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Abstract

Understanding and analysing the shape of geometric objects is crucial in
various fields, such as morphology and medical imaging. In this thesis, we
introduce the persistent homology transform, a tool for analysing shapes in
the three-dimensional Euclidean space. It uses persistent homology, which
is a variant of homology adapted to filtrations of spaces to represent a
shape as a collection of intervals. We justify this representation by showing
that the mapping from shapes to their persistent homology transform
is both continuous and injective. As an application, we show how the
persistent homology transform can be used to distinguish the heel bones
of different primate species.
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1 Introduction

Comparing shapes of objects is of high interest in many fields, such as biology,
medicine and computer science. This thesis introduces an approach which uses
topology to compare the shape of objects.

Topology is a branch of mathematics which deals with the properties of geometric
objects that are preserved under continuous deformations. Intuitively, continuous
deformations of an object are the deformations that can be achieved by stretching,
twisting and contracting. Tearing an object apart or gluing parts of an object
together can, however, not be done in a continuous fashion. One invariant under
continuous deformation is the number of n-dimensional holes. This geometric
property is described by homology.

To compute the homology of a shape in an algorithmic fashion, we introduce
simplicial complexes. They describe piece-wise linear spaces in a very combina-
torial way. Simplicial complexes are built up by n-simplices, which are convex
hulls of (n+ 1) points which do not lie in a (n− 1)-dimensional hyperplane. A
0-simplex for example is a point, a 1-simplex is a line, a 2-simplex is a triangle
and a 3-simplex is a tetrahedron.

In this thesis, we work with an adaptation of homology called persistent homology.
Intuitively, persistent homology keeps track of the changes in homology we
get when adding more simplices to a simplicial complex. To describe the
process of adding simplices to a simplicial complex, we introduce the notion of a
filtration, which is a family of sets that is ordered by inclusion. Filtrations can be
constructed in many different forms. In this thesis, we are mostly interested in
the so-called sublevelset filtrations: Given a simplicial complex M ⊆ Rd, we start
by choosing an arbitrary direction v ∈ Sd−1. We then consider the subcomplex
of M which consists of all simplices which lie beneath a height r ∈ R in this
direction.
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Figure 1: This sublevelset filtration corresponds to direction z. It is the family
of simplicial complexes, where the simplicial complex corresponding to the
parameter r ∈ R consists of the simplices below the height r in the direction of
the z-axis.

We are primarily interested in the heights for which the homology changes.
This means that at these heights, simplices are added and the subcomplex
with these simplices has different homology than without them. The heights
corresponding to changes in n-dimensional homology are displayed in a so-called
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persistence diagram, which is a set of points in R2. The x-coordinate of such
a point corresponds to the height for which a homology classes is born, and
the y-coordinate corresponds to the height where this homology class dies. To
represent homology classes that never die, there is an additional line above the
persistence diagram. We denote the n-dimensional persistence diagram of the
sublevelset filtration corresponding to the direction v ∈ Sd−1 by Xn(M,hv).
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Figure 2: This persistence diagrams correspond to the filtration in Figure 1. The
x-coordinate of a point in the first diagram indicates when a connected component
appears and its y-coordinate indicates when this connected component disappears.
Similarly, the x-coordinate of a point in the second diagram represents the time
a hole appears and the y-coordinate tells when this hole disappears. Finally,
the x-coordinate of the point in the third diagram stands for the time a void
appears and the y-coordinate indicates when this void disappears.

We then introduce the persistent homology transform, which represents simplicial
complexes as families of persistence diagrams. In particular, the persistent
homology transform of a simplicial complex M is defined to be the map which
takes a direction and assigns the persistence diagrams of its corresponding
sublevelset filtration to it:

PHT(M) : Sd−1 → Dd, v 7→ (X0(M,hv), X1(M,hv), . . . , Xd−1(M,hv)).

Using the bottleneck stability theorem, we can prove that the persistent ho-
mology transform is continuous with respect to the Wasserstein distance and
the bottleneck distance. These distances are metrics on the set of persistence
diagrams, denoted by distp and dist∞. Furthermore, we consider the following
map:

M∗
3 → (S2 → D3),M 7→ PHT(M).

Here, M∗
3 denotes the set of all 3-dimensional simplicial complexes which only

use as many vertices as needed. We show that this map, which takes a simplicial
complex and maps it to its persistent homology transform, is injective. Following
from this two facts, the persistent homology transform can indeed be used to
represent simplicial complexes and thus their shapes. Hence, we can compare
simplicial complexes by measuring distances between the families of persistence
diagrams which we get from their persistent homology transforms.
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Figure 3: Scan of a heel bone, viewed from the front and the back. (Source [5])

In the last section, we demonstrate how one can use the persistent homology
transform to classify heel bones of the following primates: Adapiforms (Adp),
Cercopithecoids (Cerc), Hominoids (Hm), Omomyiforms (Om), Parapithecids
(Pp), Platyrrhines (Plat) and Strepsirrhines (Str) [5]. Bones are often visualised
as meshes due to our modern scanning technologies, such as computerized
tomography scans. These meshes are then converted to simplicial complexes. To
compare the simplicial complexes M1, . . . ,Mk constructed from the scans of the
heel bones, they must be aligned, scaled evenly and rotated properly. Then, one
can compute the persistent homology transform of the simplicial complexes for a
selection of evenly distributed directions v1, . . . , vl ∈ S2. These can be pairwise
compared using the following metric:

dist∗Md
(Mi,Mj) =

1

k

d∑
n=1

l∑
m=1

dist1(Xn(Mi, hvm), Xn(Mj , hvm)).

Finally, plotting the heel bones according to these distances helps to visualise
this analysis. We can see that the points corresponding to the same species
form clusters. Thus, it is possible to distinguish different species of primates by
analysing the shape of their heel bones.
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Figure 4: Phenetic clustering of phylogenetic groups of primate heel bones.
(Source [5])
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2 Homology

This chapter introduces simple combinatorial objects called simplicial complexes
and a topological invariant called homology. Homology is a feature of a space or
shape that counts the number of generalized holes of geometric objects. This
chapter is mainly based on the article “Topological pattern recognition for point
cloud data” [1].

2.1 Simplicial complexes

First, we introduce the notion of simplicial complexes, as we can approximate
most geometric objects by them. A simplicial complex consists of so-called
simplices, which are glued together in a certain fashion. This simplices are defined
to be points, lines, triangles, tetrahedrons and n-dimensional generalisations of
them. To see how such a generalisation looks like, we observe that the complex
hull of three points only forms a triangle, if they are not lying on the same line.
Similarly, the convex hull of four points forms a tetrahedron, if the points do not
lie on a plane. Therefore, it is reasonable to define simplices to be the convex
hull of m points in general position, where being in general positions means that
the convex hull is of dimension m− 1. Formally, points in general position are
defined in the following way.

Definition 2.1 (general position). A set of m points x1, . . . , xm ∈ Rd are
in general position, if there is no m − 2-dimensional subspace of Rd which
contains the set {x1, . . . , xm}.

Note that a subset of a set of points in general position is in general position
too. With that, we can now define simplices formally.

Definition 2.2 (simplex).

1. For points x1, . . . xm ∈ Rd in general position, the convex hull of the subset
S = {x1, . . . , xm} is called simplex spanned by S and is denoted by σ(S).

2. For an integer n ∈ N, a simplex is called n-dimensional, if it contains
exactly n+ 1 vertices.

3. The points x1, . . . , xm are called vertices of σ(S).

4. For all non-empty subsets T ⊆ S, the simplex σ(T ) is called face of σ(S).

Example 2.3. Let x1 = (0, 0), x2 = (0, 2) and x3 = (1, 0) be three points in two
dimensional Euclidean space. Note that x1, x2 and x3 are in general position,
since they do not lie on a line. Hence, the complex hull σ = σ({x1, x2, x3}) is
a 2-dimensional simplex, which is of the form of a triangle. The points x1, x2

and x3 are vertices of σ and {x1}, {x1} and {x1} are faces of σ. Furthermore,
the line between the points x1 and x2 corresponds to the convex hull of the set
{x1, x2} and is thus a face of σ. Similarly, the other two boundary lines of the
triangle are faces too. Finally, we note that a simplex spanned by three points is
indeed a triangle, as a direct consequence of the definition of general position.
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As we already mentioned, we now want to glue simplices together. To get an idea
of what we mean by gluing together simplices, we consider a convex quadrilateral.
Then, its 4 boundary edges together with a diagonal form two triangles which
share an edge. This, however, means that by gluing an edge of a triangle to
an edge of the same length of another triangle, we can create a quadrilateral.
Therefore, it is reasonable to glue together simplices which share a face. This
leads to the following definition:

Definition 2.4 (simplicial complex). A simplicial complex M ⊆ Rd is a
finite collection of simplices satisfying the following conditions:

1. For every simplex σ ∈ M , all its faces τ ⊆ σ are also contained in M .

2. For any two simplices σ, τ ∈ M , its intersection σ ∩ τ is either empty or a
face of both σ and τ .

A simplicial complex M is called finite, if it consists of finitely many simplices.

Intuitively, the first condition assures that for every simplex in the simplicial
complex, its boundary is also contained in the simplicial complex. The second
condition prevents that two simplices in a simplicial complex intersect anywhere
else then on their boundaries.

We note that every simplex of a simplicial complex is uniquely given by its set
of vertices. This motivates the following definition.

Definition 2.5 (abstract simplicial complex). An abstract simplicial
complex is a tuple M = (V,Σ) consisting of a set of vertices V and a set of
simplices Σ ⊆ P(V ) \ {∅}, such that ∀σ ∈ Σ : ∀τ ∈ P(V ) \ {∅} :

∅ ≠ τ ⊆ σ =⇒ τ ∈ Σ.

M is called finite, if V is a finite set.

Remark. Let {x1, . . . , xm} ∈ Σ be a simplex of an abstract simplicial complex
(V,Σ). Then, we denote this simplex by x1x2 . . . xm.

We see that the vertex sets of the simplices of a simplicial complex form an
abstract simplicial complex.

Example 2.6. Let a = (0, 1), b = (0, 0), c = (1, 0), d = (−1, 0) and e = (1, 1)
be five points in R2. Consider the following three subsets of P({a, b, c, d, e}):

M = {a, b, c, d, e, ab, ac, ad, ae, bc, bd, abd}

N = {a, b, c, d, ac, ad, ae, bc, bd, abd}

O = {a, b, c, d, e, ab, ac, ad, bc, bd, be, abd}

This three sets correspond to the following shapes in R2:
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Drawing of M : Drawing of N : Drawing of O:
a

b cd

e a

b cd

e a

b cd
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Since M fulfils both conditions of Definition 2.4, it is a simplicial complex. N ,
on the other hand, is not a simplicial complex, since N contains the simplex
abd, but not the face ab of abd. Thus, N does not fulfil the first condition of
Definition 2.4. Finally, the two simplices ac and bc of O intersect in the point
( 12 ,

1
2 ), which itself is no simplex. As the second condition is not satisfied, O is

not a simplicial complex.

Definition 2.7. For an integer d ∈ N,

Md
..= {M ⊆ Rd | M is a simplicial complex}

denotes the set of all finite simplicial complexes in Rd.

Let M ∈ Md be an arbitrary d-dimensional simplicial complex. We define the
star and the link of a simplex σ of M as in [3].

Definition 2.8 (star and link).

1. The star of σ ∈ M is the set

St(σ) ..= {τ ∈ M | σ ⊆ τ}.

2. The closed star of σ ∈ M is the set

St(σ) ..=
⋃

τ∈St(σ)

{υ ∈ M | υ ⊆ τ}.

3. The link of σ ∈ M is the set

Lk(σ) ..= {τ ∈ St(σ) | σ ∩ τ = ∅}.

Remark. In general, St(σ) is not a simplicial complex. However, St(σ) is always
a subcomplex of M .

The following example illustrates that the link of a simplex can be viewed as the
representation of its neighbourhood.

Example 2.9. Consider the following simplicial complex as well as the star and
the link of some of its simplices.
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σ ∈ M St(σ) Lk(σ)
a {a, ab, ac, ae, ag, abc} {b, c, e, g, bc}
c {c, ac, bc, abc} {a, b, ab}
d {d} ∅
f {f, ef} {e}
g {g, ag, bg} {a, b}
ab {ab, abc} {c}
ag {ag} ∅
bc {bc, abc} {a}
abc {abc} ∅

Without loss of generality, let a be the origin of R2. For
δ > 0 small enough, consider the neighbourhood of a:

N(a) ..= Bδ(0) ∩ {x ∈ σ | σ ∈ M} ⊆ R2.

Furthermore, consider the set of directions, for which
there is a component of the link of a:

L(a) ..= {x ∈ σ | σ ∈ Lk(a)} ⊆ R2.

