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The study of problems concerning subdivisions of graphs 
has a rich history in extremal combinatorics. Confirming 
a conjecture of Burr and Erdős, Alon proved in 1994 that 
subdivided graphs have linear Ramsey numbers. Later, Alon, 
Krivelevich and Sudakov showed that every n-vertex graph 
with at least εn2 edges contains a 1-subdivision of the 
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√
n vertices, resolving another old 

conjecture of Erdős. In this paper we consider the directed 
analogue of these problems and show that every tournament 
on at least (2 + o(1))k2 vertices contains the 1-subdivision of 
a transitive tournament on k vertices. This is optimal up to a 
multiplicative factor of 4 and confirms a conjecture of Girão, 
Popielarz and Snyder.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: nemanja.draganic@math.ethz.ch (N. Draganić), 
david.munhacanascorreia@math.ethz.ch (D. Munhá Correia), benjamin.sudakov@math.ethz.ch
(B. Sudakov), raphael.yuster@gmail.com (R. Yuster).
1 Research supported in part by SNSF grant 200021_196965.
https://doi.org/10.1016/j.jctb.2022.06.001
0095-8956/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jctb.2022.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jctb.2022.06.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nemanja.draganic@math.ethz.ch
mailto:david.munhacanascorreia@math.ethz.ch
mailto:benjamin.sudakov@math.ethz.ch
mailto:raphael.yuster@gmail.com
https://doi.org/10.1016/j.jctb.2022.06.001
http://creativecommons.org/licenses/by/4.0/


N. Draganić et al. / Journal of Combinatorial Theory, Series B 157 (2022) 176–183 177
1. Introduction

Given a graph G, a subdivision of G is a graph obtained by replacing the edges of G
with pairwise internally vertex-disjoint paths of arbitrary length. More specifically, the 
1-subdivision of G is the subdivision in which the length of these paths is 2. Problems 
concerning subdivisions of graphs have been extensively studied in extremal combina-
torics.

One of the central topics in discrete mathematics is the study of Ramsey numbers. 
The Ramsey number, r(G), of a graph G is the smallest number N such that every 2-
coloring of KN contains a monochromatic copy of G. A well known conjecture of Burr 
and Erdős [3] was that subdivisions of graphs in which each edge is subdivided at least 
once, have Ramsey number which is linear in the number of vertices. Alon [1] resolved 
this in 1994, showing that every graph on n vertices in which no two vertices of degree 
at least 3 are adjacent has Ramsey number at most 12n. Later, Alon, Krivelevich and 
Sudakov [2] proved a stronger density-type result for cliques, showing that every n-vertex 
graph with at least εn2 edges contains the 1-subdivision of a complete graph on cε

√
n

vertices. This proved an old conjecture of Erdős [4]. Finally, Fox and Sudakov [5] proved 
the density version of Alon’s result, showing that εn2 edges guarantee the existence of 
the 1-subdivision of any graph with cεn edges.

In this paper, we study analogues of these problems in the framework of directed 
graphs. Notice that in this context it is only sensible to consider embedding acyclic
graphs in host digraphs, since in general the host digraph might not contain a directed 
cycle. Therefore, we will only consider subdivisions of the transitive tournament Tk on 
k vertices. Secondly, it is not possible to give a density-type statement as it was done 
in the result of Alon, Krivelevich and Sudakov [2]. Indeed, note that an orientation of 
the edges of the Turán graph T (n, k) with k parts in which the direction of an edge 
between two parts conforms to a previously specified ordering of the parts, does not 
even contain a directed path of length k. Hence, only in very dense host directed graphs 
can we hope to embed an arbitrary subdivision of Tk, let alone the 1-subdivision (Scott 
[9], in fact, proved that one can find a non-specified subdivision of Tk inside of every 
n-vertex digraph with more edges than T (n, k)). This naturally leads to the following 
Ramsey-type question: How many vertices should a tournament have in order to contain 
the 1-subdivision of Tk?

