E (V0,3 Diyeen, U5 .. 0p] + E Vo, s Djyen, UgyenyUp] =0. O
i,5=0 i,j=0
i<j j<i

Therefore, every p-boundary is also a p-cycle and we have that B, is a subgroup of Z,. This
allows us to take the quotients Z,/B,. Note that two elements ¢ + By, ¢’ + B, are the same in
Z,/ By if and only if their difference ¢ — ¢’ is a boundary. We now use this connection between
cycles and boundaries to define homology groups.

Definition 5.19. The p-th homology group of a simplicial complex K is the quotient group,
H,(K)=H, = Z,/B,. The p-th Betti number is the rank of this group, B, = rank H,. A coset
[c] = ¢+ B, of H, is called a homology class. Two cycles that are in the same homology class
are called homologous, denoted by ¢ ~ .

Note that Z, is an abelian group and thus the subgroup B,, is a normal subgroup. Therefore,
H, = Z,/B, is actually a group and it is abelian since Z,, is. Note that H), is actually a Z/2Z-vector
space.

Lemma 5.20. For every simplicial complex K, H,(K) is a finite-dimensional Z/2Z-vector space
for each integer p.

Proof. Note that C), is isomorphic to the free abelian group over all the p-simplices o; in K:

C,=z/2Z 0.

Because K consists of only finitely many simplices, C}, is finite-dimensional. Therefore the homo-
morphism 0, is a a Z/2Z-linear map between the two finite-dimensional Z/2Z-vector spaces C,
and Cp_1. This shows that Z, = kerd, and B, = imd,1 are Z/2Z-vector spaces and thus so is
the quotient H, = Z,/B,,. O

5.1.3 Maps in Homology and Homotopy Invariance

We have now defined the homology groups H,(K) for a simplicial complex K. Next, we observe
how simplicial maps behave when passing to homology.

Definition 5.21. Let K and L be two simplicial complexes. We know that a simplicial map
f: K — L takes each simplex of K linearly to a simplex in L. For every integer p, it induces a
map from the p-chains of K to the p-chains in L. For a p-chain ¢ = a;0;, we have that
fu(c) =3 aim, where 7, = f(o;) if it has dimension p and 7, = 0 if f(0;) has dimension less than
p.

Lemma 5.22. For two simplicial compleres K and L, f: K — L a simplicial map and Jx and
Jr, the boundary maps of the two chain complexes of K and L, we have

froOr =0L0 fu.
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Proof. We use Lemma 5.13. If f(o;) has dimension p, then all (p — 1)-dimensional faces of o;
map to the corresponding (p — 1)-dimensional faces of 7; = f(0;). By linearity, we conclude that
fu 00k (0;) = 0L o fu(oy). If f(o;) has dimension less than p, then the (p — 1)-dimensional
faces of o; map to simplices of dimension less than (p — 1), with the possible exception of exactly
two (p — 1)-dimensional faces that map to the same simplex and therefore their images cancel.
Therefore, we have fu(Orxo;) = Orfu(o;) = 0. We conclude using the linearity of fg,0x and
L. O

Lemma 5.23. We have fu(Z,(K)) C Z,(L) and fu(Bp(K)) C By(L) for all simplicial maps
f: K — L. This induces a map in homology, denoted by f.: H,(K) — Hy(L).

Proof. For a p-cycle ¢ in K, the following map is well-defined:

felldr) = fule+ Byp(K)) = fy(c) + Bp(L) = [f4(0)]L-

This defines a well-defined map because fx(c) is a p-cycle in L and if ¢ and ¢’ differ by a boundary
in K, then their difference is mapped to a boundary in L. O

Remark 5.24. The fact that simplicial maps induce maps in homology is often referred to as
‘homology is functorial (for every p)’. This makes sense since the assignment

Kw— Hy(K),(f: K= L)~ (fi: Hy(K) — Hy(L)

is a covariant functor from the category of simplicial complexes (with simplicial maps) to the
category of Z/2Z-vector spaces (with Z/2Z-linear maps).

Considering induced maps in homology, one can ask, when (and if) such maps are isomorphisms.
The following result answers a part of this question and explains, why homology is useful.

Theorem 5.25. [9, Corollary 2.11] If a simplicial map f: K — L is a homotopy equivalence,
then the induced maps f.: Hy(K) — H,(L) are isomorphisms for all p > 0.

