WAVE MAPS WITH AND WITHOUT SYMMETRIES

MICHAEL STRUWE

INTRODUCTION

Many of the results on wave maps seem highly technical and require deep results from harmonic analysis for a complete understanding. In these three lectures we present direct approaches to certain global aspects of the wave map problem, with powerful conclusions.

LECTURE I: THE CAUCHY PROBLEM FOR WAVE MAPS

In this first lecture we recall the approach presented in [20] for showing global existence and uniqueness for the Cauchy problem for wave maps from the \((1+m)\)-dimensional Minkowski space, \(m \geq 4\), to any complete Riemannian manifold with bounded curvature, provided the initial data are small in the critical norm.

1.1. Wave maps. Let \((N, h)\) be a complete Riemannian manifold of dimension \(k\) with \(\partial N = \emptyset\). We denote space-time coordinates on \(\mathbb{R}^{m+1}\) as \((t, x) = (x^\alpha), 0 \leq \alpha \leq m\). A wave map \(u: \mathbb{R}^{m+1} \rightarrow N\) is a solution to the equation

\[
D^\alpha \partial_\alpha u = 0,
\]

where \(\partial_\alpha = \frac{\partial}{\partial x^\alpha}\) and where we raise and lower indices with the Minkowski metric \((\eta_{\alpha\beta}) = \text{diag}(-1, 1, \ldots, 1)\). We tacitly sum over repeated indices. Moreover, \(D\) is the covariant pull-back derivative in the bundle \(u^*TN\).

The equivalent extrinsic form of equation (1) reveals that this is a quasilinear wave equation. Recall that the Nash embedding theorem permits to regard \(N\) as a submanifold of some Euclidean \(\mathbb{R}^n\). Letting \(u = (u^1, \ldots, u^n): \mathbb{R}^{m+1} \rightarrow N \hookrightarrow \mathbb{R}^n\) be the corresponding extrinsic representation of our wave map \(u\), equation (1) then takes the form

\[
\Box u^i = -\partial^\alpha \partial_\alpha u^i = u^i_{tt} - \Delta u^i = B^i_{jk}(u) \partial_\alpha u^j \partial^\alpha u^k, 1 \leq i \leq n,
\]

where \(B(p): T_pN \times T_pN \rightarrow (T_pN)^\perp\) is the second fundamental form of \(N \subset \mathbb{R}^n\) at any \(p \in N\). This extrinsic form of the wave map equation (1) will be very useful in the sequel.

Note that equation (2) geometrically can be interpreted simply as saying that \(\Box u \perp T_uN\), which immediately gives the intrinsic form (1). Moreover, in the case when \(N = S^k \hookrightarrow \mathbb{R}^{k+1}\) equation (2) takes the form \(\Box u = \lambda u\) for some scalar function \(\lambda\). Taking account of the fact that \(|u|^2 = 1\), we compute

\[
\lambda = \Box u \cdot u = -\partial^\alpha (\partial_\alpha u \cdot u) + \partial_\alpha u \partial^\alpha u = \partial_\alpha u \partial^\alpha u = |\nabla u|^2 - |u_t|^2
\]

Date: August 12, 2008.
and thus find the equation
\[\Box u = u_{tt} - \Delta u = (|\nabla u|^2 - |u|^2)u \]
for a wave map \(u : \mathbb{R}^{m+1} \to S^k \hookrightarrow \mathbb{R}^{k+1} \).

We study the Cauchy problem for wave maps with initial data
\[(u, u_t)_{|t=0} = (u_0, u_1) \in \dot{H}^{\frac{m}{2}} \times \dot{H}^{\frac{m}{2}-1}(\mathbb{R}^m; TN), \]
where \(\dot{H}^s \) for any \(s \) denotes the homogenous Sobolev space. Note that from any solution \(u \) to equation (1) or (2), we can obtain further solutions by scaling \(u_R(t, x) = u(Rt, Rx) \). In view of the invariance
\[\|(u, u_t)_{|t=0}\|_{\dot{H}^{\frac{m}{2}} \times \dot{H}^{\frac{m}{2}-1}(\mathbb{R}^m; TN)} = \|(u_R, u_t^R)_{|t=0}\|_{\dot{H}^{\frac{m}{2}} \times \dot{H}^{\frac{m}{2}-1}(\mathbb{R}^m; TN)} \]
the \(\dot{H}^{\frac{m}{2}} \times \dot{H}^{\frac{m}{2}-1} \)-regularity is critical.

With \(L^{(2m, 2)}(\mathbb{R}^m) \hookrightarrow L^2(\mathbb{R}^m) \) denoting the Lorentz space, the main result from [20] may now be stated, as follows.

Theorem 1.1. Suppose \(N \) is complete, without boundary and has bounded curvature in the sense that the curvature operator \(R \) and the second fundamental form \(B \) and all their derivatives are bounded, and let \(m \geq 4 \). Then there is a constant \(\varepsilon_0 > 0 \) such that for any \((u_0, u_1) \in \dot{H}^{\frac{m}{2}} \times \dot{H}^{\frac{m}{2}-1}(\mathbb{R}^m; TN) \) satisfying
\[\|u_0\|_{\dot{H}^{\frac{m}{2}}} + \|u_1\|_{\dot{H}^{\frac{m}{2}-1}} < \varepsilon_0 \]
there exists a unique global solution \(u \in C^0(\mathbb{R}; \mathbb{H}^{\frac{m}{2}}) \cap C^1(\mathbb{R}; \mathbb{H}^{\frac{m}{2}-1}) \) of (1), (4) satisfying
\[\sup_t \|u(t)\|_{\dot{H}^{\frac{m}{2}-1}} + \int_{\mathbb{R}} \|u(t)\|_{L^{(2m, 2)}(\mathbb{R}^m)}^2 \, dt \leq C\varepsilon_0 \]
and preserving any higher regularity of the data.

For \(N = S^k \), global wellposedness of the Cauchy problem (1), (4) for initial data having small energy in the critical norm was first shown by Tao [26], [27], initially only for \(m \geq 5 \) and finally for all \(m \geq 2 \). For \(m \geq 5 \), by a variant of Tao’s method, Klainerman-Rodnianski [10] were able to extend his results to general targets, independently and almost simultaneously with our work [20] with Shatah. Similar results are due to Nahmod - Stefanov - Uhlenbeck [16]. In the low-dimensional cases \(2 \leq m \leq 3 \) for wave maps \(u : \mathbb{R}^{m+1} \to H^2 \) to hyperbolic space \(H^2 \), the analogue of Theorem 1.1 was obtained by Krieger [12], [13]. Finally, Tataru [30] established well-posedness of the Cauchy problem for (1), (4) for initial data of small critical energy in the low-dimensional cases \(2 \leq m \leq 3 \) also for general targets. Previous work of Tataru [28], [29] already had shown the problem to be wellposed for initial data of small energy in a critical Besov space.

Whereas the methods of Tao, Klainerman-Rodnianski, Tataru, and many others working on this problem strongly rely on Littlewood-Paley theory and a sophisticated analysis of the interaction between different frequency components of a solution, the approach in [20] requires no microlocalization. It proceeds in physical space and is very direct, using as a tool essentially only the Strichartz estimate and its recent subtle improvement by Keel and Tao [9].

Terence Tao, and independently also Sergiu Klainerman and Igor Rodnianski pointed out that estimates similar to the crucial \(L_t^1L_x^\infty \)-estimate in Lemma 1.2
The applications of Lorentz spaces in gauge theory related to our use of Lorentz spaces

1.2. Uniqueness and higher regularity. The condition (6) easily yields uniqueness when we consider the extrinsic form (2) of the wave map system. Indeed, let u and v be solutions to (2) of class H^∞ with $u, v \in C^0(\mathbb{R}; \dot{H}^\infty) \cap C^1(\mathbb{R}; \dot{H}^\infty)$, and suppose that

$$u|_{t=0} = v|_{t=0}, \quad u_t|_{t=0} = v_t|_{t=0}.$$

Moreover, we assume (6), that is, in particular,

$$||du||^2_{L^2_t L^2_w} = \int_\mathbb{R} ||du(t)||^2_{L^2_w(\mathbb{R}^m)} dt < \infty,$$

and similarly for v. Then $w = u - v$ satisfies

$$w_{tt} - \Delta w = [B(u) - B(v)](\partial_\alpha u, \partial^\alpha u) + B(v)(\partial_\alpha u + \partial_\alpha v, \partial^\alpha w).$$

Multiplying by w_t, we obtain

$$\frac{1}{2} \frac{d}{dt} ||dw(t)||^2_{L^2_w} = I(t) + II(t),$$

where by Sobolev’s embedding $\dot{H}^1(\mathbb{R}^m) \hookrightarrow L^{\frac{2m}{m-2}}(\mathbb{R}^m)$ we can estimate

$$I(t) = \int_{\mathbb{R}^m} \langle [B(u) - B(v)](\partial_\alpha u, \partial^\alpha u), w_t \rangle dx \leq C \int_{\mathbb{R}^m} |du|^2 |w| |dw| dx$$

$$\leq C ||du||^2_{L^2_w} ||w||_{L^{\frac{2m}{m-2}}} ||dw||_{L^2_w} \leq C ||du||^2_{L^2_w} ||dw||_{L^2_w}^2.$$

In order to bound the term $II(t)$, we note that orthogonality $\langle B(u)(\cdot, \cdot), u_t \rangle = 0 = \langle B(v)(\cdot, \cdot), u_t \rangle$ implies

$$||[B(v)(\partial_\alpha u, \partial^\alpha w), w_t]|| = |\langle B(v)(\partial_\alpha u, \partial^\alpha w), u_t \rangle|$$

$$= |\langle [B(v) - B(u)](\partial_\alpha u, \partial^\alpha w), u_t \rangle| \leq C ||du|^2 |w| |dw|,$$

and similarly for the term involving $\partial_\alpha v$.

Thus also this term can be bounded

$$II(t) \leq C (||du||^2_{L^2_w} + ||dv||^2_{L^2_w}) ||dw||^2_{L^2_w},$$

yielding the inequality

$$\frac{d}{dt} ||dw||^2_{L^2_w} \leq C (||du||^2_{L^2_w} + ||dv||^2_{L^2_w}) ||dw||^2_{L^2_w}.$$

Hence we obtain the uniform estimate

$$||dw||^2_{L^\infty_t L^2_w} \leq ||dw(0)||^2_{L^2_w} \cdot \exp(C (||du||^2_{L^2_w} + ||dv||^2_{L^2_w})).$$

Since $dw(0) = 0$, uniqueness follows.

Higher regularity estimates for (smooth) solutions u of (2) satisfying (6) for sufficiently small $\varepsilon > 0$ can be obtained in similar fashion by differentiating the intrinsic form of the wave map equation covariantly in spatial directions and using standard energy estimates; see [20] for details.
1.3. Moving frames and Gauge condition. Our approach requires the construction of a suitable frame for the pull-back bundle u^*TN, as pioneered by Christodoulou-Tahvildar-Zadeh [2] and Hélein [7]. With no loss of generality, we may assume that TN is parallelizable, that is, there exist smooth vector fields $\mathcal{E}_1, \ldots, \mathcal{E}_k$ such that at each $p \in N$ the collection $\mathcal{E}_1(p), \ldots, \mathcal{E}_k(p)$ is an orthonormal basis for T_pN; see [2], [7]. Given a (smooth) map $u: \mathbb{R}^{m+1} \rightarrow N$ then the vector fields $\mathcal{E}_a \circ u, 1 \leq a \leq k$, yield a smooth orthonormal frame for the pull-back bundle u^*TN. Moreover, we may freely rotate this frame at any point $z = (t, x) \in \mathbb{R}^{m+1}$ with a matrix $(R^b_a) = (R^b_a(z)) \in SO(k)$, thus obtaining the frame

$$e_a = R^b_a \mathcal{E}_b \circ u, 1 \leq a \leq k.$$

Expressing du as

$$(7) \quad du = q^a e_a$$

with an \mathbb{R}^k-valued 1-form $q = q_a \, dx^a$, then we have

$$|du|^2 = |q|^2 = \sum_{a=0}^{m} |q_a|^2.$$

In particular, for $1 \leq p \leq \infty$ the L^p-norm of du is well-defined, independently of the choice of “gauge” (R^b_a), and coincides with the L^p-norm of du in the extrinsic representation of u as a map $u: \mathbb{R}^{m+1} \rightarrow N \subset \mathbb{R}^m$. Later we will see that if the gauge R is suitably chosen, and if $\varepsilon_0 > 0$ is sufficiently small, also the norms of the derivatives of du and the derivatives of q agree up to a multiplicative constant.

