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a b s t r a c t

The Ramsey number r(H) of a graph H is the minimum positive
integerN such that every two-coloring of the edges of the complete
graph KN on N vertices contains a monochromatic copy of H . A
graph H is d-degenerate if every subgraph of H has minimum
degree at most d. Burr and Erdős in 1975 conjectured that for each
positive integer d there is a constant cd such that r(H) ≤ cdn
for every d-degenerate graph H on n vertices. We show that for
such graphs r(H) ≤ 2cd

√
log nn, improving on an earlier bound of

Kostochka and Sudakov.We also study Ramsey numbers of random
graphs, showing that for d fixed, almost surely the random graph
G(n, d/n) has Ramsey number linear in n. For random bipartite
graphs, our proof gives nearly tight bounds.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For a graph H , the Ramsey number r(H) is the least positive integer N such that every two-coloring
of the edges of complete graph KN on N vertices contains a monochromatic copy of H . Ramsey’s
theorem states that r(H) exists for every graph H . A classical result of Erdős and Szekeres, which is a
quantitative version of Ramsey’s theorem, implies that r(Kn) ≤ 22n for every positive integer n. Erdős
showed using probabilistic arguments that r(Kn) > 2n/2 for n > 2. Over the past sixty years, there
has been several improvements on these bounds (see, e.g., [9]). However, despite efforts by various
researchers, the constant factors in the above exponents remain the same.
Determining or estimating Ramsey numbers is one of the central problems in combinatorics, see

the bookRamsey theory [15] for details. Besides the complete graph, the nextmost classical topic in this
area concerns the Ramsey numbers of sparse graphs, i.e., graphs with certain upper bound constraints
on the degrees of the vertices. The study of these Ramsey numbers was initiated by Burr and Erdős in
1975, and this topic has since played a central role in graph Ramsey theory.
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A graph is d-degenerate if every subgraph has a vertex of degree at most d. In 1975, Burr and
Erdős [6] conjectured that, for each positive integer d, there is a constant c(d) such that every d-
degenerate graphH with n vertices satisfies r(H) ≤ c(d)n. An important special case of this conjecture
for bounded degree graphs was proved by Chvátal, Rödl, Szemerédi, and Trotter [8].
Another notion of sparseness was introduced by Chen and Schelp [7]. A graph is p-arrangeable if

there is an ordering v1, . . . , vn of the vertices such that for any vertex vi, its neighbors to the right of
vi have together at most p neighbors to the left of vi (including vi). This is an intermediate notion of
sparseness not as strict as bounded degree though not as general as bounded degeneracy. Extending
the result of [8], Chen and Schelp proved that there is a constant c(p) such that every p-arrangeable
graph H on n vertices has Ramsey number at most c(p)n. This gives linear Ramsey numbers for planar
graphs and more generally for graphs that can be drawn on a bounded genus surface. This result was
later extended by Rödl and Thomas [22], who showed that graphs with no Kp-subdivision are p8-
arrangeable. Recently, Nešetřil and Ossona de Mendez [21] defined the concept of expansion class
(which is related to the notion of arrangeability) and showed that graphs with bounded expansion
have linear Ramsey numbers.
Here we introduce a notion of sparseness that is closely related to arrangeability. The main reason

for introducing this notion is that it turns out to be more useful for bounding Ramsey numbers. A
graph H is (d,∆)-degenerate if there exists an ordering v1, . . . , vn of its vertices such that for each vi,

1. there are at most d vertices vj adjacent to vi with j < i, and
2. there are at most∆ subsets S ⊂ {v1, . . . , vi} such that S = N(vj)∩ {v1, . . . , vi} for some neighbor
vj of vi with j > i, where the neighborhood N(vj) is the set of vertices that are adjacent to vj.