Therefore, if two simplicial complexes K and L are both triangulations of a space X, meaning
that both K and L are homotopy equivalent to X, then we do not need to worry about which one
is used since they yield isomorphic homology groups. This result is proven using a more general
homology theory called singular homology. Singular homology can be applied to any topological
space. In addition, singular homology can be defined with coefficients in any abelian group and
not only for Z/2Z-coefficients. In the general case, homology groups are groups and not vector
spaces. This explains why we talk about homology groups and not homology vector spaces (even
though in our setting, they are always vector spaces). However, simplicial homology and singular
homology are equivalent (on simplicial complexes) and therefore, we do not introduce singular
homology here.

Example 5.26. We have claimed that homology groups measure the holes and higher-dimensional
analogues of a topological space. To explain this claim, we consider the homology of the sphere
S™ C R, In particular, we look at H,(S™). For n = 1, St is homotopy equivalent to the left
simplicial complex in Figure 5.3. Its chain complez is ((a,b, ¢) denotes Z/2Z-aSZ[2Z-bHZ/2Z-c).

.—— 0 i} Cl = <a,b,c> i} Co = <’U0,U17’02> i) 0—— ...
We have By = imdy = 0,Z; = kerd; = (a + b+ c). Therefore Hi(S') = Z/2Z (using that
homology is homotopy invariant). For n = 2, S? is homotopy equivalent to the right simplicial
complex in Figure 5.3. Notice that this simplicial complex is not a single 3-dimensional simplex, but

four 2-dimensional simplices. We denote them by S = [vg,v1,v2],T = [vg,v1,v3],U = [v9.v2,v3],
V = [v1,va,v3]. Its chain complex is (all the other chain groups and boundary maps are zero).

0 i) 02 = <S,T,U,V> L 01 = <a,b,c,d,e,f) L 00 = <1}0,U1,’U2,’03> L 0
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We have By = imds = 0 and to compute Zy = ker 0o, we look at its matriz (left) and compute its
reduced row-echelon form (right) with Z/2Z-coefficients.

0y =

OO O = ==
O = OO
R O R~k OO
= =0 O = O
12
SO OO O -
OO OO = =
S oo+~ OO
SO O~ O

We conclude that Zy = kerdy = (S + T + U + V) and therefore Hy(S?) = Z/2Z. It turns out
that this is true for alln > 1, i.e. H,(S™) = Z/2Z. Therefore, the homology group H,, detects
the single n-dimensional hole inside S™. We conclude that in general, the p-th Betti number
Bp = rank H, = dim H,, counts the number of p-dimensional holes in our simplicial complez.

() U3
d / _
b c U2 \\
Vo b
a
0 a v V1

v 1
Figure 5.3: Two simplicial complexes that are homotopy equivalent to S (left) resp. S? (right).
The simplicial complex on the right has four 2-dimensional simplices and no 3-dimensional simplex.

5.2 Filtrations and Persistence

In this section, we use homology to finally show the connection between topological data analysis
and quiver representation theory. First, we describe a method to construct a simplicial complex
from a point cloud. We then apply homology to these simplicial complexes and obtain persistence
modules, which are quiver representations of the linear L,-quiver. We then analyze and visualize
its interval decomposition. This section is based on Chapters III.1 and VIL.1 of [7] and Chapter 2
of [8].

5.2.1 Point Cloud Triangulations

We describe a method to construct a simplicial complex from a point cloud.

Definition 5.27. Let {z;} = X be a finite set of points in R™ and let ¢ > 0. The Cech complex

C(X,e€) is the abstract simplicial complex whose n-simplices are the sets {x;,,...,x;, } € X such
that the closed balls of radius €/2, centered at the x;, , have a non-trivial intersection, i.e.

m Be/2(mij) 7é (Z)
j=0

Note that the Cech complex is an abstract simplicial complex. However, since there always exists
a geometric realization, we can consider the Cech complex to be a geometric simplicial complez.

We now have a method to construct simplicial complexes from point clouds. However, it
requires a choice of some parameter e. For € small enough, there are no non-trivial intersections,
and thus C(X, €) is a discrete set given by the vertices {x;}. If € is really big, all intersections are
non-trivial, and therefore, C(X, €) is a single high-dimensional simplex (and all of its faces). This
leads to the question if there is a best-suited choice for €, such that C (X, €) is a good representation
of our point cloud. Consider the point cloud and the Cech complexes in Figure 5.5. This point
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Figure 5.4: From a fixed set of points with balls of radius e (left), one can construct the Cech
complex C'(X, €), represented by its geometric realization (right).

cloud is a sample of points on an annulus. If € is too small (left and middle), C'(X,€) does not
yet represent the fact, that an annulus has a hole in the middle. For e big enough (right), the
hole suddenly appears. However, if € is too big, then all balls intersect and the hole disappears.
This example illustrates that there is generally no single preferred choice for the parameter € and
even if there was an optimal ¢, we would already need to have a rough understanding of our point
cloud to figure out the optimal value for €. Instead of considering one value for ¢, we can choose
two values for € and observe how the associated Cech complexes differ. We do this by considering
simplicial maps between Cech complexes.