Letting $D = (D_a)_{0 \leq \alpha \leq m}$ be the pull-back covariant derivative, we have

$$(8) \quad De_a = A^b_a e_b, 1 \leq a \leq k,$$

for some matrix-valued 1-form $A = A_a \, dx^a$. Fix a pair of space-time indices $0 \leq \alpha, \beta \leq m$. The curvature of D enters in the commutation relation

$$D_a D_\beta e_a - D_\beta D_a e_a = D_a (A^b_\alpha e_b) - D_\beta (A^b_\alpha e_b)$$

$$= (\partial_\alpha A^c_\beta - \partial_\beta A^c_\alpha) + A^c_{\alpha, \beta} A^b_\alpha - A^c_{b, \beta} A^b_\alpha e_c = F^c_{\alpha, \beta} e_c,$$

or

$$\partial_\alpha A_\beta - \partial_\beta A_\alpha + [A_\alpha, A_\beta] = F_{\alpha, \beta} = R(\partial_\alpha u, \partial_\beta u)$$

for short. (The comma separates the form subscript from the vector subscript and does not indicate a differential.)

Following Hélein [7] we choose the column gauge

$$(10) \quad \sum_{i=1}^{m} \partial_i A_i = 0.$$

This results in the equation

$$(11) \quad \Delta A_\beta + \partial_i [A_i, A_\beta] = \partial_i F_{\beta i} = \partial_i (R(\partial_i u, \partial_\beta u)), 0 \leq \beta \leq m,$$

where we tacitly sum over $1 \leq i \leq m$. Given $u: \mathbb{R}^{m+1} \rightarrow N$ with du having sufficiently small L^m-norm, this equation admits a unique solution A which for any fixed time we may represent as

$$(12) \quad A_\beta = G \ast ([A_i, A_\beta] - F_{i, \beta}),$$
where
\[G(x) = \frac{c}{|x|^{m-2}} \]
is the fundamental solution to the Laplace operator on \(\mathbb{R}^m \) and \(G_t = -\partial_t G \).

Indeed, from (11) and elliptic regularity theory we have the a-priori estimate
\[
||A||_{L^m} \leq C||A||_{W^{1, \frac{m}{2}}} \leq C||[A, A]||_{L^\frac{m}{2}} + C||F||_{L^\frac{m}{2}} \leq C||A||_{L^m} + C||R||_{L^\infty}||du||_{L^m};
\]
confer [5], Section 4.3. For sufficiently small \(||A||_{L^m} \) we may absorb the first term on the right on the left hand side of this equation to obtain at any fixed time the estimate with constants \(C \) independent of \(t \)
\[
(13) \quad ||A||_{L^m} \leq C||A||_{W^{1, \frac{m}{2}}} \leq C||du||_{L^m}^2 \leq C||du||_{H^{\frac{m}{2}}}^2 \leq C\varepsilon_0.
\]

For later use we derive further estimates for the connection 1-form \(A \) and the curvature \(F \), assuming that \(\varepsilon_0 > 0 \) is sufficiently small. For the sake of exposition, we indicate these estimates only in the case when \(m = 4 \) and refer to [20] for the general case. For \(1 \leq s \leq \infty \) again denote as \(L^{(p, s)}(\mathbb{R}^m) \) the Lorentz space.

Lemma 1.2. Let \(m = 4 \), and fix \(r = 8/5 \).

(i) For any time \(t \) there holds
\[
||\nabla^2 A||_{L^r} + ||\nabla \partial_0 A||_{L^r} \leq C||\nabla F||_{L^r} \leq C||du||_{L^s}||du||_{H^1}.
\]

(ii) For any time \(t \) we have
\[
||A||_{L^\infty} \leq C||du||_{L^{(8/3, 2)}}^2.
\]

Proof. (i) To estimate \(\nabla^2 A \), observe that equation (11) implies
\[
(14) \quad ||\nabla^2 A||_{L^r} \leq C||\nabla [A, A]||_{L^r} + C||\nabla F||_{L^r}.
\]
By Hölder’s inequality and Sobolev’s embedding we can estimate
\[
||\nabla [A, A]||_{L^r} \leq 2||\nabla A||_{L^{r_1}}||A||_{L^m} \leq C||\nabla^2 A||_{L^r}||A||_{L^m},
\]
where
\[
1 \leq r_1 = \frac{1}{r} - \frac{1}{m} = \frac{3}{8}.
\]
From (13) and (14) then, for sufficiently small \(\varepsilon_0 > 0 \) we obtain
\[
||\nabla^2 A||_{L^r} \leq C||\nabla F||_{L^r}.
\]
The term \(\nabla F \) only involves terms of the form \(R(\nabla \partial_s u, \partial_\beta u) \) and \(\nabla R(\partial_s u, \partial_\beta u) \) and therefore may be estimated
\[
||\nabla F||_{L^r} \leq C(|\nabla du||du| + ||du||^3).
\]
Letting \(q = 8/2m \), so that \(1/r = 5/8 = 1/q + 1/2 \), upon estimating
\[
||\nabla F||_{L^r} \leq C(||\nabla du||_{L^q}||du||_{L^q} + ||du||^2_{L^q}||du||_{L^q}),
\]
from Sobolev’s embedding \(||du||_{L^q} \leq C||du||_{H^1} \leq C \) we conclude that
\[
||\nabla^2 A||_{L^r} \leq C||\nabla F||_{L^r} \leq C||du||_{L^q}||du||_{H^1}.
\]
To estimate \(\partial_0 A \) we note that the equations
\[
\partial_0 A_i = \partial_i A_0 + [A_i, A_0] + F_0i
\]
\[\Delta \partial_t A_0 + \partial_t \partial_0 [A_1, A_0] = \partial_t \partial_0 F_{0i}, \]

from (11) make exchanging of time derivative by spatial derivative possible and thus imply the desired estimate.

(ii) By the Sobolev embedding into Lorentz spaces and i), we have

\[\|A\|_{L^{(8,2)}} \leq C\|A\|_{L^{(8,2)}} \leq \|A\|_{W^{2,2}} \leq C\|du\|_{L^8}. \]

Therefore, and since for any \(m \geq 4 \) we have \(G_t \in L^{m,\infty} \), the dual of \(L^{(m,1)} \), using the representation of \(A \) given by (12) we obtain

\[\|A\|_{L^\infty} \leq C(\|A, A\|_{L^{(4,1)}}, \|F\|_{L^{(4,1)}}) \leq C(\|A\|_{L^{(8,2)}}^2 + \|\partial Q\|_{L^{(8,2)}}^2) \leq C\|du\|_{L^{(8,2)}}^2, \]

as claimed.

1.4. **Equivalence of Norms.** Estimate (13) implies the equivalence of the extrinsic \(H^s \)-norm of \(du \) and the \(H^s \)-norm of \(q \) for any \(s \), provided \(\varepsilon_0 > 0 \) is sufficiently small. To see this consider a vector field \(W \) in \(u^*TN \) whose coordinates in the frame \(\{e_a\} \) are given by

\[W = Q^a e_a = Qe \]

with

\[\|W\|_{L^2} = \|Q\|_{L^2}. \]

The extrinsic partial derivative of \(W \) can be computed from the covariant derivative and the second fundamental form \(B \) as

\[D_k W = \partial_k W + B(u)(\partial_k u, W) = (\partial_k Q + AQ)e; \]

that is,

\[\partial_k W = (\partial_k Q + AQ)e - B(u)(\partial_k u, Qe). \]

Therefore from (12), Sobolev embedding, and boundedness of the second fundamental form \(B \) we obtain

\[\|\partial W\|_{L^2} - \|\partial Q\|_{L^2} \leq C\|AQ\|_{L^2} + \|duQ\|_{L^2} \]

\[\leq C(\|A\|_{L^m} + \|\partial Q\|_{L^m})\|\partial Q\|_{L^2} \leq C\varepsilon_0 \|\partial Q\|_{L^2}. \]

By linearity of the map \(Q \mapsto W \) and interpolation we conclude the equivalence of the \(H^s \)-norms of \(Q \) and \(W \) for all \(0 \leq s \leq 1 \). The same argument establishes the equivalence of the covariant and extrinsic \(H^s \)-norms of \(W \) for \(0 \leq s \leq 1 \). By applying this argument iteratively to \(W = \nabla^\ell du \) for \(\ell = 0, 1, \ldots, \), we then obtain the equivalence of the \(H^s \)-norm of \(du \) and \(H^s \)-norm of \(q \) for any \(s \geq 0 \), provided \(\varepsilon_0 > 0 \) is sufficiently small.

1.5. **A priori bounds.** In order to obtain the a-priori bounds from which we may derive existence, we represent a local smooth solution \(u \) of (1), (4) in terms of the 1-form \(q \) given by (7), where the frame \(\{e_a\} \) is in Coulomb gauge.

From (8) then we have the equations

\[0 = D_\alpha \partial_\beta u - D_\beta \partial_\alpha u = (D_\alpha q_\beta - D_\beta q_\alpha)e, \]

where we denote

\[D_\alpha q_\beta = (\partial_\alpha + A_\alpha)q_\beta; \]

(15)
Again denoting as \(D_\alpha q^\beta e_\alpha \)
\((\partial_\alpha q^\beta + A^\gamma_{\alpha,\beta} q^\gamma)e_c. \)

Again the comma separates the form subscript from the vector subscript and does not indicate a differential.

