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when n — oo. The smoothing principle is motivated by an analysis of the requirements
in the proof of the Cramér-Rao bound. The principle can be applied to every M-estimator.
A simulation study is carried out where smoothed Huber, ML-, and Bisquare M-estimators
are compared with their non-smoothed counterparts and with Pitman estimators on data

I;g;‘; Or:i:timator generated from several distributions with and without estimated scale. This leads to
ML-estimator encouraging results for the smoothed estimators, and particularly the smoothed Huber
Median estimator, as they improve upon the initial M-estimators particularly in the tail areas of the
MAD distributions of the estimators. The results are backed up by small sample asymptotics.

Breakdown point © 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The parametric estimation of the location of a one-dimensional symmetric distribution is among the easiest and most
comprehensively worked on problems in statistics. It is a benchmark to illustrate and investigate new ideas in estimation
which may generalize to more complicated situations in order to gain a better understanding about estimation problems
in general. Here we focus on small to moderate sample sizes. Small samples are relevant in many applications (Lischer,
1996; Rousseeuw and Verboven, 2002), particularly if, in the context of modelling of complex technical experiments, a few
measurements of the same situation are to be summarized to make fitting of a more sophisticated model easier. Other
examples include medical studies with budget restrictions or limited numbers of patients.

The present paper is about an idea introduced by Hampel (1996), which he called “Huber without corners” (in Hampel
(1996) only the definition is given). The idea of that paper was to smooth the corners of the v -function defining the well-
known Huber M-estimator (Huber, 1964). The smoothing depends on the distribution of the initial estimator for n observa-
tions, so that the ¥ -function is much smoother than that of the initial estimator for small n, but asymptotically equivalent.
In Hampel (1996) the initial estimator is the Huber M-estimator, but the principle can be applied to any M-estimator. It can
even be applied to ¥ -functions that are already smooth, and it can still lead to improvements.

The aim of this paper is to introduce and motivate the smoothing principle, and to investigate the finite sample properties
of some smoothed M-estimators (including the smoothed Huber estimator) in comparison to their initial M-estimators,
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but also to ML-estimators and Pitman estimators (Pitman, 1939), which have the minimal variance among all equivariant
estimators.

We carried out an extensive simulation study in which smoothed M-estimators (including the smoothed Huber
M-estimator and a smoothed median) were compared to the ML-estimators and Pitman estimators for small samples from
the normal, the Huber least favourable, the double exponential and the Cauchy distribution with known scale. Other simu-
lated setups concern a more realistic situation with unknown scale, in which the MAD is used as a preliminary estimator of
scale. ML-, smoothed ML-estimators and Pitman estimators for the distributions given above are compared with a smoothed
Huber M-estimator and a smoothed Bisquare M-estimator (e.g., Maronna et al., 2006) and their initial (non-smoothed)
M-estimators. The Bisquare was included as a popular example of an M-estimator with redescending i/-function. It was
of interest to see how the Huber and Bisquare M-estimator and their smoothed versions perform without assuming knowl-
edge of the underlying distribution. We did not only compare the MSEs, but we also examined the shapes of the distribution
of squared errors (s.e.). This leads to some surprising insights that cannot be explained by asymptotic theory.

Smoothed M-estimators are defined in Section 2. A motivation why the smoothing principle may lead to an improvement
for small samples is given in Section 3. Finite sample breakdown points of the smoothed M-estimators compared with the
original and other M-estimators are briefly discussed in Section 4. The simulation study is described in Section 6 and the
results are given and discussed in Section 7. The smoothing principle leads to good results. Particularly the smoothed Huber
estimator exhibits excellent small sample properties in a reasonable range of situations. The results are supplemented
and confirmed in Section 8 by computations of tail probabilities of the estimator’s distributions based on small sample
asymptotics (Hampel, 1973; Field and Ronchetti, 1990) as explained in Section 5. A conclusion is given in Section 9.

2. Smoothing the Huber and other M-estimators

Consider an i.i.d. sample of n observations from a distribution P, , with unimodal symmetric density

1 —
fua @ = (x “)

o

To simplify the setup even more, we first assume o to be known and we set o = 1.
An M-estimator for the location parameter u is defined as a solution t of

u Xi—t R u Xi—t _
Zp( > >_mtm or ;w( > >_0, (1)

i=1

where = p’. The maximum likelihood (ML)-estimator is defined by py = —logf or ¥y = —f’/f. For a given positive
constant k, the Huber estimator is defined by the following function ¥ in (1):

k: x>k
Yr(x) = {x: —k<x<k
—k: x< —k.

