SCATTERING FOR A CRITICAL NONLINEAR WAVE EQUATION IN TWO DIMENSIONS

MARTIN SACK AND MICHAEL STRUWE

Abstract. We show that the solutions to the Cauchy problem for a wave equation with critical exponential nonlinearity in 2 space dimensions scatter for arbitrary smooth, compactly supported initial data.

1. Introduction

Consider the initial value problem for the equation

\(u_{tt} - \Delta u + u(e^{u^2} - 1 - u^2) = 0 \) on \(\mathbb{R} \times \mathbb{R}^2 \).

with smooth Cauchy data

\((u, u_t)_{t=0} = (u_0, u_1) \in C^\infty_c(\mathbb{R}^2) \).

Observe that for a classical solution \(u \) of (1), (2) the energy

\(E(u(t)) = \frac{1}{2} \int_{\{t\} \times \mathbb{R}^2} \left(|u_t|^2 + |\nabla u|^2 + F(u) \right) dx \)

is conserved, where \(F(u) = e^{u^2} - 1 - u^2 - u^4/2 \) is a primitive of the nonlinear term \(f(u) = u(e^{u^2} - u^2) \).

For the related problem when \(f(u) \) is replaced by the nonlinearity \(n(u) = ue^{u^2} \) Ibrahim, Majdoub, and Masmoudi in [3] showed that whenever the corresponding initial energy is at most \(2\pi \) the Cauchy problem (1), (2) admits a global smooth solution. Together with Nakanishi, in [5] the same authors also showed that when \(f(u) \) is replaced by \(l(u) = u(e^{u^2} - u^2) \) the solution scatters, again assuming the associated initial energy to be bounded by \(2\pi \). The constant \(2\pi \) is related to the best constant in the Moser-Trudinger inequality [4], [10], which defines the limit case of Sobolev’s embedding of the space \(H^1(\mathbb{R}^2) \). It was conjectured in [5] that this number also marks an energy threshold for the onset of “super-critical” behavior in (1) and its variants. This conjecture was partially confirmed through the examples given in [4], showing that the solutions no longer depend in a locally uniformly continuous fashion on the data when the initial energy exceeds the value \(2\pi \).

In contrast with these expectations, however, Struwe [9] showed that the initial value problem for equation (1) has a global smooth solution for smooth Cauchy data \((u_0, u_1) \) with arbitrarily large energy. This result was originally demonstrated...
when \(f(u) \) is replaced by the nonlinearity \(n(u) = ue^{u^2} \) but the proof is valid also for all the above variants of equation (1).

Moreover, by building on the techniques developed in [9], Sack [7] was able to show scattering for any solution \(u \) of (1), (2) for arbitrarily large smooth, compactly supported data with rotational symmetry. Here, by definition, a solution \(u \) to (1) scatters if for the solution \(v \) to the homogeneous linear wave equation

\[
v_{tt} - \Delta v = 0 \quad \text{on } \mathbb{R} \times \mathbb{R}^2
\]

for suitable “scattering data”

\[
(v, v_t)_{t=0} = (v_0, v_1) \in \dot{H}^1 \times L^2(\mathbb{R}^2)
\]

there holds

\[
\|D\!u(t) - D\!v(t)\|_{L^2(\mathbb{R}^2)} \to 0 \quad \text{as } t \to \infty,
\]

where \(D\!u = (u_t, \nabla u) \) is the space-time differential of \(u \).

Combining the insights of [7] and [9], in the present paper we now establish scattering in the general (non-symmetric) case.

Theorem 1.1. For any \(u_0, u_1 \in C_c^\infty(\mathbb{R}^2) \) there exist \((v_0, v_1) \in \dot{H}^1 \times L^2(\mathbb{R}^2) \) such the solution \(u \) to (1), (2) scatters to the solution \(v \) of (4), (5) in the sense of (6).

For the proof of Theorem 1.1 as in [7] it suffices to show finiteness of the scattering norm

\[
\|u_{tt} - \Delta u\|_{L^1_{t,2}} = \|f(u)\|_{L^1_{t,2}} = \int_0^\infty \|f(u(t))\|_{L^2(\mathbb{R}^2)} dt
\]

of the solution \(u \) to (1), (2) for given data. In [7] this already was partially achieved by applying the techniques of [9] to the function \(U \) obtained from \(u \) through conformal inversion, which satisfies an equation similar to (1). Conformal inversion also is a key element in the proof of Theorem 1.1 in the present paper, and we crucially exploit the fact that the wave operator and nonlinear terms of degree 5 and higher are well-behaved under this transformation. Even though our proof therefore cannot be extended to the case when \(f(u) \) is replaced by the nonlinearity \(l(u) = u(e^{u^2} - u^2) \), it is to be expected that the analogue of Theorem 1.1 also holds in this case, since scattering properties should only improve in the presence of a mass term. However, it is not clear if scattering holds when \(f(u) \) is replaced by the nonlinearity \(n(u) = ue^{u^2} \) since the cubic term seems difficult to treat even in the small energy regime.

Note that also when \(f(u) \) is replaced by either \(l(u) \) or \(n(u) \), by [9] the solutions to the Cauchy problem (1), (2) for smooth data always are globally regular.