We note, that N(a) and L(a) are both fully represented
by the same set of directions:

{∥w∥−1w | w ∈ N(a) \ {0}} = {∥w∥−1w | w ∈ L(a)}

Therefore, the link of a simplicial complex does indeed
represent its neighbourhood.

a

Figure 5: N(a)

b

c

e

g

Figure 6: L(a)

2.2 Simplicial chain complexes

In this section, we introduce the notions of boundary matrices and chain com-
plexes. For this, we observe maps from an (n+ 1)-dimensional simplex σ to its
boundary, which is the set of n-dimensional faces of σ. We will see that it is
possible to represent this maps by linear transformations between vector spaces.
This will allow us to use linear algebra to compute homology. Hence, we start
this section by introducing free vector spaces:

Definition 2.10 (free vector space). A free K-vector space on a finite
set S is the set of K-linear combinations of the elements of S and is denoted by
VK(S) or by ⟨S⟩.

Note that S is a basis of VK(S), called the standard basis. Consider two finite
sets S and T , as well as a map f : T → S between them. By extending linearly,
we get a unique linear transformation VK(f) : VK(T ) → VK(S), where for all
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linear combinations t′ ∈ {
∑

t∈T att | ∀t ∈ T : at ∈ K} = VK(T ), we have that

VK(f)(t
′) =

∑
t∈T

atVK(f)(t) =
∑
t∈T

atf(t).

Let S and T be two finite sets. As mentioned above, they are bases of VZ/2Z(S)
and VZ/2Z(T ). Thus, we can define matrices mapping linear combinations of T
to linear combinations of S.

Definition 2.11 ((S, T )-matrix).

1. A matrix A where every row corresponds to exactly one s ∈ S and every
column corresponds to exactly one t ∈ T is called (S, T )-matrix.

2. ∀s ∈ S, the row corresponding to s is denoted by r(s).

3. ∀t ∈ T , the column corresponding to t is denoted by c(t).

Remark. Even though the definition of free vector spaces is given for a general
field K, we have defined (S, T )-matrices on the field Z/2Z. This choice is sufficient
in most applications and we will not use any other field in this thesis.

Let M be a d-dimensional simplicial complex. We note that all simplices of M
are of dimension less or equal to d. This observation motivates the following
definition:

Definition 2.12. Let M ⊆ Rd be a finite simplicial complex and let n ∈ N be
arbitrary. Then,

Σn(M) ..= {σ ∈ M | σ is n-dimensional}

denotes the set of all n-dimensional simplices of M .

Remark. Since ∀n ∈ N : Σn(M) is finite, VK(Σn(M)) is a free vector space on
Σn(M), denoted by Cn(M) ..= VZ/2Z(Σn(M)).

We proceed by defining the following (Σn(M),Σn+1(M))-matrix:

Definition 2.13 (boundary matrix). The matrix ∂n+1 = (aij), where
∀σ ∈ Σn(M) and ∀τ ∈ Σn+1(M), we have that

aστ =

{
1 if σ ⊆ τ

0 otherwise

is called (n+ 1)-dimensional boundary matrix of M .

Therefore, we have a sequence of Z/2Z-vector spaces {Cn(M)}n∈N, where for
two consecutive vector spaces, there is a map between them given by a boundary
matrix. Such a collection of spaces and maps is called simplicial chain complex.
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Definition 2.14 (simplicial chain complex). The simplicial chain com-
plex C∗(M) of M is the sequence of Z/2Z-vector spaces {Cn(M)}n∈N together
with linear transformations (∂n : Cn+1(M) → Cn(M))n∈N determined by the
n-dimensional boundary matrices of M .

Equivalently to the boundary homomorphisms in algebraic topology, the bound-
ary matrices of simplicial complexes fulfil the following property:

Proposition 2.15. For every finite simplicial complex M with an ordering of
its simplices sets, and for every integer n ∈ N, we have ∂n · ∂n+1 = 0.

Proof. Let (σ1, . . . , σm1), (τ1, . . . , τm2) and (υ1, . . . , υm3) be orderings of the sets
Σn(M), Σn+1(M) and Σn+2(M). Let i ∈ {1, . . . ,m1} and j ∈ {1, . . . ,m3} be
arbitrary. Then, the row of ∂n corresponding to σi vanishes everywhere except
at the columns k ∈ {1, . . . ,m2} with σi ⊆ τk. Similarly, the column of ∂n+1

corresponding to υj vanishes everywhere except at the columns k ∈ {1, . . . ,m2}
with τk ⊆ υj . Hence, the entry of the matrix ∂n · ∂n+1 at row i and column j is
equal the number of τ ∈ Σn+1(M) satisfying σi ⊆ τ ⊆ υj . This number is either
0 or 2 and hence 0 in the field Z/2Z.

We can use this property to give a generalized definition of chain complexes.

Definition 2.16 (abstract chain complex). An abstract chain complex
C∗ is a sequence of K-vector spaces (Cn)n∈N together with linear transformations
(∂n : Cn+1 → Cn)n∈N with the property that ∀n ∈ N : ∂n ◦ ∂n+1 = 0. This
condition is equivalent to the condition, that ∀n ∈ N : im(∂n+1) ⊆ ker(∂n).

2.3 Simplicial homology

The goal of this section is to introduce the notion of homology on simplicial
complexes. Homology is a topological invariant that counts the number of
n-dimensional holes of a simplicial complex.

We start this section by defining cycles and boundaries:

Definition 2.17 (cycles and boundaries). Let n ∈ N be an integer and let
C∗(M) be a simplicial chain complex.

1. Zn
..= ker(∂n) denotes the kernel of ∂n. The elements of Zn are called

n-cycles.

2. Bn
..= im(∂n+1) denotes the image of ∂n+1. The elements of Bn are called

n-boundaries.

To get a better intuition of cycles and boundaries, consider the following example:

Example 2.18. Consider the abstract simplicial complex from Example 2.6:

M = {a, b, c, d, e, ab, ac, ad, ae, bc, bd, abd}

Furthermore, for all dimensions n ∈ N, consider the free vector spaces Cn(M).
As every simplex is of dimension 2 or less, we see that ∀n ≥ 3 : Cn(M) = 0.
From the remark of Definition 2.10, it follows that:
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1. (a, b, c, d, e) is an ordered basis of C0(M) = ⟨a, b, c, d, e⟩.

2. (ab, ac, ad, ae, bc, bd) is an ordened basis of C1(M).

3. (abd) is an ordered basis of C2(M).

Now consider the boundary matrices of M .

∂1 =

ab ac ad ae bc bd


a 1 1 1 1 0 0
b 1 0 0 0 1 1
c 0 1 0 0 1 0
d 0 0 1 0 0 1
e 0 0 0 1 0 0

∂2 =

abd


ab 1
ac 0
ad 1
ae 0
bc 0
bd 1

We observe that ∂1 maps ab to a + b, bc to b + c and ac to a + c. Since the
boundary map is linear, ab+ bc+ ac gets mapped to 2a+ 2b+ 2c, which is equal
to 0 in the field Z/2Z. Therefore, ab+ bc+ ac is a 1-cycle of M . Also note that
a, b, c are 0-boundaries of M .

a

b cd

e

We further observe that ab+ ad+ bd is both a 1-cycle and a 1-boundary of M .
Also, ab + ac + bc is no 1-boundary. This is because the triangle abd is filled,
while the triangle abc is not. Therefore, we can intuitively think of the simplex
abd to fill the loop ab+ ad+ bd.

As we have seen in the example, if an element of Cn(M) is a n-cycle but not a
n-boundary, then it represents a n-dimensional hole. However, if an element of
Cn(M) is both a n-cycle and a n-boundary, then it does not correspond to a
n-dimensional hole of M . Therefore, this motivates us to define the homology of
a simplicial complex as the quotient of its cycles by its boundaries.

Definition 2.19 (homology). Let n ∈ N be arbitrary and let C∗(M) be a
simplicial chain complex. The quotient space

Hn(M) ..= Zn/Bn

is called the n-dimensional homology group of M .

Note that the homology of a simplicial complex depends on the field on which
the free vector spaces are defined. Intuitively, the n-dimensional homology of
M represents its n-dimensional holes. Furthermore, the dimension of Hn(M)
can be thought of as the number of n-dimensional holes. Thus, we define the
so-called Betti numbers:
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Definition 2.20 (Betti number). Let n ∈ N be an integer and let C∗(M) be
a simplicial chain complex. The integer

βn(M) ..= dim (Hn(M))

is called the n-th Betti number of M .

2.4 Computing homology

Theoretically, we are able to compute the homology of every simplicial complex,
just by using linear algebra to determine the kernels and images of its boundary
matrices, as well as the quotients of them. However, with a few observations,
we can develop an algorithm which makes computing homology a straitforward
process. To ease notation, we first define simple matrices:

Definition 2.21 (Simple matrix). Let S and T be two finite sets. Then, a
(S, T )-matrix is called simple, if A has at most one entry equal to one in every
row and every column, with all other entries being 0.

We see that computing the kernels and images of simple (S, T )-matrices is easy.

Observation 2.22. Let A be a simple (S, T )-matrix. Then:

1. ker(LA) = ⟨{s ∈ S | c(s) = 0}⟩ ⊆ VZ/2Z(S).

2. im(LA) = ⟨{t ∈ T | r(t) ̸= 0}⟩ ⊆ VZ/2Z(T ).

Here, LA denotes the linear transformation from VZ/2Z(T ) to VZ/2Z(S) given by
left multiplication of A.

Furthermore, we have the following result:

Observation 2.23. Let R, S and T be finite sets. Furthermore, let A be a
simple (R,S)-matrix and let B be a simple (S, T )-matrix such that A · B = 0.
Then, ∀s ∈ S : cA(s) ̸= 0 =⇒ rB(s) = 0 and rB(s) ̸= 0 =⇒ cA(s) = 0. Hence

{s ∈ S | rB(s) ̸= 0} ⊆ {s ∈ S | cA(s) = 0}.

From Observation 2.22, it follows that

im(LB) = ⟨{s ∈ S | rB(s) ̸= 0}⟩ ⊆ ⟨{s ∈ S | cA(s) = 0}⟩ = ker(LA)

We see that the basis of im(LB) is contained in the basis of ker(LA). Therefore,
computing their quotient is effortless:

ker(LA)/im(LB) = ⟨{s ∈ S | cA(s) = rB(s) = 0}⟩

Note that this is only possible when the columns of A and the rows of B both
correspond to the same basis elements.
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From linear algebra, we know that every matrix can be transformed into a simple
matrix by performing finitely many row and column operations on it. Further-
more, these row operations correspond to basis changes on the corresponding
vector fields.

Observation 2.24. Consider a (S, T )-matrix A and a (T,U)-matrix B.

1. Let s1, s2 ∈ S be distinct. Adding rA(s1) to rA(s2) yields a (S′, T )-matrix
A′, where S′ = (S \ {s1}) ∪ {s1 − s2}. Since the set S′ is obtained by
linearly combining elements of S, it generates the same free vector space
as S. Furthermore, we know from linear algebra that A and A′ represent
the same linear transformation with respect to the bases S, T and S′, T . As
a consequence, im(LA) = im(LA′).

2. Let u1, u2 ∈ U be distinct. Adding cB(u1) to cB(u2) yields a (T,U ′)-matrix
B′, where U ′ = (U \ {u2})∪ {u2 + u1}. With the same reasoning as above,
we get that the matrices B and B′ represent the same linear map and
ker(LB) = ker(LB′).

3. Let t1, t2 ∈ T be distinct. Adding cA(t1) to cA(t2) yields a (S, T ′)-matrix
A′, where T ′ = (T \ {t2}) ∪ {t2 + t1} Now however, the matrices A and B
have different bases of VZ/2Z(T ). In order to match these bases again, we
need to subtract rB(s2) from rB(s1) to get a (T ′, U)-matrix B′. Therefore
ker(LA) = ker(LA′) and im(LB) = im(LB′).

Therefore, the kernel and the image of a linear transformation are preserved under
the operations described above. Furthermore, by only applying these operations
to A and B, we can assure that the elements of VK(S) representing the columns
of A always match with elements representing the rows of B.

Let M be a finite simplicial complex and let n ∈ N be arbitrary. We now
construct an algorithm to compute the n-dimensional homology of M . The
algorithm is split into two steps. In the first step, we use Observation 2.24 to
transform the n-dimensional boundary matrix ∂n of M into a simple matrix.
Then, we use Observation 2.24 again to transform the (n + 1)-dimensional
boundary matrix ∂n+1 of M into a simple matrix as well. We then can apply
2.23 to get the n-dimensional homology of M .

Algorithm 2.25. Define S ..= Σn−1(M), T ..= Σn(M) and U ..= Σn+1(M).
Furthermore, let A ..= ∂n and let B ..= ∂n+1. Note that A is a (S, T )-matrix, B
is a (T,U)-matrix and AB = 0. Initialise S′ = S, T ′ = T and U ′ = U .

Step 1:
Choose s′ ∈ S′ and t′ ∈ T ′ such that as′t′ ̸= 0.
Remove s′ from S′ and t′ from T ′.
∀s ∈ S′ with ast′ ̸= 0, perform the following operations:

1. add rA(s
′) to rA(s).

2. remove s′ from S.
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3. add s′ − s to S.

4. redefine s′ to be s′ − s.

These operations correspond to operations of the first type in Observation 2.24.
∀t ∈ T ′ with as′t ̸= 0, perform the following operations:

1. add cA(t
′) to cA(t).

2. subtract rB(t) from rB(t
′).

3. remove t from T and from T ′.

4. add t+ t′ to T and to T ′.