From the definition, every (d,∆)-degenerate graph is d-degenerate, and every graph with
maximum degree∆ is (∆,∆)-degenerate. More interesting but also very simple to show is that every
(d,∆)-degenerate graph is (∆(d− 1)+ 1)-arrangeable, and every p-arrangeable graph is (p, 2p−1)-
degenerate (see Lemmas 4.1 and 4.2).
While the conjecture of Burr and Erdős is still open, there has been considerable progress on this

problem recently. Kostochka and Rödl [18] were the first to prove a polynomial upper bound on the
Ramsey numbers of d-degenerate graphs. They showed that r(H) ≤ cdn2 for every d-degenerate
graph H with n vertices. A nearly linear bound of the form r(H) ≤ 2cd(log n)

2d/(2d+1)
n was obtained

by Kostochka and Sudakov [19]. In [11], the authors proved that r(H) ≤ 2cd
√
log nn for every bipartite

d-degenerate graph H with n vertices. Here we show how to use the techniques developed in [11] to
generalize this result to all d-degenerate graphs.

Theorem 1.1. For each positive integer d there is a constant cd such that every (d,∆)-degenerate graph
H with order n satisfies r(H) ≤ 2cd

√
log∆ n. In particular, r(H) ≤ 2cd

√
log n n for every d-degenerate graph

H on n vertices.

This result follows fromTheorem2.1,which gives amore general bound on the Ramsey numberwhich
also incorporates the chromatic number of the graph H .
We next discuss Ramsey numbers and arrangeability of sparse random graphs. The random

graph G(n, p) is the probability space of labeled graphs on n vertices, where every edge appears
independently with probability p = p(n). We say that the random graph possesses a graph property
P almost surely, or a.s. for brevity, if the probability that G(n, p) has property P tends to 1 as n tends
to infinity. It is well known and easy to show that if p = d/nwith d > 0 fixed, then, a.s. G(n, d/n)will
have maximum degree Θ(log n/ log log n). Moreover, as shown by Ajtai, Komlós, and Szemerédi [2],
for d > 1 fixed, a.s. the random graph G(n, d/n) contains a subdivision of Kp with p almost as large as
its maximum degree. Therefore one cannot use known results to give a linear bound on the Ramsey
number of G(n, d/n). Here we obtain such a bound by proving that the random graph G(n, d/n) a.s.
has bounded arrangeability.

Theorem 1.2. There are constants c1 > c2 > 0 such that for d ≥ 1 fixed, a.s. the random graph G(n, d/n)
is c1d2-arrangeable but not c2d2-arrangeable.
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Theorem 1.2 is closely related to a question of Chen and Schelp, who asked to estimate the proportion
of d-degenerate graphs which have bounded arrangeability. The following is an immediate corollary
of this theorem and the result of Chen and Schelp.

Corollary 1.3. For each d ≥ 1, there is a constant cd such that a.s. the Ramsey number of G(n, d/n) is at
most cdn.

Onewould naturally like to obtain good bounds on the Ramsey number ofG(n, d/n). To accomplish
this, we prove a stronger version of Theorem 1.2, showing that for d ≥ 10 a.s. G(n, d/n) is (16d, 16d)-
degenerate. We also modify a proof of Graham, Rödl, Ruciński, to prove that there is a constant c such
that for every (d,∆)-degenerate H with n vertices and chromatic number q, r(H) ≤

(
dd∆

)c log q n.
In the other direction, it follows from a result of Graham, Rödl, and Ruciński [13] that a.s. G(n, d/n)
has Ramsey number at least 2cdn for some absolute positive constant c. From these results we get the
following quantitative version of Corollary 1.3.

Theorem 1.4. There are positive constants c1, c2 such that for d ≥ 2 and n a.s.

2c1d n ≤ r(G(n, d/n)) ≤ 2c2d log
2 d n.

In the case of random bipartite graphs, we can obtain nearly tight bounds. In another paper,
Graham, Rödl, and Ruciński [14] adapt their proof of a lower bound for Ramsey numbers to work also
for random bipartite graphs. The random bipartite graph G(n, n, p) is the probability space of labeled
bipartite graphs with n vertices in each class, where each of the n2 edges appears independently with
probability p.

Theorem 1.5. There are positive constants c1, c2 such that for each d ≥ 1 and n a.s.

2c1d n ≤ r(G(n, n, d/n)) ≤ 2c2d n.