The oriented Ramsey number, −→r (H), of an oriented graph H is the smallest number 
N such that every tournament on N vertices contains a copy of H. The study of oriented 
Ramsey numbers goes back 60 years to the work of Stearns, and Erdős and Moser, who 
showed that −→r (Tk) is exponential in k (see e.g., [6] and its references for the history 
of this subject and some more recent results). The above question then asks for the 
oriented Ramsey number of the 1-subdivision of Tk. This problem was raised by Girão, 
Popielarz and Snyder [7], who gave an upper bound of O(k2 log3 k). They also conjectured 
that 1-subdivisions of Tk actually have linear oriented Ramsey number. We prove this 
conjecture.
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Theorem 1.1. Every tournament on 2k2(1 + o(1)) vertices contains the 1-subdivision 
of Tk.

The above result is optimal up to a factor of 4, since the 1-subdivision of Tk has at 
least (1 + o(1))k2/2 vertices. In the next section, we give some preliminaries and then 
prove the result in Section 3. We finish with some brief concluding remarks.

2. Preliminary results and proof ideas

We mainly use standard terminology. For a directed graph G and a vertex v ∈ V (G), 
let N+(v) and N−(v) denote the set of out-neighbors and the set of in-neighbors of v
in G, respectively. The out-degree of v is d+(v) = |N+(v)| and the in-degree of v is 
d−(v) = |N−(v)|. An edge from u to v in a directed graph is denoted by (u, v) and an 
edge between u and v in an undirected graph is denoted by uv. Let Tk be the transitive 
tournament on vertices {v1, . . . , vk} where (vi, vj) ∈ E(Tk) for 1 ≤ i < j ≤ k. Considering 
its 1-subdivision Hk, we call v1, . . . , vk the base vertices and for every 1 ≤ i < j ≤ k

there is a unique vertex wi,j such that (vi, wi,j) and (wi,j , vj) are the only edges incident 
with wi,j . We call wi,j the subdivision vertex connecting vi to vj .

Given a pair of vertices in a tournament, it will be handy for us to quantify how well 
the pair is connected by directed paths of length two. This is captured in the following 
definition.

Definition 2.1. For two vertices u, v of a directed graph, we define

c(u, v) = max{|N+(u) ∩N−(v)| , |N+(v) ∩N−(u)|} .

Observe that if u, v are vertices of a tournament and d+(u) ≥ d+(v), then clearly 
c(u, v) ≤ |N+(u) ∩N−(v)| + 1. The following simple lemma shows that for every vertex 
in a tournament there always exists another vertex such that the pair they form is 
well-connected in the sense of Definition 2.1.

Lemma 2.2. Let T be a tournament on n vertices. Then for every vertex u ∈ V (T ) there 
exists a vertex v ∈ V (T ) such that c(u, v) ≥ n−3

4 .

Proof. Without loss of generality, assume that d+(u) ≥ n−1
2 . Let v be a vertex of 

minimum out-degree in T [N+(u)], i.e. the subtournament of T induced by N+(u). 
Then v has out-degree at most d+(u)−1

2 in T [N+(u)]. Thus, |N+(u) ∩ N−(v)| ≥
(d+(u) − 1) − d+(u)−1

2 ≥ n−3
4 . �

We now define, for a tournament T and each t ≥ 1, the undirected graph T≤t on the 
vertex set V (T ) to consist of those edges uv such that c(u, v) ≤ t. When t is small, T≤t

must be sparse, as shown in the following lemma.
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Lemma 2.3. The maximum degree of T≤t is at most 4t + 2.

Proof. Consider a vertex v and let X be its set of neighbors in T≤t. Then we must have 
|X| ≤ 4t +2 since otherwise the sub-tournament T [X∪{v}] has more than 4t +3 vertices 
and thus by Lemma 2.2, there exists a vertex u ∈ X such that c(u, v) > t, contradicting 
the definition of T≤t. �

Let us now outline the main ideas behind the proof of Theorem 1.1. Given a tourna-
ment T , we will take a random subset A of vertices of T of expected size slightly larger 
than k. We then show that in fact for every t ≤ |V (T )| we do not expect too many pairs 
(u, v) in A which have c(u, v) < t. This will allow us, after removing some vertices from 
A, to embed Hk into T by using the remaining vertices A′ ⊆ A as base vertices. We will 
employ a greedy embedding strategy by connecting the pairs in A′ one by one, giving 
priority to the pairs which have fewer possible connections. The next simple lemma de-
scribes the framework of our greedy embedding strategy, and is tailored for the use on 
the set A′ which we show how to find later.