2. Preliminaries

2.1. Energy identity. Multiplying (1) by \(u_t \) we obtain the identity

\[
0 = \frac{d}{dt} e(u) - div(\nabla u \cdot u_t)
\]

for the energy density

\[
e(u) = \frac{1}{2} (|u_t|^2 + |\nabla u|^2 + F(u)).
\]
and the density of momentum \(m(u) = \nabla u \cdot u_t \).

If for \(0 < S \leq T \leq T_0 \) we denote as \(v(y) = u(|y|, y) \) the restriction of \(u \) to the lateral boundary
\[
M^T_S = \{ z = (t, x); S \leq t \leq T, |x| = t \}
\]
of the truncated forward light cone
\[
K^T_S = \{ z = (t, x); S \leq t \leq T, |x| \leq t \}
\]
with vertex at \((0, 0)\), then upon integrating (7) over \(K^T_S \) we find the identity
\[
\tag{8}
E(u(S), B_S(0)) + \text{Flux}(u, M^T_S) = E(u(T), B_T(0))
\]
for all \(0 < S < T \leq T_0 \), where
\[
E(u(t), B_R(x_0)) := \int_{B_R(x_0)} e(u(t)) dx
\]
and where
\[
\text{Flux}(u, M^T_S) := \frac{1}{2} \int_{B_T \setminus B_S(0)} (\langle \nabla v \rangle^2 + F(v)) dy
\]
is the energy flux through \(M^T_S \), as in [9]. In particular, energy will spread with speed at most 1. Identities similar to (8) hold on any region with space-like or null boundary. For \(0 \leq S \leq T \) we also let \(K^T = K^T_0 \), \(K_S = K^T_0 \), and so on.

2.2. Normalisation. Given data \(u_0, u_1 \in C^\infty_c(\mathbb{R}^2) \) with support in \(B_a(0) \) for some \(a > 0 \), by [5] the solution \(u \) to the Cauchy problem [1], [2] in forward time is supported inside the light cone with vertex at \((-a, 0)\). We may assume that \(a \geq 1/2 \). Shifting time by \(t_0 = 2a \geq 1 \) we then may assume that \(u \) in forward time is supported inside the cone
\[
K_{t_0}(a, 0) = \{ (t, x); |x| \leq t - a, t \geq t_0 \} \subset K = \{ (t, x); |x| \leq t \},
\]
with initial data
\[
(u, u_t)|_{t=t_0} = (u_0, u_1) \in C^\infty_c(\mathbb{R}^2)
\]
and with lateral trace
\[
u = 0 \text{ on } M_{t_0}(a, 0),
\]
where \(M_{t_0}(a, 0) \) is the lateral boundary of the truncated cone \(K_{t_0}(a, 0) \).

2.3. Conformal inversion. Following Grillakis [1] we let \(\Phi: K \to K \) denote the conformal inversion given by \(\Phi(t, x) = (T, X) \) with
\[
T := \frac{t}{t^2 - r^2}, \quad X := \frac{x}{t^2 - r^2},
\]
where \(r = |x| \). Note that \(\Phi \) is an involution with inverse \(\Phi^{-1} = \Phi \), and that \(\Phi \) maps light cones to light cones. Moreover, letting \(\eta = \text{diag}(-1, 1, 1) \) be the Minkowski metric, we have \(\Phi^*\eta = \Omega^2\eta \), where
\[
\Omega = \frac{1}{t^2 - r^2} = T^2 - R^2 \text{ on } K
\]
with \(R = |X| \). Finally, as explained in [7], given a solution \(u \) of (8) with support in \(K_{t_0}(a, 0) \subset K \), the function \(U = \Omega^{-1/2}(u \circ \Phi) \) solves the equation
\[
\tag{9}
U_{TT} - \Delta U = -\Omega^{-2}U(e^{\Omega u/2} - 1 - \Omega U^2) =: -g(U).
\]
Recalling that \(t_0 = 2a \), we observe that the support of \(U \) is contained in the region

\[
A := \Phi(K_{t_0}(a, 0)) = \{(T, X) \in K; T/(T^2 - R^2) \geq t_0, \ T + R \leq 2/t_0\}
\]

bounded within \(K \) by a section of the hyperboloid

\[
\Sigma = \{(T, X) \in K; (T - \frac{1}{2t_0})^2 = R^2 + \frac{1}{4t_0^2}\}
\]

and the lateral boundary of an incoming light cone with vertex at the point \((2/t_0, 0)\), which meets \(\Sigma \) in the circle \(\{(T, X) \in K; T = 2R = 4/(3t_0)\} \).

2.4. **Bounds for conformal energy.** Similar to (7), upon multiplying (9) with \(U_T \) we find the conservation law

\[
\frac{d}{dT} \tilde{e}(U) - \text{div}(\tilde{m}(U)) = TP(U) \geq 0
\]

for the conformal energy density

\[
\tilde{e}(U) = \frac{1}{2}(|U_T|^2 + |\nabla U|^2 + G(U))
\]

with

\[
G(U) = \Omega^{-3}(e^\Omega U^2 - 1 - \Omega U^2 - \Omega^2 U^4/2) \geq U^6/6,
\]

and with the density of momentum \(\tilde{m}(U) = \nabla U \cdot U_T \). The fact that the lowest power term in \(f(u) \) is of order \(u^5 \) is crucial for the positivity of the term

\[
P(U) = \Omega^{-3}U^2(e^\Omega U^2 - 1 - \Omega U^2) - 3\Omega^{-1}G(U) = \Omega^{-4} \sum_{k=4}^{\infty} (k-3) (\Omega U^2)^k / k!.
\]

We have thus set the stage for the proof of Theorem 1.1.

