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Abstract

In this thesis we present TARDIS (Topological Algorithm for Robust
DIscovery of Singularities), a novel framework for detecting singulari-
ties within data sets. The methodology leverages persistent homology,
a popular invariant in topological data analysis (TDA), to measure
intrinsic dimensional changes and identify singular points. In part, per-
sistent intrinsic dimension (PID) and Euclidicity are two metrics within
TARDIS that quantify the local geometric and topological properties
of data. We demonstrate the effectiveness and limitations of TARDIS
through a series of experiments.
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Chapter 1

Introduction

Many machine learning algorithms assume that the underlying data lies
on or close to an unknown manifold of low intrinsic dimension. This is called
the manifold hypothesis. Manifolds are rigid topological spaces that resemble
Euclidean spaces locally. Each point has a neighborhood homeomorphic
to some Rn for some n. This n is referred to as the intrinsic dimension of
the point. The intrinsic dimension of points on a manifold is constant. For
some data sets the manifold hypothesis is justified by prior knowledge about
the data, for example, if the data entries are highly correlated. One such
example are black and white natural pictures. For complex data the manifold
hypothesis might fail.

In many such cases we can model the underlying space as a union of
several manifolds with varying intrinsic dimension, called a stratified space.
In a stratified space points that are on a manifold are called regular, points
that do not have such a neighborhood are singularities. An example of a
stratified space is the pinched torus which is illustrated in Figure 1.1. Here
any neighborhood of the pinched point p differs from a neighborhood of any
other point, so this is clearly not a manifold.

Figure 1.1: Pinched torus with two types of neighborhoods highlighted.
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In this report we discuss the TARDIS algorithm [VRR23], which is designed
to detect singularities in some given data set. This algorithm measures how
similar the neighborhood of some data point is to a neighborhood of a regular
point. This is captured by the Euclidicity score, where a low score indicates a
regular point. To measure this similarity the algorithm relies on persistent
homology, a popular method in topological data analysis (TDA).

X Y

Figure 1.2: Homology captures the differ-
ence between these two spaces.

Figure 1.3: A finite metric space, that looks
like a circle.

Persistent homology is based on a measure from algebraic topology called
homology which provides a way to distinguish between topological spaces
by identifying and counting the number of holes, voids, and connected
components. For example, in Figure 1.2 both X and Y have each exactly one
connected component, but while Y has one hole, X has none. The number of
occurrences of each feature is an invariant of this space. Since these numbers
do not agree for X and Y, we deduce that X and Y are different spaces.
Persistent homology adapts this idea for finite metric spaces.

To see why we can not apply homology directly, consider the finite metric
space in Figure 1.3. Here, we as humans see that these points lie along a
circle, but how can we capture this with homology? If we apply homology
we just get the number of connected components! This is due to the limited
structure of such spaces. One way to overcome this issue is to thicken up
the points, or mathematically speaking, to cover the points with balls. This
gives us more structure. But how large should these covering balls be? If we
choose them too small, as in Figure 1.4, we do not gain much. If they are too
big, as in Figure 1.7, we cover up the circle.

Persistent homology tackles this problem by considering all possible radii
instead of choosing one. By letting the radius vary it is possible to measure
how long a feature, such as a connected component or a hole persists. In
Figure 1.4 we have 23 connected components and no holes. While the radius
of the balls increases, the components merge together until we finally have
just one component as in Figure 1.7.

Not all features we detect in this progress are real features. For example,
in Figure 1.5 we get two small circles. From an intuitive point of view it is
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Figure 1.4: 23 con-
nected components

Figure 1.5: Two
small circles

Figure 1.6: One big
circle

Figure 1.7: No
holes visible

Figure 1.8: Different choices of radii on a point cloud.

clear that these two circles are due to noise. Instead we want to label the
hole captured in Figure 1.6 as the real hole. To distinguish the importance
of a circle we track how long it persists. This means we make note of how
big the radii of the balls are, as soon as a new circle appears and how big
the radii need to be for it to vanish. We see that the two holes in Figure 1.5
will disappear if we increase the radius just a little bit. This small difference
in the two tracked radii indicates that this is not a circle of interest. On the
other hand, the hole in Figure 1.6 will survive for much longer, indicating
that this is a real hole.

xs

r

Figure 1.9: Annulus with outer radius s and
inner radius r.

Figure 1.10: Euclidicity scores of the
pinched torus.

The TARDIS algorithm computes persistent homology of some point x for
various annuli centered at x. An example annulus is illustrated in Figure
1.9. The average of the persistent homology computed for these annuli is
compared to persistent homology of an annulus on some manifold. This
means that a feature that only appears on some of the annuli is less important
than a feature that appears on every annulus. For example, consider again the
pinched torus. A point close to the pinched point p has different persistent
homology on an annulus with a small enough inner and outer radius than
on an annulus that includes p. This means that by averaging over persistent
homology computed for annuli of different sizes provides a way to see how
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close some point is to a singularity. Thus, by varying the outer radius s
and the inner radius r we characterize the topological features not only
by the time they appear or vanish but also for which choices of radii they
persist. The key observation here is that neighborhoods of regular points
differ from neighborhoods of points close to a singularity. The more these
two neighborhoods deviate the bigger is the Euclidicity score for this point,
indicating a singular region. For example, consider an annulus around
the singular point of the pinched torus. Each annulus has two connected
components. An annulus in R2 has one connected component. This difference
is captured by a high Euclidicity score for the singular point. This example
highlights why a correct dimension estimate is crucial; if we compare the
annuli of a regular point on the pinched torus to annuli on R3 the Euclidicity
score is high as well, since these two annulus have different first homology.

In a series of experiments we can observe the effect of different choices
of parameters on the TARDIS algorithm. We discuss a data driven way
to find a minimal inner and a maximal outer radius for this annuli and
compare this method to taking fixed values for the radii. The experiments
show that Euclidicity is expressive and does highlight the singularities one
sees in Figure 1.10. By comparing different numbers of annuli per point the
experiments show that fewer annuli make the computation faster while the
singularities are still easy to detect.
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Chapter 2

Simplicial Complexes And Homology

In this chapter we define simplicial complexes, a special type of topological
spaces. To classify simplicial complexes we define homology. Informally
speaking homology counts the number of n-dimensional holes. Finally with
local homology we will define neighborhoods in the context of simplicial
complexes.

We follow Hatcher’s Algebraic Topology [Hat02] and Topological pattern
recognition for point cloud data by Carlsson [Car14].

2.1 Simplicial Complexes

Simplicial complexes are combinatorial objects built by gluing vertices,
edges, triangles, tetrahedrons etc. along common edges. We start by defining
simplices as convex hulls of points in general positions.

Definition 2.1 Let S = {x0, x1, . . . , xn} ⊂ Rk. We say that S is in general
position if S is not contained in any affine hyperplane of Rk of dimension less than
n.

Definition 2.2 If S = {x0, x1, . . . , xn} ⊂ Rk is in general position, then the
simplex spanned by S is the convex hull σ = σ(S) of S in Rk. The dimension of
the simplex is n so we can also refer to it as the n-simplex. For k ≤ n a k-face (or,
simply a face) of σ is a k-simplex that is the convex hull of a nonempty subset of S.

We call a 0-simplex a point, a 1-simplex an edge and a 2-simplex a triangle.

Definition 2.3 A geometric simplicial complex is a finite collection X of sim-
plices in a Euclidean space, that satisfies the following two restrictions.

• X contains every face of each simplex in X.

• For any two simplices σ, τ ∈ X, their intersection σ ∩ τ is either emtpy or a
face of both σ and τ.
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2.1. Simplicial Complexes

v1 v2

v3

Figure 2.1: An example of a simplicial com-
plex.

v1 v2

v3

Figure 2.2: A collection of simplices that
does not form a simplex.