That is, we have
\[
(16) \\
D_\alpha q^\beta - D_\beta q^\alpha = 0.
\]

Moreover, the wave map equation (1) yields the equation
\[
(17) \\
D^\alpha q^\alpha = 0.
\]

Differentiating (17) with respect to \(x^\beta \) and using (9), (16), we derive the covariant wave equation
\[
0 = D_\beta D^\alpha q^\alpha = D^\alpha D_\beta q^\alpha + F^\beta_\alpha q^\alpha = D^\alpha D_\alpha q^\beta + F^\beta_\alpha q^\alpha.
\]

Expanding this identity using (15), we obtain
\[
(18) \\
(\partial_t^2 - \Delta) q^\beta = 2A^\alpha \partial_\alpha q^\beta + (\partial^\rho A_\rho) q^\beta + A^\rho A_\alpha q^\beta + F^\rho_\alpha q^\alpha =: h^\beta.
\]

We can estimate \(q \) in terms of the initial data and \(h \) by using the Strichartz estimate for the linear wave equation
\[
(19) \\
\Box v = h, \quad v|_{t=0} = f, \quad v_t|_{t=0} = g.
\]

Again denoting as \(H^\gamma \) the homogeneous Sobolev space, and as \(L^{(p,r)}(\mathbb{R}^m) \) the Lorentz space, from Keel-Tao [9], Corollary 1.3, if \(h = 0 \) for any \(T > 0 \) we have
\[
\|v\|_{L_2^2([0,T];L^{2(m-1)}_m(\mathbb{R}^m))} + \|v\|_{C^0([0,T];H^\gamma(\mathbb{R}^m))} + \|v_t\|_{C^0([0,T];H^\gamma(\mathbb{R}^m))} \\
\leq C(\|f\|_{H^\gamma(\mathbb{R}^m)} + \|g\|_{H^\gamma(\mathbb{R}^m)}).
\]

where \(\gamma = \frac{m+1}{2(m-1)}. \) If \(m = 4 \), we have \(\gamma = \frac{5}{6} \) and the preceding becomes
\[
\|v\|_{L_2^2([0,T];L^6(\mathbb{R}^4))} + \|v\|_{C^0([0,T];H^{5/6}(\mathbb{R}^4))} + \|v_t\|_{C^0([0,T];H^{-1/6}(\mathbb{R}^4))} \\
\leq C(\|f\|_{H^{5/6}(\mathbb{R}^4)} + \|g\|_{H^{-1/6}(\mathbb{R}^4)}).
\]

By real interpolation between this estimate and the analogous estimate for derivatives of \(v \), and using the embedding (in the notation of [9])
\[
(L_2^2 L_6^6, L_2^2 W^{1,6}_x)_{\frac{1}{2},2} \hookrightarrow L_4^2 L_x^{(8,2)},
\]
we obtain
\[
(20) \\
\|v\|_{L_2^2 L_6^6} + \|dv\|_{C^0([0,T];L^2)} \leq C(\|f\|_{H^1} + \|g\|_{L^2}).
\]

By Duhamel's principle, for general \(h \) it then follows that
\[
(21) \\
\|v\|_{L_2^2 L_6^6} + \|dv\|_{C^0 L^2_x} \leq C(\|f\|_{H^1} + \|g\|_{L^2} + \|h\|_{L_4^2 L_x^2}).
\]

(The crucial gain of the Lorentz exponent by real interpolation was already observed by Keel and Tao [9] but was omitted in the final statement of their theorem.)

We will apply estimate (22) to equation (18) on any time interval \([0,T]\) such that \(\|dv\|_{H^2} \) remains sufficiently small, uniformly for \(0 < t < T \). Also using the
equivalence of the H^s-norms of du and q for $s \leq 1$ on any such time interval, we obtain
\[||du||_{C^0_t H^s} + ||du||_{L^2_t L^2} \leq C(||dq||_{C^0_t H^s} + ||q||_{L^2_t L^2}) \]
\[\leq C(||dq(0)||_{L^2} + ||h||_{L^1_t L^2}) \leq C(||du(0)||_{H^1} + ||h||_{L^1_t L^2}) \]
\[\leq C(||u_0||_{H^2} + ||u_1||_{H^1} + ||h||_{L^1_t L^2}). \]

To estimate the various terms in h we observe that by Lemma 1.2 at any time t
with $r_1 = 8/3$ we have
\[||h||_{L^2} \leq 2||A \partial q||_{L^2} + ||\partial Aq||_{L^2} + ||A^2 q||_{L^2} + ||Fq||_{L^2} \]
\[\leq 2||A||_{L^\infty} ||q||_{H^1} + (||\nabla A||_{L^1} + ||A^2||_{L^1} + ||F||_{L^1}) ||q||_{L^8}. \]
But Lemma 1.2 with $r = 8/5$ implies
\[||\nabla A||_{L^1} + ||A^2||_{L^1} + ||F||_{L^1} \leq C(||\nabla^2 A||_{L^r} + ||\nabla (A^2)||_{L^r} + ||\nabla F||_{L^r}) \]
\[\leq C(||du||_{L^8} ||du||_{H^1}). \]
Here we also used Sobolev's embedding and (13) to bound
\[||\nabla (A^2)||_{L^r} \leq C||\nabla A||_{L^r} ||A||_{L^4} \leq C||\nabla^2 A||_{L^r}. \]
From Lemma 1.2 we then obtain
\[||h||_{L^2} \leq C||q||_{L^8} ||du||_{L^8} ||du||_{H^1} + 2||A||_{L^\infty} ||q||_{H^1} \leq C||du||_{L^8} ||du||_{H^1}. \]

Using these estimates, we can bound h by
\[||h||_{L^1_t L^2_{x,t}} \leq C(||du||_{L^2_t L^2}) ||du||_{L^\infty_t H^1} \]
and we conclude that
\[||du||_{L^\infty_t H^1} + ||du||_{L^2_t L^2} \leq C(||u_0||_{H^2} + ||u_1||_{H^1} + ||du||_{L^2_t L^2}) \].
A global priori bound on $||du||_{L^\infty_t H^1} + ||du||_{L^2_t L^2}$ thus follows, provided $||u_0||_{H^2} + ||u_1||_{H^1}$ is sufficiently small.

1.6. **Existence.** Recall that $C^\infty \times C^\infty (\mathbb{R}^m; TN)$ is dense in $H^{\frac{m}{2}} \times H^{\frac{m}{2}-1}(\mathbb{R}^m; TN).$
We can thus find smooth data $(u_0^{(k)}, u_1^{(k)}) \rightarrow (u_0, u_1)$ in $H^{\frac{m}{2}} \times H^{\frac{m}{2}-1}(\mathbb{R}^m; TN).$
The local solutions $u^{(k)}$ to the Cauchy problem for (1) with data $(u_0^{(k)}, u_1^{(k)})$ by our a-priori bounds and regularity results for sufficiently small energy
\[||u_0||_{H^{\frac{m}{2}}}^{2} + ||u_1||_{H^{\frac{m}{2}-1}}^{2} < \varepsilon_0 \]
then may be extended as smooth solutions to (1), (4) for all time and will satisfy the uniform estimates
\[||du^{(k)}||_{C^0_t H^{\frac{m}{2}-1}} + ||du^{(k)}||_{L^2_t L^2} \leq C(||u_0^{(k)}||_{H^{\frac{m}{2}}} + ||u_1^{(k)}||_{H^{\frac{m}{2}-1}}) < C\varepsilon_0 \]
for sufficiently large $k.$

Hence as $k \rightarrow \infty$ a subsequence $u^{(k)} \rightarrow u$ weakly in $H^{\frac{m}{2}}_{loc}(\mathbb{R}^{m+1}),$ where
\[||du||_{C^0_t H^{\frac{m}{2}-1}} + ||du||_{L^2_t L^2} \leq C(||u_0||_{H^{\frac{m}{2}}} + ||u_1||_{H^{\frac{m}{2}-1}}). \]
Since $\frac{m}{2} \geq 2,$ by Rellich’s theorem for a further subsequence $du^{(k)} \rightarrow du$ converges pointwise almost everywhere, and u solves (1), (4), as claimed.
Wave maps with symmetries I

The H^1-energy is the only known conserved quantity for the wave map system. The case when $m = 2$ therefore is particularly interesting, because in this dimension the H^1-energy is critical and one may hope to obtain also global results and a characterization of singularities. Indeed, this is possible in the case of symmetry.

In this second lecture, we study co-rotational wave maps from $(1+2)$-dimensional Minkowski space into a target surface of revolution. In the third lecture, finally, we investigate rotationally symmetric wave maps on \mathbb{R}^{1+2}.

2.1. Corotational wave maps. Let N be a surface of revolution with metric
\[ds^2 = d\rho^2 + g^2(\rho)d\theta^2, \]
where $\theta \in S^1$ and with $g \in C^\infty(\mathbb{R})$ satisfying $g(0) = 0$, $g'(0) = 1$. Moreover, we assume that g is odd and either
\[g(\rho) > 0 \text{ for all } \rho > 0 \tag{23} \]
with
\[\int_0^\infty |g(\rho)| d\rho = \infty, \tag{24} \]
or, if N is compact, that g has a first zero $\rho_1 > 0$ where $g'(\rho_1) = -1$, and that g is periodic with period $2\rho_1$. Note that in this second case assumption (24) is trivially satisfied. The case (23) corresponds to non-compact surfaces; condition (24) is a technical assumption needed to rule out that N contains a “sphere at infinity”.

We regard (ρ, θ) as polar coordinates on N. Letting (r, ϕ) be the usual polar coordinates on \mathbb{R}^2, we then consider equivariant wave maps $u: \mathbb{R} \times \mathbb{R}^2 \rightarrow N$ given by
\[\rho = h(t, r), \theta = \phi. \]
The equation (2) for a wave map $u = (u^1, \ldots, u^n): \mathbb{R}^{2+1} \rightarrow N \hookrightarrow \mathbb{R}^n$, that is
\[\square u^i = B^i_{jk}(u)\partial_{u^j}\partial^\phi u^k, \quad 1 \leq i \leq n, \tag{25} \]
in this co-rotational case simplifies to the nonlinear scalar equation
\[\square h + \frac{f(h)}{r^2} = 0, \tag{26} \]
where
\[\square h = h_{tt} - \Delta h = h_{tt} - \frac{1}{r}(rh_r)_r = h_{tt} - h_{rr} - \frac{h_r}{r} \]
and with $f(h) = g(h)g'(h)$. If $N = S^2$, for example, we have $g(h) = \sin(h)$ and $f(h) = \frac{1}{2} \sin(2h)$.

In [21], Shatah and Tahvildar-Zadeh showed that the initial value problem for (25) with smooth equivariant data
\[(u, u_t)|_{t=0} = (u_0, u_1) \tag{27} \]
of finite energy admits a unique smooth solution for small time, which may be extended for all time if the target surface N is geodesically convex.
The latter condition is equivalent to the assumption \(g' (\rho) \geq 0 \) for all \(\rho > 0 \). This condition was later weakened by Grillakis [4] who showed that it suffices to assume
\[
(g(\rho) \rho)' = g(\rho) + g'(\rho) \rho > 0 \quad \text{for} \quad \rho > 0.
\]
Note that this hypothesis, in particular, implies conditions (23) and (24).

In [23] we improve these results and show that conditions (23) and (24) already suffice for proving global well-posedness of the Cauchy problem for (26). In fact, we show that for general target surfaces \(N \) satisfying (24) the appearance of a singularity in (26) is related to the existence of a non-constant harmonic map \(\varphi: S^2 \to N \), thereby confirming a long-standing conjecture about wave maps in this special, co-rotational case. But if \(N \) also satisfies (23), any co-rotational harmonic map \(u: S^2 \to N \) is constant, and global well-posedness follows.

On the other hand, when \(N = S^2 \) on the basis of numerical work of Bizon et al. [1] and Isenberg-Liebling [8] it had been conjectured that for suitable initial data equivariant wave maps \(u: \mathbb{R} \times \mathbb{R}^2 \to S^2 \) indeed may develop singularities in finite time. In a penetrating analysis, Krieger-Schlag-Tataru [14] and Rodnianski-Sterbenz [17] recently were able to confirm this conjecture also theoretically and give a rigorous proof of blow-up.

2.2. Results. By the results of Shatah-Tahvildar-Zadeh [21] singularities of co-rotational maps may be detected by measuring their energy
\[
E(u(t), R) = \frac{1}{2} \int_{B_R(0)} |Du(t)|^2 \, dx,
\]
with \(|Du|^2 = |u_t|^2 + |\nabla u|^2\). In terms of \(h = h(t) \) we have
\[
E(u(t), R) = \pi \int_0^R \left(|Dh|^2 + \frac{g^2(h)}{r^2} \right) \, r \, dr.
\]
We also let
\[
E(u(t)) = \lim_{R \to \infty} E(u(t), R).
\]
By [21] there exists a number \(\varepsilon_0 = \varepsilon_0(N) > 0 \) such that the Cauchy problem for co-rotational wave maps for smooth data with energy \(E(u(0)) < \varepsilon_0 \) admits a global smooth solution; confer also [19], Theorem 8.1. By finite speed of propagation, similarly we obtain well-posedness of the Cauchy problem for time \(t \leq R \), provided \(E(u(0), R) < \varepsilon_0 \).