It is the ML-estimator for the location parameter of Huber's least favourable distribution with density
(1 —e)pk)exp(—kx —k)): x>k

fr) =1 —e)pX) : x| <k
(1 —e)p(k) exp(k(x + k)) : x < —k,

where € and k are linked by @ —20(—k) = ﬁ and ¢ and @ denote the pdf and cdf of the standard normal distribution.
Huber (1964) showed that the above distribution has smallest Fisher information among the symmetric distributions of the
form (1 — €)@ (x) + €h(x), h being a symmetrical density, and that the Huber estimator has minimax asymptotic variance
for this class of distributions. In our simulations we used k = 0.862, which corresponds to € = 0.2.

The smoothed Huber estimator introduced by Hampel (1996) is a smoothed version of the Huber estimator, where the
degree of smoothness depends on the sample size so that the new estimator keeps the asymptotic optimality properties of
the Huber estimator whereas performing better on small sample sizes. We formulate the principle for a general v-function
of an M-estimator. Its smoothed version is defined by the score function

Y (x) = / ¥ (X 4 u)dQ, (), 2)

where Q, may be chosen as the distribution of the initial M-estimator for n i.i.d. observations from an assumed underlying
distribution. The natural choice for an ML-estimator would be the corresponding distribution under which it is asymptoti-
cally optimal. The exact distribution of the ML-estimator under this distribution is usually difficult to obtain. Therefore, as a
default choice, we approximate it by the normal distribution with expectation 0 and variance V /n, where V is the asymptotic
variance. This principle can generally be used for M-estimators, for which it is needed to specify a distribution under which
the estimator’s asymptotic variance is computed. Note that, strictly speaking, the term “smoothed” is often not justified
because the principle can also be applied to y-functions that are already smooth.
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The v -function of the smoothed Huber estimator defined by v = v, and Q, obtained from the asymptotic normality of
the Huber estimator under Huber’s least favourable distribution can be easily written in closed form as

~ x—k x+k
Yr(x) = kd —k{1—
O On
x+k x—k x+k x—k
(o (50) =2 (50)) w6 (57) =+ (57))
On On On On

where o, = 4/V/n, which equals /2.046/n for ¢ = 0.2. Since Q, tends to a Dirac measure at 0 for n — o0, the smoothed
Huber is asymptotically equivalent to the Huber estimator.

3. Motivation of the smoothing principle

We give a motivation that leaves some theoretical gaps and is therefore heuristic. Most of this section focuses on ML-
estimators.

Let T, be a consistent and unbiased estimator for u, X = (Xi,...,X,)’ be an R"-valued random variable, x =
X1, ...,x) €R", fL(x) = ]_[?:]fﬂil(x,»), Yr(x) = —% (the score function of the ML-estimator under f), and

a n
Vrn(a 30 = =70 logfu(x) = D Wi — ).
i=1

Schwarz’s inequality yields

Cov,, (Ty, lﬁf,n(,u» X))2
Vary, (Y n(u, X))
Assuming that all necessary derivatives exist and behave regularly and under the conditions of the Cramér-Rao
inequality, the covariance is 1 independently of T,. Therefore, Var, (T,) can be minimized if T, can be chosen so that
Corr,, (T, Yy,n (1, X)) is maximized.
For an M-estimator T, with symmetric score function y» we obtain by a standard Taylor expansion about u

Var, (T,) >

i=1

IS )
O = S 3)

V(X —§&)