Remark 2.4 We often write σ = x0x1 · · · xn or σ = [x0, x1, · · · xn] for the simplex
spanned by the vertices {x0, x1, · · · , xn}.

It is also possible to regard simplicial complexes as a purely combinatorial
object.

Definition 2.5 An abstract simplicial complex X is the pair X = (V(X), Σ(X)).
V(X) denotes a finite set, the vertices of X. Σ(X) is a subset of the family of all
non-empty subsets called the simplices of V(X), satisfying that if

σ ∈ Σ(X) and ∅ ̸= τ ⊂ σ ⇒ τ ∈ Σ(X).

To every geometric simplicial complex we can assign an abstract simlipicial
complex and vice versa. One can think of this as two different points of view
on the same object. This gives the freedom to consider a simplicial complex
as a combinatorial or as a geometric object depending on the context.

Definition 2.6 A geometric simplicial complex X in Rd is called a geometric
realization of an abstract simplicial complex X’ if and only if there is an embedding
e : V(X′) → Rd that takes every k-simplex [x0, x1, · · · , xk] ∈ X′ to a k-simplex in
X that is the convex hull of e(x0), e(x1), · · · , e(xk).

Remark 2.7 To get an abstract simplicial X’ complex from a geometric simplicial
complex X simply make a list V(X’) of all the vertices in X, and a list Σ(X′) of all
the faces in X.

Example 2.8 Let X = (V(X), Σ(X)) be given by V(X) = {v1, v2, v3} and
Σ(X) = {v1, v2, v3, v1v2, v2v3, v1v3, v1v2v3}. A geometric realization of this sim-
plex is drawn in Figure 2.1. Note that this is also an example of a 2-simplex. v1v2
is an example of a face of v1v2v3. Now consider X′ = (V(X′), Σ(X′)) given by
V(X′) = {v1, v2, v3} and Σ(X′) = {v1, v2, v3, v1v2, v2v3, v1v2v3}. This is not a
simplicial complex see Figure 2.2.

In order to describe a simplicial complex locally we need a notion of a
neighborhood for simplices.
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2.2. Simplicial Homology

Definition 2.9 For a simplical complex X = (V(X), Σ(X)) and x ∈ V(X), we
define the link of x Lk(x) to be the union of simplices σ ∈ Σ(X) with x /∈ σ and
x ∪ σ ∈ Σ(X). The open star of x st(x) as the collection of of simplices ∈ Σ(X)
that contain x. We call the closure of st(x) the star of x and write St(x).

Intuitively we can think of the open star as an open neighborhood of x. The
open star is not necessarily a simplicial complex since it is not downward
closed. Observe that the star is contractible. Furthermore, we could also write
St(x) = st(x) ∪ Lk(x), meaning we could think of the link as the boundary
of the open star.

Example 2.10 The open star of the yellow vertex in Figure 2.3 is marked in blue.
We see that this is not a simplicial complex, since not all the faces of the blue triangles
are included. The link of this vertex is drawn in Figure 2.4. This are exactly the faces
that are needed to make the open star a simplicial complex.

Figure 2.3: Open star of the yellow vertex,
(including the yellow vertex).

Figure 2.4: Link of the yellow ver-
tex

2.2 Simplicial Homology

Simplicial homology allows to study and classify topological spaces based
on their structural features such as loops and voids. To do so, we consider
n-simplices and investigate whether they form cycles. The cycles that are not
a boundary are features of the space.

Definition 2.11 Let k be a field and S a finite set. We denote the k-span of S by
Vk(S) and call it the free k-vector space on the set S.

Definition 2.12 Let k be a field and X a simplicial complex. We denote by Cn(X)
the free k-vector space on the set of n-simplices. We call ξ ∈ Cn(X) n-chain.

A basis for Cn(X) is given by the set of all n-simplices. Each chain can be
written as a formal sum of n-simplices ξ = ∑ akσk, where ak ∈ k for some
field k. Addition and scalar multiplication is defined in the obvious way.

From now on we set k = Z2 unless stated otherwise. This makes some
computations easier, in particular, this allows to forget signs.
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2.2. Simplicial Homology

Example 2.13 In Figure 2.1 C1(X) is given by span{v1v2, v2v3, v1v3}. C0(X) is
given by span{v1, v2, v3}. An example of a 1-chain is v1v2 + v2v3.

Definition 2.14 Given an n-simplex σ, we define the boundary ∂nσ as the union
of its (n-1)-dimensional faces, i.e. if σ = [x0, x1, · · · , xn] then

∂nσ = ∑n
k=0[x0, x1, · · · , xk−1, xk+1, · · · , xn].

For an n-chain ξ = ∑ akσk, the boundary is the sum of the boundaries of its simplices,
i.e. ∂nξ = ∑ ak(∂nσk). The boundary takes a n-chain to a (n-1)-chain, we see that
∂n(ξ + ξ ′) = ∂n(ξ) + ∂n(ξ ′) and thus ∂n : Cn(X) → Cn−1(X) is a homomorphism,
called the boundary map. We can represent this map with a matrix, called the
boundary matrix. This matrix will be useful to compute persistence.

Example 2.15 Consider again Example 2.13, here the boundary matrix is given by

∂1 =

v1v2 v1v3 v2v3( )v1 1 1 0
v2 1 0 1
v3 0 1 1

Definition 2.16 We call the sequence

... Cn+1(X) Cn(X) ... C1(X) C0(X) 0
∂n+1 ∂n ∂2 ∂1 ∂0

a chain complex. We define the n-th homology group of this chain complex to
be the quotient group Hn = ker ∂n/ Im ∂n+1. Elements of ker ∂n are called cycles
and elements of Im ∂n+1 are boundaries. The rank of Hn is called the n-th Betti
number of X.

2.2.1 Relative Homology Groups

Sometimes it is useful to disregard a certain amount of structure. To do so
we consider quotient groups.

Definition 2.17 Given a simplicial complex X and a subcomplex A ⊂ X, we define
the relative homology group Cn(X, A) as the quotient Cn(X)/Cn(A).

Since the boundary map ∂ : Cn(X) → Cn−1(X) takes Cn(A) to Cn−1(A) it
induces a quotient boundary map and we get a relative quotient chain:

... Cn+1(X, A) ... C1(X, A) C0(X, A) 0
∂n+1 ∂2 ∂1 ∂0

8



2.3. Singular Homology

This chain complex allows us to define relative homology groups.

Definition 2.18 The relative homology groups Hn(X, A) = ker ∂/Im ∂, where
∂ is the boundary map of the chain complex above.

2.3 Singular Homology

Simplicial homology is quite intuitive. Unfortunately, it is not defined
for general topological spaces. An extension is called singular homology, a
more flexible and robust framework. Here, the building blocks are singular
simplices which are continuous maps from standard simplices into the space
under study. These singular simplices can be of any shape.

For an introduction into singular homology we refer to Hatcher [Hat02,
Section 2.1].

One important result from singular homology is the excision theorem.

Theorem 2.19 For subspaces A, B ⊂ X whose interior cover X, the inclusions
(B, A ∩ B) ↪→ (X, A) induces isomorphisms Hn(B, A ∩ B) → Hn(X, A) for all n.

The proof of this theorem can be found in Hatcher [Hat02, Theorem 2.20].

9



Chapter 3

Persistent Homology

In this chapter we introduce Vietoris-Rips and Čech complexes as well as
filtrations in general. The main result of this chapter is the decomposition
theorem which classifies all finitely generated persistent vector spaces.
This chapter is mainly based on Hatcher’s Algebraic Topology [Hat02], Carls-
son’s Topological pattern recognition for point cloud data [Car14] and the book
Computational Topology for Data Analysis [DW22].

3.1 Point Cloud Filtrations

To apply homology to a point cloud we need to transform the data. One
option is to cover the points with balls. To get a simplicial complex we
regard the points as vertices and connect them whenever their covering balls
intersect. The nerve theorem ensures that this construction maintains the
structure of the space.