Conversely, let \(u: [0, t_0] \times \mathbb{R}^2 \to N \) be a smooth co-rotational wave map. Then \(z_0 = (t_0, 0) \) is a (first) singularity and \(t_0 \) is the blow-up time of \(u \) if and only if there holds
\[
\inf_{0 \leq t < t_0} E(u(t), t_0 - t) \geq \varepsilon_0 > 0.
\]
In fact, for any map \(u \) satisfying (28) the space-time gradient \(Du \) cannot be bounded near the origin \((0, 0)\). On the other hand, negating condition (28) we can find a time \(t < t_0 \) such that
\[
E(u(t), R) < \varepsilon_0
\]
for some \(R > t_0 - t \) and the results quoted above will allow us to extend \(u \) smoothly as a solution to (25) on a neighborhood of \(z_0 = (t_0, 0) \). Observe that, by symmetry, \(u \) can only blow up at the origin.
We can now state our main result.

Theorem 2.1. Let u be a smooth co-rotational solution to (25) blowing up at time t_0. Then there exist sequences $R_i \downarrow 0$, $t_i \uparrow t_0 (i \to \infty)$ such that

$$u_i(t, x) = u(t_i + R_i t, R_i x) \to u_\infty(t, x)$$

strongly in $H^1_{loc}([-1, 1] \times \mathbb{R}^2)$, where u_∞ is a non-constant, time-independent solution of (25) giving rise to a non-constant, smooth co-rotational harmonic map $\pi: S^2 \to N$.

As a consequence, for target manifolds that do not admit non-constant co-rotational harmonic spheres we obtain global existence of smooth solutions to the Cauchy problem (25), (27) for smooth co-rotational data. In particular, we can improve Grillakis’ result as follows.

Theorem 2.2. Suppose N is a surface of revolution with metric $ds^2 = d\rho^2 + g^2(\rho)d\theta^2$ satisfying (23) and (24). Then for any smooth co-rotational data the Cauchy problem (25), (27) admits a unique global smooth solution.

As we shall see in Lecture 3, similar results also hold true in the case of radially symmetric wave maps $u = u(t, r)$ from \mathbb{R}^{1+2} to an arbitrary closed target manifold; confer [24], [25].

2.3. Notation

Let $u: [0, t_0] \times \mathbb{R}^2 \to N$ be a smooth co-rotational wave map blowing up at time t_0 and let $h = h(t, r)$ be the associated solution of (26).

For convenience we shift and reverse time and then scale our space-time coordinate $z = (t, x)$ so that in our new coordinates u is an equivariant solution to (25) on $[0, 1] \times \mathbb{R}^2$ blowing up at the origin.

Letting

$$K_T = \{z = (t, x); 0 \leq |x| \leq t \leq T\}$$

be the forward light cone with vertex at the origin, truncated at height T, with lateral boundary

$$M_T = \{(t, x) \in K_T; |x| = t\},$$

we also introduce the flux

$$\text{Flux}(u, T) = \frac{1}{2} \int_{M_T} |D^u|^2 \, d\sigma = \pi \int_T^0 \left(|h_t + h_r|^2 + \frac{g^2(h)}{r^2} \right) \left|_{r=r} r \, dr.\right.$$

Here, $|D^u|^2$ denotes the energy of all derivatives in directions tangent to M_T.

2.4. Basic estimates

We recall the energy bounds and decay estimates for (25) from [21]; these can also be found in [19], Chapter 8.1. Since $B(u)(v, w) \perp T_u N$ from (25) we obtain the conservation law

$$0 = \Box u \cdot u_t = \frac{\partial}{\partial t} e - \text{div} m$$

for the densities

$$e = \frac{1}{2}(|\nabla u|^2 + |u_t|^2), \quad m = \nabla u \cdot u_t.$$
of energy and momentum. Observe that $|m| \leq \epsilon$. Integrating (29) over a truncated cone $K^{T_0} \setminus K^T$ for $0 < T \leq T_0 \leq 1$ we then find the identity
\[
\int_{\{T\} \times B_T(0)} e \, dx + \frac{1}{2} \int_{M^{T_0} \setminus M^T} |D||u|^2 \, do = \int_{\{T_0\} \times B_{T_0}(0)} e \, dx.
\]
From this we deduce the energy inequality
\[
E(u(t), R) \leq E(u(t + \tau), R + |\tau|).
\]
for any $t, \tau, R > 0$. (Of course, in the present case we only consider values such that $0 < t, t + \tau \leq 1$.)

Moreover, we conclude that
\[
\lim_{T \to 0} \int_{\{T\} \times B_T(0)} e \, dx
\]
exists and we have decay of the flux
\[
\text{Flux}(u, T) \to 0 \text{ as } T \downarrow 0.
\]
Condition (24) together with the energy inequality implies the uniform bounds
\[
\sup_{r < R} |h(t, r)| \leq C(E(u(t), R)) \text{ for any } R > 0
\]
for the function h associated with u, where $C(s) \to 0$ as $s \to 0$. Indeed, let
\[
G(s) = \int_0^s |g(\rho)| \, d\rho.
\]
Since (24) implies that $G(s) \to \infty$ as $s \to \infty$ it then suffices to estimate
\[
\begin{aligned}
G(|h(t, R)|) &= \int_0^R (G(|h(t, r)|))_r \, dr \leq \int_0^R |g(h(t, r))||h_r(t, r)| \, dr \\
&\leq \frac{1}{2} \int_0^R (|h_r|^2 + \frac{g^2(h(t, r))}{r^2}) \, dr \leq CE(u(t), R).
\end{aligned}
\]
Moreover we have exterior energy decay: For any $0 < \lambda \leq 1$ as $t \to 0$ there holds
\[
E(u(t), t) - E(u(t), \lambda t) \to 0.
\]
An immediate consequence of (33) is the decay of time derivatives: Suppose that N satisfies (24). Then
\[
\frac{1}{T} \int_{K^T} |u_t|^2 \, dz \to 0 \text{ as } T \to 0.
\]
These estimates seem particular to the rotationally symmetric setting. The (lengthy) proof of (33) and the derivation of (34) are given in the appendix.

Finally, as is also well-known, in view of the uniform energy bounds (30) above, we have uniform Hölder continuity away from $x = 0$.

Lemma 2.3. For any $r_0 > 0$, any (t, r) and (s, q) with $2r_0 \leq q \leq s < t \leq 1, 2r_0 \leq r \leq t$ there holds
\[
|h(t, r) - h(s, q)|^2 \leq C(|r - q| + |t - s|)
\]
with a constant C depending only on the energy $E(u(1), 1)$ and r_0.

\textbf{Proof.} Given \(r_0 > 0 \), for any \(t \) and \(r_0 \leq r' < r \leq t \leq 1 \) by Hölder's inequality and (30) we have

\[
|h(t, r) - h(t, r')|^2 \leq \left(\int_{r'}^r |h_r| \, dr'' \right)^2 \leq \frac{r - r'}{r'} \cdot \int_{r'}^r |h_r|^2 \, dr'' \leq C \frac{r - r'}{r_0},
\]

while for any \(s < t \) and \(r_0 \leq r' \leq s \) we find

\[
|h(s, r') - h(t, r')|^2 \leq \left(\int_s^t |h(t', r')| \, dt' \right)^2 \leq \frac{t - s}{r_0} \int_s^t |h(t', r')|^2 \, dt'.
\]

Combining these inequalities, for any \((t, r) \) and \((s, q) \) with \(2r_0 \leq q \leq s < t \leq 1, 2r_0 \leq r' \leq t \) and any \(r' \) with \(r_0 \leq r' \leq r_1 := \inf \{ q, r \} \) we find

\[
|h(t, r) - h(s, q)|^2 \leq C \frac{r - r' + q - r'}{r_0} + 2 \frac{t - s}{r_0} \int_s^t |h(t', r')|^2 \, dt'.
\]

Taking the average with respect to \(r' \in [r_1 - \min \{ r_0, |r - q| + |t - s| \}, r_1] \) we obtain the claim. \(\square \)

2.5. \textbf{Proofs of Theorems} 2.1 \textbf{and} 2.2. \textbf{Fix a number} \(\varepsilon_1 = \varepsilon_1(N) > 0 \) \textbf{to be determined below}. \textbf{For} \(0 < t \leq 1 \) \textbf{then choose} \(R = R(t) > 0 \) \textbf{so that}

\[
\varepsilon_1 \leq E(u(t), 6R(t)) \leq 2\varepsilon_1.
\]

\textbf{Applying the energy inequality} (30), \textbf{for any} \(|\tau| \leq 5R \) \textbf{we have}

\[
E(u(t + \tau), R) \leq E(u(t), 6R) \leq 2\varepsilon_1
\]

and similarly

\[
\varepsilon_1 \leq E(u(t + \tau), 6R + |\tau|) \leq E(u(t + \tau), 11R).
\]

We will choose \(\varepsilon_1 \) \textbf{so that} \(2\varepsilon_1 < \varepsilon_0 \). \textbf{Then, in particular}, \textbf{from} (28) \textbf{and} (36) \textbf{we deduce the inequality}

\[
6R(t) < t
\]

for all \(t \). \textbf{In fact}, \textbf{we obtain a much stronger result}.

\textbf{Lemma 2.4.} \(R(t)/t \rightarrow 0 \) \textbf{as} \(t \rightarrow 0 \).

\textbf{Proof.} Suppose by \textbf{contradiction} that for some sequence \(t_i \downarrow 0 \) \((i \rightarrow \infty)\) \textbf{with associated radii} \(R_i = R(t_i) \) \textbf{there holds} \(6R_i \geq \lambda t_i \) \textbf{for some constant} \(\lambda > 0 \). \textbf{Then} \textbf{from} (28) \textbf{and} (36) \textbf{we deduce that}

\[
0 < \varepsilon_0 - 2\varepsilon_1 \leq E(u(t_i), t_i) - E(u(t_i), 6R_i) \leq E(u(t_i), t_i) - E(u(t_i), \lambda t_i),
\]

\textbf{contradicting} (33) \textbf{for large} \(i \in \mathbb{N} \). \(\square \)

The following lemma is the main new technical ingredient in our work [23].

Consider the intervals \(\Lambda_{R(t)}(t) = [t - R(t), t + R(t)] \), \(0 < t \leq 1 \). By Vitali’s theorem we can find a countable subfamily of disjoint intervals \(\Lambda_i = \Lambda_{R(t_i)}(t_i), i \in \mathbb{N} \), \textbf{such that} \(0, 1] \subseteq \cup_{i=1}^{\infty} \Lambda_i^* \), \textbf{where} \(\Lambda_i^* = \Lambda_{5R(t_i)}(t_i) \). \textbf{Observe that} (39) \textbf{implies}

\[
\inf \Lambda_i^* = t_i - 5R(t_i) > R(t_i) =: R_i
\]
for each \(i \). For any \(\tau > 0 \) the interval \([\tau, 1]\) is covered by finitely many intervals \(\Lambda_i^\tau \) which, however, fail to cover \([0, 1]\) completely in view of (40). Therefore, we may assume that \(t_i \to 0 \) as \(i \to \infty \).