-

1
n

i=1

where & lies between T, and p. In particular, v = vy defines the ML-estimator. When n — oo, %ZL y[/f(x,- - &)
converges to E[wf/ (X1)] > 0, where by equivariance the expectation can be taken under 4 = 0. Therefore, the variations
in ‘% ZL] 1//f/ (x; — $)| become negligible compared to the variations in !% Z?:] Y (x; — )|, which converges to 0. Thus,
T, is asymptotically a linear function in v ,(u, X) and the ML-estimator reaches the Cramér-Rao bound. For general (non-
ML) M-estimators it follows in the same way that T, is asymptotically a linear function in Z?:l ¥ (x; — ) under regularity
conditions ensuring consistency, though this only yields minimum asymptotic variance among those estimators for which

n
Cov,, (Tn, Z v(x; — pL)) = const.
i=1

This argument requires T, — 1 ~ 0 and therefore works only asymptotically. For fixed (small) n, the expansion (3) is not
very useful when T, is at some distance from g. In the spirit of small sample asymptotics (Hampel, 1973; Field and Ronchetti,
1990) we may recenter the expansion at u =~ T, — u not close to 0 and obtain:

n

ISy —u—p
i=1

Tn:u+/’b_

; (4)

-

LYY X — )
i=1

where now v lies between T, and u + p, so T, may be far away from u. If we choose v (x) = Yy (x + u) in this situation
and consider again the denominator to be more or less constant compared to the absolute value of the numerator (which
is reasonable taking into account that T, & u +  is a location estimator for the x;), we have again that T, is approximately
linear in vy (., X). In this way, vy (x + u) can be interpreted as an approximatively optimal ¥ -function for an M-estimator
T, given T, — w is in a neighborhood of u.

Knowing u would imply knowing T,, — u, which is impossible. Therefore, the corresponding score function ¥ (x + u)
is not available. However, if the distribution of T,, — u were available, we could average with respect to this distribution
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by taking the expectation and we could choose &(x) = Eyy(x 4+ U). This leads to the smoothing principle (2) for ML-
estimators (for general M-estimators, the argument requires Cov,, (T;, Z?zl ¥ (x; — 1)) = const, see above). The argument
can be interpreted as leading to a fixed point iteration, because Q,(u) should ideally be the distribution of the estimator T,
corresponding to its score function 1. The resulting T, will be asymptotically equivalent to the ML-estimator. Hence, if we
derive Q, from an asymptotic normal approximation, there is no difference between Q, for the ML-estimator and for the
smoothed ML-estimator.

Note, however, that this argument is incomplete because it is not entirely clear why the good correlation properties
of some T; defined by ¥y (x 4+ u) with v ,(u, X) for T, — p in a neighborhood of u imply a large overall correlation
between T,, defined by Evr (x 4+ U) and ¢ (e, X). This claim is not proved, but it seems to be confirmed by our simulation
results.

Apart from the motivation of the precise form of 1, it can be seen as an aim in itself to smooth the v-function of a
general “not smooth enough” M-estimator depending on n keeping its asymptotic properties. For example, as opposed to
the median, the smoothed median has a finite local-shift sensitivity (Hampel et al., 1986, p. 88), and also this will improve
the change-of-variance sensitivity of the estimator (Hampel et al., 1986, p. 130).

4. Finite sample breakdown points

The finite sample breakdown point of an estimator measures the minimum proportion of points that have to be added
(or changed; there are different definitions of the finite sample breakdown point, see Donoho and Huber (1983)) to a dataset
so that an estimator can be driven infinitely far away from its value for the original dataset.

There are well-known results for M-estimators of location under some conditions on . For bounded, monotone and
symmetric ¥ -functions, the finite sample breakdown point is %L%lj (Huber, 1981). For redescending M-estimators, the
situation is more complicated and depends on the dataset. If a preliminary scale estimator such as the MAD is introduced,
the breakdown point cannot be larger than that of the scale estimator (note that in case of implosion of the scale estimator
to zero, plugging it in for o in (1) does not yield a well defined estimator), but for bounded, monotone and symmetric
yr-functions, and MAD scale it is still %I_”Z;]J. For redescending M-estimators it can be the same but this depends on the
dataset, see Chen and Tyler (2004).

The smoothing principle only affects the ¥ -function, and only in such a way that the conditions for the results cited
above still hold for the smoothed estimators if they hold for the initial ones. Therefore, the smoothing principle does not
introduce additional problems with the finite sample breakdown point.

5. Accurate small sample approximations of tail areas

Small sample asymptotic techniques provide very accurate approximations of densities and tail probabilities down to
very small sample sizes. In Section 8 we will use these approximations to supplement the Monte Carlo simulations to
evaluate the performance of several estimators including the smoothed Huber M-estimator under several distributions F of
the observations. A measure of quality will be the tail probability F,(t) = Pr[T,, > t] of the estimators for different values
of t and different sample sizes n.