The rest of this paper is organized as follows. In the next section we present a proof of Theorem 2.1
which implies Theorem 1.1 on the Ramsey number for (d,∆)-degenerate graphs. In Section 3, we
prove another bound on Ramsey numbers for (d,∆)-degenerate graphs which is sometimes better
than Theorem 2.1. In Section 4, we prove results on the random graphsG(n, d/n) andG(n, n, d/n). The
last section of this paper contains some concluding remarks. Throughout the paper, we systematically
omit floor and ceiling signs whenever they are not crucial for the sake of clarity of presentation. We
also do not make any serious attempt to optimize absolute constants in our statements and proofs.
All logarithms in this paper are base 2.

2. Proof of Theorem 1.1

The main result of this section is the following general bound on Ramsey numbers.

Theorem 2.1. There is a constant c such that for 0 < δ ≤ 1, every (d,∆)-degenerate graph H with
chromatic number q and order n satisfies

r(H) < 2cq3
qd/δ∆cδn.

Note that a greedy coloring shows that every d-degenerate graph has chromatic number at most
d+ 1. Theorem 1.1 follows from the above theorem by letting δ = 1/

√
log∆.

The first result thatweneed is a lemma from [11]whose proof uses a probabilistic argument known
as dependent random choice. Early versions of this technique were developed in the papers [12,17,24].
Later, variants were discovered and applied to various Ramsey-type problems (see, e.g., [19,3,25,11],
and their references). We include the proof here for the sake of completeness. Given a vertex subset
T of a graph G, the common neighborhood N(T ) of T is the set of all vertices of G that are adjacent to T ,
i.e., to every vertex in T .
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Lemma 2.2. If ε > 0 and G = (V1, V2; E) is a bipartite graph with |V1| = |V2| = N and at least εN2
edges, then for all positive integers t, x, there is a subset A ⊂ V2 with |A| ≥ ε2tN/2 such that for all but at
most 2ε−2t

( x
N

)2t (N
t

)
t-sets S in A, we have |N(S)| ≥ x.

Proof. Let T be a subset of 2t random vertices of V1, chosen uniformly with repetitions. Set A = N(T ),
and let X denote the cardinality of A ⊂ V2. By linearity of expectation and by convexity of f (z) = z2t ,

E[X] =
∑
v∈V2

(
|N(v)|
N

)2t
= N−2t

∑
v∈V2

|N(v)|2t ≥ N1−2t


∑
v∈V2
|N(v)|

N


2t

≥ ε2tN.

Let Y denote the random variable counting the number of t-sets in A with fewer than x common

neighbors. For a given t-set S, the probability that S is a subset of A is
(
|N(S)|
N

)2t
. Therefore, we have

E[Y ] ≤
(
N
t

)(
x− 1
N

)2t
.

Using linearity of expectation, we have

E
[
X −

E[X]
2E[Y ]

Y − E[X]/2
]
= 0.

Therefore, there is a choice of T for which this expression is nonnegative. Then

|A| = X ≥
1
2

E[X] ≥
1
2
ε2tN

and

Y ≤ 2XE[Y ]/E[X] ≤ 2NE[Y ]/E[X] < 2ε−2t
( x
N

)2t (N
t

)
,

completing the proof. �

We use this lemma to deduce the following:

Lemma 2.3. For every 2-edge-coloring of KN and integers y ≥ t ≥ q ≥ 2 there is a color and nested
subsets of vertices A1 ⊂ · · · ⊂ Aq with |A1| ≥ 2−4tqN such that the following holds. For each i < q, all but
at most 24t

2qy2tN−t subsets of Ai of size t have at least y common neighbors in Ai+1 in this color.