Lemma 2.5. With the above notations there holds
\[
\liminf_{i \to \infty} \frac{1}{R_i} \int_{\Lambda_i} \int_{B_{R_i}(0)} |u_i|^2 \, dx \, dt = 0.
\]

Proof. Negating the assertion, we can find a number \(\delta > 0 \) and an index \(i_0 \in \mathbb{N} \) such that
\[
\int_{\Lambda_i} \int_{B_{R_i}(0)} |u_i|^2 \, dx \, dt \geq \delta R_i \quad \text{for} \quad i \geq i_0.
\]
Given \(0 < T < \inf \bigcup_{i < i_0} \Lambda_i^\ast \), let \(I_0 = \{ i ; \inf \Lambda_i^\ast < T \} \subset \{ i_0, i_0 + 1, \ldots \} \). Observe that
\[
\bigcup_{i \in I_0} \Lambda_i \subset [0, T].
\]
By (40) we have
\[
R_i < \inf \Lambda_i^\ast = t_i - 5R_i < T
\]
and therefore
\[
t_i + R_i < T + 6R_i < 7T
\]
for all \(i \in I_0 \). It follows that
\[
\bigcup_{i \in I_0} \Lambda_i \subset [0, 7T].
\]

By choice of \(I_0 \), our assumption (41), and in view of (42) we now obtain that
\[
\delta T \leq \delta \sum_{i \in I_0} \text{diam} \Lambda_i^\ast = 10 \delta \sum_{i \in I_0} R_i \leq 10 \sum_{i \in I_0} \int_{\Lambda_i} \int_{B_{R_i}(0)} |u_i|^2 \, dx \, dt
\]
\[
= 10 \sum_{i \in I_0} \int_{\Lambda_i} \int_{B_{R_i}(0)} |u_i|^2 \, dx \, dt \leq 10 \int_{K^T} |u_i|^2 \, dz,
\]
where we also used the fact that the intervals \(\Lambda_i \) are disjoint. But for small \(T > 0 \) this contradicts (34), thus proving the lemma.

Proof of Theorem 2.1. i) Letting
\[
u_i(t, x) = u(t_i + R_i t, R_i x), \quad i \in \mathbb{N},
\]
from Lemma 2.5 for a suitable subsequence we obtain
\[
\int_{-1}^1 \int_{B_{R_i}(0)} |\partial_t u_i|^2 \, dx \, dt \to 0 \quad \text{as} \quad i \to \infty,
\]
where \(r_i = t_i / R_i - 1 \to \infty \) as \(i \to \infty \) on account of Lemma 2.4. Relabelling, we may assume that (44) holds true for the original sequence \((u_i) \).

Moreover, the energy inequality (30) implies the uniform bound
\[
E(u_i(t), r_i) \leq E(u_1, 1) =: E_0
\]
for all \(i \in \mathbb{N} \) and \(|t| \leq 1 \).

Hence we may extract a further subsequence such that \(u_i \rightharpoonup u_\infty \) weakly in \(H_{loc}^1 \) and locally uniformly away from \(x = 0 \) on \([-1, 1] \times \mathbb{R}^2 \) as \(i \to \infty \), and similarly for the associated functions \(h_i \). Their limit \(h_\infty \) then is associated with \(u_\infty \) and is a
time-independent solution of (26) away from \(x = 0 \). It follows that \(u_\infty(t, x) = \overline{\mathbf{r}}(x) \) is a time-independent solution of (25) on \([-1, 1] \times (\mathbb{R}^2 \setminus \{0\})\); that is, \(\overline{\mathbf{r}} : \mathbb{R}^2 \setminus \{0\} \rightarrow N \) is a smooth, co-rotational harmonic map with finite energy

\[
E(\overline{\mathbf{r}}) = \int_{\mathbb{R}^2} |\nabla u|^2 \, dx \leq \liminf_{i \rightarrow \infty} E(u_i(t), r_i) \leq E_0.
\]

By [18] then \(\overline{\mathbf{r}} \) extends to a smooth harmonic map \(\overline{\mathbf{r}} : \mathbb{R}^2 \rightarrow N \). Since \(\mathbb{R}^2 \) is conformal to \(S^2 \setminus \{p_0\} \) by stereographic projection from any point \(p_0 \in S^2 \) and since the composition of a harmonic map with a conformal transformation again yields a harmonic map with the same energy, we may thus regard \(\overline{\mathbf{r}} \) as a harmonic map from \(S^2 \setminus \{p_0\} \) to \(N \). Finally, recalling that \(E(\overline{\mathbf{r}}) < \infty \) and again using [18], we see that the map \(\overline{\mathbf{r}} \) extends to a smooth equivariant harmonic map \(\overline{\mathbf{r}} : S^2 \rightarrow N \).

ii) To show that \(\overline{\mathbf{r}} \) is non-constant we now establish strong convergence

\[
u_i \rightarrow u_\infty \text{ in } H^1_{\text{loc}}([0,1], S^2)
\]
as \(i \rightarrow \infty \). Recalling (37), we have

\[
E(u_i(t), 1) \leq 2\varepsilon_1, \quad E(u_\infty(t), 1) \leq 2\varepsilon_1
\]
uniformly in \(i \) and \(|t| \leq 1 \). Hence, from (32) for sufficiently small \(\varepsilon_1 > 0 \) the images of \(B_1(0) \) under \(u_i(t) \) or \(u_\infty \) are all contained in a fixed coordinate system around the center of symmetry \(O \in N \). In addition, we can achieve that

\[
\sup_{|t|, |x| \leq 1} |B(u_i)||u_i - u_\infty| \leq \frac{1}{4}
\]
uniformly in \(i \in \mathbb{N} \), provided \(\varepsilon_1 > 0 \) is chosen sufficiently small.

For any \(\varphi \in C^\infty_0([-1,1] \times \mathbb{R}^2) \) with \(0 \leq \varphi \leq 1 \) then, upon multiplying the equation (25) for \(u_i \) by \(\langle u_i - u_\infty \rangle \varphi \) and integrating by parts we obtain

\[
\int_{\mathbb{R}^2} |D(u_i - u_\infty)|^2 \varphi \, dz \leq \int_{\mathbb{R}^2} |B(u_i)||Du_i|^2 |u_i - u_\infty| \varphi \, dz + I,
\]
with error

\[
|I| \leq C \int_{\mathbb{R}^2} (|\partial_t u_i|^2 \varphi + |Du_i||u_i - u_\infty||D\varphi|) \, dz
+ \sum_{\alpha} \int_{\mathbb{R}^2} \partial_\alpha u_\infty \partial_\alpha (u_i - u_\infty) \varphi \, dz \rightarrow 0 \text{ as } i \rightarrow \infty
\]
in view of (44) and since \(u_i \rightarrow u_\infty \) strongly in \(L^2_{\text{loc}} \) by Rellich’s theorem.

Now we estimate

\[
|Du_i|^2 \leq 2|D(u_i - u_\infty)|^2 + 2|Du_\infty|^2
\]
and observe that

\[
\int_{\mathbb{R}^2} |Du_\infty|^2 |u_i - u_\infty| \varphi \, dz \rightarrow 0
\]
as \(i \rightarrow \infty \) by bounded almost everywhere convergence \(u_i \rightarrow u_\infty \) and Lebesgue’s theorem on dominated convergence. Also recalling (46), we thus may absorb the first term on the right of (47) on the left to obtain that

\[
\int_{\mathbb{R}^2} |D(u_i - u_\infty)|^2 \varphi \, dz \rightarrow 0
\]
as \(i \to \infty \). Since \(\varphi \) as above is arbitrary, this yields the desired convergence \(u_i \to u_\infty \) in \(H^1_{loc}([-1,1] \times \mathbb{R}^2) \).

But, recalling (38), we also have the uniform lower bound
\[
\varepsilon_1 \leq E(u_i(t),1)
\]
for all \(i \in \mathbb{N} \) and \(|t| \leq 1 \) and we conclude that \(u_\infty \neq \text{const} \), as claimed. Therefore, also \(\overline{\varphi} : S^2 \to N \) is non-constant, and the proof of Theorem 2.1 is complete.

\[\square\]

Proof of Theorem 2.2. In view of Theorem 2.1 it suffices to show that any co-rotational harmonic map \(\overline{\varphi} : S^2 \to N \) with finite energy is constant. Let \(\overline{\varphi} \) be such a map, viewed as a map \(\overline{\varphi} : \mathbb{R}^2 \to N \). Also consider the associated distance function \(\rho = \overline{h}(r) \), a time-independent solution of (26). The image \(\overline{\varphi}(S^2) \) being compact there exists \(r_0 > 0 \) such that
\[
|\overline{h}(r_0)| = \max_{r > 0} |\overline{h}(r)|.
\]
Hence \(\overline{h}_r(r_0) = 0 \) and therefore \(\overline{\varphi}_r(x) = 0 \) for any \(x \in \partial B_{r_0}(0) \).

Since any harmonic map \(\overline{\varphi} : \mathbb{R}^2 \to N \) with finite energy is conformal, the vanishing of \(\overline{\varphi}_r \) implies that also \(\overline{\varphi}_\theta \) vanishes along \(\partial B_{r_0}(0) \), and we conclude that \(\overline{\varphi} \equiv \text{const} \) on \(\partial B_{r_0}(0) \). Equivariance of \(\overline{\varphi} \) then implies that \(g(\overline{h}(r_0)) = 0 \) and hence \(\overline{h}(r_0) = 0 \) on account of (23). But then \(\overline{h} \equiv 0 \) by choice of \(r_0 \), and \(\overline{\varphi} \equiv \text{const} \equiv O \), as desired.

\[\square\]

Wave maps with symmetries II

In this final lecture we show that the Cauchy problem for radially symmetric wave maps \(u(t,x) = u(t,|x|) \) from the \((1+2)\)-dimensional Minkowski space to an arbitrary smooth, compact Riemannian manifold without boundary is globally well-posed for arbitrary smooth, radially symmetric data.

3.1. The result.
Again let \(N \) be a smooth, compact Riemannian \(k \)-manifold without boundary, isometrically embedded in \(\mathbb{R}^n \). Given smooth, radially symmetric data \((u_0, u_1) = (u_0(|x|), u_1(|x|)) : \mathbb{R}^2 \to TN \), by a result of Christodoulou-Tahvildar-Zadeh [2] there is a unique smooth solution \(u = (u^1, \ldots, u^n) = u(t,|x|) \) for small time to the Cauchy problem for the equation
\[
\Box u = u_{tt} - \Delta u = B(u)(\partial_\alpha u, \partial^\alpha u) \perp T_u N,
\]
with initial data
\[
(u, u_t)_{t=0} = (u_0, u_1).
\]
Here \(B \) again denotes the second fundamental form of \(N \).

As shown by Christodoulou-Tahvildar-Zadeh [2], the solution may be extended globally, if the energy of \(u \) is small or if the range of \(u \) is contained in a convex part of the target \(N \). Either condition, however, turns out to be unnecessary. In fact, by using the blow-up analysis from [23] that we presented in the second lecture, in [24], [25] we showed that the local solution may be extended globally for any target manifold.
Theorem 3.1. Let $N \subset \mathbb{R}^n$ be a smooth, compact Riemannian manifold without boundary. Then for any radially symmetric data $(u_0, u_1) = (u_0(|x|), u_1(|x|)) \in C^\infty(\mathbb{R}^2; TN)$ there exists a unique, smooth solution $u = u(t, |x|)$ to the Cauchy problem (48), (49), defined for all time.

The regularity requirements on the data may be relaxed; we consider smooth data mainly for ease of exposition.

Summarizing the ideas of the proof, as in the co-rotational symmetric setting of [23] that we described in the second lecture, again we argue indirectly. Thus, we suppose that the local solution u to (48), (49) becomes singular in finite time. As before we then obtain a sequence of rescaled solutions u_ℓ on the region $[1, 1] \times \mathbb{R}^2$ with energy bounds and such that $\partial_t u_\ell \to 0$ in $L^2_{loc}([1, 1] \times \mathbb{R}^2)$. Finally, rephrasing the wave map equation intrinsically as described in the first lecture, and imposing the exponential gauge, we establish energy decay. But this contradicts the blow-up criterion of Christodoulou and Tahvildar-Zadeh [2] and completes the proof.