Let f, (t) be the density of an M-estimator of location T, defined by (1). By expanding the logarithmic derivative f; (t) /f, (t)
locally around each point t separately, Field and Hampel (1982) derived a very accurate approximation for this quantity
and, by integration, for the density f,(t). To obtain tail probabilities F,(t) = ftoo fa(s)ds for the estimator T, we would
need a numerical integration. However, it turns out that this can be approximated analytically to get the following tail area
approximation:

Fn(t) = Pr[T; > t]

o C(t)~ 11
~1-—@ (N/Zn logC(t)) + NeT <a(t)a(t) m) , (5)

where t > p and
-1
c@t) = ( / ea<f>¢<“>dp(x)) ,
a(t) solves / Yx —t) e*OVEDdE(x) = 0,

o?(t) = C(t)flﬁz(x — 1) e*OV=DgF(x);

see Lugannani and Rice (1980) in the case of the arithmetic mean (v (x) = x), and Daniels (1983) and Field and Ronchetti
(1990) for M-estimators.
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6. Simulation design

We simulated data with n = 3, 4,5, 8, 20 from four distributions: the normal distribution, Huber’s least favourable
distribution with k = 0.862 (“Huber distribution” in the following), the double exponential distribution (in some literature
referred to as Laplace distribution), for which the median is the ML-estimator, and the Cauchy distribution. We run 100,000
simulations for each setup.

6.1. Simulations with scale assumed to be known

The simulations with the scale assumed to be known are mainly of theoretical interest in order to show how the smoothed
estimators compare to their initial non-smoothed M-estimators, the mean, the median and the optimal estimators for the
simulated distributions.

The following estimators were computed: mean, median, ML-estimator, smoothed ML-estimator (with Q, chosen as the
asymptotic normal approximation, see Section 2) and the Pitman estimator. For the Huber, Cauchy and double exponential
distribution, the ML, Pitman and smoothed ML-estimator were computed with respect to the correct underlying distribution
(including the variance of Q). The Huber and smoothed Huber M-estimator (with the same underlying variance of Q,) were
computed for all setups. Under the normal distribution, we also included the ML-estimators and smoothed ML-estimators
with respect to the three other distributions.

For every setup and every estimator, we consider the following statistics of the distribution of the squared errors: mean
(which is almost equal to the variance of all estimators because of the unbiasedness and the large number of simulation runs),
median, first and third quartile, 0.9-, 0.95- and 0.99-quantiles. We computed other measures than just the MSE because it is
doubtful that the latter is the most reasonable quantity to compare estimators. Indeed, especially in situations where more
than half of the data may be outlying with respect to the correct parameter (Cauchy, small n), it is more relevant to know that
an estimator has very often a small or moderate squared error (measured by the 0.9- or 0.99-quantile, say) than how bad it
is exactly in the situations where it is determined by 50% or more outliers (which may dominate the MSE of the estimator).
It also turns out that the estimators differ considerably with respect to the shape of their squared error distribution, so
different estimators are optimal with respect to different criteria.

We estimated the standard deviation for all these measures. The results of two estimators were judged as “clearly”
different if the intervals obtained by adding or subtracting twice the estimated standard deviation did not intersect. Note,
however, that this rule does not lead to a proper significance test, because in the study all estimators were computed for the
same samples, and therefore the results for the various estimators were dependent.

We also carried out paired t- and Wilcoxon tests in some situations between results of pairs of estimators (results
not shown; we were particularly interested in comparing estimators with rather similar results) and found that 100,000
simulations are enough to make almost all differences between estimators highly significant, even between those that look
almost equal.

6.2. Simulations with unknown scale

Most M-estimators for location (though not the mean and the median) depend on the scale o (see Section 2). In reality,
this is not known. One method to deal with this is to estimate a highly robust scale estimator first (the median absolute
deviation from the median MAD is the most popular choice) and plug the estimated value of ¢ into (1).

We carried out four simulations in which, for the Pitman estimator and those M-estimators that depend on the scale, this
principle was applied with the MAD multiplied by 1.4826 scaled for consistency for ¢ at the normal distribution.