(X,€e1) = C(X,e3). For
(X7€2).

Lemma 5.28. For e; < ey there exists an injective simplicial map v: C
any simplex o € C(X, 1), its image 1(o) is o itself, but now viewed in C
Proof. For a simplicial complex L and a subcomplex K, the inclusion map Vert K < Vert L is
a vertex map and thus, there exists a simplicial map ¢: K — L. Moreover, for any simplex ¢ =
[vo, V1, ..., vp], we have t(0) = [vo,v1,...,vp] and therefore this map is injective since ¢ is piecewise
linear. Now we apply this to the simplicial complex C'(X, es) with subcomplex C(X, €;). O

Figure 5.5: A sequence of Cech complexes for three different increasing choices of radius €, coming
from a point cloud that is a sample of an annulus. The 2-dimensional simplices are yellow, the
3-dimensional simplices are green and the 4-dimensional simplices are violet.
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5.2.2 Persistence Vector Spaces and Persistence Barcodes

Using the inclusion maps from Lemma 5.28, we can construct a sequence of Cech complexes (for
a sequence of radii €1 < €2 < ... < €,).

C(X,e1) — C(X, &) —— C(X,e3) —— ... —— C(X,¢p)

Definition 5.29. A sequence of simplicial complexes K1 < Ko — ... < K, is called a filtration
of simplicial complexes.

Notice that the sequence above is a filtration. Now, we apply the homology functor(s) H,.
This means that we do not just consider the homology of the Cech complexes C'(X,¢;), but for
all the inclusion maps C(X,¢;) < C(X,€41), we consider the corresponding map in homol-
ogy H.(C(X,¢;)) — H.(C(X,¢€i11)). We know that all homology groups H.(C(X,¢;)) are finite-
dimensional vector spaces. Moreover, all maps between homology groups are linear maps. This
yields the following sequence in homology

H,(C(X,e1)) —— H,(C(X,€&2)) —— H.(C(X,e3)) — ... —— H.(C(X,¢,)).

As a sequence of vector spaces, this is a representation of the L,-quiver!

Definition 5.30. The representation H,(C(X,¢1)) — H.(C(X,€)) — ... = H.(C(X,¢,)) is
called a persistence module. Note that it is a finite-dimensional representation since all the
vector spaces are finite-dimensional.

Remark 5.31. By saying ‘we apply the homology functor H,’, we mean that we apply the functor
H,, for some integer p > 0. We use the notation H, to illustrate that any choice of p > 0 is valid.

Applying Gabriel’s Theorem for A,-type quivers (Theorem 4.7) yields that the persistence
module is isomorphic to its interval decomposition @;:1 lo[b;, d;].
Remark 5.32. Note that this construction works for any filtration of simplicial complexes:

K, f1 f2 f3 frn—1

Ky K K,.

Indeed, applying homology yields a persistence module that can be decomposed using Gabriel’s
Theorem:

f1,x

Ho(Ky) s Faun

H*(K2) fS,* L fn—l,*

Moreover, we can also consider simplicial complexes that are not finite-dimensional (they consist of
an infinite number of simplices). In this case, the vector spaces may not be finite-dimensional and
thus the persistence module may not be finite-dimensional. However, there exists a more powerful
version of Gabriel’s Theorem, which works in the infinite-dimensional case (see Chapter 1.1 of [1]).

As we go from C(X,¢;) to C(X,¢;) in a filtration (for i < j), we gain new homology classes
or we lose some when they become trivial or merge with _each other [7, p. 179]. To observe this,
consider the images of the induced maps in homology, f,7: H,(C(X,¢€;)) — Hp(C(X,¢;)).

Definition 5.33. The p-th persistent homology groups are the images of the homomorphisms
induced by inclusion, H;';j =im f;;j, for1 <i<j<n. The corresponding p-th persistent Betti
numbers are the ranks of these groups, Bzi;j = rank H;’j.