Lemma 2.4. Let T be a tournament and let A′ = {v1, . . . , vk} be a subset of its vertices 
such that we can order all pairs e1, e2, . . . , e(k2) contained in A′, so that for every t ≤

(
k
2
)

for the pair et = (vi, vj) (where i < j) it holds that |N+(vi) ∩N−(vj) \A′| ≥ t. Then T
contains Hk.

Proof. We let A′ be the base set of the copy of Hk which we want to find, and we greedily 
find the connections in V (T ) \ A′ for each pair of vertices following the order given in 
the statement, and noting that by assumption there is at least one free vertex which we 
can use for the current pair. �

We also use the following form of Chebyshev’s inequality.

Theorem 2.5. Let X be a random variable with finite expectation μ and finite non-zero 
variance Var[X]. Then for every s > 0 it holds that

P (|X − μ| ≥ s) ≤ Var[X]
s2 .

3. Randomized embedding of Hk

Throughout the rest of this section we assume, whenever necessary, that k is suf-
ficiently large. Let T be a tournament with K = 2(k2 + k1.9) vertices. The following 
lemma shows that T contains a set of vertices which we will later use in order to apply 
Lemma 2.4 and complete the proof of Theorem 1.1.

Lemma 3.1. T contains a subset A of vertices such that the following hold:
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(P1) |A| ≥ k + 2k0.8.
(P2) Let qt be the number of distinct pairs u, v in A for which c(u, v) ≤ t. For all integers 

t with k0.8 ≤ t ≤ K it holds that qt ≤ t − t
32k0.1 .

(P3) For all pairs of distinct vertices u, v ∈ V (T ) with |N+(u) ∩ N−(v)| = t ≥ k0.7 it 
holds that

|N+(u) ∩N−(v) ∩A| ≤ t/(2k) + t3/4 − 1.

Proof. Select a random subset A ⊆ V (T ) where each v ∈ V (T ) is independently chosen 
with probability p = 1

2(k+ 3
4k

0.9) . For each of the three listed properties in the statement, 
we show that each individual one holds with probability more than 2/3 for the randomly 
chosen set A, thus completing the proof of the lemma.

Property (P1). Notice that |A| ∼ Bin(K, p) and so its expectation is Kp, which 
satisfies 2k ≥ Kp ≥ k+k0.9/8, and its variance is Kp(1 −p) ≤ 2k. Thus, by Chebyshev’s 
inequality,

P

(
||A| −Kp| > k0.9

16

)
<

1
3 .

Hence the first property holds with probability more than 2/3.
Property (P2). Fix an integer t with k0.8 ≤ t ≤ K. Notice that qt is the number 

of edges of T≤t with both endpoints in A. Hence, qt =
∑

uv∈E(T≤t) Xuv where Xuv is 
the indicator variable for the event that both endpoints u, v are chosen to A. By the 
definition of A we have that Pr[Xuv = 1] = p2 and further, by Lemma 2.3, we know that 
|E(T≤t)| ≤ (2t + 1)K. Thus,

E[qt] ≤ (2t + 1)Kp2 = (2t + 1) 2(k2 + k1.9)
4(k + 3

4k
0.9)2

=
(
t + 1

2

)
k2 + k1.9

k2 + 3
2k

1.9 + 9
16k

1.8

≤
(
t + 1

2

)(
1 −

1
2k

1.9

k2 + 3
2k

1.9

)
≤

(
t + 1

2

)(
1 − 1

4k0.1

)
≤ t + 1

2 − t

4k0.1

≤ t− t

8k0.1 . (1)

We would now like to show that qt does not deviate much from its expected value, so we 
estimate its variance. As the choice of each vertex to A is made independently, we have 
that Xuv is independent of Xu′v′ whenever uv and u′v′ are disjoint edges of T≤t. Thus, 
by Lemma 2.3, there are at most |E(T≤t)|(8t + 2) ≤ (2t + 1)K(8t + 2) ordered pairs 
uv, u′v′ for which Xuv and Xu′v′ are not independent. As for each non-independent pair 
we have Pr[Xuv = 1 ∧Xu′v′ = 1] = p3, we obtain that