These operations correspond to operations of the second type in Observation 2.24.
Note that now as′t′ is the only entry of rA(s

′) and cA(t
′) which is non-zero.

Therefore, we can repeat Step 1 until A is transformed into a simple matrix.

From AB = 0, it follows that ∀t ∈ T with cA(t) ̸= 0, we have that rB(t) = 0.
Furthermore, note that t ∈ T ′ ⇐⇒ cA(t) = 0. Thus, ∀t1, t2 ∈ T ′, the change of
basis caused by adding rB(t1) to rB(t2) does not affect A.

Step 2:
Choose a t′ ∈ T ′ and a u′ ∈ U ′ such that Bt′u′ ̸= 0.
Remove t′ from T ′ and u′ from U ′.
∀t ∈ T ′ with btu′ ̸= 0, perform the following operations:

1. add rB(t
′) to rB(t).

2. remove t′ from T .

3. add t′ − t to T .

4. redefine t′ to be t′ − t.

These operations correspond to operations of the second type in Observation 2.24.
∀u ∈ U ′ with at′u ̸= 0, perform the following operations:

1. add cB(u
′) to cB(u).

2. remove u from U and from U ′.

3. add u+ u′ to U and to U ′.

These operations correspond to operations of the third type in Observation 2.24.
Note that now bt′u′ is the only entry of rB(t

′) and cB(u
′) which is non-zero.

Therefore, we can repeat Step 2 until B is transformed into a simple matrix.

Since all operations are of one of the types described in Observation 2.24, ker(A)
and im(B) are left invariant. Therefore, we can use Observation 2.23 to compute
ker(A)/im(B)

To close this chapter, we demonstrate this algorithm in an example.
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Example 2.26. Let M be the boundary of a tetrahedron together with three
lines connecting three of its corners to a fifth point.

a

b

c

d

e

Consider the sets of 0, 1 and 2 dimensional simplices:

Σ0(M) = {a, b, c, d, e}

Σ1(M) = {ab, ac, ad, ae, bc, bd, cd, ce, de}

Σ2(M) = {abc, abd, acd, bcd}

Let ∂abc denote ab+ ac+ bc.

Consider the boundary matrices:

∂1 =

ab ac ad ae bc bd cd ce de


a 1 1 1 1 0 0 0 0 0
b 1 0 0 0 1 1 0 0 0
c 0 1 0 0 1 0 1 1 0
d 0 0 1 0 0 1 1 0 1
e 0 0 0 1 0 0 0 1 1

∂2 =

abc abd acd bcd



ab 1 1 0 0
ac 1 0 1 0
ad 0 1 1 0
ae 0 0 0 0
bc 1 0 0 1
bd 0 1 0 1
cd 0 0 1 1
ce 0 0 0 0
de 0 0 0 0

We start by performing all row operations of Step 1. For this, we add the first
row of ∂1 to the second row. Furthermore, we replace a with a− b. Recall that
a− b = a+ b in Z/2Z.

ab ac ad ae bc bd cd ce de


a+b 1 1 1 1 0 0 0 0 0
b 0 1 1 1 1 1 0 0 0
c 0 1 0 0 1 0 1 1 0
d 0 0 1 0 0 1 1 0 1
e 0 0 0 1 0 0 0 1 1

abc abd acd bcd



1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

We proceed by performing the column operations of Step 1. Thus, we add the
first column of ∂1 to columns 2, 3 and 4. Additionally, we subtract rows 2, 3
and 4 of ∂2 from the first row. Finally, we adapt the bases.
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ab ab+ac ab+ad ab+ae bc bd cd ce de


a+b 1 0 0 0 0 0 0 0 0
b 0 1 1 1 1 1 0 0 0
c 0 1 0 0 1 0 1 1 0
d 0 0 1 0 0 1 1 0 1
e 0 0 0 1 0 0 0 1 1

abc abd acd bcd



0 0 0 0
1 0 1 0
0 1 1 0
0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

Executing Step 1 a second time yields:

ab ab+ac ab+ad ab+ae bc bd cd ce de


a+b 1 0 0 0 0 0 0 0 0
b+c 0 1 1 1 1 1 0 0 0

c 0 0 0 0 1 0 1 1 0
d 0 0 1 0 0 1 1 0 1
e 0 0 0 1 0 0 0 1 1

abc abd acd bcd



0 0 0 0
1 0 1 0
0 1 1 0
0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

ab ab+ac ac+ad ac+ae ∂abc ab+ac+bd cd ce de


a+b 1 0 0 0 0 0 0 0 0
b+c 0 1 0 0 0 0 0 0 0

c 0 0 1 1 0 1 1 1 0
d 0 0 1 0 0 1 1 0 1
e 0 0 0 1 0 0 0 1 1

abc abd acd bcd



0 0 0 0
0 0 0 0
0 1 1 0
0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

Note that the third column of ∂1 corresponds to the basis element ac+ ad. This
is because ab+ ac+ ab+ ad = 2ab+ ac+ ad and 2 = 0 in Z/2Z.
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We now repeat Step 1 until ∂1 is simple.

ab ab+ac ac+ad ad+ae ∂abc ∂abd ∂acd ac+ad+ce de


a+b 1 0 0 0 0 0 0 0 0
b+c 0 1 0 0 0 0 0 0 0
c+d 0 0 1 0 0 0 0 0 0

d 0 0 0 1 0 0 0 1 1
e 0 0 0 1 0 0 0 1 1

abc abd acd bcd



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

ab ab+ac ac+ad ad+ae ∂abc ∂abd ∂acd ac+ae+ce ad+ae+de


a+b 1 0 0 0 0 0 0 0 0
b+c 0 1 0 0 0 0 0 0 0
c+d 0 0 1 0 0 0 0 0 0
d+e 0 0 0 1 0 0 0 0 0

e 0 0 0 0 0 0 0 0 0

abc abd acd bcd



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

The goal now is to transform ∂2 into a simple matrix as well. Therefore, we
add columns 1, 2 and 3 of ∂2 to the fourth column. To adjust the basis to these
operations, we have to add abc, abd and acd to bcd, which corresponds to ∂abcd.

ab ab+ac ac+ad ad+ae ∂abc ∂abd ∂acd ac+ae+ce ad+ae+de


a+b 1 0 0 0 0 0 0 0 0
b+c 0 1 0 0 0 0 0 0 0
c+d 0 0 1 0 0 0 0 0 0
d+e 0 0 0 1 0 0 0 0 0

e 0 0 0 0 0 0 0 0 0

abc abd acd ∂abcd



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
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Now we use Observation 2.22 to compute the cycles and boundaries of M :

Z0
..= ker(∂0) ∼= ⟨a+ b, b+ c, c+ d, d+ e, e⟩

B0
..= im(∂1) ∼= ⟨a+ b, b+ c, c+ d, d+ e⟩

Furthermore, we have that:

Z1
..= ker(∂1) ∼= ⟨ac+ ae+ ce, ad+ ae+ de, ∂abc, ∂abd, ∂acd⟩.

B1
..= im(∂2) ∼= ⟨∂abc, ∂abd, ∂acd⟩.

Finally, we recall that ∂3 has empty domain. Therefore:

Z2
..= ker(∂2) ∼= ⟨∂abcd⟩

B2
..= im(∂3) ∼= 0

As desired, all generators of B0, B1 and B2 are generators of Z0, Z1 and Z2

too. Therefore, we just need to take the generators out of the cycles which are
contained in the boundaries to get their quotient. With this, we can now compute
the homology of M .

H0(M) ∼= ⟨a+b,b+c,c+d,d+e,e⟩
⟨a+b,b+c,c+d,d+e⟩

∼= ⟨e⟩

H1(M) ∼= ⟨ac+ae+ce,ad+ae+de,∂abc,∂abd,∂acd⟩
⟨∂abc,∂abd,∂acd⟩

∼= ⟨ac+ ae+ ce, ad+ ae+ de⟩

H2(M) ∼= ⟨∂abcd⟩
0

∼= ⟨∂abcd⟩

To get a better understanding what this homology spaces are, we visualize its
generators in a picture:

a

b

c

d

e

We see that ac+ ae+ ce and ad+ ae+ de are two
loops which represent the two 1-dimensional holes of
M . Furthermore, we observe that ∂abcd represents
the void which is enclosed by the boundary of the
tetrahedron. Finally, e stands for the only connected
component M has.

The Betti numbers of M are defined to be the dimension of the homologies.
From linear algebra, we know that these dimensions are equal to the number of
generators of the space. Therefore, β0(M) = 1, β1(M) = 2 and β2(M) = 1. This
means that M has one connected component, two 1-dimensional holes and one
2-dimensional hole, namely the void enclosed by the boundary of the tetrahedron.
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3 Persistence

This chapter introduces persistent homology, an adaptation of homology to the
setting of filtrations. It is mainly based on the article “Topological pattern
recognition for point cloud data” [1].

3.1 Filtrations

We start this section by introducing filtrations, which are families of sets which
are ordered by inclusion. Furthermore, we introduce tame functions, which are
then used to define filtrations on simplicial complexes.

Definition 3.1 (filtered set).

1. A filtered set is a pair (S, σ), consisting of a set S and a function
σ : S → R.

2. A filtered set (S, σ) is called finite, if S is finite.

Definition 3.2 (filtration). A family of sets {Sr}r∈R which is ordered by
inclusion, meaning that

∀r1, r2 ∈ R : r1 ≤ r2 =⇒ Sr1 ⊆ Sr2 ,

is called filtration.

For a filtered set (S, σ), we see that {s ∈ S | σ(s) ≤ r}r∈R is a filtration.
Furthermore, for a filtration {Sr}r∈R, we see that

⋃
r∈R Sr together with the

function σ :
⋃

r∈R Sr → R, where ∀s ∈
⋃

r∈R Sr : σ(s) ..= min{r ∈ R | s ∈ Sr},
is a filtered set. Therefore, there is a one-to-one correspondence between filtered
sets and filtrations, which means that we can assign a filtration to any filtered
set and vice versa.

We now continue to define tame functions, which are needed to build filtrations
of simplicial complexes.

Definition 3.3 (homological critical value). Let T be a topological space
and let f : T → R be a real-valued function. A homological critical value of
f is a number a ∈ R for which there is an integer n ∈ N such that for all ε > 0
small enough, the map Hn(f

−1((−∞, a− ε])) → Hn(f
−1((−∞, a+ ε])) induced

by inclusion is not an isomorphism.

The following example should give an intuition for homological critical values.

Example 3.4. Consider the following simplicial complex:

M = {a, b, c, ab, ac, bc, abc}

Note that M is a triangle. Define f : M → R such that
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1. f(a) = f(b) = f(c) = 0

2. f(ab) = f(ac) = 1

3. f(bc) = 2

4. f(abc) = 3

We observe that:

1. ∀x ∈ (−∞, 0) : f−1((−∞, x]) = ∅ and therefore
∀x ∈ (−∞, 0) : ∃ε > 0 such that f−1((−∞, x]) = f−1((−∞, x]).

2. ∀x ∈ [0, 1) : f−1((−∞, x])) = {a, b, c} and therefore
∀x ∈ (0, 1) : ∃ε > 0 such that f−1((−∞, x]) = f−1((−∞, x]).

3. ∀x ∈ [1, 2) : f−1((−∞, x])) = {a, b, c, ab, ac} and therefore
∀x ∈ (1, 2) : ∃ε > 0 such that f−1((−∞, x]) = f−1((−∞, x]).

4. ∀x ∈ [2, 3) : f−1((−∞, x])) = {a, b, c, ab, ac, bc} and therefore
∀x ∈ (2, 3) : ∃ε > 0 such that f−1((−∞, x]) = f−1((−∞, x]).

5. ∀x ∈ [3,∞) : f−1((−∞, x])) = {a, b, c, ab, ac, bc, abc} and therefore
∀x ∈ (3,∞) : ∃ε > 0 such that f−1((−∞, x]) = f−1((−∞, x]).

Note that, for every point x ∈ R, the preimage f−1((−∞, x)) is a simplicial
complex.
Let x ∈ R \ {0, 1, 2, 3}. Then, we have that ∀n ∈ N : ∃ε > 0 for which the map

Hn(f
−1((−∞, a− ε])) → Hn(f

−1((−∞, a+ ε]))

induced by inclusion is the identity map and thus an isomorphism. Thus, x is
no homological critical value of f .
Let x ∈ {0, 1}. Then, ∀ε ∈ (0, 1) we have that:

1. β0(f
−1((−∞, 0− ε])) = 0 and β0(f

−1((−∞, 0 + ε])) = 3

2. β0(f
−1((−∞, 1− ε])) = 3 and β0(f

−1((−∞, 1 + ε])) = 1

As the dimensions of the 0-dimensional homology do not match around the points
1 and 2, the inclusion maps again cannot be isomorphisms. Thus, 0 and 1 are
homological critical values of f .
Let x ∈ {2, 3}. Similarly, we have that ∀ε ∈ (0, 1):

1. β1(f
−1((−∞, 2− ε])) = 0 and β1(f

−1((−∞, 2 + ε])) = 1

2. β1(f
−1((−∞, 3− ε])) = 1 and β1(f

−1((−∞, 3 + ε])) = 0

Therefore, the inclusions between H1(f
−1((−∞, x−ε])) and H1(f

−1((−∞, x+ε]))
cannot be isomorphisms. Hence, 2 and 3 are homological critical values of f as
well.
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Definition 3.5 (tame function). A real-valued function f : T → R is called
tame, if its number of homological critical values is finite.