If we consider a homology class [c] in H,(C(X,¢,)) that is not in any of the p-th persistent
homology groups H;;vb for all 7 < b, then this homology class appears for the first time at parameter
b. Moreover, there exists a parameter d for which this homology class is non-trivial for the last
time. This means that f27[c] # 0 for all j < d and that f2%*'[c] = 0 (or d = n). In the
persistence module, this homology class (which describes a topological feature) corresponds to
the interval representation I[b,d]. We conclude that each interval representation in the interval
decomposition EB;:I lg[b;,d;] corresponds to the evolution of a homology class and therefore
describes the persistence of some topological feature. Given a parameterized family of spaces,
those topological features that persist over a significant parameter range are to be considered as
signal (resp. important features) with short-lived features as noise [8, p. 5]. This motivates the
following definition.
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Definition 5.34. The lifetime of an interval representation lg[b, d] is given by d —b. Moreover,
b is called the birth time and d is called the death time.

We conclude that the p-th persistent Betti number B;;j counts the number of p-dimensional
holes (features) that persist over the parameter interval [i, j]. Using the interval decomposition,
we present a visualization of the p-th persistent homology groups and the corresponding intervals.

Definition 5.35. If a persistence module has the interval decomposition @;:1 lo[bj,d;], then its
persistence barcode is the multiset of intervals {[bj,d;]};_,. The horizontal azis corresponds to
the parameter € and the vertical azis ranges over an arbitrary ordering of the homology generators
of the p-th persistent homology groups of the persistence module.

Figure 5.6 gives an example of the barcode of the persistence module coming from the point
cloud from Figure 5.5. This point cloud is a sample of points from a planar annulus. We observe
that there are 18 different 0-dimensional homology classes for € small enough. They correspond to
the 18 points in our sample. We also observe some small intervals in dimension 1 that represent
noise. Moreover, we can see the big interval in dimension 1, which represents the 1-dimensional
hole in the middle of the annulus. The long length of this interval corresponds to the fact that this
middle hole is a significant feature of the planar annulus.

Dimension — 0 — 1

0

5.

104 —_—

15 _—

201 -
25

0 10 20 30 40 50

Figure 5.6: The persistence barcode for the point cloud from Figure 5.5.

Theorem 5.36. [7, p. 181] The p-th persistent Betti number ﬂ;;j s equal to the number of intervals
in the barcode spanning the whole interval [i,j] (or more).

This means that a barcode is not just a great tool to visualize the decomposition of a persistence
module, it also encodes the entire information about persistent homology groups.

5.3 Zigzag Persistent Homology

In this section, we generalize the setting from persistent homology to introduce zigzag persistent
homology. We use zigzag persistent homology to show a connection to the diamond principle from
quiver representation theory. This section is based on the paper ‘Zigzag Persistence’ by Gunnar
Carlsson and Vin Silva [10].

Similarly, as in Section 5.2, we start with a sequence of simplicial complexes.
Definition 5.37. The following sequence of simplicial complexes is called a zigzag diagram:

f1 fa

K, Ko Ky <Py I K,
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Figure 5.7: A zigzag diagram K <= KN K’ < K'. The red lines form a 1-cycle that is non-trivial
in homology in all three complexes.

The major difference to the setting of persistent homology is that here, the maps f; can go in
either direction. Again, we apply the homology functors H, and get a sequence in homology:

f1,x

H.(K>) f2,x

H*(K3) fB,* L fnfl.*

H,(K;) H.(Ky).

This is again a sequence of vector spaces with linear maps connecting them. However, since the
maps f; . can go from left to right or the other way around, this is a representation of an A,-type
quiver. Specifically, it is the A,,-type quiver that matches the direction of the arrows.

Definition 5.38. The representation H,.(K,) < H.(K3) < ... & H.(K,) is called a zigzag
persistence module.

Using Gabriel’s Theorem, this representation decomposes into its interval decomposition and
yields a persistence barcode analogous to any persistence module. Therefore, the theory of zigzag
persistence is a generalization of the persistence theory from Section 5.2. However, since we cannot
observe homology classes from their birth time to their death time (because not all maps point in
the same direction), understanding the intervals in the barcode is more involved. The following
example illustrates this.

Example 5.39. Let K and K’ be the simplicial complexes shown in Figure 5.7 and let K N K’ be
the simplex-wise intersection. This defines a zigzag diagram

K+— KnNnK —— K

Applying homology in dimension 1 (i.e. Hy), we get a zigzag persistence module
Z/2Z>2H|(K) «— Hi(KNK')>2Z/2Z®Z/2Z —— H(K') 2 Z/2Z.