3. **Proof of Theorem 1.1**

Recall the following result of Sack [7], similar to [9], Lemma 4.3.

Proposition 3.1. There exists \(T_1 > 0 \) and a constant \(C_1 > 0 \) such that

\[
\int_{K_{T_1}} e^{4U^2} dX \ dT \leq C_1.
\]

Proposition 3.1 allows to partially bound the scattering norm, as follows. Clearly we may assume that \(T_1 \leq 1/(2t_0) \leq 1/2 \). Set

\[
D := \Phi^{-1}(K_{T_1}) = \{(t, x) \in K; t/(t^2 - r^2) \leq T_1\} \subset K,
\]

and for any \(t_0 \leq t_1 \leq t_2 \) let

\[
D(t_1) = \{(t, x) \in D; t = t_1\}
\]

as well as

\[
D_{t_1}^{t_2} = \{(t, x) \in D; t_1 \leq t \leq t_2\}.
\]

Note that \(D \) is the part of \(K \) above the hyperboloid

\[
H = \{(t, x) \in K; (t - \frac{1}{2T_1})^2 = r^2 + \frac{1}{4T_1^2}\};
\]

therefore \(D \) together with the thickened mantle region

\[
K_{t_0}(a, 0) \setminus K(d, 0) = \{(t, x) \in K_{t_0}; t - d \leq |x| \leq t - a\}
\]
Proposition 3.2. There exists a constant H such that
\[e^{|u|^2} - 1 - |\Omega|^2 \leq \Omega^2 e^{|u|^2}, \]
we can bound
\[
\int_{D_t^{t_1}} |f(u)|^2 \, dx \, dt = \int_{D_t^{t_2}} |u(e^{v^2} - 1 - u^2)|^2 \, dx \, dt
\]
\[
= \int_{\Phi(D_t^{t_1})} |U|^2 e^{|u|^2} - 1 - |\Omega|^2 |^2 \Omega^{-3} \, dX \, dT \leq \int_{\Phi(D_t^{t_1})} \Omega^2 U^{10} e^{2|u|^2} \, dX \, dT.
\]
But since $T_1 \leq 1$, we have that $\Omega \leq 1$ on $\Phi(D_t^{t_1}) \subset K^{T_1}$, and
\[
U^{10} e^{2|u|^2} \leq C e^{2|u|^2}
\]
on this region. On the other hand, using that we have $|x| \leq t - a$ throughout the support of u, we can also bound
\[
(11) \quad \Omega = \frac{1}{(t - |x|)(t + |x|)} \leq \frac{1}{at}
\]
on the support of u. Hence by Proposition 3.1 we find that
\[
\int_{D_t^{t_1}} |f(u)|^2 \, dx \, dt \leq C t_1^{-2} \int_{K_t^{T_1}} e^{2|u|^2} \, dX \, dT \leq C t_1^{-2}.
\]
After a dyadic decomposition $t_k = 2^k t_0$, $k \in \mathbb{N}$, of the time interval $[t_0, \infty[$, from Hölder’s inequality we then obtain
\[
\int_{t_0}^{\infty} \left(\int_{D(t)} |f(u)|^2 \, dx \right)^{1/2} \, dt = \sum_{k \in \mathbb{N}_0} \int_{t_k}^{t_{k+1}} \left(\int_{D(t)} |f(u)|^2 \, dx \right)^{1/2} \, dt
\]
\[
\leq \sum_{k \in \mathbb{N}_0} (2^k)^{1/2} \left(\int_{D(t_k)} |f(u)|^2 \, dx \right)^{1/2} \leq C \sum_{k \in \mathbb{N}_0} 2^{-k/2} < \infty.
\]
To complement this estimate, we show the following bound.

Proposition 3.2. There exists a constant $C_2 > 0$ such that
\[
\sup_{\text{supp}(u) \setminus K^{T_1}} |u| \leq C_2.
\]
Postponing the proof of Proposition 3.2, we complete the proof of Theorem 1.1.

From Proposition 3.2 and (11), we conclude that
\[
|u(t, x)| = |\Omega|^{1/2} |U(T, X)| \leq C_2 a^{-1/2} \sqrt{t}
\]
for all $(t, x) \in K(a, 0) \setminus D$, with $(T, X) = \Phi(t, x)$. Hence we have the bound
\[
|f(u)|^2 = |u(e^{v^2} - 1 - u^2)|^2 \leq u^{10} e^{2|u|^2} \leq Ct^{-5}
\]
avy D and there holds
\[
\int_{t_0}^{\infty} \left(\int_{B(t) \setminus D(t)} |f(u)|^2 \, dx \right)^{1/2} \, dt
\]
\[
\leq \int_{t_0}^{\infty} \left(\int_{B(t) \setminus D(t)} u^{10} e^{2|u|^2} \, dx \right)^{1/2} \, dt \leq C \int_{t_0}^{\infty} t^{-3/2} \, dt < \infty.
\]
Splitting $f(u) = f(u)\chi_D + f(u)\chi_{(K_{t_0}\setminus D)}$, where χ_M is the characteristic function of a set M, with the Minkowski inequality we now obtain that

$$\|f(u)\|_{L^1_t L^2_x} \leq \|f(u)\chi_D\|_{L^1_t L^2_x} + \|f(u)\chi_{(K_{t_0}\setminus D)}\|_{L^1_t L^2_x} < \infty,$$

as claimed.