We restricted ourselves to a single value of n for each distribution, namely n = 4 for the normal distribution, n = 5 for
the Huber distribution, n = 8 for the Cauchy distribution and n = 20 for the double exponential distribution.

Apart from the mean and median, the Pitman, ML and smoothed ML-estimator for the simulated distribution, we included
the Huber and smoothed Huber estimator with tuning constant and variance of Q, derived from the Huber distribution with
k = 0.862 and the Bisquare M-estimator (Maronna et al., 2006) with redescending -function, tuned to 95% efficiency under
the normal distribution, and a “smoothed Bisquare”, i.e., the smoothing principle applied to the Bisquare M-estimator (with
the variance of Q, derived from its asymptotics under the normal distribution) for all distributions. Note that the same tuning
for the latter four estimators was applied for all distributions, so that these are here used in a universal fashion that does
not require the knowledge of the distribution.

6.3. Computational aspects

The necessary numerical integrations were carried out by means of the function integrate of the statistics freeware
R with default settings. Note that the Pitman estimators based on numerical integration are compared with exact Pitman
estimators under the Cauchy distribution in Cohen Freue (2007), and are very similar.

The standard deviation for the g-quantiles of the squared error distribution was estimated by means of the formula
q * (1 — q)/(100,000 * fl(vq)), where v, denotes the g-quantile and h denotes the density of the distribution of the
g-quantile. The latter was estimated by a kernel density estimator computed with the R-function density using the default
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Fig. 1. Quantiles and MSE for n = 20 (left) and efficiencies of the MSEs (right) for the normal distribution with known scale.

settings. M-estimators, except for the mean and the median, were iterated by the algorithm of the function huber of the
MASS package of R (Newton algorithm). The median was used as starting value for all estimators. This led to good results
except in some cases for the Cauchy estimators. Thus, for the ML and smoothed ML-estimator for the Cauchy distribution,
we started first from the median, then from the two neighboring order statistics, then from two further neighboring order
statistics and so on, until an iteration result was found with a larger value of the log-likelihood function than that of the
median. In each step, we started from two order statistics and the better result was chosen to guarantee the symmetry of
the distribution of the estimator.

7. Simulation results
7.1. Presentation of the results

The simulation results are presented graphically. There are two types of plots, namely quantile plots and efficiency plots.
A quantile plot shows all the quantiles and the mean of the s.e. distributions of all estimators for a single setup defined by
n and the underlying distribution. An efficiency plot shows the relative efficiencies compared to the best estimator with
respect to a single statistic (three statistics are used: MSE, median s.e. and 0.99-quantile of the s.e. distribution) for a single
underlying distribution for all n. The relative efficiencies were computed for all statistics as it is usually done for the MSE.
The second type of plot shows whether the estimators differ “clearly” as defined in Section 6: a full circle indicates that the
interval of the statistic & twice the estimated standard deviation of the simulated value is disjunct from the corresponding
intervals of all other estimators (same n). A triangle with the peak pointing up indicates that the interval intersects with the
interval of an estimator with a higher efficiency value. A triangle with the peak pointing down indicates that the interval
intersects with the interval of an estimator with a lower efficiency value. A diamond indicates that both types of intersection
occur. Efficiency plots include only the estimators that were simulated for all n.

In the quantile plots, “M” indicates the ML-estimator corresponding to the simulated distribution, unless indicated
explicitly (e.g., “MHub” is the ML-estimator for Huber’s distribution). “S” stands for “smoothed ML”, “P” for the Pitman
estimator (e.g., “PCau” for the Cauchy and “PDE” for the double exponential distribution; note, however, that median and
smoothed median are denoted by “Med” and “SMed”).

For the Cauchy distribution, the mean is not included in any plot because it is so much worse than the other estimators
that its inclusion would have resulted in an unfavourable plot range. The number of observations n and the squared errors
are plotted on a logarithmic scale.

To save some space, only one out of the five quantile plots is shown for every distribution for the simulations with known
scale. They were chosen so that all typical features can be seen (which often differ between even and odd n, as can be seen
from the efficiency plot), namely n = 20 for the normal distribution, n = 8 for Huber’s distribution, n = 3 for the double
exponential and n = 5 for the Cauchy distribution.