Remark. For a finite simplicial complex M , every real-valued function f : M → R
defined on M is tame.

In Example 3.4, we observed that the preimages of f are simplicial complexes.
Furthermore, they are ordered by inclusion. As a consequence, we can now
construct filtered sets of simplicial complexes using tame functions. Additionally,
given a collection of simplicial complexes which is ordered by inclusion, we can
see that only considering the simplices of a fixed dimension n ∈ N conserves this
ordering. Therefore, we will construct filtered sets generated by tame functions
f : M → R on the set of its n-dimensional simplices. Generally, the dimension
of homology can be viewed as being fixed in this chapter.

Definition 3.6 (generated filtration). Let n ∈ N be an arbitrary dimension,
let M be a simplicial complex and let f : M → R be a tame function with the
property that ∀σ ∈ M and for all faces τ of σ, we have that f(τ) ≤ f(σ). Then,
(Σn(M), f |Σn(M)) is a filtered set.

The condition on f is there to assure that at every time r ∈ R, the subset of M
consisting of all the simplices σ ∈ M with f(σ) ≤ r is a subcomplex of M .

3.2 Persistent vector spaces

In this Section, we introduce persistent vector spaces, which are families of
vector spaces together with families of linear transformations that fulfil a certain
property Furthermore, we study how known concepts of linear algebra can be
extended to a persistent setting. There, we get a notion of linear transformations
between persistent vector spaces.

Definition 3.7 (persistent vector space). A persistent vector space is a
family of K-vector spaces {Vr}r∈R together with a family of linear transformations
{LV (r1, r2) : Vr1 → Vr2}r1≤r2 such that

∀r1, r2, r3 ∈ R : r1 ≤ r2 ≤ r3 =⇒ LV (r1, r3) = LV (r2, r3) ◦ LV (r1, r2).

The reason for the condition on the linear transformations will become apparent
later. As for regular vector spaces, we want to define linear maps between two
persistent vector spaces.

Definition 3.8 (linear transformations of persistent vector spaces).
Let {Vr}r∈R and {Wr}r∈R be two persistent vector spaces. A linear trans-
formation from {Vr}r∈R to {Wr}r∈R is a family of linear transformations
{fr : Vr → Wr}r∈R such that

∀r1, r2 ∈ R : r1 ≤ r2 =⇒ fr2 ◦ LV (r1, r2) = LW (r1, r2) ◦ fr1 .

Also, we define subspaces and quotient spaces of persistent vector spaces.
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Definition 3.9 (sub-persistent vector space). Let {Vr}r∈R be a persistent
vector space. A sub-persistent vector space of {Vr}r∈R is a family of sub-
vector spaces {Ur}r∈R such that

∀r1, r2 ∈ R : r1 ≤ r2 =⇒ ∀u ∈ Ur1 : LV (r1, r2)(u) ∈ Ur2 .

Remark. For a linear transformation {fr : Vr → Wr}r∈R, its image im(f) is
defined to be the sub-persistent vector space {im(fr)}r∈R.

Definition 3.10 (persistent quotient space). Let {Vr}r∈R be a persistent
vector space and let {Wr}r∈R be a sub-persistent vector space of {Vr}r∈R. Then

{Vr}r∈R/{Wr}r∈R ..= {Vr/Wr}r∈R

is called persistent quotient space, where Vr/Wr denotes the quotient space
of the two K-vector spaces Vr and Wr.

Finally, we introduce a notation for free persistent vector spaces.

Definition 3.11 (persistent vector space on (S, σ)). For all r ∈ R, let

Wr
..= VK({s ∈ S | σ(s) ≤ r})

be the free K-vector space on {s ∈ S | σ(s) ≤ r}. For arbitrary r1, r2 ∈ R with
r1 ≤ r2, let

LS(r1, r2) : Wr1 → Wr2 , w 7→ w

be the inclusion map from Wr1 to Wr2 . Then, {Wr}r∈R together with the linear
transformations {LS(r1, r2)}r1≤r2 is called free persistent vector space on
(S, σ) and is denoted by {VK(S, σ)r}r∈R.

Remark. {VK(S, σ)r}r∈R is a sub-persistent vector space of (VK(S))r∈R.

The following definition introduces finitely presented persistent vector spaces:

Definition 3.12 (finitely presented persistent vector space).

1. A persistent vector space is called free, if it is isomorphic to {VK(S, σ)r}r∈R
for a filtered set (S, σ).

2. A free persistent vector space is called finitely generated, if it is isomor-
phic to {VK(S, σ)r}r∈R for a finite filtered set (S, σ).

3. A persistent vector space is called finitely presented, if it is isomorphic
to {Wr}r∈R/im(f), where {Vr}r∈R and {Wr}r∈R are two finitely generated
persistent vector spaces and f : {Vr}r∈R → {Wr}r∈R is a linear transfor-
mation between them.

For a better understanding of free persistent vector spaces, the following propo-
sition classifies its elements:
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Proposition 3.13. For an arbitrary time r ∈ R and a linear combination∑
{s∈S} ass ∈ VK(S), we have:∑

{s∈S}

ass ∈ VK(S, σ)r ⇐⇒ ∀s ∈ S with σ(s) > r : as = 0.

Proof. Let y =
∑

{s∈S} ass ∈ VK(S) be a linear combination with the property

that for all s ∈ S with σ(s) > r, as vanishes. Hence y =
∑

{s∈S|σ(s)≤r} ass.

Since {s ∈ S | σ(s) ≤ r} is contained in VK(S, σ)r, it follows that the sum lies in
VK(S, σ)r too.
Now let y =

∑
{s∈S} ass ∈ VK(S) such that there is at least a s′ ∈ S with

σ(s′) > r and as′ ̸= 0. Since s′ /∈ VK(S, σ)r, we have that also the linear
combination is not contained in VK(S, σ)r.

This means that only the elements s ∈ S which already appeared at time r ∈ R
are present in the vector space VK(S, σ)r and its basis.

3.3 Adapted matrices

In linear algebra, matrices are used to represent linear transformations between
vector spaces. This section extends this notion of matrices to a persistent setting.
This will simplify working with linear transformations between persistent vector
spaces.

Definition 3.14 (adapted matrix). Let (Sσ) and (T, τ) be two finite filtered
sets. An (S, T )-matrix is called (σ, τ)-adapted, if the following condition holds:

∀s ∈ S, ∀t ∈ T : σ(s) > τ(t) =⇒ ast = 0.

By inserting S = Σn(M) and T = Σn−1(M), we see that the condition for a
matrix being adapted is there to assure that the boundary of a simplex appears
before the simplex itself.

Proposition 3.15. Consider the following matrices:

1. Let A be a (σ, τ)-adapted (S, T )-matrix.

2. Let U be a (σ, σ)-adapted (S, S)-matrix.

3. Let V be a (τ, τ)-adapted (T, T )-matrix.

Then, UAV is a (σ, τ)-adapted (S, T )-matrix too.

Proof. Let s ∈ S and t ∈ T be such that σ(s) > τ(t). Since U is (σ, σ)-adapted, it
follows that ∀s′ ∈ S with σ(s) > σ(s′), we have that the entry of U corresponding
to the row s and the column s′ vanishes. Similarly, since A is (σ, τ)-adapted, it
follows that ∀s′ ∈ S with σ(s′) > σ(t), we have that the entry of A corresponding
to the row s′ and the column t vanishes. Hence, the entry of UA corresponding
to row s and column t vanishes. Therefore, UA is (σ, τ)-adapted. Analogously
we get that AV is (σ, τ)-adapted and thus, we have that UAV is (σ, τ)-adapted
too.
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In linear algebra, row operations on matrices corresponds to the multiplication of
invertible matrices from the left. Similarly, column operations correspond to the
multiplication with invertible matrices from the right. However, row and column
operations do not preserve the adaptedness of a matrix in general. Therefore,
we define (σ, τ)-adapted row and column operations.

Definition 3.16 ((σ, τ)-adapted row and column operation). The (σ, τ)-
adapted row operations and column operations consists of:

1. multiplying any row with a non-zero scalar.

2. multiplying any column with a non-zero scalar.

3. adding a multiple of r(s1) to r(s2) when σ(s1) ≥ σ(s2).

4. adding a multiple of c(t1) to c(t2) when τ(t1) ≤ τ(t2).

The following corollary justifies the definition of adapted operations.

Corollary 3.17. Let A be a (σ, τ)-adapted (S, T )-matrix. If a (S, T )-matrix B
is obtained by applying finitely many (σ, τ)-adapted row and column operations
on A, then there is an invertible (σ, σ)-adapted (S, S)-matrix U and an invertible
(τ, τ)-adapted (T, T )-matrix V such that B = UAV .

Proof. We prove this corollary via induction on the number of adapted operations
used.
Base case: Let B be the matrix A, where the row corresponding to s ∈ S is
multiplied by λ ∈ K \ {0}. Let U = (uij) be the (S, S)-matrix with

ui,j =


0 if i ̸= j

λ−1 if r(s) = i = j

1 otherwise

Then UB = A. Since U only has non-zero entries where the row and the column
correspond to the same s ∈ S, it follows that U is indeed (σ, σ)-adapted.
Let λ ∈ K be arbitrary and let s1, s2 ∈ S be such that σ(s1) ≥ σ(s2). Let B
be the matrix A, where r(s1) is added λ times to r(s2). Let U = (uij) be the
(S, S)-matrix with

ui,j =


1 if i = j

−λ if r(s2) = i and r(s1) = j

0 otherwise

Then UB = A. Since σ(s2) ≤ σ(s1), it follows that U is indeed (σ, σ)-adapted.
For the analog column operations, the same reasoning can be applied.
Induction hypothesis: Let n ∈ N be arbitrary and let An denote the matrix
A after performing n adapted operations on it. Then there is an invertible
(σ, σ)-adapted (S, S)-matrix U and an invertible (τ, τ)-adapted (T, T )-matrix V
such that An = UAV .
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Induction step: Let n ∈ N be arbitrary. Consider An+1 to be any matrix that
can be obtained by performing n + 1 adapted operation on A. Furthermore,
let An denote the matrix where only the first n of these adapted operation are
performed. Due to the induction hypothesis, there is an invertible (σ, σ)-adapted
matrix U and an invertible (τ, τ)-adapted matrix V such that An = UAV .
Note that An+1 can be obtained by performing one adapted operation on An.
Assume that, without loss of generality, this is an adapted row operation. Thus,
according to the base case, we can find an invertible (σ, σ)-adapted matrix such
that An+1 = U ′An. Therefore, we have An+1 = U ′UAV . Since U and U ′ are
both (σ, σ)-adapted, it follows from Proposition 3.15 that U ′U is (σ, σ)-adapted
too, proving the claim.

As a consequence, we can work with adapted matrices and adapted row operations
as we are used to from linear algebra. However, when applying a row or column
operation, we should never forget to check if the operation is an adapted one.
In practice, by ordering the rows and columns of an adapted matrix before
performing operations on it, working with it gets much easier, since we know
that we can add a row to another one, if and only if it is higher up in the matrix.
Another property of matrices in linear algebra is that they can be used to represent
linear transformations between vector spaces. In the following propositions, it
will become clear that we can find a similar one-to-one correspondence between
adapted matrices and linear transformations between two persistent vector
spaces.

Proposition 3.18. Every linear transformation between two finitely generated
persistent vector spaces f : {VK(T, τ)r}r∈R → {VK(S, σ)r}r∈R determines a
unique (σ, τ)-adapted (S, T )-matrix A(f).

Proof. Let {fr : VK(T, τ)r → VK(S, σ)r}r∈R be an arbitrary linear transformation
between two finitely generated persistent vector spaces. Since S and T are finite,
RS

..= max{σ(x) | s ∈ S} and RT
..= max{τ(x) | x ∈ T} are finite too. Let R

be the bigger of these values. Then ∀r ≥ R, we have that VK(S, σ)r = VK(S)
and VK(T, τ)r = VK(T ). Consider the basis BK(S) ..= {s ∈ S} of VK(S) and the
basis BK(T ) ..= {t ∈ T} of VK(T ). Then, following from linear algebra, there is a
unique transformation matrix A(f) of fR with respect to these bases. Hence,
for all t ∈ T , we have that f(t) =

∑
{s∈S} asts.

Let t ∈ BK be arbitrary. Clearly, t ∈ VK(T, τ)τ(t) and f(t) ∈ VK(S, σ)τ(t).
According to Proposition 3.13, for all s ∈ S with σ(s) > τ(t), we have that
ast = 0. Thus, A(f) is (σ, τ)-adapted.

Proposition 3.19. Every (σ, τ)-adapted (S, T )-matrix A determines a unique
linear transformation between two finitely generated persistent vector spaces
fA : {VK(T, τ)r}r∈R → {VK(S, σ)r}r∈R.