Definition 3.1 Given a finite collection of sets U = {Ua}a∈A, we define the
nerve of U to be the simplical complex N(U) whose vertex set is the index set A.
{a0, a1, · · · , ak} ⊂ A spans a k-simplex in N(U) if and only if
Ua0 ∩ Ua1 ∩ · · · ∩ Uak ̸= ∅.

Figure 3.1: Covering U of some space. Figure 3.2: The nerve N(U) of this covering.

Example 3.2 Consider the covering U in Figure 3.1. The nerve N(U) in Figure 3.2
is obtained by adding a vertex on each set Ui ∈ U and an edge between two vertices

10



3.1. Point Cloud Filtrations

whenever the corresponding sets overlap, and add a triangle whenever three sets
intersect.

The nerve theorem ensures that the simplicial complex captures all the
information of the covering. This is a standard result which is beyond
the scope of this thesis, but the interested reader is referred to [DW22,
Theorem 2.1].

Theorem 3.3 (Nerve Theorem) Given a finite (open or closed) cover U of a metric
space X, the underlying space |N(U)| is homotopy equivalent to X if every non-
empty intersection

⋂
i∈I Uai of cover elements is contractible.

Applying homology to a point cloud directly yields trivial n-th homology
groups for n > 0. To give more structure to the point cloud we ’thicken up’
the points, and observe the union of this thickened points.

Definition 3.4 For a metric space (X, dX) and P = {p1, · · · , pk} ⊂ X a finite
subset, the Čech complex at time t, Č(P, t), is a simplicial complex given by the
nerve of the set {B(pi, t)}i, where B(pi, t) = {x ∈ X | d(pi, x) ≤ t}.

Figure 3.3: Left: point cloud. Right: Čech complex at the time t= 1.2.

Example 3.5 In Figure 3.3 we have a point cloud on the left and the Čech complex
on this point cloud at time t= 1.2 on the right. On the Čech complex we have a
non-trivial 1st homology group, giving us a global understanding of the data points.

Remark 3.6 Since balls are convex, every intersection of a collection of balls is
convex, and therefore contractible. This implies that the nerve theorem always holds
for Čech complexes.

Instead of computing intersections of balls the Vietoris-Rips complex only
computes the pairwise distances of the points, making it more computation-
ally feasible.

Definition 3.7 Given a finite metric space (X, dX), the Vietoris-Rips complex at
time t, VR(X, t) is a simplical complex, where the n-simplex
(x0, x1, · · · , xn) ∈ VR(X, t) ⇔ ∀ 1 ≤ i, j ≤ n : dX(xi, xj) ≤ 2t.

The Čech complex and the Vietoris-Rips complex are closely connected as
the next proposition shows.
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3.1. Point Cloud Filtrations

Proposition 3.8 Let P be a finite subset of a metric space (X,d). Then,

Č(P, t) ⊂ VR(P, t) ⊂ Č(P, 2t).

Proof First inclusion: If there is a point x in the intersection
⋂k

i=1 B(pi, t), we
have that for every pair (i, j) 1 ≤ i, j ≤ k the distances d(pi, pj) are at most 2t.
It follows that for every simplex [p1, · · · , pk] ∈ Č(P, t) is also in VR(P, t).
Second inclusion: Let [p1, · · · , pk] ∈ VR(P, t). By definition of the VR complex
we have that for every 1 ≤ i ≤ k d(pi, p1) ≤ 2t. Then ∅ ̸= p1 ∈ ⋂k

i=1 B(pi, 2t)
and we conclude that [p1, · · · , pk] is a simplex in Č(P, 2t). □

This inclusions together with Theorem 3.3 gives us a theoretical guarantee
for the Vietoris-Rips complex as well.
We can use these complexes to approximate the underlying space. The
question is what parameter to choose. Instead of choosing one t we simply
consider all possible choices of t ∈ R+, this yields a filtration.

Definition 3.9 Given a topological space X, a filtration is a nested sequence of
subspaces

F : ∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X.

Definition 3.10 If X is a simplicial complex in the above definition, we call the
filtration F = F(K) a simplicial filtration, it consist of a nested sequence of closed
subcomplexes

F : ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K.

t = 0 t= 1 t = 1.47

Figure 3.4: Simplicial filtration induced by the Čech complex.

Example 3.11 The Čech and the Vietoris-Rips complexes induce simplicial filtra-
tions; by letting the time t vary from 0 to ∞, we get a filtration where only at finitly
many times the complex changes. For any point cloud P and different times t1 < t2
we have by definition that F(P, t1) ⊂ F(P, t2), where F is either the Čech or the
Vietoris-Rips complex. An example of a Čech filtration is illustrated in Figure 3.4,
there are three different Čech complexes for different times t. Here we have that if
t ≥ 1.46 the complex does not change anymore. In Figure 3.5 there are the first four
steps of the filtration induced by the Vietoris-Rips complex. We see in both examples
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3.1. Point Cloud Filtrations

that there are only finitely many changes of the simplicial complex since there are
finitely many points in a point cloud.

t = 0 t = 0.7 t = 1 t = 3.3

Figure 3.5: 4 steps of a Vietoris-Rips filtration.

Not every simplicial filtration is induced by the Čech or the Vietoris-Rips
complex as the next example shows.

Example 3.12 An example of a simplicial filtration with 4 steps is given in Figure
3.6. We have that K1 = {a, b}, K2 = K1 ∪ {c, ab} and so on. We see from the
pictures that Ki ⊂ Ki+1 for 1 ≤ i ≤ 3. This is an example for a simplicial filtration
that is not induced by the Čech complex or by the Vietoris-Rips complex.

a

b
ab

c bc

ac abc

K1 K2 K3 K4

Figure 3.6: Simplicial filtration with 4 steps.

Definition 3.13 Let X be any set and ρ : X → R+. We call such a pair (X, ρ) an
R+-filtered set.

An R+-filtered set also induces a filtration as the following example shows.

Example 3.14 Consider the simplicial complex X = (V(X), Σ(X)) with
Σ(X) = {a, b, c, ab, bc, ac, abc}. If we assign to each face the time it appears
in the filtration shown in Figure 3.6, we get an R+-filtered set. For example,
ρ(a) = 1, ρ(ab) = 2, ρ(c) = 2, ρ(bc) = 3, ρ(abc) = 4.
In K3 we have a circle which is not a boundary, the circle becomes a boundary in K4,
the lifespan of this circle is time of death-time of birth = 1 step.
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3.2. Persistent Vector Spaces

3.2 Persistent Vector Spaces

In this section we introduce persistent vector spaces. We state and prove
the decomposition theorem, which classifies all finitely presented persistent
vector spaces up to isomorphisms.

Definition 3.15 Let r, r′ ∈ R. By a persistence vector space (PVS) over a
field k we refer to a family of k-vector spaces {Vr}r∈R, together with linear maps
LV(r, r′) : Vr → Vr′ where r ≤ r′ and LV(r′, r′′) ◦ LV(r, r′) = LV(r, r′′) where
r ≤ r′ ≤ r′′. We define sub-PVS and quotient spaces of PVS in the obvious way.

Remark 3.16 Sometimes persistent vector spaces are referred to as persistent mod-
ules.

Definition 3.17 A linear transformation f between two PVS {Vr}r∈R and {Wr}r∈R,
is a family of transformations fr : Vr → Wr which make the following diagram com-
mute:

Vr Vr′

Wr Wr′

LV(r,r′)

fr fr′

LW(r,r′)

Example 3.18 Given an R+-filtered set (X, ρ), we get an induced PVS {W(X, ρ)r}
where

{W(X, ρ)r} = span{x ∈ X : ρ(x) ≤ r} ⊂ Vk(X).