7.2. Results with scale assumed to be known

e For the normal distribution (Figs. 1 and 2), the ML-estimators corresponding to the three non-normal distributions are
with respect to all statistics and for all n clearly worse than their smoothed counterparts. The smoothed Huber estimator
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is almost as good as the mean, reaching an efficiency of about 99% for all statistics withn = 3 and n = 5, where the
next best estimators are about 90% efficient. As in many other setups, there seems to be a strong effect of the sample size
being odd or even, and for n = 8, the efficiency of the smoothed Huber (all statistics) is only about 93%. However, it is
still the second best estimator.

For the three non-normal distributions, the shape of the s.e. distribution for the ML-estimator differs from that of the
Pitman estimator and also from that of the smoothed ML-estimator (which can be seen as a compromise of the former
two; Figs. 3-8). Whereas the Pitman estimator is optimal with respect to the MSE, the ML-estimator is better with respect
to the lower quantiles (0.25 and median, though often not clearly). This corresponds nicely to the discussion in Section 3:
the ML-estimator correlates very well with vy ,(u, X) and this is what a good estimator should do if it is close to u.
In the tails of the distribution, it becomes worse, and this is the area where the Pitman estimator performs better. The
smoothed ML-estimator is defined as a direct compromise between “good linearity” in ¥y ,(u, X) in the center and the
tail areas, and this yields worse lower quantiles and better higher quantiles compared to the ML-estimator, as desired.
There are even some quantiles, for which the smoothed ML-estimator is better than both the Pitman and the ML-
estimator. This happens for the Huber distribution with the 0.75-quantile (n < 8, left panel of Fig. 3), the 0.9-quantile
(n < 8) and the 0.95-quantile (n = 4), for the double exponential distribution with the 0.75-quantile (all n, left panel of
Fig.5)and the 0.9-quantile (n = 4, 8), and for the Cauchy distribution with the 0.75-quantile (n < 8)and the 0.9-quantile
(all n, left panel of Fig. 7), though differences are not very clear in most cases.
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distribution with known scale.
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Fig. 5. Quantiles and MSE for n = 3 (left) and efficiencies of the MSEs (right) for the double exponential distribution with known scale.

The smoothed ML-estimator is always better than the ML-estimator with respect to the MSE. The differences are some-
times significant, and the efficiency gain is up to 10% (double exponential distribution, n = 3, 5, right side of Fig. 5). For
the Huber distribution, the smoothed ML-estimator is almost indistinguishable from the Pitman estimator (right panel
of Fig. 3), whereas the ML-estimator is up to 4% worse. For the Cauchy distribution, the difference between smoothed ML
and ML is again up to 4% (n = 8, right panel of Fig. 7), but usually small.

The results with respect to the 0.99-quantile are similar, except that the differences between the estimators are a bit
larger and the smoothed ML-estimator is almost 10% better than the ML for the Cauchy distribution for n 8 (right
panel of Fig. 8).

The comparison between the Huber and the smoothed Huber estimator for the double exponential and Cauchy distribu-
tion is more ambiguous. The smoothed Huber estimator performs worse with respect to the median s.e. (left panels of
Figs. 6, 8). With respect to the MSE and the 0.99-quantile, both estimators perform very similarly for the Cauchy distri-
bution (right panels of Figs. 7, 8). For the double exponential distribution, the behaviour depends strongly on n, with the
Huber estimator being optimal among all estimators with respect to the 0.99-quantile and n = 20, and better than the
smoothed Huber estimator with respect to the MSE for n = 4, 8, 20, whereas the smoothed Huber estimator is superior
with respect to the 0.99-quantile for most n, where it even dominates the median, smoothed median and the Pitman
estimator (right panels of Figs. 5, 6).
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Fig. 7. Quantiles and MSE for n = 5 (left) and efficiencies of the MSEs (right) for the Cauchy distribution with known scale.

For the Cauchy distribution, n = 3, the Pitman estimator has by far the largest MSE (apart from the mean; right panel
of Fig. 7). However, the result can be explained by a few simulated data configurations with two very large outliers. This
behaviour highlights that comparing estimators by the MSE suffers in principle from the same robustness problems that
affect the mean as an estimator of location. However, measuring the quality of estimators is somewhat different from
the estimation problem itself, because an adequate quality measure should not ignore or downweight the tails of the s.e.
distribution in the same way. A good estimator should be reliable for 90% or more datasets, and therefore it is reasonable
for a quality measure to have a breakdown point smaller than 10% (but not 0). In fact, the MSE results for the Cauchy
distribution motivated us to include the quantiles of the s.e. distribution in the simulations, and at least for small n, the
0.90-, 0.95- and 0.99-quantiles seem to be much more reasonable as quality measures than the MSE.