Proof. Let A be an arbitrary (σ, τ)-adapted (S, T )-matrix. For an arbitrary
time r ∈ R, by expanding linearly, we get a unique linear transformation
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fr : VK(T, τ)r → VK(S, σ)r, where for t ∈ T with τ(t) ≤ r, we have

fr(t) =
∑
s∈S

asts.

This sum lies is VK(S, σ)r, since for all non-zero ast, we have σ(s) ≤ τ(t) ≤ r.
Let now r1 ≤ r2 be arbitrary. Recall that LS and LT are both inclusion maps.
Hence

fr2 ◦ LT (r1, r2) = LS(r1, r2) ◦ fr1

and thus, fA = {fr}r∈R is a linear transformation between two finitely generated
persistent vector spaces.

Proposition 3.20. There is a one-to-one correspondence between (σ, τ)-adapted
(S, T )-matrices A and linear transformation between finitely generated persistent
vector spaces f : {VK(T, τ)r}r∈R → {VK(S, σ)r}r∈R.

Proof. Let (S, σ) and (T, τ) be two filtered sets. For every linear transformation
g : {VK(T, τ)r}r∈R → {VK(S, σ)r}r∈R, we have that fA(g) = g. Similarly, for
every (σ, τ)-adapted (S, T )-matrix B, we have that A(fB) = B. Therefore, there
is indeed a one-to-one correspondence.

Thanks to this correspondence, we are now able to work with adapted matrices
instead of linear transformations. This will ease the computation of kernels and
images of linear transformation immensely.

Definition 3.21 (persistent boundary matrix). The (σ, τ)-adapted matrix
determined by a linear transformation between two finitely generated persistent
vector spaces is called persistent boundary matrix.

Until now, we have not really discussed finitely presented persistent vector spaces
yet. Therefore, we now proceed by investigating the nature of finitely presented
persistent vector spaces.

Proposition 3.22. Let A be a (σ, τ)-adapted (S, T )-matrix. Then

θ(A) ..= {VK(S, σ)r}r∈R/im(fA)

is a finitely presented persistent vector space. Furthermore, for every finitely
presented persistent vector space {Vr}r∈R, there is a (σ, τ)-adapted (S, T )-matrix
such that {Vr}r∈R ∼= θ(A).

Proof. Since fA is a linear map between {VK(T, τ)r}r∈R and {VK(T, τ)r}r∈R,
it follows by definition that θ is finitely presented. Furthermore, as {Vr}r∈R
and {Wr}r∈R in the definition of finitely presented vector spaces are finitely
generated, we can find two finite filtered sets (S, σ) and (T, τ) such that {Vr}r∈R
and {Wr}r∈R are isomorphic to {VK(S, σ)r}r∈R and {VK(S, σ)r}r∈R. Also, for
every g in the definition of finitely presented vector spaces, we can find a
(σ, τ)-adapted (S, T )-matrix A with g = f(A). This finishes the proof.
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Example 3.23. Consider the simplicial complex M = {a, b, c, ab, ac, bc}. Let
S ..= Σ0(M) = {a, b, c} and T ..= Σ1(M) = {ab, ac, bc} denote the set of
0-dimensional and 1-dimensional simplices of M . Define σ : S → R such that
σ(a) = σ(b) = 0 and σ(c) = 1. Furthermore, define τ : T → R such that
τ(ab) = τ(ac) = 1 and τ(bc) = 2. We have that

VK(S, σ)r =


0 if r ∈ (−∞, 0)

⟨a, b⟩ if r ∈ [0, 1)

⟨a, b, c⟩ if r ∈ [1,∞)

Consider the following (σ, τ)-adapted matrix:

A =

(ab,1) (ac,1) (bc,2)[ ]
(a,0) 1 1 0
(b,0) 1 0 1
(c,1) 0 1 1

Using Proposition 3.19, we can get fA = {fr}r∈R, where

1. fr(ab) =

{
a+ b if r ≥ 1

0 otherwise

2. fr(ac) =

{
a+ c if r ≥ 1

0 otherwise

3. fr(bc) =

{
b+ c if r ≥ 2

0 otherwise

Therefore, we have that im(fA) = {im(fr)}r∈R with

im(fr) =


0 if r ∈ (−∞, 1)

⟨a+ b, a+ c⟩ if r ∈ [1, 2)

⟨a+ b, a+ c, b+ c⟩ if r ∈ [2,∞)

With this, we can get θ(A) = {VK(S, σ)r/im(fr)}r∈R, where

VK(S, σ)r/im(fr)


0 if r ∈ (−∞, 0)
⟨a,b⟩
0

∼= ⟨a, b⟩ if r ∈ [0, 1)
⟨a,b,c⟩

⟨a+b,a+c⟩
∼= ⟨c⟩ if r ∈ [1, 2)

⟨a,b,c⟩
⟨a+b,a+c,b+c⟩

∼= ⟨c⟩ if r ∈ [2,∞)

Let ∀r ∈ R : Mr be the sub-complex of M which consists of all simplices
s ∈ Σ0(M) with σ(s) ≤ r and t ∈ Σ0(M) with τ(t) ≤ r. Then, for all r ∈ R, the
dimension of VK(S, σ)r/im(fr) is equal to the number of connected components
of Mr.
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Therefore, θ can represent every finitely presented persistent vector space using
an adapted matrix. Similarly to what we already know from linear algebra, the
following proposition now gives us an invariance condition for θ.

Proposition 3.24. Consider the following matrices:

1. Let A be a (σ, τ)-adapted (S, T )-matrix.

2. Let U be an invertible (σ, σ)-adapted (S, S)-matrix.

3. Let V be an invertible (τ, τ)-adapted (T, T )-matrix.

Then, we have that

θ(A) ∼= θ(UAV ).

Proof. Following from Proposition 3.15, we get that UAV is (σ, τ)-adapted.
Therefore fUAV is a linear transformation between persistent vector spaces.
Note that im(fA) is the only thing of θ(A), that depends on A. From linear
algebra, we know that the image of A is isomorphic to the image of UAV , since
U and V are invertible. Thus, we get that θ(A) ∼= θ(UAV ).

This result motivates the idea of representing more complicated persistent vector
spaces as a direct sum of simpler persistent vector spaces.

3.4 Decomposition theorem

With the results of the previous sections, we are now able to state the decom-
position theorem and define persistence diagrams. First, however, we need to
define elementary persistent vector spaces.

Definition 3.25 (elementary persistent vector space). Let a ∈ [0,∞) be
an arbitrary birth time and let b ∈ (0,∞] be an arbitrary death time with a < b.
For all r ∈ R, define

Pr
..=

{
K if r ∈ [a, b)

0 otherwise

For arbitrary r1, r2 ∈ R, define

L(r1, r2) ..=

{
idK if r1, r2 ∈ [a, b)

0 otherwise

Then, {Pr}r∈R together with {L(r1, r2)}r1≤r2 is a finitely presented persistent
vector space called elementary persistent vector space on [a, b) and denoted
by P (a, b).

Intuitively, the persistent vector space P (a, b) describes that a homology class is
born at time a and dies at time b. We will now see that every finitely presented
vector space can be decomposed into elementary persistent vector spaces.
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Theorem 3.26 (decomposition theorem). For every finitely presented persis-
tent vector space {Vr}r∈R, there are birth times a1, . . . , an ∈ R and death times
b1, . . . , bn ∈ R with ∀i ∈ {1, . . . , n} : ai < bi, such that

{Vr}r∈R ∼=
n⊕

i=1

P (ai, bi).

Furthermore, n is bounded from above by the number of elements in S.

Proof. Let A be the (σ, τ)-adapted (S, T )-matrix such that {Vr}r∈R ∼= θ(A).
Case 1: Assume that A has at most one entry in every row and every column equal
to 1 and every other entry is equal to 0. Let {(si, ti) ∈ S×T | i ∈ {1, . . . ,m}} be
the pairs such that asi,ti = 1 and let {s′1, . . . , s′n−m} = S \ {s1, . . . , sm} be the
remaining elements of S. Then, for an arbitrary r ∈ R and for all i ∈ {1, . . . ,m}
with τ(ti) ≤ r, we have that fr(ti) = si. Thus

θ(A) = {VK(S, σ)r}r∈R/im(fA) ∼=
m⊕
i=1

P (σ(si), τ(ti))⊕
n−m⊕
i=1

P (σ(s′i),∞).

Case 2: Now let A be arbitrary. According to Proposition 3.24, it suffices to
find a (σ, σ)-adapted (S, S)-matrix U and a (τ, τ)-adapted (T, T )-matrix V such
that UAV has at most one entry in every row and every column equal to 1 and
every other entry is equal to 0. Let S′ ..= {s ∈ S | r(s) ̸= 0} and let s′ ∈ S′

be such that ∀s ∈ S′ : σ(s′) ≥ σ(s). Similarly, let T ′ ..= {t ∈ T | as′t ̸= 0} and
let t′ ∈ T ′ be such that ∀t ∈ T ′ : τ(t′) ≤ τ(t). Then, for all s ∈ S′ \ {s′}, we
can add r(s′) to r(s), getting ast′ = 0. Hence as′t′ is the only non-zero entry
in c(t′). Similarly, for all t ∈ T ′ \ {t′} we can add c(t′) to c(t), getting as′t = 0.
Hence as′t′ is the only non-zero entry in r(s′). By removing r(s′) and c(t′) and
by iteratively applying this process, we get the statement.

As usual, when we know about the existence of a decomposition, we are also
interested in the uniqueness of it.

Proposition 3.27 (uniqueness of the decomposition). Let {Vr}r∈R be a
finitely presented persistent vector space and let

⊕m
i=1 P (ai, bi) and

⊕n
i=1 P (a′i, b

′
i)

be two decompositions of {Vr}r∈R. Then m = n and there is a permutation π of
the set {1, . . . , n} such that ∀i ∈ {1, . . . , n} : (ai, bi) = (a′π(i), b

′
π(i)).

Proof. We first define

amin
..= min{ai |∈ {1, . . . ,m}} and analogously a′min

..= min{a′i |∈ {1, . . . , n}}.

Then, we have that amin = min{r ∈ R | Vr ̸= 0} = a′min. Similarly, define

bmin
..= min{bi | ai = amin} and analogously b′min

..= min{b′i | a′i = a′min}.

We then have bmin = min{r′ ∈ R | ker(L(r, r′)) ̸= 0} = b′min.
This proves that P (amin, bmin) appears in both decompositions. However, note
that we did not yet account for multiplicities. To take care of that, we define

I ..= {i ∈ N | (ai, bi) = (amin, bmin)} and I ′ ..= {i ∈ N | (a′i, b′i) = (amin, bmin)}.
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With that, we can now define the sub-persistent vector spaces

{Wr}r∈R ..=
⊕
i∈I

P (amin, bmin) and analogously {Wr}r∈R ..=
⊕
i∈I′

P (amin, bmin).

We then have that both {Wr}r∈R and {W ′
r}r∈R are equal to the nullspace of the

following linear transformation:

im(L(amin, r))
L(r,bmin)|im(L(amin,r))−−−−−−−−−−−−−−→ Vbmin

Thus, I = I ′ and the multiplicity of P (amin, bmin) is the same in both decompo-
sitions. Finally, we have

{Vr}r∈R/{Wr}r∈R =

m⊕
i=1

P (ai, bi)/
⊕
i∈I

P (amin, bmin) =
⊕

i∈{1,...,m}\I

P (ai, bi)

{Vr}r∈R/{W ′
r}r∈R =

n⊕
i=1

P (a′i, b
′
i)/

⊕
i∈I

P (amin, bmin) =
⊕

i∈{1,...,n}\I

P (ai, bi)

By iteratively applying this procedure, we get the result.

Therefore, for every persistent vector space, we can get a unique set of birth
times and a unique set of death times. These values turn out to be quite useful
and are usually represented as a so called barcode or in a so called persistence
diagram. For the following, we are particularly interested in the latter one.

Definition 3.28 (persistence diagram). Let
⊕n

i=1 P (ai, bi) be the decompo-
sition of a finitely presented persistent vector space {Vr}r∈R. Then

{(ai, bi) ∈ R× (R ∪ {∞}) | i ∈ {1, . . . , n}}

together with all point on the diagonal with infinite multiplicity is called the
persistence diagram of {Vr}r∈R. Furthermore,

1. X(S, σ) denotes the persistence diagram corresponding to the filtered set
(S, σ).

2. D denotes the set of all persistence diagrams.

Remark. Note that every persistence diagram has only finitely many off diagonal
points, since the sum in the decomposition theorem is finite. The number of off
diagonal points is bounded from above by the cardinality of the generating set
as a direct consequence of the n being bounded in the decomposition theorem.

To compute the persistent homology of a filtration, we can almost use the same
algorithm we used to compute the homology of a simplex. However, we can no
longer choose the rows and columns in the beginning of the first and the second
step arbitrarily. Instead, we choose them according to the time they appear as
we did in the proof of the decomposition theorem. In particular, we choose the
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rows such that they maximise their appearance time. Similarly, we choose the
columns to minimize their appearance time. This ensures that every operation
performed in the algorithm is adapted.
The following examples now show this algorithm in action:

Example 3.29. Consider the following filtration:

0 ≤ r < 8 : 8 ≤ r < 10 : 10 ≤ r < 11 :

b
c

d a

b
c

d a

b
c

d

11 ≤ r < 12 : 12 ≤ r < 13 : 13 ≤ r :

a

b
c

d a

b
c

d a

b
c

d

We can get this filtration by taking M to be the last simplicial complex and
defining f : M → R to take the time value at which the face appears in the
subcomplex. We now compute the persistence diagrams X0(M,f) and X1(M,f).
For that, we first define the boundary matrices.