Definition 3.19 We call a PVS free if it is isomorphic to one of the form {V(X, ρ)r}
for some R+-filtered set (X, ρ), it is finitely generated if X is finite.

Remark 3.20 Any linear combination ∑x axx ∈ Vk(X) lies in W(X, ρ)r iff
ax = 0 ∀x with ρ(x) > r.

Definition 3.21 A PVS is finitely presented if it is isomorphic to a PVS of the
form {Wr}/im( f ), where f : {Vr} → {Wr} is a linear transformation between
finitly generated free PVS.

Example 3.22 For a, b ∈ R with a ≤ b we define the interval PVS as the family
of k-vector spaces

P(a, b)r =

{
k, r ∈ [a, b)
0, r /∈ [a, b)

together with linear maps L(r, r′) = idk for r, r′ ∈ [a, b) and zero maps otherwise.
P(a, b) is an example of a finitely presented PVS.

14



3.2. Persistent Vector Spaces

Observe that for a finitely generated free PVS {V(X, ρ)r} we have that
Vk(X, ρ)r = Vk(X) for a sufficiently large r. Thus any linear map
f : {V(Y, σ)r} → {V(X, ρ)r} induces a linear map f∞ : Vk(Y) → Vk(X). Us-
ing the basis {x}x∈X of Vk(X) and {y}y∈Y of Vk(Y) we can determine the
(X, Y)-matrix A( f ) = [axy] with axy ∈ k.

Example 3.23 Consider again Figure 3.6. In Example 3.14 we established that this
filtration is induced by the R+-filtered set (X, ρ). Together with inclusion maps we
see that this is an example of a free PVS.

We establish some properties of this matrix, which will come by handy
later on.

Proposition 3.24 The (X, Y)-matrix A( f ) has the property that [axy] = 0 when-
ever ρ(x) > σ(y). Conversely, every (ρ, σ)-adapted (X, Y)-matrix A uniquely
determines a linear transformation of persistence vector spaces

fA : {Vk(Y, σ)r} → {Vk(X, ρ)r}.

The correspondences f → A( f ) and A → fA are inverses to each other.

Proof The basis vector y lies in Vk(Y, σ)σ(y). By definition we have

f (y) = ∑x∈X axyx.

From Remark 3.20 we know that ∑x∈X axyx ∈ Vk(X, ρ)σ(y) iff ∀ x, y with
ρ(x) > σ(y) we have axy = 0. □

Definition 3.25 Let (X, ρ) and (Y, σ) be two R+-filtered sets. We call the (X, Y)-
matrix with the property from Proposition 3.24 (ρ, σ)-adapted.

Corollary 3.26 Let (X, ρ) and (Y, σ) be two R+-filtered sets and A = [axy] be a
(ρ, σ)-adapted matrix. Then A determines a PVS via the correspondence

A θ−→ Vk(X, ρ)/im( fA).

θ(A) is a finitely presented PVS. Conversely, any finitely presented PVS is isomor-
phic to one of the form θ(A) for some (ρ, σ)-adapted matrix A.

Remark 3.27 We write θ(A) to refer to the quotient space Vk(X, ρ)/im( fA).

Definition 3.28 Let (X, ρ) be an R+-filtered set. We identify the group of automor-
phism on Vk(X, ρ) with the group of all invertible (ρ, ρ)-adapted (X, X)-matrices.

Proposition 3.29 Let (X, ρ) and (Y, σ) be two R+-filtered sets, let A be a (ρ, σ)-
adapted (X, Y)-matrix. Let B be a (ρ, ρ)-adapted (X, X)-matrix and C a (σ, σ)-
adapted (Y, Y)-matrix. Then BAC is also (ρ, σ)-adapted and θ(A) ∼= θ(BAC).
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3.2. Persistent Vector Spaces

Proof Let A = [axy] and B = [bx̃,x]. We first show that the matrix BA = [dxy]
is (ρ, σ)-adapted. Note that

dxy = ∑
x∈X

bx̃,xaxy = ∑
x∈X

ρ(x)≤ρ(x̃)≤σ(y)

bx̃,xax,y.

Where the second equality follows since B, A are adapted matrices and
thus ρ(x̃) > ρ(x) implies that [bx̃,x] = 0 and ρ(x) > σ(y) implies that
A = [axy] = 0. We see that for ρ(x) > σ(y) we have dxy = 0, thus BA is
(ρ, σ)-adapted. Analogously we see that BAC is (ρ, σ)-adapted as well.
The isomorphism follows directly from the linearity of fBAC and since the
equivalence classes [x] are preserved. □

The matrices B and C in the above proposition will play an important
part in the decomposition theorem and in the computation algorithm. They
preserve the (ρ, σ)-adaptedness in a given matrix A.

Definition 3.30 Let (X, ρ) and (Y, σ) be two R+-filtered sets and A be a (ρ, σ)-
adapted (X, Y)-matrix. We denote the rows of A by r(x) and the columns by c(y).
We define an adapted row operation to be a an operation that adds a multiple
of r(x) to r(x̃) where ρ(x) ≥ ρ(x̃). Similarly, we define an adapted column
operation as an operation that adds a multiple of c(y) to c(ỹ) where σ(y) ≤ σ(ỹ).

Before turning our attention to the main result of this section we introduce a
special type of PVS; the interval PVS. This space is easy to visualize as we’ll
discuss in the next section.

Example 3.31 Let a, b ∈ R+ and a < b. Let X = {x} together with the filtration
ρ(x) = a and Y = {y} together with the filtration σ(y) = b. (X, ρ) and (Y, σ) are
R+-filtered sets. Consider the matrix A = (1) which maps y to x. Note that A is
(ρ, σ)-adapted matrix, since we have a < b and therefore y appears after x is already
present. Vk(X)r is defined by:

Vk(X)r =

{
∅ if r < a
k if r ≥ a

The image of the map fA induced by A is given by:

im( fA)r =

{
0 if r < b
k if r ≥ b

We combine this together and get that:
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3.2. Persistent Vector Spaces

θ(A)r =

{
∅ if r /∈ [a, b)
k if r ∈ [a, b)

Thus we can conclude that θ(A) ∼= P(a, b).

We are now in a position to state the most important result from this section.

Theorem 3.32 (Decomposition Theorem) Every finitely presented PVS over
some field k is isomorphic to a finite direct sum of the form

P(a1, b1)⊕ P(a2, b2)⊕ · · · ⊕ P(an, bn)

for some ai ∈ [0, ∞), bi ∈ [0, ∞] and ai < bi for all i. Furthermore this decomposi-
tion is unique up to isomorphisms.

Proof Uniqueness:
Let {Vr} ∼=

⊕
i∈I P(ai, bi) and {Vr} ∼=

⊕
j∈J P(cj, dj) be two decompositions

where I and J are finite sets. Let amin and cmin denote the smallest values
of ai and cj respectively. We can characterize amin as min{r ∈ R : Vr ̸= 0},
from this we conclude that amin = cmin. Set bmin := min{bi : ai = amin} and
analogously dmin := min{di : ci = cmin}. bmin and dmin are characterized by
min{r′ : ker(L(r, r′)) ̸= 0}, which implies bmin = dmin.
P(amin, bmin) = P(cmin, dmin) appears in both decompositions. For each
decomposition, consider the sum of all the occurrences of P(amin, bmin), these
are both sub-PVS of {Vr}. This sub-PVS are isomorphic to the kernel {Wr}
of the map.

im(L(amin, r))
L(r,bmin)|im(L(amin,r))−−−−−−−−−−−−→ Vbmin.

This implies that the number of summands of the form P(amin, bmin) in
the two decompositions is the same. Set I′ = {i ∈ I : ai = amin} and
J′ = {j ∈ J : cj = cmin}. If we form the quotients, and get the decomposition

{{Vr}/{Wr}} ∼=
⊕

i∈I\I′ P(ai, bi) and {{Vr}/{Wr}} ∼=
⊕

j∈J\J′ P(ci, di).