For similar reasons, the mean outperforms the median for the double exponential and Huber distribution, n = 3, with
respect to the 0.99-quantile and, for the Huber distribution, with respect to the MSE (right panels of Figs. 3-5). If two of
three observations are far away in the same direction from the true location, the mean weights the single good observa-
tion by % which is better than choosing one of the outliers as the median does.

The effect of the sample size parity (even or odd) is surprisingly large and differs between the setups. In most situations,
the median, ML and smoothed ML-estimators are better for even n (Figs. 1-6). For the Cauchy distribution, the opposite
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seems to be true (Figs. 7, 8), and for the normal distribution (Figs. 1, 2), some smoothed ML-estimators are worse for even
n, where especially the median is relatively good.

7.3. Results with scale assumed to be unknown

The simulations with estimation of o by the MAD (Figs. 9, 10) confirm the good properties of the smoothing principle. For
the normal distribution, the smoothed Huber estimator clearly remains the second best estimator (about 95% efficient with
respect to the MSE, compared to, e.g., 84% of the Huber estimator). For the Cauchy and double exponential distribution, the
smoothed ML-estimators are better than the Pitman estimator even for the MSE and for all quantiles. The Pitman estimator
seems to be more sensitive against a misspecification of the distribution of the scale. The smoothed Huber estimator
outperforms the median and the Huber estimator at least with respect to the MSE and the higher quantiles clearly (and
sometimes with respect to all quantiles) and is usually almost as good as the Pitman estimator.

The Bisquare M-estimator and its “smoothed” version deliver always very similar results, but paired Wilcoxon tests
reveal that the smoothed Bisquare is always significantly better. Both, however, are clearly outperformed by the smoothed
Huber estimator.
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8. Small sample asymptotic results

Formula (5) can be used to back up the simulation results, which it generally did in the cases in which it was applied. The
only remarkable feature of the simulation results that is not appropriately reflected in (5) is the difference between even
and odd n for some setups.

On the other hand, (5) is more informative about the behaviour in the extreme tail areas, which cannot be simulated
accurately, and it can add credibility to some of the non-significant results of the simulation.

Again, selected results are presented in a graphical way. All plots refer to n = 5 (for other values of n, very similar patterns
are obtained). The graphs compare the tail probabilities P(T,, > t) for ML and smoothed ML-estimators under Huber's least
favourable, the double exponential and the Cauchy distribution (Figs. 11, 12). Furthermore, the Huber estimator and the
smoothed Huber estimator are compared under the normal, the double exponential and the Cauchy distribution (Figs. 13,
14). On the right side of the Figs. 11 and 13, relative differences, divided by the tail probability for the non-smoothed (Huber)
estimator, are shown. The corresponding plots for the double exponential and Cauchy distribution are similar in the sense
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that they also show that the relative advantage of the smoothed estimators increases monotonically with t in the region
where the smoothed estimators are better (i.e., for t large enough that the difference in tail probabilities is larger than 0).
There are some small peculiarities in these plots and not all tail probabilities for t & 0 are displayed. This is due to numerical
instabilities of either the involved numerical integration or some ratios close to 0/0.

The consistent pattern of all of these results is that the smoothed estimators are better than the non-smoothed ones in
the tail areas, i.e., the probabilities that the smoothed estimators are very far away from the true values are lower. In terms
of the relative difference, the advantage increases with t (Table 1 gives the maximum relative difference for t < 5).

Another way to look at the results is to consider the values P(|T,| > to) = 2P(T, > ty) for tg so that P(T, > tp) is
equal for the smoothed and the non-smoothed estimator. This is a standardized way to measure the “size” of the tail area
for which the smoothed estimator is better. The results are given in Table 1. Note that most of these values are smaller than
0.5, but this does not mean that the non-smoothed estimators are better, because in most applications it is more important
that estimators are not very bad (i.e., in the far tail), whereas small deviations are tolerable.
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exponential distribution. Right: same under the Cauchy distribution.