The 1-cycle [1,2] +[1, 3] +[2,3] + [3,4] (red lines) is non-trivial in homology in all three complezes.
Therefore, one may think that this cycle corresponds to an interval representation lg[l,3] that
spans all three vertices. However, this is not the case. For Hi(K N K') we choose the following
basis

{[1,2] +[1,3] + [2,3],]2,3] + [2, 3] + [3,4]}.

This gives the following decomposition, which consists of the two interval representations lg[1, 2]
and 19[2, 3].

z/2z Y z/97 42707 Y, 707

We now generalize the setting of Example 5.39 to observe two interesting zigzag persistence
modules. For a finite collection of simplicial complexes X = {K;}?_,, consider the following zigzag

diagram

Kon Ky K NK,

KO/ \Kl/ \Kg/\Kn

Applying homology yields a zigzag persistence module
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We can also consider the zigzag diagram associated with the union of simplicial complexes

KoUK, K UKo

KO/ \Kl/ \Kg/\Kn

We obtain another zigzag persistence module
H*(Ko) E— H*(Ko UKl) — H*(Kl) E— H*(Kl UKQ) — .. — H*(Kn)

The motivation behind these zigzag persistence modules is the following: if the complexes in
X correspond to different areas of a point cloud, these two zigzag persistence modules roughly
correspond to the persistence of topological features over different parts of the point cloud. The
following theorem gives a set of matching rules for the interval representations of their respective
interval decomposition.

Theorem 5.40 (Strong diamond principle). Let VT = H, (X)) and V™ = H.(Xn) be the two
zigzag persistence modules corresponding to the following zigzag diagrams.

Xy Ky+— ... +— Kj_1 — Ky 1 UK} +— K41 +— ... +— K,

XA Kop+— ... +— Ky 1 +— Ky 1 NKyy1 —— K41 +— ... +— K,

The interval decompositions of V= and V1 are related to each other through the following matching
rules:

summands lg[k, k|P*T! and 15, gk, k]P are matched,

summands 1g[b, k] are matched with summands s, q[b, k — 1], and lg[b, k — 1] with I, q[b, k],
summands lglk, d] are matched with summands s, qlk+1,d], and lglk+1,d] with |, ¢lk,d],

every other summand lg[b,d] is matched with the summand ls,q[b, d].

The superscripts p+1 and p in the first matching rule denote a +1 shift of homological dimension.
This means that lg[k, k| in the zigzag persistence module of dimension p+ 1 (of VT ) is matched
with lg, glk, k] in the zigzag persistence module of dimension p (of V™).

pt+1s

O

D

Figure 5.8: The matching rules from the strong diamond principle. The top row illustrates the
second and third matching rules. The bottom row shows the first and last matching rules.
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Proof of Theorem 5.40. For any p € Ng, the following diamond is exact:
Hp(Kk—l U Kk-i—l)

. —— Hy(Kj-1)

\
Hy(Kjt1) — ...
/

/

Hy(Kip—1 N Kpq1)
This follows directly from the exactness of the Mayer-Vietoris sequence [9, p. 149ff]:
e, — Hp(Kk,1 N Kk+1) E—— Hp(kal) D Hp(Kk+1) E—— Hp(Kk,1 @] Kk+1) —_— ...

Thus, the second, third, and fourth matching rules follow from the diamond principle (Theo-
rem 4.11). It remains to prove the first matching rule. This follows from the Mayer-Vietoris
sequence:

D Hpp1(Kp1) © Hp 1 (Kgy1) <, Hypy1 (K1 U Kg 1)
P

Hy(Kk—1 N Kit1) —5— Hp(Ky—1) © Hp(Kp+1)
Using exactness and the first isomorphism theorem, we conclude that
coker(f) = Hp11(Kp—1 U Kyy1)/im(f) = Hpp1 (Kp—1 U Kgy1)/ ker(0) = im(0) = ker(g).

We notice that coker(f) is spanned by homology classes that do not come from homology classes
in Hyy1(Kg—1) or Hpy1(Kg+1). These homology classes (of dimension p + 1) correspond exactly
to the representations lg[k, k]. Similarly, elements in ker(g) are homology classes (of dimension p)
that are trivial when observed in H,(K,_1) and Hp(Ki41). Therefore ker(g) corresponds to the
interval representations ls, o[k, k]. This proves the first matching rule. O

We have proven the diamond principle using results about reflection functors. Therefore, using
results from quiver representation theory, we have shown a result about the interval decomposition
(and thus the barcode) of zigzag persistence modules.
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