Proof. For j ∈ {0, 1}, let Gj denote the graph of color j. Let B1 = V (KN). We will pick subsets
B1 ⊃ B2 ⊃ · · · ⊃ B2q−2 such that for each i ∈ [2q − 3], we have |Bi+1| ≥ |Bi|/22t+2 and there is
a color c(i) ∈ {0, 1} such that there are less than

(
8y2/|Bi|

)t t-sets S ⊂ Bi+1 which have less than y
common neighbors in Bi in graph Gc(i).
Having already picked Bi, we now show how to pick c(i) and Bi+1. Arbitrarily partition Bi into two

subsets Bi,1 and Bi,2 of equal size. Let c(i) denote the densest of the two colors between Bi,1 and Bi,2.
By Lemma 2.2 with ε = 1/2, there is a subset Bi+1 ⊂ Bi,2 ⊂ Bi with |Bi+1| ≥ 2−2t−1|Bi,2| = 2−2t−2|Bi|
such that for all but at most

2 · 22t
(
y
|Bi,2|

)2t (
|Bi,2|
t

)
≤ 23ty2t |Bi|−t =

(
8y2/|Bi|

)t
t-sets S ⊂ Bi+1, S has at least y common neighbors in Bi in graph Gc(i).
We have completed the part of the proof where we constructed the nested subsets B1 ⊃ · · · ⊃

B2q−2 and the colors c(1), . . . , c(2q− 3). Notice that |B2q−2| ≥ 2−(2t+2)(2q−3)N ≥ 2−4tq+6N . So for all
but at most(

8y2/|Bi|
)t
≤
(
24tq−3y2/N

)t
≤ 24t

2qy2tN−t
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t-sets S ⊂ Bi+1, S has at least y common neighbors in Bi by color c(i). Since the sets B1 ⊃ · · · ⊃ B2q−2
are nested, this also implies that for all but atmost 24t

2qy2tN−t t-sets S ⊂ Bi+1, S has at least y common
neighbors in Bj in graph Gc(i) for each j ≤ i.
By the pigeonhole principle, one of the two colors is represented at least q−1 times in the sequence

c(1), . . . , c(2q − 3). We suppose without loss of generality that 0 is this popular color. Let Aq = B1,
ij denote the jth smallest positive integer such that c(ij) = 0, and Aq−j = Bij+1 for 1 ≤ j ≤ q − 1. By

the above discussion, it follows that A1 ⊂ · · · ⊂ Aq, |A1| ≥ |B2q−2| ≥ 2−4t
2qN , and, for each positive

integer i < q, all but at most 24t
2qy2tN−t subsets of Ai of size t are adjacent to at least y vertices in Ai+1

in graph G0. This completes the proof. �

The previous lemma shows that in every 2-edge-coloring of the complete graph KN there is a
monochromatic subgraph G and large nested vertex subsets A1 ⊂ · · · ⊂ Aq such that almost
every t-set in Ai has a large common neighborhood in Ai+1 in graph G. The next lemma is the most
technical part of the proof. It says that if a graph G has such vertex subsets A1 ⊂ · · · ⊂ Aq, then
for 1 ≤ i ≤ q there are large subsets Vi ⊂ Ai such that almost every d-set in

⋃
`6=i V` has a large

common neighborhood in Vi. These vertex subsets V1, . . . , Vq will be used to show that G contains all
(d,∆)-degenerate graphs on n vertices with chromatic number at most q.

Lemma 2.4. Let d, q,∆ ≥ 2 be integers and 0 < δ ≤ 1. Let t = (3q − 1)d/δ + d, y = 2−5qt∆−δN,
and x = y4N−3. Suppose x ≥ 2t. Let G = (V , E) be a graph with nested vertex subsets A1 ⊂ · · · ⊂ Aq
with |A1| ≥ 2−4tqN such that for each i, all but at most 24t

2qy2tN−t subsets of Ai of size t have at least y
common neighbors in Ai+1. Then there are vertex subsets Vi ⊂ Ai for 1 ≤ i ≤ q such that |Vi| ≥ x and the
number of d-sets in

⋃
`6=i V` with fewer than x common neighbors in Vi is less than (2∆)

−d
( x
d

)
.

Proof. We will first pick some constants. Let r0 = t and for 1 ≤ j ≤ q, let tj = 2 · 3q−jd/δ and
rj = rj−1 − tj = (3q−j − 1)d/δ + d. In particular, we have rq = d and tj ≥ 2rj.
Let

bi,i = 2q (2x/y)ti
(
N
ri

)
and bi,j = 2q

(
rj−1
y

)tj
bi,j−1 for i < j.