Var[qt] ≤ E[qt] + (2t + 1)(8t + 2)Kp3 ≤ t + 17t2 · (3k2) · 1 ≤ t + 7t2
. (2)
8k3 k
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Consider first the case where t ≤ k/7, for which we have by (2) that Var[qt] ≤ 2k/7. 
By Chebyshev’s inequality and by our estimate on the expectation of qt we then 
get

P

(
qt ≥ t− t

16k0.1

)
≤ P

(
qt − E[qt] ≥

t

16k0.1

)
≤ 2k/7

t2/256k0.2 = O

(
k1.2

t2

)

= O

(
1

k0.4

)
, (3)

where we are also using that t ≥ k0.8. Consider next the case where t ≥ k/7, for which 
we have by (2) that Var[qt] ≤ 14t2/k. Now we have

P

(
qt ≥ t− t

16k0.1

)
≤ P

(
qt − E[qt] ≥

t

16k0.1

)
≤ 14t2/k

t2/256k0.2 = O

(
1

k0.8

)
. (4)

As the number of possible choices for t is Θ(k2), we cannot just use (3), (4) and the union 
bound to guarantee that qt ≤ t − t

16k0.1 holds with high probability for all t. Instead, 
we proceed as follows. Let S be the set of integers of the form ti = k0.8 (1 + 1/32k0.1)i
which are contained in [k0.8, K] - clearly, |S| ≤ k0.2. We will prove that with probability 
larger than 2/3, we have qt ≤ t − t

16k0.1 for every t ∈ S. Once we show that, we are 
done since for each t ∈ [k0,8, K], letting ti ∈ S be such that t ≤ ti ≤ t 

(
1 + 1/32k0.1), we 

have

qt ≤ qti ≤ ti −
ti

16k0.1 ≤ t + t

32k0.1 − t

16k0.1 = t− t

32k0.1

establishing the lemma. Thus, it remains to apply (3), (4) and the union bound to the 
elements of S. Indeed, this follows since S has size at most k0.2 and for each ti ∈ S, 
qti ≤ ti − ti

16k0.1 occurs with probability O(1/k0.4). Hence, with probability larger than 
2/3, qt ≤ t − t

16k0.1 for every t ∈ S.
Property (P3). Fix a pair of vertices u, v ∈ V (T ) for which |N+(u) ∩N−(v)| = t ≥ k0.7. 

Then Z = |N+(u) ∩ N−(v) ∩ A| ∼ Bin(t, p). By Chernoff’s inequality, it holds then 
that

Pr
[
Z − tp > t2/3

]
≤ e−

2t4/3
t <

1
15k4 .

Hence, the probability that |N+(u) ∩N−(v) ∩A| is larger than

tp + t2/3 ≤ t

2k + t2/3 ≤ t

2k + t3/4 − 1

is less than 1/(15k4). As there are at most K2 ≤ 5k4 choices for pairs u, v to con-
sider, we obtain by the union bound that (P3) holds with probability larger than 
1 − 5k4/(15k4) = 2/3. �
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The proof of Theorem 1.1 follows now from the following lemma.

Lemma 3.2. Let A be a subset of V (T ) for which (P1), (P2), (P3) hold. Then, there is a 
copy of Hk in T whose base vertices are in A.

Proof. Let A∗ ⊆ A be those vertices u of A for which c(u, v) ≤ k0.8 for some v ∈ A. 
Since (P2) holds, we have that |A∗| ≤ 2k0.8 as there are at most k0.8 (in fact, at most 
k0.8 − k0.8/(32k0.1)) pairs u, v of distinct vertices of A with c(u, v) ≤ k0.8. Moreover, 
since (P1) holds, we have that |A| ≥ k + 2k0.8 and so there is a subset A′ ⊆ A \A∗ with 
|A′| = k vertices. We will prove that there is an Hk copy in T whose set of base vertices 
is A′.