Repeating this process on the obtained quotient space gives us the desired
result.

Existence:
Consider a (ρ, σ)-adapted (X, Y)-matrix A where every row and every col-
umn has at most one non-zero element which is equal to 1. We denote these
non-zero pairs by {(x1, y1), · · · , (xn, yn)}. Then,
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θ(A) =
⊕

x∈X
Vk(x, ρ)/im( fA) ∼=⊕

i∈{1,··· ,n}
Vk(xi, ρ)/im( fA)⊕

⊕
x∈X\{x1,··· ,xn}

Vk(x, ρ)/im( fA) ∼=⊕
i∈{1,··· ,n}

P(ρ(xi), σ(yi))⊕
⊕

x∈X\{x1,··· ,xn}
P(ρ(x), ∞).

Where the last equation follows since Vk(xi, ρ)/im( fA) only depends on the
image of yi. For a general matrix A with rows and/or columns with more
than one non-zero element, we’ll show that there are matrices B and C as in
Proposition 3.29 such that BAC has the property, that there is no more than
one non-zero element, which is equal to 1 in each row and each column. If
we find such matrices we are done by Proposition 3.29.
Finding such matrices is equivalent to transforming A by adapted row and
adapted column operations. First we take a y ∈ Y which minimizes σ(y) and
with c(y) ̸= 0. Next, find a x which maximizes ρ(x) and for which axy ̸= 0.
By the way we chose x, we can add multiples of r(x) to all the other rows in
c(y) so we have just one non-zero element [axy] left. The way we choose y
allows us to add multiples of c(y) to zero out all the other entries in r(X),
except for [axy]. By multiplying r(x) with 1/axy we create a row and a column
where there is exactly one non-zero element equal to 1. Observe that we
only used adapted operations. We denote by ρ′, σ′ the restriction of ρ (or σ)
to X\{x} and Y\{y} respectively. Now delete r(x) and c(y) and repeat the
whole process inductively with the (ρ′, σ′)-adapted (X\{x}, Y\{y})-matrix.
Each operation on this smaller matrix can be interpreted as an operation on
the original matrix. Since X and Y are finite, we eventually get a matrix A
with at most one non-zero entry in each row and in each column. □

3.3 Persistent Homology

Due to the decomposition theorem we have a standardized way of repre-
senting a finitely presented PVS with the so-called barcodes or persistent
diagrams.

Definition 3.33 Let {Vk} ∼=
⊕

i∈I P(ai, bi) be the interval decomposition of di-
mension p of a given PVS {Vk}. The barcode of {Vk} is the multiset of intervals
[ai, bi) ⊂ (R ∪ ∞) for i ∈ {1, · · · , n}.

Definition 3.34 Let {Vk} ∼=
⊕

i∈I P(ai, bi) be the interval decomposition of dimen-
sion p of a given PVS {Vk}. The collection of points {(ai, bi)} ⊂ (R ∪ ∞)2 with
proper multiplicity as well as the points on the diagonal ∆ : {(x, x)} ⊂ (R ∪ ∞)2

with infinite multiplicity constitute the persistence diagram Dgmp({Vk}) of the
PVS {Vk}.

Remark 3.35 Both the barcode as well as the persistence diagram, encode the same
information about a given PVS.
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Note that the 0 persistence points on the diagonal are mostly there for
technical purposes. Usually we consider points close to the diagonal as noise,
whereas points further away represent real features. Typically the x-axis
correspond to the birth time whereas the y-axis corresponds to the death
time. We observe that there are no points bellow the diagonal, otherwise
something would die before its birth.

Example 3.36 In Figure 3.7 the point cloud seems to be sampled from two cycles.
The persistence diagram in Figure 3.8 contains the information about the zeroth and
first homology of this point cloud. Since the data is close to each other we quickly
have connected components vanishing. We see this in the diagram on the bottom left.
For some time we have two connected components until they merge at time 5.5.
For the first homology group we have two off-diagonal points. They correspond to
the two cycles in the point cloud. The points close to the diagonal are due to noise.

Figure 3.7: Point cloud.
Figure 3.8: Persistence diagram displaying
0th and 1st homology group of the point
cloud.

Definition 3.37 The p-th persistent homology PHp is the collection of all the
points on the persistence diagram Dgmp.

3.4 Distance Metric on Persistence Diagrams

Given two data sets with the respective persistent diagrams, we want to
have some notion of similarity of persistence diagrams, to evaluate how
different some diagrams (and thus the underlying data sets) are. This is
important since we want that a small perturbation in the data should still
result in similar persistence diagrams.

Definition 3.38 Let X, Y be finite metric spaces with respective filtrations F and G.
Let Π = {π : Dgmp(F) → Dgmp(G) : π is bijective} be the set of all matchings
between the corresponding persistence diagrams. Then the bottleneck distance is
given by:

db(Dgmp(F), Dgmp(G)) = infπ∈Π supx∈Dgmp(F)
∥x − π(x)∥∞.
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Figure 3.9: The black points are from a different filtration than the blue ones. The rectangles
correspond to balls in the infinity norm.

The reason we take points on the diagonal with infinite multiplicity is to
ensure we always have bijections. Another reason is that we want to find
optimal maps between the points. We illustrate the idea of the bottleneck
distance in Figure 3.9, here the blue points are from a different filtration than
the black points. Note that the rectangular boxes correspond to balls in the
infinity norm. This example also demonstrates why the diagonal allows us
to get optimal distances; without it the bottleneck distance here would be
way bigger: If we can not match points to the diagonal we need to map the
blue point with coordinates (4.9, 5.3) to the black point at (7.2, 7.8), but this
means that the radius of the balls would become five times larger than they
are now!

As a measure of similarity for point clouds that live in the same ambient
space we use the Hausdorff distance.

Definition 3.39 The Hausdorff distance of two non-empty subsets A, B ⊂ X of a
metric space is dH(A, B) := inf{ε ≥ 0 : A ⊂ Bε, B ⊂ Aε} where
Aε =

⋃
a∈A{x ∈ X : d(x, a) ≤ ε} is the ε-thickening of A in X.

One can think of the Hausdorff distance of two point clouds as the minimum
(this is indeed a minimum since the sets are compact) ε one needs, such that
the balls of radius ε centred at the points of one point cloud cover the other
point cloud as well.

Example 3.40 In Figure 3.10 we have a green space X and a red space Y. Both
spaces are totally bounded. To see that the Hausdorff distance between this spaces
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equal to 1 is we first note that X ⊂ Y1 and Y ⊂ X1, showing dH(X, Y) ≤ 1. On the
other hand, we have for any smaller thickening ε < 1 that Y is no longer included in
Xε.

Figure 3.10: Left: Two subsets of R2. Middle: 1-thickening of the green space Right: 1-thickening
of red space.

Chazal et al. showed in Gromov-Hausdorff Stable Signatures for Shapes using
Persistence [CCSG+09] a more general version of the following stability the-
orem of persistence diagrams. For this theorem we need that we deal with
totally bounded spaces, that is a space which can be covered by finitely many
balls where the radius of the balls is chosen arbitrary.

Theorem 3.41 Let X, Y be totally bounded metric spaces. Then ∀p ≥ 0 we have

db(Dgmp(F(X), Dgmp(F(Y)) ≤ 2dH(X, Y),

where F is either the Vietoris-Rips or the Čech filtration.
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Chapter 4

Manifolds and Stratified Spaces

In this chapter we define manifolds, regular points and singularities. To
have a less rigid space that allows for changes of dimension within the space
we introduce stratified spaces. This spaces are built with manifolds of various
dimensions.
The first section is based on Hatcher’s Algebraic Topology [Hat02, Chapter 3.3]
and on the book Introduction to Smooth Manifolds by Lee [Lee13]. Section 2.2 is
based on Banagl’s Topological Invariants of Stratified Spaces [Ban07, Chapter 4]
and on Friedman’s Singular Intersection Homology [Fri20, Chapter 2].