4. PROOF OF PROPOSITION 3.2

Recall that $\text{supp}(U) \subset A = \Phi(K_{t_0}(a,0))$. Fix a point $(T_0, X_0) \in A \setminus K^{T_1}$. By Duhamel’s formula we can decompose

$$U(T_0, X_0) = U_L(T_0, X_0) + U_N(T_0, X_0),$$

where U_L solves the free wave equation \([4]\) and where $V := U_N$ solves the equation $V_{TT} - \Delta V + g(U) = 0$ on A with vanishing Cauchy data.

Clearly we have $U_L = \Omega^{-1/2}(u_L \circ \Phi)$, where u_L is the solution of the free wave equation \([4]\) with Cauchy data \([2]\) at time $t = t_0$. By the known decay estimates for this problem there exists a constant $C = C(u_0, u_1) > 0$ such that

$$\|u_L(t, x)\| \leq C/\sqrt{t}$$

for sufficiently large $t > t_0$; see for instance \([8]\), Lemma 4.2 and (4.9b). Recall that letting $d = 1/T_1$, for sufficiently large $t_1 > t_0$ we have

$$K_{t_1} \setminus D \subset K \setminus K(d, 0) = \{(t, x) \in K; t - d \leq |x| \leq t\}.$$

Hence for $(t, x) \in K \setminus D$ with $t \geq t_1$ we can estimate

$$(\Omega(t, x))^{-1} = (t - |x|)(t + |x|) \leq 2dt.$$

By smoothness of u_L then we can uniformly bound $|(\Omega^{-1/2}u_L)(t, x)| \leq C$ everywhere on $K_{t_0} \setminus D$, and we obtain the bound

$$\sup_{(T_0, X_0) \in A \setminus K^{T_1}} |U_L(T_0, X_0)| \leq C.$$

By Duhamel’s formula, moreover, the component U_N is given by the equation

$$U_N(T_0, X_0) = - \int_{A_0} g(U) \Gamma dX dT,$$

where $A_0 := K(T_0, X_0) \cap A$ and where

$$\Gamma(T, X) = \frac{1}{2\pi \sqrt{|T_0 - T|^2 - |X - X_0|^2}} \in L^{3/2}(A_0)$$

is the fundamental solution to the linear wave equation. Again estimating

$$|g(U)| = |\Omega^{-2}U(e^{\Omega u^2} - 1 - \Omega U^2)| \leq |U|^5 e^{\Omega u^2},$$

with a uniform constant $C > 0$ we can then bound

$$|U_N(T_0, X_0)| \leq \|\Gamma\|_{L^{3/2}(A_0)} \|g(U)\|_{L^3(A_0)}$$

$$\leq C \sup_{T \geq T_0} \|U(T)\|_{L^3(A_0(T))} \|e^{\Omega U^2}\|_{L^6(A_0)},$$

where $A_0(T) = \{(T, X) \in A_0\}$ for any $T \geq T_0$. The desired bound then will be a consequence of the following two lemmas.
Lemma 4.1. With a uniform constant $C_1 > 0$ for any $(T_0, X_0) \in A \setminus K^{T_1}$ there holds
\begin{equation}
\sup_{T \geq T_0} \|U(T)\|_{L^5(\mathcal{A}(T))}^5 \leq C_1.
\end{equation}

Proof. For any $T > 0$ also let $A(T) = \{(T, X) \in A\}$, where $A = \Phi(K_{t_0}(a, 0))$ as above. Set $\delta_0 = 1/(3t_0)$. Note that
\begin{equation}
\Omega(T, X) = (T - R)(T + R) \geq \delta_0 T_1
\end{equation}
is uniformly bounded away from zero at points $(T, X) \in A \setminus K^{T_1}$ with $R \leq T - \delta_0$.
All such points are mapped under Φ to a fixed bounded region of space-time. Since u is smoothly bounded on any compact region, we see that also $U = \Omega^{-1/2}(u \circ \Phi)$ is smoothly bounded at all such points. Fix
\begin{equation}
T_2 = 7/(6t_0) = 1/t_0 + 1/(6t_0).
\end{equation}
Our choice $\delta_0 = 1/(3t_0)$ guarantees that for all $T \geq T_2$ we have $A(T) \subset K(\delta_0, 0)$; hence we have
\begin{equation}
\sup_{T \geq T_2} \|U(T)\|_{L^5(\mathcal{A}(T))}^5 < \infty.
\end{equation}
Recalling that U vanishes in a neighborhood of the mantle section
\begin{equation}
\{(T, X) \in K; T + R = 2/t_0, T > 1/t_0\},
\end{equation}
from the energy inequality (10) and in view of smoothness of the Cauchy data for U on Σ we also have
\begin{equation}
\sup_{T_1 \leq T \leq T_2} \int_{A(T)} \tilde{E}(U(T); A(T)) = \sup_{T_1 \leq T \leq T_2} \int_{A(T)} \tilde{e}(U(T)) dX < \infty.
\end{equation}
Moreover, for $T_1 \leq T \leq T_2$ the Sobolev inequality
\begin{equation}
\|U(T)\|_{L^5(\mathcal{A}(T))} \leq C_0\left(\|\nabla U\|_{L^2(\mathcal{A}(T))} + \|U\|_{L^5(\mathcal{A}(T))}\right) \leq C \tilde{E}(U(T); A(T))
\end{equation}
holds with a uniform constant $C_0 > 0$. Since for any $(T_0, X_0) \in A \setminus K^{T_1}$ and any $T \geq T_0$ there holds $A_0(T) \subset A(T)$, we then obtain the uniform bound
\begin{equation}
\sup_{T \geq T_0} \|U(T)\|_{L^5(\mathcal{A}(T))}^5 \leq \sup_{T \geq T_1} \|U(T)\|_{L^5(\mathcal{A}(T))}^5 =: C_1 < \infty,
\end{equation}
as desired. \hfill \Box