∂1 =

(ab,8) (bc,8) (ac,10) (ad,10) (cd,12)


(a,8) 1 0 1 1 0

(b,0) 1 1 0 0 0

(c,0) 0 1 1 0 1

(d,0) 0 0 0 1 1

∂2 =

(abc,11) (acd,13)



(ab,8) 1 0

(bc,8) 1 0

(ac,10) 1 1

(ad,10) 0 1

(cd,12) 0 1

Define v = ab+ ad+ bc and w = ab+ ad+ bc+ cd. We now apply the procedure
described above. Observe that a maximises the appearance time of 0-dimensional
simplices and ab minimizes the appearance time of 1-dimensional simplices.
Therefore, we use the row of ∂1 corresponding to a to cancel out every further
entry in the column corresponding to ab.
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(ab,8) (bc,8) (ac,10) (ad,10) (cd,12)


(a+b,8) 1 0 1 1 0

(b,0) 0 1 1 1 0

(c,0) 0 1 1 0 1

(d,0) 0 0 0 1 1

(abc,11) (acd,13)



1 0

1 0

1 1

0 1

0 1

Now, we use the column of ∂2 corresponding to a to cancel out every further
entry in the row corresponding to a.

(ab,8) (bc,8) (ab+ac,10) (ab+ad,10) (cd,12)


(a+b,8) 1 0 0 0 0

(a,0) 0 1 1 1 0

(c,0) 0 1 1 0 1

(d,0) 0 0 0 1 1

(abc,11) (acd,13)



0 0

1 0

1 1

0 1

0 1

By repeating this procedure, we transform ∂1 into a simple matrix:

(ab,8) (bc,8) (ab+ac,10) (ab+ad,10) (cd,12)


(a+b,8) 1 0 0 0 0

(b+c,0) 0 1 1 1 0

(c,0) 0 0 0 1 1

(d,0) 0 0 0 1 1

(abc,11) (acd,13)



0 0

1 0

1 1

0 1

0 1

(ab,8) (bc,8) (∂abc,10) (v,10) (cd,12)


(a+b,8) 1 0 0 0 0

(b+c,0) 0 1 0 0 0

(c,0) 0 0 0 1 1

(d,0) 0 0 0 1 1

(abc,11) (acd,13)



0 0

0 0

1 1

0 1

0 1
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(ab,8) (bc,8) (∂abc,10) (v,10) (cd,12)


(a+b,8) 1 0 0 0 0

(b+c,0) 0 1 0 0 0

(c+d,0) 0 0 0 1 1

(d,0) 0 0 0 0 0

(abc,11) (acd,13)



0 0

0 0

1 1

0 1

0 1

(ab,8) (bc,8) (∂abc,10) (v,10) (w,12)


(a+b,8) 1 0 0 0 0

(b+c,0) 0 1 0 0 0

(c+d,0) 0 0 0 1 0

(d,0) 0 0 0 0 0

(abc,11) (acd,13)



0 0

0 0

1 1

0 0

0 1

We see that adding the first column of ∂2 to its second column is adapted:

(ab,8) (bc,8) (∂abc,10) (v,10) (w,12)


(a+b,8) 1 0 0 0 0

(b+c,0) 0 1 0 0 0

(c+d,0) 0 0 0 1 0

(d,0) 0 0 0 0 0

(abc,11) (abc+acd,13)



0 0

0 0

1 0

0 0

0 1

According to the proof of the decomposition theorem, the 1-dimensional persistent
vector space is isomorphic to P (10, 11)⊕ P (12, 13). At time 10, a loop ∂abc is
born which gets filled in by abc at time 11. Similarly, at time 12, a second loop
∂abcd is born which gets filled in by abc+ acd at time 13.

Therefore, we have the following persistence diagrams:
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X0(M,f) X1(M,f)

x

y

a

b

c

x

y
a

b

a = (0,∞), b = (0, 8), c = (0, 10) a = (10, 11), b = (12, 13)

The longer a homology class survives, the more it contributes to the general shape
of the point cloud. Therefore, a point of a persistence diagram which is far away
from the diagonal represents a more significant topological feature than a point
closer to the diagonal.

3.5 Stability

In this section, we state the bottleneck stability theorem. It implies that a
small change of a simplicial complex does not cause a massive change in its
corresponding persistence diagrams. To even be able to talk about differences of
persistence diagrams, we first have to define metrics on the space of persistence
diagrams. Let us thus start by defining the Wasserstein distance and the
bottleneck distance.

Definition 3.30 (Wasserstein and bottleneck distance). Let X,Y ∈ D be
two persistence diagrams. Consider the set of all bijections between X and Y ,
denoted by Φ. Then, for p ∈ N, we have that

distp : D2 → K, (X,Y ) 7→ inf
φ∈Φ

(∑
x∈X

∥x− φ(x)∥p∞
) 1

p

defines a metric on D, called the p-Wasserstein distance. Similarly

dist∞ : D2 → K, (X,Y ) 7→ inf
φ∈Φ

(sup
x∈X

∥x− φ(x)∥∞)

defines a metric on D, called the bottleneck distance.

Example 3.31. Let X and Y be two persistence diagrams.

Consider the following diagram, where the off-diagonal points of X are represented
as triangles and the off-diagonal points of Y are represented as squares. The
dotted lines represents a bijection φ ∈ Φ, for which the infimum in the definitions
of the Wasserstein distance is reached. Similary, the gray lines represent a
bijection φ ∈ Φ for which the infimum in the definition of the bottleneck distance
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is reached. The number next to a line connecting two points is equal to the
supremum norm of the difference of them.

x

y1

1

1

1.5

1

1

1

1

Therefore, we see that:

1. distp(X,Y ) = (4 · 1p + 1.5p)
1
p

2. dist∞(X,Y ) = 1

Note that if X and Y have different
amounts of points on the additional
line representing the persisting homol-
ogy classes, then both the Wasserstein
distance and the bottleneck distance be-
tween X and Y are infinite.

In the following proposition, we compare the Wasserstein distance and the
bottleneck distance.

Proposition 3.32. Let p ∈ N be an arbitrary integer and let X,Y ∈ D be two
finite persistence diagrams. Let X∗ and Y ∗ denote the sets of off-diagonal points
of X and Y Then:

distp(X,Y ) ≤ (|X∗|+ |Y ∗|)dist∞(X,Y ).

Proof. Let φ ∈ ΦXY be arbitrary. Then:

distp(X,Y ) ≤
( ∑
x∈X∗

∥x− φ(x)∥p∞ +
∑
y∈Y ∗

∥y − φ−1(y)∥p∞
) 1

p

≤
∑
x∈X∗

∥x− φ(x)∥∞ +
∑
y∈Y ∗

∥y − φ−1(y)∥∞

≤ |X∗| sup
x∈X∗

∥x− φ(x)∥∞ + |Y ∗| sup
y∈Y ∗

∥y − φ−1(y)∥∞

As φ was arbitrary, we get that distp(X,Y ) ≤ dist∞(X,Y ).

When we want to use persistence diagrams to represent spaces, it is of at most
importance to know that the persistence diagrams of a filtered sets (S, σ1) and
(S, σ2) are close whenever σ1 and σ2 are close. This is the content of the following
theorem:

Theorem 3.33 (bottleneck stability theorem). Let M be a simplicial
complex and let f, g : M → K be two continuous tame functions. Then, ∀n ∈ N :

dist∞(Xn(M,f), Xn(M, g)) ≤ ∥f − g∥∞.

A proof of the bottleneck stability theorem can be found in [2].
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4 Persistent homology transform

The goal of this chapter is to introduce the persistent homology transform,
which represents a simplicial complex M as a collection of persistence diagrams.
Furthermore, we show that we can use the persistent homology transform to
represent shapes. This chapter is based on the article “Persistent homology
transform for modeling shapes and surfaces” [5].

4.1 Sublevel sets

In this section, we introduce sublevel sets, which are filtrations depending on
the height r ∈ R in a given direction v ∈ Sd−1. Therefore, we start by defining
height functions.

Definition 4.1 (height function). For a finite simplicial complex M ⊆ Rd

and a direction v ∈ Sd−1, the map

hv : M → R, σ 7→ sup
x∈σ

(x · v)

is called the height function of M in the direction of v. Here, · denotes the
standard inner product on Rd.

Remark. Due to the convexity of simplices, we have that ∀σ ∈ M : ∃σ′ ∈ Σ0(M)
such that hv(σ) = hv(σ

′). Therefore, for every simplex σ ∈ M , there is a vertex
x of M with hv(σ) = x · v.
We see that a height function hv maps a simplex σ to the smallest height r, where
σ is fully contained beneath the height r. Lying beneath r means, that if we
rotate our space such that v is pointing in direction e1, then the first coordinate
of every point in σ is smaller or equal to r. Due to the convexity of σ, hv(σ) can
be viewed as the height of the highest corner-point of σ or the smallest height for
which all vertices contained in σ lie beneath the height r. We already know, that
for a dimension n ∈ N, we can get a filtered set (Σn(M), hv|Σn(M)). Therefore,
the height function can indeed give us a filtration of a simplicial complex.

Definition 4.2 (sublevel set). Let M be a simplicial complex, let v ∈ Sd−1 be
a direction and let r ∈ R be arbitrary. Then

Mhv
(r) ..= {σ ∈ M | hv(σ) ≤ r}

is called sublevel set of M .

We immediately see that {Mhv (r)}r∈R is a filtration of M , corresponding to the
filtered set (Σn(M), hv|Σn(M)). Hence, we can compute the persistence diagrams
Xn(M,hv) of this filtrations. Clearly, Xn(M,hv) depends on the choice of
v ∈ Sd−1, since for different directions, other parts of the simplicial complex lie
beneath a given height.

The following example shows a filtration which corresponds to a simplicial
complex and a height function. It illustrates how the homology changes with
growing height.
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Example 4.3. Consider the filtration:

− 1
2 ≤ r < 0 : 0 ≤ r < 1

2 : 1
2 ≤ r < 2 :

x

z

y

a
x

z

y

a

b

x

z

y

a

b
c

2 ≤ r < 4 : 4 ≤ r < 6 : 6 ≤ r :

x

z

y

a

b
c

d

x

z

y

a

b
c

d

e

x

z

y

a

b
c

d

e
f

This filtration corresponds to the height function in the direction e3. By following
the same steps as in Example 3.29, we can compute the persistence diagrams of
this filtration:

X0(M,he3) X1(M,he3) X2(M,he3)

x

y

a

b

x

y

a

x

y

a

a = (− 1
2 ,∞), b = (4, 6). a = ( 12 , 2). a = (6,∞).

If we, on the other hand pick the direction to be e1, the 1-dimensional persistence
diagram X1(M,he1) is empty and for the direction −e3, we have that X0(M,h−e3)
consists only of the point (−6,∞).

Using the bottleneck stability theorem, we can now show that the map which
links a direction v ∈ Sd−1 to the n-dimensional persistence diagram we get from
the height function hv is Lipschitz and hence continuous.
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Lemma 4.4. For all integers n ∈ N and for every finite simplicial complex M ,
the map Sn−1 → D, v 7→ Xn(M,hv) is Lipschitz with respect to dist∞ and distp.

Proof. Let n ∈ N be arbitrary. Since M is finite, we have that ∀i ∈ N : Σi(M) is
finite too. Hence, for c1 ..= max{∥x∥2 | x ∈ Σ0(M)}, we have that M ⊆ Bc1(0).
Furthermore, the number of off-diagonal points in any persistence diagram is
bounded from above by c2 ..= |Σn(M)|. Let v1, v2 ∈ Sk−1 and x ∈ M be
arbitrary. Then

|hv1(x)− hv2(x)| = |x · v1 − x · v2| ≤ ∥x∥2∥v1 − v2∥2 ≤ c1∥v1 − v2∥2.

Since this inequality holds for all x ∈ M , it also holds for the x ∈ M which
maximizes |hv1(x)− hv2(x)|. Thus

∥hv1 − hv2∥∞ ≤ c1∥v1 − v2∥2.

From the bottleneck stability theorem, it follows that

dist∞(Xn(M,hv1
), Xn(M,hv2)) ≤ c1 · ∥v1 − v2∥2.

Thus, the map v 7→ Xn(M,hv) is indeed Lipschitz with respect to dist∞ and
hence continuous. From 3.32, we know distp(X,Y ) ≤ 2c2 · dist∞(X,Y ). Hence:

distp(X,Y ) ≤ 2c2 · c1 · ∥v1 − v2∥2.

Therefore, the map v 7→ Xn(M,hv) is also Lipschitz with respect to distp.

Since for every dimension n ∈ N this map is Lipschitz, mapping a direction
v ∈ Sd−1 to the tuple of all persistence diagrams of dimension less then d is
continuous too. This map is called persistent homology transform.