4.1 Manifolds

Definition 4.1 A point in some topological space that has an open neighborhood
homeomorphic to Rn is called regular. Points that are not regular are called
singularities. An n-dimensional topological manifold or n-manifold for short,
is a Hausdorff space M in which each point is regular for some fixed dimension n.

Figure 4.1: Example of a 1-manifold and a nonexample.
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Example 4.2 On the left of Figure 4.1 there is an example of a 1-manifold on the
left and a nonexample on the right. The two marked points are singular points since
no neighborhood of this points resemble R.

4.2 Stratified Spaces

Manifolds are very well-behaved spaces, but this also imposes serious
restrictions. We want to turn our attention to a more general framework
which also allows singularities as well as different intrinsic dimensions in
one space.

Definition 4.3 A 0-dimensional (topological) stratified pseudomanifold is a
countable set of points with discrete topology.
For n > 0, an n-dimensional (topological) stratified pseudomanifold Xn is an n-
dimensional filtered space of closed subsets

X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃ X−1 = ∅

such that:

1. ∀i ≤ n : Each connected component of Xi \ Xi−1 is an i-dimensional manifold.

2. Xn \ Xn−1 is dense in X.

3. Local normal triviality: For each point x ∈ Xi \ Xi−1, there exists

• an open neighborhood Ux of x in X.

• a compact stratified pseudomanifold L of dimension m := n − i − 1 with
stratification L = Lm ⊃ Lm−1 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅.

• a homeomorphism Φ : Ux → Ri × c◦L. Here we denote by c◦ the open
cone given by c◦L := L × (0, 1]/L × {0}.

4. We call Xn \ Xn−1 the top stratum. For i ̸= n we call Xi \ Xi−1 a
(i-dimensional) stratum. An n-dimensional stratification is called classical if
Xn−1 = Xn−2.

We refer to L as the link. The link is only interesting for points on Xi \ Xi−1
for i < n. If i = n we have that the dimension of the link m = 2 − 2 − 1 = −1
and thus we only have L−1 = ∅. One can think of the link as the boundary
of a neighborhood of a point which has a lower intrinsic dimension than the
space itself.

Example 4.4 Let X be an n-dimensional manifold. Then X = Xn and
Xn−1 = Xn−2 · · · = X−1 = ∅. Xn \ Xn−1 = Xn which is trivially dense in Xn.
Intuitively the link should the empty set since there are only points on Xn. By a
calculation of the links dimension m = 2 − 2 − 1 = −1 we verify that the link is
indeed the empty set.
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Figure 4.2: Left: Example of a 1-dimensional stratified pseudomanifold.
Right: Top stratum.

Example 4.5 Consider the squiggly 8-figure in Figure 4.2. The two loops on the
right form the top stratum, and the removed point is the 0-dimensional stratum.
Obviously the two loops X1 \ X0 are dense in the whole figure X1. Furthermore, each
point in X1 \ X0 has a neighborhood homeomorphic to R1. Here L is the empty set
since m = 1 − 1 − 1 = −1.

Figure 4.3: Left: Torus with two meridians highlighted. Right: Pinched torus

Example 4.6 Given a torus T one obtains a pinched torus T̃ by compressing one
meridian to a single point. This object has a croissant like shape and is illustrated
in Figure 4.3. The pinched torus is 2-dimensional stratified pseudomanifold. The
stratification is given by

X2 = pinched torus;
X1 = X0 = pinched point.

Clearly X2 \ X1 is dense in X2. X1 \ X0 = ∅, which aligns with our intuition that
there is no 1-dimensional manifold in this object.
For the pinched point p ∈ X0 \ X−1 = X0, there exists a neighborhood Up and a
2 − 0 − 1 = 1-dimensional compact stratification L. L1 is given by S1 ⊔ S1. The
open cone c◦S1 is homeomorphic to D2, this can be achieved by projection. The open
cone c◦S1 ⊔ S1 is illustrated in Figure 4.4, one can think of two disks D2 that are
glued together at the middle point and afterwards are pulled in opposite directions.
We observe that this is exactly the neighborhood of p.
Note that this is an example of a classical stratification.
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Figure 4.4: The open cone of S1 ⊔ S1.

4.3 Local Homology

We want to localize homology, so we shift from the usual global point of
view to a local viewpoint. This shift will help us in the following chapter
to detect singularities and to quantify local dimensions. Furthermore, we
introduce the star of a vertex to get a notion of neighborhood, in the context
of simplicial complexes.

We adapt the definition of relative homology from Chapter 2 a bit in order
to obtain local homology groups.

Definition 4.7 If we take A = X\{x} in the definition of relative homology, we
get the local homology group Hn(X, X\{x}).

In what follows we want to motivate the use of the link Lk(x) as a tool to
study the local behaviour of a space. For this we need a long exact reduced
sequence, for an introduction see [Hat02][Section 2.1].
If we apply Theorem 2.19 to a topological space X, x ∈ X, with A = X\{x}
and B = St(x) we get:

Hn(X, X\{x}) ∼= Hn(St(x), St(x)\{x}).

We consider the long exact reduced sequence for the pair (St(x), St(x)\{x}):

· · · → H̃n(St(x)) → Hn(St(x), St(x)\{x}) → H̃n−1(St(x)\{x}) → H̃n−1(St(x)) → · · ·

Since the star St(x) is contractible we get ∀n : H̃n(St(x)) = 0, thus we can
update the sequence:

· · · → 0 → Hn(St(x), St(x)\{x}) → H̃n−1(St(x)\{x}) → 0 → · · ·

By exactness of the sequence we have
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∀n : Hn(St(x), St(x)\{x}) ∼= H̃n−1(St(x)\{x}).

Observe that St(x)\x deformation retracts to Lk(x). Combining everything
together we get

Hn(X, X\{x}) ∼= H̃n−1(St(x)\{x}) ∼= H̃n−1(Lk(x)).

We see that Lk(x) already contains all the information about the homology
of X\x.

Proposition 4.8 The dimension of an n-manifold M is characterized by the local
homology group:

Hi(M, M \ {x}) ̸= 0 ⇔ i = n x ∈ M (4.1)

Proof Since an n-manifold is locally homeomorphic to Rn we have that
Hi(M, M\{x}) ∼= Hi(R

n, Rn\{0}). By Theorem 2.19 and a long exact
sequence we get Hi(R

n, Rn\{0}) ∼= H̃i−1(R
n\{0}). Rn\{0} is contractible

and thus H̃i−1(R
n\{0}) ∼= H̃i−1(Sn−i) which is nonzero iff i = n. □
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Chapter 5

TARDIS

In this chapter we discuss the TARDIS (Topological Alogorithm for Ro-
bust DIscovery of Singularities) framework suggested by von Rohrscheidt
and Rieck in Topological Singularity Detection at Multiple Scales [VRR23]. This
algorithm detects singularities in some given data X set by comparing neigh-
borhoods of some point x ∈ X with the neighborhood of a point on a
manifold. The neighborhoods we consider are annuli with changing inner
and outer radius.

5.1 Persistent Local Homology

In the context of stratified spaces, we have seen that there are changes
of dimension within the space. If we consider homology we get global
information about our space. In the context of manifolds we need a more
local tool if we deal with stratified spaces. One fundamental observation that

(a) An annulus around a regular point looks
different from an annulus around a singular
point.

(b) Change of outer radius changes neigh-
borhood of points close to a singularity.

Figure 5.1: An annulus captures different information depending on the point and the radii.
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we will make use of is that an annulus around a point differs depending on
the dimension of this area as well as the regularity: In Figure 5.1a we see
that any small enough annulus (in red) around a singular point has four
connected components, whereas any small enough annulus around a regular
point (in blue) has two connected components.