For the statement of the second lemma we introduce the characteristic coordinates
\begin{equation}
\xi = t + r, \quad \eta = t - r.
\end{equation}
Fixing
\begin{equation}
d = 1/T_1,
\end{equation}
then for any $\xi_1 \geq 2t_0$ we let
\begin{equation}
\Gamma_1(\xi_1) = \{(t, x) \in K; \xi = t + |x| = \xi_1, 0 < \eta = t - |x| < d\}.
\end{equation}

Lemma 4.2. There exists a constant $C_2 > 0$ such that for any $\xi \geq 2t_0$ there holds
\begin{equation}
\int_{\Gamma_1(\xi)} e^{\delta u^2} d\omega \leq C_2 \xi.
\end{equation}
The bound (17) is analogous to the bound on p. 1822, l. 3-4, in [9], proof of Lemma 4.3. In the present context, however, we need to show (17) in the asymptotic regime when $\xi \to \infty$ instead of $\xi \downarrow 0$, as in [9]. For completeness, we therefore give the proof of (17) in detail in the following section.

Proof of Proposition 3.2 (completed). Recall that there exists a compact set D_0 such that for any $(T_0, X_0) \in A \setminus K^{T_1}$ there holds $\Phi(A_0) \subset D_0 \cup \{\xi \geq 2t_0 \}$. By Lemma 4.2 and using (11) as well as the bound $t \leq \xi \leq 2t$ then we can estimate

$$\int_{A_0} e^{6u^2} dX dT = \int_{\Phi(A_0)} e^{6u^2} \Omega^3 dx dt \leq C \int_{\Phi(A_0)} t^{-3} e^{6u^2} dx dt \leq C + C \sup_{\xi \geq 2t_0} \left(\xi^{-1} \int_{\Gamma_1(\xi)} (e^{6u^2} du) \right) \int_{t_0}^{\infty} \frac{dt}{t^2} \leq C,$$

uniformly in $(T_0, X_0) \in A \setminus K^{T_1}$. From (13) and Lemma 4.1 we hence obtain the uniform bound $|U_N(T_0, X_0)| \leq C$. Together with (12) this completes the proof of Proposition 3.2. □

5. PROOF OF LEMMA 4.2

The proof of Lemma 4.2 relies on the following multiplier estimates analogous to the ones in [9]. Observe that in polar coordinates (r, ϕ) the conservation law (7) may be written in the form

$$\partial_t (re) - \partial_r (rm) = r^{-1} \partial_\phi (u_t u_\phi) ,$$

where now

$$e = e(u) = \frac{1}{2} (u_t^2 + u_r^2 + r^{-2} u_\phi^2 + F(u)), \quad m = m(u) = u_t u_r .$$

We also have the following analogues of the identities (15) and (16) in [9]. Multiplying (11) by $x \cdot \nabla u$ we obtain

$$0 = \frac{d}{dt} (u \cdot x) - div (\nabla u x) = \frac{1}{2} (|\nabla u|^2 - |u_t|^2 + F(u)) + |u_t|^2 - F(u) ,$$

which in polar coordinates and with the notation

$$q = q(u) = r^{-2} u_\phi^2 + F(u) .$$

reads

$$\partial_t (r^2 m) - \partial_r (r^2 (e - q)) + r (u_t^2 - F(u)) = \partial_\phi (u_t u_\phi) .$$