Let

c0 = 2−t
2qyt and cj = 2q

(
rj−1
y

)tj
cj−1.

By the hypothesis of the lemma, we have nested subsets A1 ⊂ · · · ⊂ Aq with |A1| ≥ 2−4tqN such
that for each i, all but at most 24t

2qy2tN−t ≤ 2−t
2qyt = c0 subsets of Ai of size t are adjacent to at

least y vertices in Ai+1. Let Ai,0 = Ai for each i. We will prove by induction on j that there are subsets
A1,j, . . . , Aq,j for 1 ≤ j ≤ q that satisfy the following properties.

1. For 1 ≤ i, j ≤ q, Ai,j ⊂ Ai,j−1.
2. For 0 ≤ j < ` < i ≤ q, A`,j ⊂ Ai,j.
3. |Ai,j| ≥ y for all i > j and |Ai,j| ≥ 2x− ti for i ≤ j.
4. For each i ≤ j, the number of rj-sets in

⋃
`6=i A`,j that have less than 2x − ti common neighbors in

Ai,j is at most bi,j.
5. For j < i < q, the number of rj-sets in Ai,j with less than y common neighbors in Ai+1,j is at most cj.

It is easy to see that the desired properties hold for j = 0. Assume that we have already found the
subsets Ai,j−1 for 1 ≤ i ≤ q. We now show how to pick the subsets Ai,j. Pick a subset Sj of Aj,j−1 of size
tj uniformly at random. We will let Ai,j = Ai,j−1 ∩ N(Sj) for i 6= j and Aj,j = Aj,j−1 \ Sj.
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Let Xj be the random variable that counts the number of rj-sets in
⋃
`6=j A`,j with at most 2x − tj

commonneighbors inAj,j. Equivalently,Xj is the number of rj-sets in
⋃
`6=j A`,jwith atmost 2x common

neighbors in Aj,j−1. The number of rj-sets in
⋃
`6=j A`,j−1 is atmost

(
N
rj

)
, and the probability that a given

rj-set R ⊂
⋃
`6=j A`,j−1with atmost 2x common neighbors in Aj,j−1 is also contained in

⋃
`6=j A`,j (which

corresponds to Sj ⊂ N(R)) is at most
(
2x
tj

)
/
(
|Aj,j−1|
tj

)
. By linearity of expectation, we have

E[Xj] ≤

(
2x
tj

)
(
|Aj,j−1|
tj

) (N
rj

)
≤

(
2x
y

)tj (N
rj

)
= bj,j/2q.

For i < j, let Yi,j be the random variable that counts the number of rj−1-sets containing Sj in⋃
`6=i A`,j−1 with less than 2x − ti common neighbors in Ai,j−1. Since the number of rj−1-sets in⋃
`6=i A`,j−1 that have less than 2x− ti common neighbors in Ai,j−1 is at most bi,j−1, then

E[Yi,j] ≤

(
rj−1
tj

)
(
|Aj,j−1|
tj

)bi,j−1 ≤ ( rj−1y
)tj
bi,j−1 = bi,j/2q.

Note that A`,j is disjoint from Sj for each `. So if T is a subset of
⋃
`6=i A`,j with cardinality rj, then T

is disjoint from Sj and so T ∪ Sj is a subset of
⋃
`6=i A`,j−1 with cardinality rj + tj = rj−1 satisfying

|N(T ∪ Sj) ∩ Ai,j−1| = |N(T ) ∩ N(Sj) ∩ Ai,j−1| = |N(T ) ∩ Ai,j|.