Definition 4.5 (persistent homology transform). The persistent ho-
mology transform of a finite simplicial complex M ⊆ Rd is the following
map:

PHT(M) : Sd−1 → Dd, v 7→ (X0(M,hv), X1(M,hv), . . . , Xd−1(M,hv)).

4.2 Injectivity of the persistent homology transform

In this section we prove that the persistent homology transform of a triangulated
object contains every information about the shape of the object.

First, however, we observe that changes in homology only occur at the height of
vertices. What we precisely mean with that is stated in this following lemma:

Lemma 4.6. Let v ∈ Sd be a direction and let r ∈ R be a height. If the sublevel
sets {σ ∈ M | hv(σ) < r} and {σ ∈ M | hv(σ) ≤ r} have different homology,
then there is a vertex x of M with r = x · v.
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Proof. Let v ∈ Sd be arbitrary. From the proof of the decomposition theorem,
we know that for every dimension n ∈ N and every point (a, b) in a persistence
diagram Xn(M,hv), there are simplices σ, τ ∈ Σn(M) such that a = hv(σ) and
b = hv(τ) or b = ∞. Hence, if ∀n ∈ N and ∀(a, b) ∈ Xn(M,hv), we have that
r ̸= a and r ̸= b, then we know that ∀σ ∈ M : hv(σ) ̸= r and hence:

{σ ∈ M | hv(σ) < r} and {σ ∈ M | hv(σ) ≤ r} have the same homology.

Therefore, if they have different homology, there is a dimension n ∈ N and a
point (a, b) ∈ Xn(M,hv) such that r = a or r = b. Furthermore, there is a
simplex σ ∈ Σn(M) such that r = hv(σ). Finally, from the Remark 4.1, we know
that there is a vertex x of M , for which we have r = hv(σ) = x · v.

Recall that Md
3 is the set of 3-dimensional simplicial complexes, which are

reduced to its simplest form. Now, we prove that the map which links finite
simplicial complexes of M∗

3 to its persistent homology transform is injective:

Theorem 4.7. The map M∗
3 → (S2 → D3),M 7→ PHT(M) is injective.

Proof. The proof is given as an algorithm which reconstructs a finite simplicial
complex M form its persistent homology transform. Since this reconstruction is
unique, there cannot be two simplicial complexes in M∗

3 which map to the same
persistent homology transform. Therefore, the existence and uniqueness of this
reconstruction implies that the map is injective.

Since the proof is quite lengthy, we split it into three steps. In a first step, we
introduce some tools and notions to talk about relative homology around vertices.
We then proceed by studying the relations between this relative homologies and
different links of a simplex in a second step. Finally, we construct two algorithms
in a third step, which are able to find the vertices and links of a simplicial
complex using its persistent homology transform.

Step 1: Let x ∈ M be an arbitrary vertex and let v ∈ S2 be an arbitrary
direction. Since hv has at most finitely many homological critical values, there
is a δ > 0 such that hv has no homological critical value in the open interval
(hv(x)− δ, hv(x)). Consider the following two sublevel sets:

1. M(x, v) ..= Mhv
(hv(x)) = {σ ∈ M | ∀x′ ∈ σ : hv(x

′) ≤ hv(x)}

2. M(x, v)− ..= Mhv
(hv(x)− δ) = {σ ∈ M | ∀x′ ∈ σ : hv(x

′) ≤ hv(x)− δ}

From the definition of relative homology, we get the following long exact sequence:

· · · ∂n+1−−−→ Hn(M(x, v)−)
in−−→ Hn(M(x, v)) −−→ Hn(M(x, v),M(x, v)−)

∂n−−→
∂n−−→ Hn−1(M(x, v)−)

in−1−−−→ Hn−1(M(x, v)) −−→ · · ·
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Here, in denotes the inclusion map between Hn(M(x, v)−) and Hn(M(x, v)). It
follows that ∀n ≥ 3 : Hn(M(x, v),M(x, v)−) = 0 and:

H0(M(x, v),M(x, v)−) ∼= coker(i0)

H1(M(x, v),M(x, v)−) ∼= ker(i0)⊕ coker(i1)

H2(M(x, v),M(x, v)−) ∼= ker(i1)⊕ coker(i2)

Now let us consider the Betti numbers β̃n(x, v) ..= dimHn(M(x, v),M(x, v)−).
Then, we have that ∀n ≥ 3 : β̃n(x, v) = 0 and:

β̃0(x, v) is equal to the number of points in X0(M,hv) born at time hv(x).

β̃1(x, v) is equal to the number of points in X0(M,hv) dying at time hv(x)

plus the number of points in X1(M,hv) born at time hv(x).

β̃2(x, v) is equal to the number of points in X1(M,hv) dying at time hv(x)

plus the number of points in X2(M,hv) born at time hv(x).

Note that the points in the persistence diagrams are counted with multiplicity.
Consider the change in the Euler characteristic fromM(x, v)− toM(x, v), namely

χ̃(x, v) ..= β̃0(x, v)− β̃1(x, v) + β̃2(x, v).

Step 2: Suppose we know the set of vertices Σ0(M). Let x ∈ Σ0(M) be an
arbitrary vertex. From now on, we only consider essential edges. Essential edges
are edges, which appear in every representation of M in its reduced form. For
example, the boundary edges of a square are essential, but the diagonal is not.

Without loss of generality, translate M such that x is the origin.

Assume that x is isolated. This means that Lk(x) = ∅ or equivalently that there
is no edge in M containing x. We then have that for all directions v ∈ S2, an
H0-class is born at height hv(x). Furthermore, x does not contribute to any
other change in homology.

Assume that x is not isolated. Let e be an oriented edge out of x. Then, for
a direction v ∈ S2 with e · v < 0, where x is the only vertex at height hv(x),
there is no H0-class being born at height hv(x). This is because e is contained
in M(x, v) and thus connects x to M(x, v)−.

Hence x being isolated is equivalent to the condition that ∀v ∈ S2, an H0 class
is born at height hv(x). With this, we can find all isolated vertices knowing the
PHT. Thus, let from now on x ∈ {x1, . . . , xm} be a non-isolated vertex and let
e be an edge out of x.

Without loss of generality, rotate M such that e is pointing to the north pole
and let u ∈ S2 denote this direction.

Let S(e) ..= {w ∈ S2 | w · u = 0} denote the set of all directions perpendicular to
e. Note that the directions in S(e) are the directions pointing to the equator of
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the sphere. Let v ∈ S(e) be arbitrary. Define S(e, v) ..= {w ∈ S(e) | w · v < 0}.
This is the semicircle pointing away from v. Furthermore, define L(e) to be the
projection of the link of e onto the plane perpendicular to e. Let N(e) ⊆ S(e)
denote the set of directions in which there is at least a point in L(e). Now
consider the function fe : S(e) → N, where a direction v gets mapped to the
number of connected components in N(e) ∩ S(e, v). We observe the following:

0. Assume fe(v) = 0. This means that Lk(e) ∩M(x, v) = ∅ or equivalently
that there is no face in M(x, v) containing e. For w ∈ S2 lying in the
southern hemisphere, the edge e does not contribute a path to M−

x .

(a) If x is connected to M(x,w)−, then there is no change in homology
at height hw(x).

(b) If x is not connected in M(x,w), then there is a H0-class being born
and no other changes in homology at height hw(x).

For w ∈ S2 lying in the northern hemisphere, we have that e contributes a
path from x to M(x,w)−.

(a) If x is connected to M(x,w)−, then the addition of e causes either
the birth of a H1-class or the death of a H0-class at height hv(x).

(b) If x is not connected in M(x,w), then the addition of e causes no
change in homology at height hv(x).

Hence, either β̃0(x,w) decreases by one or β̃1(x,w) increases by one when
we pass a direction w with the same longitude as v through the equator.
Therefore, passing though v from north to south decreases the relative
Euler characteristic by one.

1. Assume fe(v) = 1. Then, passing a direction w though v from north to
south does not change χ̃(x,w). This is because a part of the link is already
contained in the sublevel set M(x,w)−, when w is of the same longitude
as v.

2. Assume fe(v) = 2. Then, passing though the equator with a direction w
of the same longitude as v either increases β̃2(x,w) by one or decreases
β̃1(x,w) by one. The first case corresponds to when two already connected
components join in x and the second when the two components were not
jet connected. Finally, we see that by passing though v from north to
south increases the relative Euler characteristic by one.

k. Assume ∃k ∈ N with k ≥ 2 such that fe(v) = k. Then passing a direction
w though v from north to south increases χ̃(x,w) by k − 1. This is as we
can generalize the case of 2 for arbitrary k. We define a graph G. For each
of the k connected component of S(e, v)∩N(e), we add a vertex to G. Two
vertices are connected, if there is a face containing x in M between the
connected components corresponding to the vertices. Then, the connected
components of G represent the second case and we see that β̃1 decreases by
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the number of connected components minus one. Furthermore, for every
connected component,β̃2 is increased by the number of vertices inside it
minus one. For every combination of connected components the graph G
can have, the change of β̃2 − β̃1 stays the same, namely as an increase of
k − 1. Therefore, by passing though v from north to south increases the
relative Euler characteristic by k − 1.

Thus, by knowing the changes in homology, we can reconstruct fe. Furthermore,
since we only considered essential edges, there is at least one direction for which
the number of components different from 1. Hence it follows that the inclusion
of every vertex x causes a change in homology.

Step 3: With this observations, we are now able to give an algorithm to find all
the vertices of M and an algorithm to find their links by knowing the persistent
homology transform of M :

Finding vertices: Knowing the persistent homology transform ofM , by repeatedly
applying the following four steps, we can find all the vertices of M .

1. Choose a dimension n ∈ {0, 1, 2} and a direction v ∈ S2 such that
Xn(M,hv) is non-empty. Furthermore, choose a point (av, bv) ∈ Xn(M,hv).

2. Since S2 → D, v 7→ Xn(M,hv) is continuous, we can find a r > 0 such
that ∀u ∈ Br(v) ∩ S2 : ∃(au, bu) ∈ Xn(M,u) with the property that the
map Br(v) ∩ S2 → R2, u 7→ (au, bu) is continuous.

3. If there is a r′ ∈ R with 0 < r′ ≤ r and a point x′ ∈ R3 such that
∀u ∈ Br′(v) : au = hu(x

′), then x′ is a vertex of M .

4. If there is a r′ ∈ R with 0 < r′ ≤ r and a point x′ ∈ R3 such that
∀u ∈ Br′(v) : bu = hu(x

′), then x′ is a vertex of M .

From 4.6, step (3) and step (4) follow immediately. Step (3) accounts for
homology classes being born at time hu(x) and Step (4) accounts for homology
classes dying at time hu(x). Since the inclusion of every vertex causes at least
a change in a persistence diagram, we can truly find all the vertices with this
algorithm.

Finding links: First, we choose a direction v0 ∈ S2 such that ∀x1, x2 ∈ V (M) :
hv0(x1) ̸= hv0(x2). This condition means that v0 is a direction for which
all vertices lie on a different height. Let now {x1, . . . , xm} = Σ0(M) with
∀i ∈ {1, . . . ,m − 1} : hv0(xi) ≤ hv0(xi+1) be an ordering of the set of vertices.
By repeatedly applying the following steps and increasing i after every iteration,
we can fully determine the link of every simplex in M .

1. Notice that, at the i-th step, we know the sublevel set M(xi, v0). Consider
S2 → Z, v 7→ χ̃(x, v). This is the partition of the sphere of directions
into regions with the same relative homology at height of x. Consider a
great circle and the direction v ∈ S2 perpendicular to the great circle with
v ·v0 > 0. Then, there is an edge in direction v or −v. Such a v exist, since
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there is always a w ∈ S2 perpendicular to a great circle and if w · v0 < 0,
then we can just take −w. Also w · v0 = 0 will not happen since then we
would have an edge in direction w or −w, which would imply that there
are two vertices at height hv0(xi).

2. If there is no edge in M(xi, v0) out of x in direction −v, then there must
be an edge out of x in direction v. Furthermore, with fe we get the link of
e.

3. If there is an edge e′ in M(xi, v0) out of x in direction −v, then we have
to investigate fe′ and fe. If fe′ = fe then every change in homology can
be attributed to e′ and hence there is no edge in direction v. Otherwise,
there is such an edge. Furthermore, with fe − f ′

e, we get the link of e.

Now consider the case where domain is the set of finite simplicial complexes in
R2. It is possible to state a similar proof as in the 3-dimensional case, however,
we can also think about the two dimensional Euclidean space as lying inside the
three dimensional Euclidean space.

Theorem 4.8. The map M2 → (S1 → D2),M 7→ PHT(M) is injective.

Proof. Consider R2 = {(a, b, 0) ∈ R3} and S2 = {(v1, v2, 0) ∈ S3}. Hence
we can think of M2 as lying inside M3. Let thus M ∈ M2 be a simplicial
complex in R3. Note that, for all vertices x of M , we have that x · e3 = 0. Let
v = (v1, v2, v3) ∈ S2 \ {−e3, e3} be a direction in R3 which is not perpendicular
to the plane on which M is lying. Now consider:

w = (w1, w2, 0) =
1√

v21 + v22
(v1, v2, 0) ∈ S2.