Consider an ordering A′ = {v1, . . . , vk} satisfying that d+(vi) ≥ d+(vj) for all 1 ≤ i <
j ≤ k. Let also S be a total ordering of the 

(
k
2
)

pairs {vi, vj} with 1 ≤ i < j ≤ k where 
{vi, vj} precedes {vi′ , vj′} in S implies that c(vi, vj) ≤ c(vi′ , vj′). Let us now show that 
A′ together with the ordering S of the pairs satisfy the conditions of Lemma 2.4, i.e. 
that for the �-th pair {vi, vj} in S, it holds that |N+(vi) ∩N−(vj) \A| ≥ �. This would 
give the desired copy of Hk with base set A′, thus completing the proof.

Consider the �-th element of S, and suppose it is {vi, vj} where i < j. Now, suppose 
that c(vi, vj) = t. First, observe that t ≥ k0.8 as we have already removed A∗. By the 
definition of S, we have that qt ≥ �. But on the other hand, since (P2) holds, we must 
have qt ≤ t − t/(32k0.1). We therefore have that � ≤ t − t/(32k0.1) which implies

c(vi, vj) = t ≥ � + �

32k0.1 .

Consider now the set N+(vi) ∩N−(vj) and let r := |N+(vi) ∩N−(vj)|. Since d+(vi) ≥
d+(vj), we have that r ≥ c(vi, vj) − 1 = t − 1 ≥ k0.8 − 1 ≥ k0.7. Since (P3) holds, we 
have that |N+(vi) ∩N−(vj) ∩A| ≤ r/(2k) + r3/4 − 1. We therefore have that

|(N+(vi) ∩N−(vj)) \A| ≥ r − (r/(2k) + r3/4 − 1) = r

(
1 − 1

2k − 1
r1/4

)
+ 1

≥ t

(
1 − 1

2k − 2
k0.2

)

≥ t

(
1 − 3

k0.2

)
≥

(
� + �

32k0.1

)(
1 − 3

k0.2

)
≥ � .

This completes the proof. �
4. Concluding remarks

In this paper we confirmed the conjecture of Girão, Popielarz and Snyder [7] stating 
that the oriented Ramsey number of the 1-subdivision of the transitive tournament is 
linear. In particular, we show that the necessary size of a tournament which forces such 
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a 1-subdivision is larger by at most a factor of 4 + o(1) than the trivial lower bound of (
k
2
)
+k, which can be obtained by noting that this is precisely the number vertices in the 

1-subdivision. In turn, our proof cannot give a tight bound - this is because the bound 
on c(u, v) in Lemma 2.2 is tight, i.e. there exist tournaments (namely, those which are 
doubly-regular, see [8]) for which we know that c(u, v) = n−3

4 for every pair of vertices 
u, v. Therefore, if n < 2k2, we cannot use Lemma 2.4 as an embedding strategy since 
for each n4 ≤ t ≤

(
k
2
)
, there will not exist pairs u, v with |N+(u) ∩N−(v)| ≥ t. Despite 

this, it is natural to ask whether indeed a ‘spanning’ behavior for this problem is true 
at least in an asymptotic form, i.e., if the oriented Ramsey number is k

2

2 + o(k2).
As mentioned in the introduction, the 1-subdivision of an arbitrary graph has Ramsey 

number linear in its number of vertices. Therefore, it would be interesting to determine 
whether the oriented Ramsey number of the 1-subdivision of any acyclic digraph is 
also linear in its number of vertices. It is worth pointing out that Ramsey numbers 
of directed graphs sometimes exhibit surprising behavior compared to the undirected 
case. Indeed, Fox, He and Wigderson showed the existence of n-vertex acyclic di-
graphs H with constant maximum degree Δ, whose oriented Ramsey number satisfies 
−→r (H) ≥ nΩ(Δ2/3/ log5/3 Δ). This is quite far from the linear upper bound which holds for 
Ramsey numbers of bounded degree graphs.

Another potentially interesting line of research would be to study the multicolor ori-
ented Ramsey numbers of the 1-subdivision of acyclic digraphs, and in particular, of the 
1-subdivision of transitive tournaments.
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