Hence, Yi,j is also an upper bound on the number of rj-sets in
⋃
`6=i A`,j with less than 2x− ti common

neighbors in Ai,j.
For j < i < q, let Zi,j be the randomvariable that counts the number of rj−1-sets inAi,j−1 that contain

Sj and have less than y common neighbors in Ai+1,j−1. Since cj−1 is an upper bound on the number of
rj−1-sets in Ai,j−1 that have less than y common neighbors in Ai+1,j−1 and Sj ⊂ Aj,j−1 ⊂ Ai,j−1, then

E[Zi,j] ≤

(
rj−1
tj

)
(
|Aj,j−1|
tj

) cj−1 ≤ ( rj−1y
)tj
cj−1 = cj/2q.

Since Ai,j is disjoint from Sj, if T ⊂ Ai,j has cardinality rj, then T∪Sj ⊂ Ai,j−1 has cardinality rj+tj = rj−1
and satisfies

|N(T ∪ Sj) ∩ Ai+1,j−1| = |N(T ) ∩ N(Sj) ∩ Ai+1,j−1| = |N(T ) ∩ Ai+1,j|.

Hence, Zi,j is an upper bound on the number of subsets of Ai,j of size rj with less than y common
neighbors in Ai+1,j.
For i < j, let Fi,j be the event that every rj−1-set in Aj,j−1 containing Sj has less than 2x− ti common

neighbors in Ai,j−1. The number of rj−1-sets in Aj,j−1 with less than 2x − ti common neighbors in
Ai,j−1 is at most bi,j−1. The number of subsets of Aj,j−1 of size rj−1 containing a fixed subset of size

tj is
(
|Aj,j−1|−tj
rj−1−tj

)
and there are

(
rj−1
tj

)
subsets of size tj in an rj−1-set. Hence, the number of tj-sets in

Aj,j−1 for which every rj−1-set in Aj,j−1 containing it has less than 2x − ti common neighbors in Ai,j−1
is at most(

rj−1
tj

)
(
|Aj,j−1|−tj
rj−1−tj

)bi,j−1.
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Since there are a total of
(
|Aj,j−1|
tj

)
possible tj-sets in Aj,j−1 that can be picked for Sj and |Aj,j−1| ≥ y,

then the probability of event Fi,j is at most(
rj−1
tj

)
(
|Aj,j−1|−tj
rj−1−tj

)bi,j−1 ( |Aj,j−1|tj
)−1
≤
r
tj
j−1

tj!
·
(rj−1 − tj)!
(y/2)rj−1−tj

·
tj!

(y/2)tj
· bi,j−1 = 2rj−1 r

tj
j−1rj!y

−rj−1bi,j−1

≤ t tiy−rj−1bi,j−1 = t tiy−rj−1bi,i
∏

i≤`<j−1

bi,`+1
bi,`

= t tiy−rj−12q (2x/y)ti
(
N
ri

) ∏
i≤`<j−1

2q
(
r`
y

)t`+1
≤ t tiy−rj−1(2q)q (2x/y)ti N ri

(
ri
y

)ti+1+···+tj−1
= (2t)ti(2q)q (x/y)ti (N/y)ri r

ri−rj−1
i < t3ti(2q)q (x/y)ti (N/y)ri

= t3ti(2q)q (N/y)ri−3ti ≤ t3ti(2q)q
(
25tq

)−5ti/2
<
1
2q
.

Here we used t = r0 ≥ r1 · · · ≥ rq, rj−1 = tj + rj and tj ≥ 2rj for 1 ≤ j ≤ q, and the inequality
2rj−1 r

tj
j−1rj! ≤ t

ti . This inequality can be obtained as follows

2rj−1 r
tj
j−1rj! ≤ 2

rj−1 r
tj
j−1r

rj
j ≤ 2

rj−1 r
tj+rj
j−1 = (2rj−1)

rj−1 ≤ t
rj−1
j−1 ≤ t

ti .