Then, w is the unit vector in direction (v1, v2, 0). Let σ ∈ M be arbitrary.
Observe:

hv(σ) ≤ r ⇐⇒ ∀(x1, x2, x3) ∈ σ : (x1, x2, x3) · (v1, v2, v3) ≤ r.

Since for all (x1, x2, x3) ∈ σ, we have that x3 = 0, we get:

hv(σ) ≤ r ⇐⇒ ∀(x1, x2, 0) ∈ σ : (x1, x2, 0) · (v1, v2, 0) ≤ r.

Furthermore, we see:

hv(σ) ≤ r ⇐⇒ ∀(x1, x2, 0) ∈ σ : (x1, x2, 0) · (w1, w2, 0) ≤
r√

v21 + v22
.

Finally, we have that hv(σ) ≤ r ⇐⇒ hw(σ) ≤ r√
v2
1+v2

2

and:

Mhv
(r) = Mhw

(
r√

v21 + v22
).
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Therefore, from knowing X0(M,w) and X1(M,w), we can get X0(M, v) and
X1(M,v). Finally, we know that Xn(M, e3) and Xn(M,−e3) only consist of the
point (0,∞) with multiplicity equal to dim(Hn(M)).

Let M,M ′ ∈ M2 be two simplicial complexes. Notice that ∀v ∈ S2, we clearly
have that X2(M,hv) = X2(M

′, hv) = ∅.
Assume that ∀w ∈ S1 : X0(M,hw) = X0(M

′, hw) and X1(M,hw) = X1(M
′, hw).

The observation from above then yields, that for all directions v ∈ S2, we have:

1. X0(M,hv) = X0(M
′, hv)

2. X1(M,hv) = X1(M
′, hv)

3. X2(M,hv) = X2(M
′, hv)

From the injectivity of the4.7, we then get that M = M ′. Therefore, the map
M2 → (S1 → D2),M 7→ PHT(M) is indeed injective.

Finally, we want to give a proof for the 1-dimensional case. Notice, since S0

consists of two separate points, this proof does not use any continuity arguments.
Nevertheless, the injectivity is quite a simple observation.

Theorem 4.9. The map M1 → (S0 → D1),M 7→ PHT(M) is injective.

Proof. First note that 1 and −1 are the only two directions. Also note that
every point in the persistence diagram has second coordinate equal to ∞. First,
let x1, . . . , xm ∈ R with x1 < . . . < xm be such that

H0(M,h1) = {(xi,∞) | i ∈ {1, . . . ,m}}.

Now let y1, . . . , ym ∈ R with y1 < . . . < ym be such that

H0(M,h−1) = {(−yi,∞) | i ∈ {1, . . . ,m}}.

Then M = [x1, y1] ∪ . . . ∪ [xm, ym]. This is because walking in direction 1, we
find the beginning of all the connected components and walking in direction −1,
we find the end of all the connected components. Note that m is equal to the
number of connected components of M . Furthermore, if xi = yi, then xi is an
isolated vertex.

It is conjectured, that the map Md → (Sd−1 → Dd),M 7→ PHT(M) is injective
for all dimension d ∈ N.
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4.3 Euler characteristic curve transform

The goal of this section is to construct a third transform, the so-called Euler
characteristic curve transform. For that we start by generalizing the Euler
characteristic [4] to the d-dimensional case.

Definition 4.10 (Euler characteristic). Let M be a finite simplicial complex
in Rd. Then

χ(M) ..=

d∑
i=1

(−1)i · |Σi(M)|

is called the Euler characteristic of M .

We see that for d = 3, we get the usual Euler characteristic, which is known to
describe the topology of a shape quite well in a single number. Furthermore, the
Euler characteristic is linked to the theory of homology in the following way:

Theorem 4.11. Let M be a finite simplicial complex in Rd. Then

χ(M) =

n∑
i=1

(−1)i · dim(Hi(M)).

A proof of this theorem can be found in [4].

This now motivates us to define the Euler characteristic curve transform.

Definition 4.12 (Euler characteristic curve transform). Let M ⊆ Rd be a
finite simplicial complex. For a direction v ∈ Sd−1, define

χ(M,hv) : R → Z, r 7→ Mhv
(r).

Then, the Euler characteristic curve transform of M is the following map:

ECT(M) : Sd−1 → (R → Z), v 7→ χ(M,hv).

Since we can get the Euler characteristic curve transform from knowing the
persistent homology transform, it appears, that the Euler characteristic curve
transform is weaker than the persistent homology transform. However, from the
proof of Theorem 4.7, it follows that for d ≤ 3, the Euler characteristic curve
transform suffices to reconstruct a triangulation.

Thus, the following proposition is a direct consequence from the proof of 4.7.

Proposition 4.13. For d ∈ {1, 2, 3}, the map Md → (R → Z),M 7→ ECT(M)
is injective.
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4.4 0-dimensional persistent homology transform

In this section, we observe that for simplicial complexes M which are homeo-
morphic to a circle or a sphere, the 0-dimensional persistence diagrams already
contain the whole information needed for the persistent homology transform of
M :

Proposition 4.14. Let v ∈ S1 be an arbitrary direction and let M ⊆ R2 be
a simplicial complex which is homeomorphic to S1. Then, we can construct
X1(M,hv) from knowing X0(M,h−v).

Proof. Since M is homeomorphic to a circle, we know that there is exactly
one H0-class in H0(M) and that there is exactly one H1-class in H1(M). This
means that for every direction w ∈ S1, there is exactly one point in X0(M,hw)
that never dies and there is exactly one point in X1(M,hw) that never dies.
Furthermore, X1(M,hv) only consists of this one point that never dies. Let
thus (a,∞) be this point. Let (b, c) ∈ X0(M,h−v) be the left most point in the
0-dimensional persistence diagram. This means that the first coordinate of every
other point in X0(M,h−v) is greater or equal to b. Then, we have a = −b, since
the height where the H1-class is born is the height where M ends. This height
however is exactly minus the height in opposite direction where M starts.

Proposition 4.15. Let v ∈ S2 be an arbitrary direction and let M ⊆ R3 be
a simplicial complex which is homeomorphic to S2. Then, we can construct
X2(M,hv) and X1(M,hv) from knowing X0(M,h−v).

Proof. Since M is homeomorphic to a sphere, we know that there is exactly
one H0-class in H0(M), there in no H1-class in H1(M) and that is exactly one
H2-class in H2(M) too. Hence, for every direction w ∈ S1, there is exactly
one point in X0(M,hw), no point in X1(M,hw) and exactly one point again in
X2(M,hw) that never dies. Furthermore, X2(M,hv) only consists of this one
point that never dies. Let thus (a,∞) be this point. Let (b, c) ∈ X0(M,h−v) be
the left most point in the 0-dimensional persistence diagram. This means that
the first coordinate of every other point in X0(M,h−v) is greater or equal to b.
Then, we have a = −b, since the height where the H2-class is born is the height
where M ends. This height however is exactly minus the height in opposite
direction where M starts. Let (a, b) ∈ H0(M,h−v) be a point with a < b < ∞.
Then, (−b,−a) ∈ H1(M,h−v). This is because the connected component we
find in on direction is exactly the part missing to fill in the hole.

This motivates us to define the so-called 0-dimensional persistent transform.

Definition 4.16. The 0-th dimensional persistence homology transform of a
finite simplicial complex M is the following map:

PHT0T(M) : Sd → D, v 7→ X0(M,hv).

If M is isomorphic to S1 or S2, then it follows immediately from Proposition 4.14,
Proposition 4.15 and Theorem 4.7, that the map linking M to its 0-dimensional
persistent homology transform is injective as well.
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4.5 Using the PHT to distinguish bones

This section shows how we can use the persistent homology transform to differ-
entiate shapes.
The following proposition shows how we can use a metric on persistence diagrams
to measure distances between simplicial complexes. This will then allow us to find
differences of triangulations by comparing their persistent homology transform.

Proposition 4.17. For an integer d ∈ {1, 2, 3},

distMd
: M2

d → K, (M1,M2) 7→
d∑

i=0

∫
Sd−1

dist1(Xi(M1, hv), Xi(M2, hv))dv

defines a metric on Md.

Proof. Identity property: Let M1,M2 ∈ Md be arbitrary. It follows directly
from the injectivity of M3 → (S2 → D3),M 7→ PHT(M), that:

M1 = M2 ⇐⇒ PHT(M1) = PHT(M2).

From the definition of PHT, we get

PHT(M1) = PHT(M2) ⇐⇒ ∀v ∈ Sd,∀i ∈ {0, . . . , d} : Xi(M1, hv) = Xi(M2, hv).

As dist1 is a metric on D, we have ∀v ∈ Sd,∀i ∈ {0, . . . , d}:

Xi(M1, hv) = Xi(M2, hv) ⇐⇒ dist1(Xi(M1, hv), Xi(M2, hv)) = 0.

Furthermore, dist1 is continuous and non-negative. Therefore, ∀i ∈ {0, . . . , d},
the following are equivalent:

1. ∀v ∈ Sd−1 : dist1(Xi(M1, hv), Xi(M1, hv)) = 0

2.
∫
Sd−1 dist1(Xi(M1, hv), Xi(M1, hv))dv = 0

Since integrals of non-negative continuous functions vanish if and only if the
function itself vanishes, the following are equivalent as well:

1. ∀i ∈ {1, . . . , d} :
∫
Sd−1 dist1(Xi(M1, hv), Xi(M1, hv))dv = 0

2. distMd
(M1,M2) = 0

Thus, distMd
indeed satisfies the identity property. Symmetry: Let M1,M2 ∈

Md be arbitrary. Since ∀i ∈ {1, . . . , d},∀v ∈ Sd : dist1(Xi(M1, hv), Xi(M2, hv))
is symmetric, distMd

M1,M2 is symmetric too.

Triangle inequality: Let M1,M2,M3 ∈ Md be arbitrary. Since dist1 fulfills the
triangle inequality and due to monotonicity and additivity of integrals, we get
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distMd
(M1,M3) =

d∑
i=0

∫
Sd−1

dist1(Xi(M1, hv), Xi(M3, hv))dv

≤
d∑

i=0

∫
Sd−1

2∑
j=1

dist1(Xi(Mj , hv), Xi(Mj+1, hv))dv

=

2∑
j=1

d∑
i=0

∫
Sd−1

dist1(Xi(Mj , hv), Xi(Mj+1, hv))dv

= distMd
(M1,M2) + distMd

(M2,M3).

Therefore, distMd
indeed defines a metric on Md.

Since there are uncountable many directions, the image of the persistent homology
transform consists of uncountable many persistence diagrams. Thus, it is not
possible to compute the persistent homology transform of a simplicial complex in
finite time. However, by sampling a finite number of directions v1, . . . , vk ∈ Sd−1,
we can approximate the actual value close enough. Therefore, consider

dist∗Md
: M2

d → K, (M1,M2) 7→
1

k

d∑
i=1

k∑
j=1

dist1(Xi(M1, hvj ), Xi(M2, hvj )).

Since v 7→ Xn(M,hv) and dist1 are both continuous, we see that for sampling
more and more direction, dist∗Md

approximates distMd
better and better.

Katharine Turner, Sayan Mukherjee and Doug M. Boyer use dist∗Md
to compare

the shapes of heel bones from extant and extinct primates in the paper “Persistent
homology transform for modeling shapes and surfaces” [5].

Figure 7: Scan of a heel bone, viewed from the front and the back. (Source [5])
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The data they worked with consist of microCT scans from 106 heel bones called
calcanei. Some of these heel bones originate from the extinct primate species
Adapiforms, Omomyiforms and Parapithecids. The other bones originate from
Cercopithecoids, Hominoids, Platyrrhines and Strepsirrhines, which are extant
species of primates. These scans were then approximated with finite simplicial
complexes M1, . . . ,M106 and aligned automatically.

Then, they subdivided a regular icosahedron to get 162 evenly spaced directions
v1, . . . , v162 ∈ S2. In particular, they split all 20 of its faces into 16 smaller
equilateral triangles by subdividing each of its 30 edges into 4 segments of equal
length. This procedure adds 3 new vertices to every edge and 3 additional
vertices to each face, excluding those that lie on one its three boundary edges.
Therefore, the subdivision has 162 evenly spaced vertices, which are used as the
sampled directions.

With them, they computed ∀i, j ∈ {1, . . . , 106} the distance dist∗M3
(Mi,Mj)

between the two bones belonging to Mi and Mj . Finally, they generated three
multidimensional scaling plot to visualise the clusters of similar bones.

1. For the first plot, they measures the distances between bones by comparing
27 landmark points, which were manually placed on every bone.

2. For the second plot, they compared 1000 automatically positioned pseudo-
landmarks to measure the distances between bones.

3. For the third plot, they used the distances dist∗M3
(Mi,Mj) from above ass

distances between the bones.
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1. Manually placed landmarks: 2. Automatically placed landmarks:

3. Persistent homology

Adp: Adapiforms
Cerc: Cercopithecoids
Hm: Hominoids
Om: Omomyiforms
Pp: Parapithecids
Plat: Platyrrhines
Str: Strepsirrhines

Figure 8: Phenetic clusterings of phylogenetic groups of primate heel bones.
(Source [5])
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