Finally, when we multiply (11) by u we find

$$0 = \frac{d}{dt} (u_t u) - div (u \nabla u) + |\nabla u|^2 - |u_t|^2 + u^2 (e - 1) ,$$

that is,

$$\partial_t (ru_t u) - \partial_r (ru_r u) + r (|\nabla u|^2 - |u_t|^2 + u^2 (e - 1)) = r^{-1} \partial_\phi (u u_\phi) .$$
From these identities we deduce the conservation laws
\[
\partial_t \left(\frac{r^2}{t} (e + m + u \frac{u}{2r} + \frac{|u|^2}{4rt}) \right) - \partial_r \left(\frac{r^2}{t} (e - q + m + u \frac{u}{2r}) \right)
\]
\[
+ \frac{r}{t} \left((1 + \frac{r}{t}) (e + m) + \frac{|u|^2}{2t^2} + \frac{u^2}{2} (e^{u^2} - 1 - u^2) - \frac{3}{2} F(u) \right)
\]
\[
= t^{-1} \partial_\phi \left((u_r + u_t + \frac{u}{2r}) u_\phi \right)
\]
and
\[
\partial_t \left(\frac{r^2}{t} (m - e + u \frac{u}{2r} + \frac{|u|^2}{4rt}) \right) - \partial_r \left(\frac{r^2}{t} (e - q - m + u \frac{u}{2r}) \right)
\]
\[
+ \frac{r}{t} \left((1 - \frac{r}{t}) (e - m) + \frac{|u|^2}{2t^2} + \frac{u^2}{2} (e^{u^2} - 1 - u^2) - \frac{3}{2} F(u) \right)
\]
\[
= t^{-1} \partial_\phi \left((u_r - u_t + \frac{u}{2r}) u_\phi \right).
\]

similar to equations (20) and (21) in [9].

It is now crucial to observe that
\[
u^2 (e^{u^2} - 1 - u^2) - 3F(u) = \sum_{k=4}^{\infty} (k - 3) \frac{|u|^{2k}}{k!} \geq 0.
\]

We then obtain the following analogue of [9], Lemma 3.1.

Lemma 5.1. With a constant $C > 0$ we have
\[
\int_{K_{t_0}} \left((1 \pm \frac{r}{t}) (e \pm m) + \frac{|u|^2}{2t^2} \right) \frac{dx\,dt}{t} \leq CE(u(0)).
\]

Proof. Integrating the identities (21), (22), respectively, over a truncated cone K_S for $t_0 \leq S \leq T < \infty$ we obtain
\[
I_\pm := \int_{K_S} \left((1 \pm \frac{r}{t}) (e \pm m) + \frac{|u|^2}{2t^2} \right) \frac{dx\,dt}{t} \leq II_\pm + III_\pm + VI + V,
\]
with II_\pm, III_\pm, and IV corresponding to the top, lower, and lateral boundary terms, and with 'error' term
\[
V = -\frac{1}{2} \int_{K_S} (u^2 (e^{u^2} - 1 - u^2) - 3F(u)) \frac{dx\,dt}{t} \leq 0.
\]
on account of (23). As in [9] we can bound $|II_\pm| + |III_\pm| \leq CE_0$ with a uniform constant independent of S and T. Moreover, since $\text{supp}(u) \subset K_{t_0}(a, 0)$ the contribution IV from the lateral boundary vanishes. Setting $S = t_0$ and letting $T \uparrow \infty$, we then obtain the claim. \(

In particular, given $0 < \varepsilon < 1$ we can find $t_\varepsilon > t_0$ so that
\[
\int_{K_{t_\varepsilon}} \left((1 \pm \frac{r}{t}) (e \pm m) + \frac{|u|^2}{2t^2} \right) \frac{dx\,dt}{t} \leq \varepsilon.
\]

Given $\xi_0 \geq 2t_\varepsilon$, we set $\eta_0 = \xi_0/8$. After increasing t_ε, if necessary, we may assume that $\eta_0 \geq 2d$, as defined in [15]. For $\xi_1 \in [\xi_0, 4\xi_0]$ then we let
\[
\Gamma_0(\xi_1) = \{(t, x) \in K^{T_\varepsilon}; \xi = t + |x| = \xi_1, \eta = t - |x| < \eta_0 \} \supset \Gamma_1(\xi_1),
\]
as defined in (10), and set

\[Q(\xi) := \int_{\Gamma_0(\xi)} \left(q + \frac{|u|^2}{t^2} \right) d\nu. \]

Note that

\[\frac{r}{t} = \frac{\xi - \eta}{\xi + \eta} = 1 - \frac{2\eta}{\xi + \eta} \geq 1 - \frac{2\eta_0}{\xi_0} = \frac{3}{4} \tag{25} \]

for any \((t, x) \in \Gamma_0(\xi_1)\) whenever \(\xi_1 \geq \xi_0 \geq 2t\epsilon\).

Finally, setting

\[\Gamma(\xi_1) = \{(t, x) \in K; \xi = t + |x| = \xi_1\}, \]

and integrating over the region

\[\{(t, x) \in K_{\epsilon}; \xi = t + |x| \leq \xi_1\}, \]

for any \(\xi_1 \geq 2t\epsilon\) we also obtain the bound

\[2 \int_{\Gamma(\xi_1)} u_\eta^2 \, d\nu \leq \int_{\Gamma(\xi_1)} (e - m) \, d\nu \leq E(u(0), B_\epsilon(0)) =: E_0 \tag{26} \]

as a useful variant of the energy inequality (9).