5.1.1 Persistent Intrinsic Dimension

Definition 5.1 For a metric space (X, d) and x ∈ X, we denote the intrinsic
annulus of x with respect to the radii r, s by As

r(x) := {y ∈ X : r ≤ d(y, x) ≤ s}.

Definition 5.2 To get a tri-filtration by choosing a set of tuples (r, s) of inner and
outer radius. For each such tuple we apply a filtration F on the intrinsic annulus
As

r. We denote this tri-filtration by F(As
r(x), t).

By applying homology to a tri-filtration we get a framework to describe a
space locally. The advantage of considering different annuli is that we can
get a notion of proximity to a singularity. Consider again the singular point
in Figure 5.1b, a point close to this singularity has for a small outer radius
an annulus homeomorphic to two intervals. As we increase the outer radius
we include at some radius R the singular point, this neighborhood is not
anymore homeomorphic to two intervals. This hints that that our point is
not far away from the singularity.

Definition 5.3 We define the i-th persistent local homology (PLH) of some x as

PLHi(x;F) := PHi(F(As
r(x), •)).

For some fixed r and s and a filtration F, such as the Vietoris-Rips or the Čech
filtration.

In other words, the i-th PLH of a point x is the collection of the i-th homology
groups of a filtration on any intrinsic annulus centered at x.

Example 5.4 Consider the intrinsic annulus around x in Figure 5.2a. We choose
as filtration the Čech filtration and apply it to the points on the annulus, one such
step is shown in Figure 5.2b. We track the persistent homology for this filtration and
repeat this process over several annuli with different inner and outer radii to obtain
the tri-filtration Č(A•

•(x), •).

Theorem 5.5 (Stability of PLH) Given a finite metric space X and x ∈ X. Let
As

r(x) and As′
r′(x) be two intrinsic annuli with |r − r′| ≤ ε1 and |s − s′| ≤ ε2.

Furthermore, let Dgmi, Dgm′
i denote the persistence diagrams corresponding to

PHi(F(As
r(x), •)) and PHi(F(As′

r′(x), •)), where F is either the Vietoris-Rips or
the Čech filtration. Then 1

2 dB(Dgmi, Dgm′
i) ≤ max{ε1, ε2}.

28



5.1. Persistent Local Homology

xs

r

(a) Annulus around the point x with inner
radius r and outer radius s.

xs

r

(b) Čech complex on annulus for some t.

Figure 5.2: Example of an annulus around x with Čech filtration.

Proof Set ε = max{ε1, ε2}, by assumption we have that each annulus is
contained in an ε-thickening of the the other annulus:

As
r(x) ⊂ (As′

r′(x))ε and As′
r′(x) ⊂ (As

r(x))ε.

By definition of the Hausdorff distance it follows dH(As
r(x), As′

r′(x)) ≤ ε. Let
δ > 0 be arbitrary. Since each annulus As

r(x) can be covered by a finite union
of balls Bδ(·), As

r(x) is totally bounded. Thus we can use Theorem 3.41 and
conclude:

1
2 db(Dgmi, Dgm′

i) ≤ dH(As
r(x), As′

r′(x)) ≤ ε. □

Definition 5.6 For a point cloud X ⊂ RN , we define the persistent intrinsic
dimension (PID) of x ∈ X at scale ε as

ix(ε) := max{i ∈ N | ∃r < s < ε s.t. PHi−1(F(As
r(x), •)) is not empty}.

Intuitively PID gives us the highest-dimensional feature that persists in this
annuli up to a certain scale ε.

Example 5.7 If we consider a line embedded in R3 and some fixed ε, every annulus
around a point on this line will have two connected components. Therefore we have a
non trivial 0-th homology group but higher homology groups are not present. We
thus have that the PID of this line is 1.

We would like to generalize this example: For an n-manifold we would
expect that the PID of any point is equal to n.
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sr

Figure 5.3: The Čech-complex on the data points of the 2-dimensional annulus is homotopic to
S1 for enough data points.

Conjecture 1 Let M ⊂ RN be an n-dimensional, compact, smooth manifold and
X = {x1, · · · , xS} a collection of random uniform samples from M, that is a sample
where every point is equally likely to be drawn. For S large enough and using the
Čech filtration we have that there exists ε1, ε2 > 0 such that for all x ∈ X and for
all ε ∈ (ε1, ε2) we have ix(ε) = n. Moreover ε1 can be chosen arbitrary small by
increasing S (the number of samples).

Proof We only give the idea of the proof, since a formal proof involves a lot
of technical statements.
iX(ε) ≤ n: Let x ∈ X be any point, since M is a manifold there is a neighbor-
hood of x, Ux ∼= Rn. Since M is smooth we can assume (by possibly shrinking
it) that Ux is arbitrarily close to being flat. Therefore there exists some ε2 > 0
such that for all r, s < ε2 we have that Ar,s(x) ⊂ Ux, so ∀n ≥ n0, ∀t we have
Φi(Č(Ar,s(x), t)) = 0. Since this is true ∀t it follows Φi(Č(Ar,s(x), •)) = 0, by
definition iX(ε) ≤ n.
ix(ε) ≥ n: For enough samples, or equivalently S large enough ∃t0 such that
Č(As

r(x), t0) ≃ Sn−1. An example of this is drawn in Figure 5.3 for n = 2. We
conclude that Hn−1(Č(As

r(x), t0)) is not trivial and thus PHn−1(Č(As
r(x), •))

is not empty, again by definition, ix(ε) ≥ n.
By increasing the sample size we can decrease ε2 arbitrarily. □

For a compact stratified space, we have that Xi \ Xi−1 is a i-dimensional
manifold and thus by performing the formalism of Conjecture 1 to every
stratum, we expect that PID captures the right dimension of stratified spaces
as well.

5.1.2 Euclidicity

Now that we are equipped with a local dimension measure, we want to
measure how much some neighborhood deviates from being ’Euclidean’.
As we already observed in Chapter 3, we know that a neighborhood of a
singular point looks different from a neighborhood of a regular point. To find
singularities in a data set, we take some local dimension estimation such as
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PID and compare the neighborhoods of the data points to the neighborhoods
of points sampled from a Euclidean model space.

Definition 5.8 We define the Euclidean annulus as

EAs
r(x) := random uniformly distributed samples of {y ∈ Rn : r ≤ d(x, y) ≤ s}.

The cardinality of the sample coincides with the number of points of the annulus we
want to consider.

Analogously to Definition 5.3 we can define the persistent local homology of
this Euclidean annulus:

Definition 5.9 We define the i-th persistent local homology of an Euclidean
model space of some x as

PLHE
i (x;F) := PHi(F(EA

•
•(x), •)).

From now on we focus on F = VR and use the notation PLHE
i (x) := PLHE

i (x; VR).

We observe that PLHE
i (x) depends on the random sample. Thus we rather

consider PLHE
i (x) to be a sample of random variables PLHE

i (x). Now that
we have a reference annulus we can measure how much the annuli sampled
from data sets resemble this Euclidean annulus.

Definition 5.10 Let D(·, ·) be a distance measure for a persistence modules, such
as the interleaving distance. The Euclidicity of x, denoted by E(x) is defined by

E(x) := E[D(PLHn−1(x), PLHE
i (x))].