I would like to thank Jalal Shatah for suggesting the use of the exponential gauge.

3.2. Basic estimates

Let $u = u(t, |x|) : [0, t_0] \times \mathbb{R}^2 \to N \subset \mathbb{R}^n$ be a smooth radially symmetric wave map blowing up at time t_0. Necessarily, blow-up occurs at $x = 0$. As before, upon shifting and reversing time and then scaling our space-time coordinates suitably, we may assume that u is a smooth radial solution to (48) on $[0, 1] \times \mathbb{R}^2$ blowing up at the origin. Again let

$$K^T = \{ z = (t, x); 0 \leq |x| \leq t \leq T \}$$

be the truncated forward light cone from the origin with lateral boundary

$$M^T = \{(t, x) \in K^T; |x| = t\}.$$

Denoting as

$$e = \frac{1}{2}|Du|^2 = \frac{1}{2}(|u_t|^2 + |u_r|^2), \quad f = \frac{1}{2}|D^j u|^2 = \frac{1}{2}|u_t + u_r|^2$$

the energy and flux density of u, and letting

$$E(u, R) = \int_{B_R(0)} e \, dx, \quad \text{Flux}(u, T) = \int_{M^T} f \, do$$

be the local energy and the flux through M^T, then from [2], [21] we have the following results just as in the co-rotational setting. The identity (29) again leads to the energy inequality: For any $t, \tau, R > 0$ there holds

$$E(u(t), R) \leq E(u(t + \tau), R + |\tau|). \quad (50)$$

(Again, we only consider values such that $0 < t, t + \tau < 1$.) Together with [2] this yields the blow-up criterion: There exists $\varepsilon_0 = \varepsilon_0(N) > 0$ such that

$$E(u(t), t) \geq \varepsilon_0 \text{ for all } 0 < t \leq 1. \quad (51)$$

Moreover, we have flux decay:

$$\text{Flux}(u, T) \to 0 \text{ as } T \to 0. \quad (52)$$
As shown in the Appendix, similar to (33) and (34) we also have *exterior energy decay* and *decay of time derivatives:* For any $0 < \lambda \leq 1$ as $t \to 0$ there holds

\[(53) \quad E(u(t), t) - E(u(t), \lambda t) \to 0,\]

and

\[(54) \quad \frac{1}{T} \int_{K^T} |u_t|^2 \, dz \to 0 \quad \text{as} \quad T \to 0.\]

Moreover, as shown in Lemma 2.3, the function u is locally uniformly Hölder continuous on $[0, 1] \times B_1(0)$ away from $x = 0$.

Fix a number $0 < \varepsilon_1 = \varepsilon_1(N) < \varepsilon_0/2$ as determined below. For $0 < t \leq 1$ we again choose $R = R(t)$ so that

\[(55) \quad \varepsilon_1 \leq E(u(t), 6R) \leq 2\varepsilon_1.\]

Then from (50) for any $|\tau| \leq 5R$ we have

\[(56) \quad E(u(t + \tau), R) \leq E(u(t), 6R) \leq 2\varepsilon_1 < \varepsilon_0\]

and similarly

\[(57) \quad \varepsilon_1 \leq E(u(t + \tau), 6R + |\tau|) \leq E(u(t + \tau), 11R).\]

In particular, combining (51) and (55) we deduce the inequality

\[(58) \quad 6R(t) \leq t\]

for all t. In fact, from (51), (53), and (55) as in Lemma 2.4 we even obtain that

\[(59) \quad R(t)/t \to 0 \quad \text{as} \quad t \downarrow 0.\]

As in Lemma 2.5 we consider the intervals $\Lambda_{R(t)}(t) = [t - R(t), t + R(t)], 0 < t \leq 1$. An application of Vitali’s covering theorem and (54) then yields a sequence $t_l \to 0$ with corresponding radii $R_l = R(t_l)$ such that

\[\frac{1}{R_l} \int_{\Lambda_l} \left(\int_{B_1(0)} |u_t|^2 \, dx \right) \, dt \to 0\]

as $l \to \infty$, where $\Lambda_l = \Lambda_{R_l}(t_l), l \in \mathbb{N}$. Rescale, letting

\[u_l(t, x) = u(t_l + R_l t, R_l x), l \in \mathbb{N}.\]

Observe that u_l solves (48) on $[-1, 1] \times \mathbb{R}^2$ with

\[(60) \quad \int_{-1}^{1} \left(\int_{D_l(t)} |\partial_t u_l|^2 \, dx \right) \, dt \to 0 \quad \text{as} \quad l \to \infty,\]

where

\[D_l(t) = \{x; R_l |x| \leq t_l + R_l t\}\]

exhausts \mathbb{R}^2 as $l \to \infty$ uniformly in $|t| \leq 1$ on account of (59).

Moreover, from (50), (51), (56), and (57) we have the uniform energy estimates

\[(61) \quad \frac{1}{2} E(u_l(t), 1) \leq \varepsilon_1 \leq E(u_l(t), 11)\]

and

\[(62) \quad \varepsilon_0 \leq \frac{1}{2} \int_{D_l(t)} |D u_l|^2 \, dx = E(u(t_l + R_l t), t_l + R_l t) \leq E(u(1), 1) =: E_0,\]
uniformly for $|t| \leq 1$ and sufficiently large $l \in \mathbb{N}$. Hence, we may assume that $u_l \to u_\infty$ weakly in $H^1_{loc}([-1,1] \times \mathbb{R}^2)$ and locally uniformly away from $x = 0$, where $u_\infty(t, x) = u_\infty(|x|)$ is a time-independent radial map $u_\infty : \mathbb{R}^2 \to N$ with finite energy $E(u_\infty) \leq E_0$.

Lemma 3.2. We have $u_\infty \equiv \text{const}$, and $Du_l \to 0$ in $L^2_{loc}([-1,1] \times (\mathbb{R}^2 \setminus \{0\})$ as $l \to \infty$.

Proof. We claim that u_∞ is smooth and harmonic. Indeed, fix any function $\phi \in C^\infty_{0}([-1,1] \times \mathbb{R}^2)$ vanishing near $x = 0$. Upon multiplying (48) by $(u_l - u_\infty)\phi$ and integrating by parts, we then have

$$\int_{\mathbb{R}^2} |Du_l - u_\infty|^2 \phi \, dz = \int_{\mathbb{R}^2} (B(u_l)(\partial_\alpha u_l, \partial_\beta u_l), u_l - u_\infty) \phi \, dz + I,$$

where

$$|I| \leq 2 \int_{\mathbb{R}^2} |\partial_\alpha u_l|^2 \phi \, dz + \int_{\mathbb{R}^2} |Du_l||u_l - u_\infty||D\phi| \, dz$$

$$+ \left| \int_{\mathbb{R}^2} Du_\infty \cdot D(u_l - u_\infty) \phi \, dz \right| \to 0$$

as $l \to \infty$. Observing that $(u_l - u_\infty)\phi \to 0$ uniformly, moreover, we have

$$\int_{\mathbb{R}^2} (B(u_l)(\partial_\alpha u_l, \partial_\beta u_l), u_l - u_\infty) \phi \, dz \to 0$$

as $l \to \infty$, and $u_l \to u_\infty$ strongly in $H^1_{loc}([-1,1] \times (\mathbb{R}^2 \setminus \{0\})$. Thus, we may pass to the distribution limit in equation (48) for u_l and find that u_∞ is weakly harmonic on $\mathbb{R}^2 \setminus \{0\}$. Since u_∞ has finite energy, by results of [18] then u_∞ is smooth and extends to a smooth, radially symmetric harmonic map $u_\infty : \mathbb{R}^2 \to N$.

Next recall that a harmonic map $u_\infty : \mathbb{R}^2 \to N$ with finite energy is conformal; in particular, there holds $|\partial_r u_\infty| = \frac{1}{r} |\partial_\phi u_\infty| \equiv 0$, and u_∞ must be constant. \hfill \Box

Finally we note the following estimate similar to [2], Lemma 4.

Lemma 3.3. For any $\psi = \psi(t) \in C^\infty_0([-1,1])$ there holds

$$\int_{-1}^1 \int_{B_1(0)} |\partial_t u_l|^2 \psi |\log |x|| \, dx \, dt = \int_{-1}^1 \int_{B_1(0)} e(u_l)\psi \, dx \, dt + o(1),$$

where $o(1) \to 0$ as $l \to \infty$.

Proof. In radial coordinates $r = |x|$, equation (48) for $u = u_l$ may be written in the form

$$u_{tt} - \frac{1}{r} \partial_r (ru_r) \perp T_u N.$$

Multiplying by $u_r \psi r^2 \log r$, we obtain

$$0 = \frac{d}{dt} \left((u_t, u_r)\psi r^2 \log r \right) - \frac{d}{dr} \left(\frac{|u_t|^2 + |u_r|^2}{2} \psi r^2 \log r \right) + |u_t|^2 \psi r \log r - (u_t, u_r)\psi r^2 \log r + e(u)r \psi.$$
Upon integrating this identity over the domain \(0 < r < 1, |t| < 1\) and observing that the boundary terms vanish, we find
\[
\int_{-1}^{1} \int_{0}^{1} |u_t|^2 \psi r \log r \, dr \, dt + \int_{-1}^{1} \int_{0}^{1} e(u) \psi r \, dr \, dt = \int_{-1}^{1} \int_{0}^{1} (u_t - \psi_r) r^2 \log r \, dr \, dt.
\]
In view of (60), (62), and Hölder’s inequality the last term may be estimated
\[
\int_{-1}^{1} \int_{0}^{1} (u_t - \psi_r) r^2 \log r \, dr \, dt = C \int_{-1}^{1} \int_{B_1(0)} |u_t|^2 \, dx \, dt \cdot \int_{-1}^{1} \int_{B_1(0)} |\psi_r|^2 \, dx \, dt \to 0 \quad \text{as} \quad l \to \infty,
\]
proving the claim.

3.3. **Intrinsic setting.** Recalling the set-up from our first lecture, in terms of the pull-back covariant derivative \(D_t\) in \(u^*TN\) we may write equation (63) as
\[
(64) \quad D_t u_t - \frac{1}{r} D_r (ru_r) = 0.
\]
Again we may assume that \(TN\) is parallelizable and we let \(\overline{e}_1, \ldots, \overline{e}_k\) be a smooth orthonormal frame field such that at any point \(p \in N\) the vectors \(\overline{e}_1(p), \ldots, \overline{e}_k(p)\) form an orthonormal basis for \(T_pN\). From \((\overline{e}_i)_{1 \leq i \leq k}\) we then obtain a frame \(e_i = R^j_i (\overline{e}_j \circ u), 1 \leq i \leq k\), for the pull-back bundle, where \(R = R(t, r) = (R^j_i)\) is a smooth map from \(R^{1+2}\) into \(SO(k)\).