Now note that \(t \geq t_\epsilon\) for any \((t, x) \in K\) with \(\xi = t + |x| \geq 2t\epsilon\). Changing variables \((t, x) \rightarrow (\xi = t + |x|, x)\), then from (24) we see that for any \(\xi_0 \geq 2t\epsilon\) with an absolute constant \(C\) there holds

\[\inf_{\xi_0 < \xi < 2\xi_0} Q(\xi) \leq \xi_0^{-1} \int_{\xi_0}^{2\xi_0} Q(\xi) \, d\xi \leq C \int_{K_{t_\epsilon}} ((1 + \frac{r}{t})(e + m) + \frac{|u|^2}{2t^2}) \, dx \, dt \leq C\epsilon. \]

Thus, given \(\xi_0 \geq 2t\epsilon\) we can choose a number \(\xi_1 \in [\xi_0, 2\xi_0]\) such that

\[Q(\xi_1) \leq 2 \inf_{\xi_0 < \xi < 2\xi_0} Q(\xi) < C\epsilon. \tag{27} \]

In fact, we can show uniform smallness of \(Q\), similar to (9), Lemma 4.1.

Lemma 5.2. There is a constant \(C > 0\) such that for any \(\xi_0 \geq 2t\epsilon\) there holds

\[\sup_{2\xi_0 < \xi < 4\xi_0} Q(\xi) \leq C\sqrt{\epsilon}. \]

Proof. Given any \(\xi_0 \geq 2t\epsilon\) we determine \(\xi_1 \in [\xi_0, 2\xi_0]\) as above satisfying (27).

For any \(\xi_2 \in [2\xi_0, 4\xi_0]\) consider the set

\[R = R(\xi_1, \xi_2) = \{(t, x) \in K^{\Gamma^*}; \xi_1 < \xi < \xi_2, 0 < \eta < \eta_0\} \]

with boundary \(\partial R = \sqcup_{i=1}^{3} \Gamma_i\), where

\[\Gamma_1 = \{(t, x); \xi_1 < \xi < \xi_2, \eta = 0\}, \quad \Gamma_2 = \Gamma_0(\xi_2), \]

\[\Gamma_3 = \{(t, x); \xi_1 < \xi < \xi_2, \eta = \eta_0\}, \quad \Gamma_4 = \Gamma_0(\xi_1). \]

as in the proof of Lemma 4.1 in (9). Integrating the relation (21) over \(R\), we find the identity

\[A_0 + A_2 + A_3 = A_1 + A_4 + V, \tag{28} \]

where

\[A_0 = \int_R ((1 + \frac{r}{t})(e + m) + \frac{|u|^2}{2t^2}) \, dx \, dt \geq 2 \int_R u_\xi^2 \, dx \, dt \geq 0 \tag{29} \]
satisfies \(A_0 \leq \varepsilon \) in view of (24), and where the terms \(A_i, 1 \leq i \leq 4 \) correspond to integrals over the boundary components \(\Gamma_i, 1 \leq i \leq 4 \). As in the proof of Lemma 5.1 again the remainder

\[
V = -\frac{1}{2} \int_R \left(u^2(e^{u^2} - 1 - u^2) - 3F(u) \right) \frac{dx dt}{t} \leq 0
\]
on account of (28). Since \(\text{supp}(u) \subset K_{t_0}(a, 0) \), we also have \(A_1 = 0 \). Moreover, using (26) and (27) we can bound \(|A_1| \leq C\sqrt{\varepsilon} \) as in [9]. Finally, we find

\[
A_3 = \int_{\Gamma_3} \left(4 \frac{r}{t} u^2 \xi + u \xi u + \frac{|u|^2}{4t^2} \right) \text{do} \geq \int_{\Gamma_3} \left(u^2 + \frac{|u|^2}{8t^2} \right) \text{do} \geq 0 ,
\]
as we can see from writing

\[
\partial_t \left(\frac{r^2}{t}(e + m + u \frac{u}{2r} + \frac{|u|^2}{4rt}) \right) - \partial_r \left(\frac{r^2}{t}(e - q + m + u \frac{u}{2r}) \right) = \partial_q \left(\frac{r^2}{t}(2(e + m) - q + u \frac{u}{r} + \frac{|u|^2}{4rt}) \right) + \partial \left(\frac{r^2}{t}(q + u \frac{u}{r} + \frac{|u|^2}{4rt}) \right)
\]
in characteristic coordinates and estimating as in [9], formula (29), using (25).

Thus we conclude the bound

\[
A_2 = \int_{\Gamma_0(\xi_2)} \left(\frac{r}{t} q + u \frac{u}{t} + \frac{|u|^2}{4t^2} \right) \text{do} \leq C\sqrt{\varepsilon} .
\]
But as in [9], formula (35), by using (29) we can estimate

\[
\int_{\Gamma_0(\xi_2)} \frac{|u|^2}{t^2} \text{do} \leq C \int_{\Gamma_0(\xi_1)} \frac{|u|^2}{t^2} \text{do} + C \int_R \frac{|u|^2}{t^2} \frac{dx dt}{t} \leq CQ(\xi_1) + CA_0 \leq C\varepsilon .
\]
Hence together with (26) and (25) we may conclude as in [9] that

\[
A_2 \geq \frac{3}{4} Q(\xi_2) - C\sqrt{\varepsilon} ,
\]
and \(Q(\xi_2) \leq C\sqrt{\varepsilon} \). Since \(\xi_0 \geq 2t_\varepsilon \) and \(2\xi_0 \leq \xi_2 \leq 4\xi_0 \) were arbitrary, the claim follows. \(\square \)