Intuitively the Euclidicity is the expected distance of the persistent homology
on some annuli around the point x and annuli which are sampled from a
manifold. If x has a neighborhood similar to a Euclidean space we have a
small distance between the two persistent modules. On the other hand if x
is a singularity, one expects that any neighborhood is quite different from
an Euclidean neighborhood, and thus the Euclidicity of such an X would be
high.
To actually calculate E one needs to make several decisions such as the range
of the radii of the annuli or a distance measure. We will discuss one possible
implementation.
The idea is to choose a grid Γ of possible radii r and s, and compute for
each (r, s) ∈ Γ the bottleneck distance between the PLH of the Vietoris-Rips
complex on the sampled points and the PLH of the Euclidean reference space.
Afterwards the Euclidicity is set as the average of these bottleneck distances:

E(x) ≈ 1
|Γ| ∑

(r,s)∈Γ
dB(PHi(F(As

r(x), •)), PHi(F(EA
s
r(x), •)) (5.1)
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This grid needs an upper and a lower bound for the inner and the
outer radius as well as a step size. There are two methods: One idea is
to hard-code values for the minimal and maximal outer and inner radius
(rmin, rmax, smin, smax), and choose a step size. The paper discusses a data
driven approach: Given a point x ∈ X from the data set, one sets the maxi-
mal outer radius smax to the distance of the k-nearest neighbor, the minimal
inner radius rmin to the smallest distance to any neighbor; and the maximum
inner radius rmax and the minimum outer radius smin to the ⌊ k

3⌋th nearest
neighbor. The choice of k depends on the intrinsic dimension of the space as
well as the density of the points.

Algorithm 1 Initializing inner and outer radius with the k-nearest neighbor
method
Require: Data set X = {x1, · · · , xn}, a point x ∈ X a distance metric d, list L

of size n, k < n
1: for xi ∈ X do
2: L[i] = d(x, xi)
3: end for
4: sort L
5: smax = L[k]
6: rmin = L[1]
7: smin = L[⌊ k

3⌋]
8: rmax = L[⌊ k

3⌋]

5.2 Experiments

In this section we demonstrate the two different approaches and show the
influence of different parameter choices. For the experiments we use the code
provided by von Rohrscheid and Rieck on Github (https://github.com/aidos-
lab/TARDIS/tree/main). The script used to create the plots can be found in
the Appendix 6.

5.2.1 Parameter

The code allows for several choices of parameters, the following list con-
tains the ones we will focus on, in the different experiments:

• -k : Number of neighbors to compute the k nearest neighbor.

• -q : Number of query points; for this points the Euclidicity is calculated.

• - -seed : Seed for random sampling, for all experiments this is set to 12,
for reproducibility purposes.
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• -r : Minimal inner radius.

• -R : Maximal inner radius.

• -s : Minimal outer radius.

• -S : Maximal outer radius.

• - -num-steps : Number of steps in the grid to go from the inner to the
outer radius.

• -d : This value should be the known or estimated intrinsic dimension.
It is an upper bound for the PID calculation.

We discuss the effect of the k nearest neighbor method compared to hard-
coded inner and outer radii, as well as different choices of k, step sizes and
estimated dimension.

5.2.2 Step Size

We start by fixing some choices for the radii and comparing different
choices of step sizes. For the radii of the pinched torus we choose the values
that are also used in the example on Github (https://github.com/aidos-
lab/TARDIS/tree/main): r = 0.05, R = 0.45, s = 0.2, S = 0.6. For the radii of
the wedged sphere we choose some smaller values: r = 0.05, R = 0.25, s = 0.2,
S = 0.4.
We plotted the Euclidicity score of the points for the step size
num-steps ∈ {5, 10, 20}. It turns out that visually the pinched point is
easy to spot for all step sizes, see Figure 5.4 and Figure 5.5.

(a) Number of steps = 5 (b) Number of steps = 10 (c) Number of steps = 20

Figure 5.4: Effect of different step choices on Euclidicity score of the pinched torus.

This robustness could be used to make the computation faster by choosing
a smaller step size.

5.2.3 k Nearest Neighbor vs Fixed Choice

Let d be a metric. The k nearest neighbor method calculates the distance
of some point x ∈ X to all other points, and orders them in increasing order
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(a) Number of steps = 5 (b) Number of steps = 10 (c) Number of steps = 20

Figure 5.5: Effect of different step choices on Euclidicity score of the wedged spheres.

{x1, · · · , xm}. xk is the k nearest neighbor of x. We use d(x, xk) to initialize
smax, we set smin = rmax to d(⌊ k

3⌋, x) and rmin to d(x, x1).
For the pinched torus the k nearest neighbor method behaves unexpectedly;
the singular regions have a lower Euclidicity score than the regular regions.
This is contrary to the values we get for fixed values (compare Figure 5.6b to
Figure 5.4b). We can still detect the singular region but not by looking for
high but for small values. The reason for this behaviour is not yet clear.
We always used a step size equal to 10 for the pinched torus and equal to 5
for the wedged sphere, this is due to the observation in the previous section.
In Figure 5.6a, 5.6b and 5.6c the torus is plotted for k ∈ {5, 20, 50}.
For the wedged sphere we tried k ∈ {5, 50, 100}. For the wedged sphere (see

(a) k = 5 (b) k = 20 (c) k = 50

Figure 5.6: K nearest neighbor for the pinched torus.

(a) k = 5 (b) k = 50 (c) k = 100

Figure 5.7: K nearest neighbor for the wedged sphere.
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Figure 5.7) we get the expected result: The points around the gluing point
have a higher Euclidicity score than points further away. We see for both
objects that a higher value of k yields more contrast.

5.2.4 Dimension Estimate

If the estimated dimension d is wrong this implementation of the Euclidic-
ity score is not always robust. In the following experiments we fixed the
following parameters: k = 100, num-steps = 10, q = 1500.
We let the estimated dimension d vary from 2 − 4. As one can observe in
Figure 5.8, the Euclidicity score for d = 3 and d = 4 becomes inverted. If
the estimated dimension is off, the Euclidicity score is hard to interpret. A
possible explanation for the example of the wedged sphere is that the link of
the gluing point is given by S1 ⊔ S1 which is possibly closer to a 2D-sphere
(the reference annulus) than the link of a regular point, which is just a circle.

(a) d = 2 (b) d = 3 (c) d = 4

Figure 5.8: Effect of different estimated intrinsic dimensions.
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Chapter 6

Appendix

Listing 6.1: Script to plot the Euclidicity score

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# Read the data
# change this to the appropriate path if needed
# Pinched Torus
data = pd.read_csv(r’..\ output\Pinched_torus.txt’,

sep=",",
skiprows=1,
header=None ,
encoding=’utf -16’)

# Wedged Spheres
#data = pd.read_csv(r ’..\ output\Wedged_spheres_2D.txt ’,

sep=",",
skiprows=1,
header=None ,
encoding=’utf -16’)

data.columns = [’x0’, ’x1’, ’x2’, ’Euclicity ’, ’PID’]

data = data.iloc[:, :4]

# Display the first few rows of the dataframe
data.head()
print(data.head ())

fig = plt.figure ()
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ax = fig.add_subplot(projection=’3d’)

#use this for Euclicity
sc = ax.scatter(data[’x0’],

data[’x1’],
data[’x2’],
c=data[’Euclicity ’],
cmap=’magma’)

plt.colorbar(sc, ax=ax, label=’Euclicity ’)

ax.grid(False)

plt.show()

Listing 6.2: Script to plot persistent intrinsic dimension

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# Read the data
data = pd.read_csv(r’..\ output\Pinched_torus.txt’,

sep=",",
skiprows=1,
header=None ,
encoding=’utf -16’)

#data = pd.read_csv(r ’..\ output\Wedged_spheres_2D.txt ’,
sep=",",
skiprows=1,
header=None ,
encoding=’utf -16’)

data.columns = [’x0’, ’x1’, ’x2’, ’Euclicity ’, ’PID’]

data = data.iloc[:, [0, 1, 2, 4]]
# Display the first few rows
data.head()
print(data.head ())

fig = plt.figure ()
ax = fig.add_subplot(projection=’3d’)

#use this for PID
sc = ax.scatter(data[’x1’],

data[’x0’],
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data[’x2’],
c=data[’PID’],
cmap=’cividis ’)

plt.colorbar(sc, ax=ax, label=’PID’)

ax.grid(False)

plt.show()
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