Table 1
Maximum relative difference W for the non-smoothed estimator T, compared to the smoothed estimator T, and P(|T,| > to) for ty so that
P(|Ta| > to) = P(|T,| > to), i.e., probability of the area in which the smoothed estimator is better.

Distribution Estimators Max. rel. difference P(|T,| > to)
Huber's L.f. Huber/sm.Huber 0.47 0.31

Double exp. Median/sm.Median 0.72 0.72
Cauchy Cau.ML/sm.Cau.ML 0.34 0.32
Normal Huber/sm.Huber 1.00 1.00
Double exp. Huber/sm.Huber 0.53 0.097
Cauchy Huber/sm.Huber 0.075 0.055

9. Conclusion

The simulation and small sample asymptotic results show that the idea of smoothing M-estimators can be worthwhile.
Given that the higher quantiles and the MSE are judged as more adequate quality measures than the lower quantiles, the
smoothed M-estimators performed better than their initial counterparts in all setups (the difference in efficiency being 10%
and smaller, though).

The smoothed Huber estimator behaved very well not only under Huber’s least favourable distribution, but also under
the normal distribution, where it dominated the non-smoothed Huber estimator uniformly, and it was not much worse
than the Huber estimator under the heavier tailed distributions. In the extreme tails of the error distribution, the smoothed
Huber estimator was always better. However, this advantage is quite small under the Cauchy distribution. In the setups
where the scale was unknown and estimated by the MAD, the smoothed Huber estimator was always better than the Huber
estimator, and not much worse than the Pitman estimator for the specific simulated distribution. The latter was, with MAD
scale, outperformed by the smoothed ML-estimator, but this estimator, as well as the Pitman estimator, of course require
to assume the knowledge of the underlying parametric model.

Since the Huber estimator is widely used as a standard estimator and all its robustness properties (most of them of
asymptotic nature) hold also for the smoothed Huber estimator, it would be a reasonable suggestion to replace the Huber
estimator by the smoothed Huber, which is similarly easy to compute because of its explicit {-function (involving @ ).
Note that we do not claim that the use of the MAD as scale estimator is generally optimal. However, there are very many
approaches to the robust estimation of location with unknown scale and there is no uniformly optimal method, and the
MAD is the most popular choice because of its simplicity and the good robustness properties of location M-estimation with
preliminary robust estimation of scale (Andrews et al., 1972; Huber, 1981; Hampel et al., 1986; Maronna et al., 2006). In order
to improve small sample properties, smoother scale estimators may be helpful, perhaps even applying the same smoothing
principle, but this can be expected to depend on the underlying distribution and is a topic for future research. Comparing
this with Pitman estimators for location with unknown scale as derived e.g. in Bell Krystinik and Morgenthaler (1991) could
also be of interest.
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By showing that for small samples the ML-estimator is still good in the lower quantiles of the error distribution, but
that the behaviour for higher quantiles is different, the simulation results further confirmed the heuristic (and incomplete)
motivation given in Section 3. This may add something to the intuitive understanding of the central limit theorem and its
relevance for small samples. It would be interesting to explore further the potential of the proposed smoothing principle for
more complicated setups such as (generalized) linear regression or multivariate location.

There is a lot of literature concerning small sample behaviour of location estimators. The Pitman estimator for the Cauchy
distribution has recently been investigated for small samples by Cohen Freue (2007). Ventura (1998) gives an approximation
of the Pitman estimator (though it does not perform very well in the simulation study of Cohen Freue (2007)). lonides (2005)
and Seo and Lindsay (2010) define estimators by maximizing a smoothed version of the likelihood. This idea goes back to
Daniels (1960). Sugiura and Naing (1989) discuss improvements of the median for the double exponential distribution.
Barndorff-Nielsen (1983, 1986) give approximations to the conditional density of the ML-estimator and an adjustment of
the signed log-likelihood ratio respectively to get higher order accuracy of asymptotic approximations. Comparing these
developments with the smoothing principle discussed in the present paper (which we believe is more straightforward and
versatile) may be interesting, but is outside the scope of the present study.

An R-package “smoothmest” computing the smoothed M-estimators discussed in the present paper is in preparation.
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