If there is an rj−1-set T in Aj,j−1 containing Sj with at least 2x− ti common neighbors in Ai,j−1, then
Sj has at least 2x − ti common neighbors in Ai,j−1 and |Ai,j| = |Ai,j−1 ∩ N(Sj)| ≥ 2x − ti. Therefore, if
|Ai,j| < 2x− ti, then event Fi,j occurs.
Let Gj be the event that every rj−1-set in Aj,j−1 containing Sj has less than y common neighbors in

Aj+1,j−1. The number of rj−1-sets in Aj,j−1 that have less than y common neighbors in Aj+1,j−1 is at most

cj−1. The number of subsets of Aj,j−1 of size rj−1 containing a fixed set of size tj is
(
|Aj,j−1|−tj
rj−1−tj

)
and there

are
(
rj−1
tj

)
subsets of size tj in an rj−1-set. Hence, the number of tj-sets in Aj,j−1 for which every rj−1-set

in Aj,j−1 containing it has less than y common neighbors in Aj+1,j−1 is at most(
rj−1
tj

)
(
|Aj,j−1|−tj
rj−1−tj

) cj−1.
Since there are a total of

(
|Aj,j−1|
tj

)
possible tj-sets in Aj,j−1 that can be picked for Sj and |Aj,j−1| ≥ y,

then the probability of event Gi,j is at most(
rj−1
tj

)
(
|Aj,j−1|−tj
rj−1−tj

) cj−1 ( |Aj,j−1|tj
)−1
≤
r
tj
j−1

tj!
·
(rj−1 − tj)!
(y/2)rj−1−tj

·
tj!

(y/2)tj
· cj−1 = 2rj−1 r

tj
j−1rj!y

−rj−1cj−1

≤ t2ty−rj−1cj−1 = t2ty−rj−1c0
j−1∏
`=1

c`
c`−1

= t2ty−rj−12−t
2qyt

j−1∏
`=1

2q
(
r`−1
y

)t`
= t2t2−t

2q(2q)j−1
j−1∏
`=1

(r`−1)t`

< t2t2−t
2q(2q)j−1t t < t4t2−t

2q <
1
2q
,

where we used t = r0 ≥ r1 · · · ≥ rq and rj−1 = tj + rj.
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If there is an rj−1-set T in Aj,j−1 containing Sj with at least y common neighbors in Aj+1,j−1, then
Sj has at least y common neighbors in Aj+1,j−1 and |Aj+1,j| = |Aj+1,j−1 ∩ N(Sj)| ≥ y. Therefore, if
|Aj+1,j| < y, then event Gj occurs.
Note that each of the discrete random variables Xj, Yi,j, Zi,j are nonnegative. Markov’s inequality

for nonnegative random variables says that if X is a nonnegative discrete random variable and c ≥ 1,
then the probability that X > cE[X] is less than 1c . So each of the following five types of events have
probability less than 1

2q of occurring:

1. Fi,j with i < j,
2. Gj,
3. Xj > 2qE[Xj],
4. Yi,j > 2qE[Yi,j]with i < j,
5. Zi,j > 2qE[Zi,j]with j < i.

Since there are a total of j − 1 + 1 + 1 + j − 1 + q − j = q + j ≤ 2q events of the above five types,
there is a positive probability that none of these events occur. Hence, there is a choice of Sj for which
none of the events Fi,j occur, the event Gj does not occur,

Xj ≤ 2qE[Xj] ≤ bj,j, Yi,j ≤ 2qE[Yi,j] ≤ bj,j for i < j, and Zi,j ≤ 2qE[Zi,j] ≤ cj for j < i.

Recall that Ai,j = Ai,j−1∩N(Sj) if i 6= j and Aj,j = Aj,j−1\Sj. Hence Ai,j ⊂ Ai,j−1 for 1 ≤ i, j ≤ q, which
is the first of the five desired properties. By the induction hypothesis, A`,j−1 ⊂ Ai,j−1 for j− 1 < ` < i,
and so for j < ` < i, A`,j = A`,j−1 ∩ N(Sj) ⊂ Ai,j−1 ∩ N(Sj) = Ai,j, which is the second of the desired
properties follows.
Note that |Ai,j| ≥ 2x− ti for i < j since Fi,j does not occur, and |Aj,j| = |Aj,j−1|− tj ≥ y− tj ≥ 2x− tj.