Proof of Lemma 4.2 completed. Given \(\xi_0 \geq 2t_\varepsilon \), let \(0 \leq \varphi_0 = \varphi_0(\eta) \leq 1 \) be a smooth cut-off function such that \(\varphi_0(\eta) = 1 \) for \(|\eta| \leq \eta_0/2 \) and \(\varphi_0(\eta) = 0 \) for \(|\eta| \geq \eta_0 \), with \(|\varphi_0'| \leq 4/\eta_0 \), where \(\eta_0 = \xi_0/8 \). Also fix a smooth cut-off function \(0 \leq \chi = \chi(\phi) \leq 1 \) satisfying \(\chi(\phi) = 1 \) for \(|\phi| \leq \pi/8 \) and \(\chi(\phi) = 0 \) for \(|\phi| \geq \pi/4 \).

After extending \(u(\xi, \eta, \phi) = u(\xi, -\eta, \phi) \) for \(\eta < 0 \), for \(2\xi_0 \leq \xi \leq 4\xi_0 \) also set

\[
u_k = u_k(\xi, \eta, \phi) = \varphi_0(\eta) \chi(\phi - k\pi/4)u, \ 1 \leq k \leq 8.
\]

Note that for any fixed \(\xi \in [2\xi_0, 4\xi_0] \) we have

\[
u_k(\xi, \cdot, \cdot) \in H_0^1([-\eta_0, \eta_0] \times [(k-1)\pi/4, (k+1)\pi/4]),
\]
and by (26) and Lemma 5.2 there holds

\[
\int_{-\eta_0}^{\eta_0} \int_{(k-1)\pi/4}^{(k+1)\pi/4} \left(|\partial_\eta u_k|^2 + r^{-2} |\partial_\phi u_k|^2 \right) r d\phi d\eta \leq C \int_{\Gamma_0(\xi)} \left(e - m + \frac{|u|^2}{t^2} \right) \text{do} \leq C(1 + E_0), \ 1 \leq k \leq 8 .
\]
In addition, Lemma [5.2] yields the bound
\[
\int_{\eta_0}^{\eta} \int_{(k-1)\pi/4}^{(k+1)\pi/4} (r^{-2} |\partial_\phi u_k|^2) r \, d\phi \, d\eta \\
\leq C \int_{\Gamma_0(\xi)} (q + \left| \frac{|u|^2}{t^2} \right|) \, da = CQ(\xi) \leq C\sqrt{\varepsilon},
\]
uniformly in \(\xi \in [2\xi_0, 4\xi_0] \) for any \(\xi_0 \geq 2t_\varepsilon \), \(1 \leq k \leq 8 \). After scaling \(v_k(\xi, \cdot) = v_k(\xi, \eta, \phi) = u_k(\xi, \lambda \eta, \lambda \phi) \),
where \(\lambda = \sqrt{\pi \eta_0} \), and applying the improved Moser-Trudinger inequality in [9], Lemma 4.2, to the functions \(v_k(\xi, \cdot) \) defined on a domain \(\Omega_k \) of unit area, with
\[
\int_{\Omega_k} \left(\xi_0^{-1} |\partial_\eta v_k|^2 + \xi_0^{-1} |\partial_\phi v_k|^2 \right) d\eta d\phi \leq C(1 + E_0)
\]
and with
\[
\int_{\Omega_k} \xi_0^{-1} |\partial_\phi v_k|^2 d\phi d\eta \leq C\sqrt{\varepsilon},
\]
for sufficiently small \(\varepsilon > 0 \) we deduce the uniform bound
\[
\sup_{2\xi_0 \leq \xi \leq 4\xi_0} \int_{\Gamma_0(\xi)} e^{6u_k^2} \, da = C \sup_{2\xi_0 \leq \xi \leq 4\xi_0} \int_{\Omega_k} e^{6u_k^2} \, da \leq C
\]
for each \(k \). Since \(d \leq \eta_0/2 \) we can pointwise estimate \(u^2 \leq \max_{1 \leq k \leq 8} u_k^2 \) on \(\Gamma_1(\xi) \). Hence we can bound
\[
(30) \quad \xi^{-1} \int_{\Gamma_1(\xi)} e^{6u^2} \, da \leq \sum_{1 \leq k \leq 8} \left(\xi^{-1} \int_{\Gamma_0(\xi)} e^{6u_k^2} \, da \right) \leq C
\]
uniformly in \(\xi \in [2\xi_0, 4\xi_0] \) for any \(\xi_0 \geq 2t_\varepsilon \), with a constant \(C > 0 \) independent of \(\xi_0 \), and therefore for any \(\xi \geq 4t_\varepsilon \). Since \(u \) is smooth and therefore is locally bounded, \((30)\) also holds for all remaining \(\xi \geq 2t_\varepsilon \), possibly with a larger constant \(C > 0 \). The claim follows. \(\square \)

References

(Martin Sack) Mathematik, ETH Zürich, CH-8092 Zürich, Switzerland
E-mail address: martin.sack@math.ethz.ch

(Michael Struwe) Mathematik, ETH Zürich, CH-8092 Zürich, Switzerland
E-mail address: struwe@math.ethz.ch