Abstract.
This series of lectures is devoted to the study of compactness and elliptic
stability for nonlinear elliptic equations in the inhomogeneous context of
closed Riemannian manifolds. We describe blow-up phenomena from the Lebesgue
theory to the pointwise theory, and discuss the progress made in the field
over the past years.
Special attention will be devoted to the model case of the nonlinear stationary
Schrödinger equation and to its critical formulation. Other important
models will be discussed.
Time: Di. 10-12
Auditorium: HG G 43 (HWZ)
Begins: tba
M. Struwe