Denoting
\[
D e_i = A^j_i e_j
\]
with a matrix-valued connection 1-form \(A = A_0 \, dt + A_1 \, dr\), we compute the curvature \(F\) of \(D\) via the commutation relation (9), or, more concisely,
\[
dA + \frac{1}{2} [A, A] = F.
\]
Moreover, we now impose the “exponential gauge” condition \(A_1 = 0\). This yields the relation
\[
\ast dA = -\partial_r A_0 = F_{01}.
\]
If we normalize \(A_0(t, 1) = 0\) for all \(t\), from this relation we obtain
\[
A_0 = \int_{r}^{1} F_{01} \, ds.
\]
Observing that
\[
(65) \quad |F_{01}| \leq C |du|^2,
\]
from (61) we then deduce the estimate
\[
|A_0| \leq a_0 := \int_{r}^{1} |F_{01}| \, ds \leq C \int_{r}^{1} |du|^2 \, ds \leq C \varepsilon_1 r^{-1}.
\]

Note that in the exponential gauge for any fixed time \(t\) the frame field \(e = e(t, r)\) is obtained by parallel transport along the curve \(\gamma(r) = u(t, r)\) from the frame \(e(t, 1)\) at \(r = 1\).
Expressing du as
\[du = u_t \, dt + u_r \, dr = q^i e_i, \]
where $q = q_0 \, dt + q_1 \, dr$ is a vector-valued 1-form with coefficients $q = (q^i)_{1 \leq i \leq k}$, and using the notation
\[D_\alpha \partial_\beta u = D_\alpha (q^j e_i) = (\partial_\alpha q^j + A^j_{\alpha\beta} q_\beta) e_i =: (D_\alpha q_\beta) e_i \]
from our first lecture, we then may write equation (64) in the form
\[D_t q_0 - \frac{1}{r} D_r (r q_1) = \partial_t q_0 + A_0 q_0 - \frac{1}{r} \partial_r (r q_1) = 0. \]
Moreover, we have the commutation relation $D_r q_0 = D_t q_1$; that is,
\[\partial_t q_0 = \partial_t q_1 + A_0 q_1. \]
Finally there holds
\[|q_0| = |u_t|, |q_1| = |u_r|. \]

3.4. Proof of Theorem 3.1. By using Lemma 3.3 we show that (60) for sufficiently small $\varepsilon_1 > 0$ leads to a contradiction with (61).

Fix a cut-off function $0 \leq \varphi = \varphi(r) \leq 1$ in $C_0^\infty([0, 1])$ such that $\varphi(r) = 1$ for $r \leq 1/2$. Also fix $0 \leq \psi = \psi(t) \leq 1$ in $C_0^\infty([-1, 1])$ such that $\psi(t) = 1$ for $|t| \leq 1/2$. For $u = u_t$ with associated 1-forms q, let
\[Q = Q_t = \int_r^1 q_1 \varphi \, ds. \]

Note that by Hölder’s inequality and (61) we can estimate
\[|Q|^2 \leq \left(\int_r^1 |q| \, ds \right)^2 \leq \int_r^1 s |q|^2 \, ds \cdot \int_r^1 \frac{ds}{s} \leq 4 \varepsilon_1 \log(\frac{1}{r}). \]
We will also use the bound
\[\left(\int_0^r s |q| \varphi \, ds \right)^2 \leq \int_0^r s |q|^2 \, ds \cdot \int_0^r s \, ds \leq 2 \varepsilon_1 r^2 \]
resulting from (61). Similarly, we have
\[\left(\int_0^r s |q_0| |\log s|^{1/2} \varphi \, ds \right)^2 \leq \frac{r^2}{2} \int_0^1 s |q_0|^2 |\log s| \, ds, \]
which in view of (61), (65), and Lemma 3.3 allows to estimate
\[\int_{-1}^1 \int_0^1 \left(\int_0^r s |q_0| |\log s|^{1/2} \varphi \, ds \right) |F_0| |\psi| \, dr \, dt \]
\[\leq \int_{-1}^1 \left(\int_0^r s |q_0|^2 |\log s| \, ds \right)^{1/2} \left(\int_0^1 r |F_0| \, dr \right) |\psi| \, dt \]
\[\leq C \varepsilon_1 \left(\int_{-1}^1 \int_0^1 s |q_0|^2 |\log s| \, ds \, dt \right)^{1/2} \leq C \varepsilon_1^{3/2}. \]
Also note that Lemma 3.2 implies
\[\int_{-1}^1 \int_0^1 r |\log r|^{1/2} |q| |\psi| \, dr \, dt \leq C \left(\int_{-1}^1 \int_{B_1(0)} r |\log r| |D u|^2 \psi \, dx \, dt \right)^{1/2} \to 0 \]
as $l \to \infty$.

Using the function $Q\varphi r$ as a multiplier, from (67) then we obtain
\[
\int_{-1}^{1} \int_{0}^{1} \partial_t q_0 Q \varphi r \, dr \, dt = -\int_{-1}^{1} \int_{0}^{1} q_0 \left(\int_{r}^{1} \partial_t q_1 \varphi \, ds \right) \varphi r \, dr \, dt + I \\
= \int_{-1}^{1} \int_{0}^{1} |q_0|^2 \varphi^2 r \, dr \, dt + \int_{-1}^{1} \int_{0}^{1} q_0 \left(\int_{r}^{1} A_0 q_1 \varphi \, ds \right) \varphi r \, dr \, dt + II,
\]
where, in view of (69), and (72),
\[
|I| = \left| \int_{-1}^{1} \int_{0}^{1} q_0 Q \varphi \varphi r \, dr \, dt \right| \leq C \int_{-1}^{1} \int_{0}^{1} r |q_0| |\log r|^{1/2} |\psi_1| \, dr \, dt \to 0
\]
as $l \to \infty$. Similarly,
\[
|II| \leq |I| + \left| \int_{-1}^{1} \int_{0}^{1} q_0 \left(\int_{r}^{1} q_0 \partial_r \varphi \, ds \right) \varphi r \, dr \, dt \right| \\
\leq C \int_{-1}^{1} \int_{0}^{1} r |q_0| |\log r|^{1/2} \psi \, dr \, dt \to 0.
\]
On the other hand, noting that
\[
\frac{1}{r} \partial_r (r q_1) r Q = \partial_r (r q_1 Q) + r |q_1|^2 \varphi,
\]
we obtain
\[
\int_{-1}^{1} \int_{0}^{1} \frac{1}{r} \partial_r (r q_1) r Q \varphi \psi r \, dr \, dt = \int_{-1}^{1} \int_{0}^{1} r |q_1|^2 \varphi^2 \psi \, dr \, dt + III,
\]
where, by (69) and (72),
\[
|III| \leq \int_{-1}^{1} \int_{0}^{1} r |q_1| |Q| |\varphi_r| \psi \, dr \, dt \leq C \int_{-1}^{1} \int_{0}^{1} r |\log r|^{1/2} |q_1| \psi \, dr \, dt \to 0
\]
as $l \to \infty$. Thus, from (66) we deduce the identity
\[
\int_{-1}^{1} \int_{0}^{1} r \left(|q_1|^2 - |q_0|^2 \right) \varphi^2 \psi \, dr \, dt + o(1) \\
= \int_{-1}^{1} \int_{0}^{1} q_0 \left(\int_{r}^{1} A_0 q_1 \varphi \, ds \right) \varphi \psi r \, dr \, dt + \int_{-1}^{1} \int_{0}^{1} A_0 q_0 \left(\int_{r}^{1} q_1 \varphi \, ds \right) \varphi \psi r \, dr \, dt,
\]
where $o(1) \to 0$ as $l \to \infty$. Using (70), (65) and repeated integration by parts, we find
\[
\int_{-1}^{1} \int_{0}^{1} q_0 \left(\int_{r}^{1} A_0 q_1 \varphi \, ds \right) \varphi \psi r \, dr \, dt = \int_{-1}^{1} \int_{0}^{1} \left(\int_{0}^{r} q_0 \varphi s \, ds \right) A_0 q_1 \varphi \psi \, dr \, dt \\
\leq C \varepsilon^{1/2} \int_{-1}^{1} \int_{0}^{1} r a_0 |q_1| |\varphi| \, dr \, dt = C \varepsilon^{1/2} \int_{-1}^{1} \int_{0}^{1} r |q_1| |\varphi| \left(\int_{r}^{1} |F_{01}| \, ds \right) \psi \, dr \, dt \\
= C \varepsilon^{1/2} \int_{-1}^{1} \int_{0}^{1} \left(\int_{0}^{r} s |q_1| |\varphi| \, ds \right) |F_{01}| |\psi| \, dr \, dt \leq C \varepsilon \int_{-1}^{1} \int_{0}^{1} r |F_{01}| \psi \, dr \, dt \\
\leq C \varepsilon \int_{-1}^{1} \int_{0}^{1} r |du|^2 \psi \, dr \, dt \leq C \varepsilon^2.
\]
Similarly, we estimate, now using (69) and (71),
\[
\int_{-1}^{1} \int_{0}^{1} A_{0} q_{0} \left(\int_{r} r_{1} \varphi \, dr \right) \varphi \psi \, dr \, dt \leq C \varepsilon_{1}^{1/2} \int_{-1}^{1} \int_{0}^{1} a_{0} |q_{0}| |\log r|^{1/2} \varphi \psi \, dr \, dt
\]
\[
= C \varepsilon_{1}^{1/2} \int_{-1}^{1} \int_{0}^{1} r |q_{0}| |\log r|^{1/2} \varphi \left(\int_{r} |F_{01}| \, ds \right) \psi \, dr \, dt
\]
\[
= C \varepsilon_{1}^{1/2} \int_{-1}^{1} \int_{0}^{1} \left(\int_{0}^{r} s |q_{0}| |\log s|^{1/2} \varphi \, ds \right) |F_{01}| \psi \, dr \, dt \leq C \varepsilon_{1}^{2}.
\]

But then from (61), Lemma 3.2, and (60), with error \(o(1) \) as \(l \to 0 \) we obtain
\[
\varepsilon_{1} \leq \frac{1}{2} \int_{-1}^{1} \int_{B_{1}(0)} |Du|^{2} \psi \, dx \, dt \leq \pi \int_{-1}^{1} \int_{0}^{1} r |q|^{2} \varphi^{2} \psi \, dr \, dt + o(1)
\]
\[
\leq \pi \int_{-1}^{1} \int_{0}^{1} r(|q_{1}|^{2} - |q_{0}|^{2}) \varphi^{2} \psi \, dr \, dt + o(1) \leq C \varepsilon_{1}^{2} + o(1),
\]
which is impossible for sufficiently small \(\varepsilon_{1} > 0 \) and large \(l \). The proof of Theorem 3.1 is complete.

Appendix A: Exterior energy decay

In this Appendix we recall the proof of the following lemma which is fundamental for the treatment of the equivariant and rotationally symmetric case.

Lemma 4.1. Let \(u \) be a radially symmetric solution of (48) or a co-rotational wave map on \(K = K^{1} \) which is smooth away from the origin. Then for any \(0 < \lambda \leq 1 \) as \(t \to 0 \) there holds
\[
E(u(t), t) - E(u(t), \lambda t) \to 0.
\]

Proof. We follow the presentation in [19]. Therefore in the following we change time \(t \) to \(-t \).

With the notation
\[
e = \frac{1}{2} (|u_{r}|^{2} + |u_{t}|^{2}), \quad m = u_{r} \cdot u_{t}, \quad l = \frac{1}{2}(|u_{r}|^{2} - |u_{t}|^{2})
\]
for a radially symmetric solution \(u \) of (48) we compute
\[
\frac{\partial}{\partial t}(rm) - \frac{\partial}{\partial r}(re) = ru_{r} \cdot (u_{tt} - \frac{1}{r}(ru_{r})_{r}) + l = l,
\]
thereby observing the geometric interpretation (63) of (48) and the fact that \(u_{r} \in T_{u}N \). Moreover, recalling the equation (29) we have
\[
\frac{\partial}{\partial t}(re) - \frac{\partial}{\partial r}(rm) = 0.
\]

Similarly, for a co-rotational wave map \(u \) with associated function \(h \) solving (26) we let
\[
e = \frac{1}{2} (|u_{r}|^{2} + |u_{t}|^{2}) = \frac{1}{2} (|h_{r}|^{2} + |h_{t}|^{2} + \frac{g^{2}(h)}{r^{2}}), \quad m = h_{r} \cdot h_{t},
\]
\[
L = \frac{1}{2} (|h_{r}|^{2} + \frac{g^{2}(h)}{r^{2}} - |h_{t}|^{2}) - \frac{2}{r} f(h)h_{r}
\]
and we compute
\[(77) \quad \partial_t(re) - \partial_r(rm) = 0, \quad \partial_t(rm) - \partial_r(re) = L.\]

Changing coordinates to
\[(78) \quad \eta = t + r, \quad \xi = t - r,\]
and introducing
\[A^2 = r(e + m), \quad B^2 = r(e - m),\]
identities (74), (75) turn into
\[\partial_\xi A^2 = l, \quad \partial_\eta B^2 = -l,\]
where
\[r^2l^2 \leq A^2B^2.\]

Likewise, (77) can be written as
\[\partial_\xi A^2 = L, \quad \partial_\eta B^2 = -L,\]
where now, with \(F = g^2/2\), and using the fact that \(|h| \leq C(E_0)\) by (32) to bound \(f^2(h) \leq CF(h)\),
\[
L^2 \leq 3 \left(h_r^2 - h_i^2 \right)^2 + \frac{12}{r^2} h_r f^2(h) + 3 \frac{r^4}{r^4} F^2(h)
\]
\[
\leq C \left[\frac{1}{4} (h_r^2 - h_i^2)^2 + \frac{1}{r^4} (h_r^2 + h_i^2)F(h) + \frac{1}{r^4} F^2(h) \right]
\]
\[
= C \frac{r^2}{r^2} A^2B^2.
\]
Thus in both cases we get the inequalities
\[(79) \quad |\partial_\xi A| \leq \frac{C}{r} B, \quad |\partial_\eta B| \leq \frac{C}{r} A.
\]

Upon integrating (79) on a rectangle \(\Gamma = [\eta, 0] \times [\xi_0, \xi]\), as shown in Figure 1, we obtain
\[
\mathcal{A}(\eta, \xi) \leq \mathcal{A}(\eta, \xi_0) + C \int_{\xi_0}^{\xi} \frac{B(0, \xi')}{\eta - \xi} \, d\xi' + C^2 \int_{\xi_0}^{\xi} \int_{\eta}^{0} \frac{\mathcal{A}(\eta', \xi')}{(\eta - \xi')(\eta' - \xi')} \, d\eta' \, d\xi'.
\]

\[\text{FIGURE 1. Domain of integration } \Gamma.\]
First we estimate the second term on the right.

\[
\int_{\xi_0}^{\xi} \frac{B(0, \xi')}{\eta - \xi''} \, d\xi' \leq \left(\int_{\xi_0}^{\xi} \frac{B^2(0, \xi') \, d\xi'}{(\eta - \xi'')^2} \right)^{1/2} \left(\int_{\xi_0}^{\xi} \frac{d\xi'}{\eta - \xi''} \right)^{1/2} = (\text{Flux}(\xi_0) - \text{Flux}(\xi))^{1/2} \sqrt{\frac{1}{\eta - \xi} - \frac{1}{\eta - \xi_0}} \leq C \sqrt{\frac{\text{Flux}(\xi_0)}{|\eta - \xi|}}.
\]

Letting

\[
a(\eta, \xi) = \sup_{\eta \leq \eta' \leq 0} \sqrt{\eta' - \xi} A(\eta', \xi),
\]

the third term may be bounded

\[
\int_{\xi_0}^{\xi} \int_{\eta}^{0} \frac{A(\eta', \xi')}{(\eta - \xi)(\eta' - \xi')} \, d\eta' \, d\xi' \leq \int_{\xi_0}^{\xi} \int_{\eta}^{0} \frac{a(\eta, \xi')}{(\eta - \xi)(\eta' - \xi')^{3/2}} \, d\eta' \, d\xi' \leq \int_{\xi_0}^{\xi} a(\eta, \xi') \left(\frac{1}{\sqrt{\eta - \xi}} - \frac{1}{\sqrt{-\xi}} \right) \, d\xi' \leq \int_{\xi_0}^{\xi} a(\eta, \xi') \frac{\eta}{\xi' \eta - \xi'} \, d\xi'.
\]

Also observing that

\[
\sup_{\eta \leq \eta' \leq 0} \sqrt{\eta' - \xi} A(\eta', \xi_0) \leq \sup_{\eta \leq \eta' \leq 0} \frac{\sqrt{\eta' - \xi}}{\sqrt{-\xi}} a(\eta, \xi_0) = \frac{\sqrt{-\xi}}{\sqrt{-\xi_0}} a(\eta, \xi_0)
\]

with constants \(C_1, C_2\) we then obtain

\[
a(\eta, \xi) \leq \frac{\sqrt{-\xi}}{\sqrt{-\xi_0}} a(\eta, \xi_0) + C_1 \sqrt{\text{Flux}(\xi_0)} + C_2 \int_{\xi_0}^{\xi} a(\eta, \xi') \frac{\eta}{\xi' \eta - \xi'} \, d\xi'.
\]

Setting

\[
\rho(\xi') = \frac{\eta}{\xi' \eta - \xi'},
\]

and letting

\[
F(\xi) = \int_{\xi_0}^{\xi} a(\eta, \xi') \rho(\xi') \, d\xi', \quad G(\xi) = \frac{\sqrt{-\xi}}{\sqrt{-\xi_0}} a(\eta, \xi_0) + C_1 \sqrt{\text{Flux}(\xi_0)},
\]

for any fixed \(\eta\) we then find the differential inequality

\[
F' \leq G \rho + C_2 F \rho \text{ in } [\xi_0, \lambda' \eta],
\]

where \(\lambda' = (1 + \lambda)/(1 - \lambda) > 1\). Applying Gronwall’s lemma we obtain

\[
F(\xi) \leq \int_{\xi_0}^{\xi} G(\xi') \rho(\xi') e^{\int_{\xi_0}^{\xi} \rho(\xi'') \, d\xi''} \, d\xi'.
\]

But for \(\xi_0 \leq \xi' \leq \xi = \lambda' \eta\) we have

\[
\int_{\xi}^{\xi} \rho(\xi'') \, d\xi'' = \int_{\xi}^{\xi} \frac{\eta}{\xi''(\eta - \xi'')} \, d\xi'' = \log \frac{\xi(\eta - \xi'')}{\xi''(\eta - \xi)} = \log \frac{\xi(\xi - \lambda' \xi'')}{\xi''(\xi - \lambda' \xi)} \leq \log \frac{\lambda'}{\lambda' - 1}.
\]
Hence we can estimate
\[
a(\eta, \xi) \leq G + C_2 F
\]
\[
\leq \frac{\sqrt{\eta}}{\sqrt{-\xi_0}} a(\eta, \xi_0) + C_1 \sqrt{\text{Flux}(\xi_0)}
\]
\[
+ C_3 \int_{\xi_0}^{\eta} \frac{\sqrt{\eta}}{\sqrt{-\xi_0}} a(\eta, \xi_0) + C_1 \sqrt{\text{Flux}(\xi_0)} \frac{\eta}{\xi'(\eta - \xi')} d\xi',
\]
where \(C_3 = e^{C_2 \log \frac{\sqrt{\eta}}{\sqrt{-\xi_0}}} \). We also know that
\[
a(\eta, \xi_0) \leq \sup_{\eta \leq \eta' \leq 0} \sqrt{\eta' - \xi_0} \sup_{\eta \leq \eta' \leq 0} A(\eta', \xi_0) \leq C(\xi_0) \sqrt{-\xi_0},
\]
because \(u \) is assumed to be regular away from the origin, implying that \(A \) is bounded by a constant depending on \(\xi_0 \). Now, given \(\epsilon > 0 \), we can fix \(\xi_0 < 0 \) small enough such that \(C \sqrt{\text{Flux}(\xi_0)} < \epsilon \). Then,
\[
a(\xi/\lambda', \xi) \leq C(\xi_0) \sqrt{-\xi} + \epsilon + C(\xi_0) \int_{\xi_0}^{\xi} \frac{\xi/\lambda'}{\sqrt{-\xi'(\xi/\lambda' - \xi')}} d\xi' + C\epsilon
\]
for \(\xi < 0 \) small enough. Therefore,
\[
A(\eta, \xi) \leq \frac{a(\xi/\lambda', \xi)}{\sqrt{\eta - \xi}} \leq \frac{C\epsilon}{\sqrt{\eta - \xi}}
\]
for \((\eta, \xi) \) small enough inside \(K^\lambda_{\text{ext}} \). Hence,
\[
\int_{\eta}^{0} A^2(\eta', \xi) d\eta' \leq C^2 \int_{\xi/\lambda'}^{0} \frac{d\eta'}{\eta' - \xi} = C^2 \log \frac{1}{\lambda' - 1} = C^2.
\]
Finally, if we integrate the energy identity (75) on the triangle \(\Delta \) (as shown in Figure 2 with vertices at \((\eta, \xi), (0, \xi), (0, \eta + \xi)\), with \(\eta = \xi/\lambda' \) as before), we obtain
\[
0 = - \int_{|t|}^{\xi} e(r, t) r dr - \int_{\eta}^{0} r(e + m) d\eta' + \int_{\xi+\eta}^{\xi} r(e - m) d\xi' = I + II + III.
\]
As \(t \to 0 \) we proved that \(II \to 0 \); moreover, \(III \to 0 \) because it is the flux, and therefore \(I \to 0 \).

As consequence we obtain the decay of time derivatives.
Corollary 4.2. Let u be a radially symmetric solution of (48) or a co-rotational wave map on $K = K^1$ which is smooth away from the origin. In the latter case also suppose that N satisfies (24). Then
\[
\frac{1}{T} \int_{K^T} |u_t|^2 \, dz \to 0 \quad \text{as } T \to 0.
\]

Proof. Again we change time t to $-t$. Multiply the identity (74), (77), respectively, by r and integrate on the truncated cone
\[K_T^{-\epsilon} = \{(t, x); t \leq -\epsilon, |x| \leq -t \leq -T\}, \]
and let $\epsilon \to 0$ to obtain
\[
\left| \int \int_{K_T^0} u_t^2 \, dr \, dt - \int_0^{[T]} (u_t u_r)_{t=T} r^2 \, dr \right| \leq C |T| \text{Flux}(T).
\]
Therefore, for any $\lambda \in [0, 1]$ we have
\[
\frac{1}{|T|} \int_0^T \int_0^{-t} u_t^2 r \, dr \, dt \leq \frac{1}{|T|} \int_0^{[T]} |(u_t u_r)_{t=T}| r^2 \, dr + C \text{Flux}(T)
\]
\[
\leq \frac{C}{|T|} \int_0^{[T]} e(T, r) r^2 \, dr + C \text{Flux}(T)
\]
\[
\leq \frac{C}{|T|} \left(\int_0^{\lambda |T|} e(T, r) r^2 \, dr + \int_{\lambda |T|}^{[T]} e(T, r) r^2 \, dr \right) + C \text{Flux}(T)
\]
\[
\leq C(\lambda E_0 + E_{\text{ext}}^\lambda(T) + \text{Flux}(T)).
\]
Given $\epsilon > 0$ we may choose $\lambda > 0$ such that the first term on the right is less then $\epsilon/3$. By Lemma 4.1 and by decay of the flux the second and third terms also will be less than $\epsilon/3$ for T sufficiently close to 0. \qed

REFERENCES

(M. Struwe) Mathematik, ETH-Zentrum, CH-8092 Zürich

E-mail address: michael.struwe@math.ethz.ch