For i > j, since Aj+1,j ⊂ · · · ⊂ Aq,j and event Gj does not occur, then |Ai,j| ≥ |Aj+1,j| ≥ y. This
demonstrates the third of the five desired properties. The upper bounds on Xj and the Yi,j show the
fourth desired property and the upper bound on the Zi,j shows the fifth desired property. Hence, by
induction on j, the Ai,j have the desired properties.
We let Vi = Ai,q for 1 ≤ i ≤ q. For each i, we have |Vi| ≥ 2x − ti ≥ x and all but less than bi,q d-

sets in
⋃
`6=i V` have at least x common neighbors in Vi. To complete the proof, it suffices to show that

bi,q < (2∆)−d
( x
d

)
. Using t = r0 ≥ r1 . . . ≥ rq = d, ri−1 = ti + ri and ti ≥ 2ri for 1 ≤ i ≤ q, we have

bi,q = bi,i
∏

i≤`≤q−1

bi,`+1
bi,`
= 2q (2x/y)ti

(
N
ri

) ∏
i≤`≤q−1

2q
(
r`
y

)t`+1
≤ (2q)q (2x/y)ti N ri

(
ri
y

)ti+1+···+tq
= (2q)q (2x)ti yrq−ri−1N ri r ti+1+···+tqi = (2q)q2ti r ri−di xtiyd−ri−1N ri ≤ 2qttixtiyd−ri−1N ri

= 2qttixd
(
y4N−3

)ti−d yd−ri−1N ri = 2qttixd(y/N)3ti−3d−ri = 2qttixd(2−5qt∆−δ)3ti−3d−ri
≤ 2qttixd2−5qtti∆−2d = 2−4qtti∆−2dxd < (2∆)−d

( x
d

)
. �

We now present the proof of Theorem 2.1. Given a 2-coloring of the edges of KN with N ≥
225q3

qd/δ∆4δnwemust show that it contains a monochromatic copy of every (d,∆)-degenerate graph
H with n vertices and chromatic number q. Using Lemmas 2.3 and 2.4 (with y = 2−5tq∆−δN and
t ≤ 3qd/δ), we can find vertex subsets V1, . . . , Vq, each of cardinality at least

x = (y/N)4N = (2−5qt∆−δ)4N ≥ 25qtn > 4n,

and a monochromatic subgraph G of the 2-edge-coloring such that for each i the number of d-sets
S ⊂

⋃
`6=i V` with fewer than x common neighbors in Vi is less than (2∆)

−d
( x
d

)
. Then the following

embedding lemma shows that G contains a copy of H and completes the proof.
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Lemma 2.5. Let H be a (d,∆)-degenerate graphwith n vertices and chromatic number q. Let G be a graph
with vertex subsets V1, . . . , Vq such that for each i, |Vi| ≥ x ≥ 4n and the number of d-sets S ⊂

⋃
`6=i V`

with fewer than x common neighbors in Vi is less than (2∆)−d
( x
d

)
. Then G contains a copy of H.

Proof. Call a d-set S ⊂
⋃
`6=i V` good with respect to i if |N(S)∩Vi| ≥ x, otherwise it is bad with respect

to i. Also, a subset S ⊂
⋃
`6=i V` with |S| < d is good with respect to i if it is contained in less than

(2∆)|S|−d
(

x
d−|S|

)
d-sets in

⋃
`6=i V` which are bad with respect to i. A vertex v ∈ Vk with k 6= i is bad

with respect to i and a subset S ⊂
⋃
`6=i V` with |S| < d if S is good with respect to i but S ∪ {v} is not.

Note that, for any subset S ⊂
⋃
`6=i V` with |S| < d that is good with respect to i, there are at most

x
2∆

vertices that are bad with respect to S and i. Indeed, if not, then there would be more than

x/(2∆)
d− |S|

(2∆)|S|+1−d
(

x
d− |S| − 1

)
≥ (2∆)|S|−d

(
x

d− |S|

)
subsets of

⋃
`6=i V` of size d containing S that are badwith respect to i, which would contradict S being

good with respect to i.
Since H is (d,∆)-degenerate, it has an ordering of its vertices {v1, . . . , vn} such that each vertex

vk has at most d neighbors v` with ` < k and there are at most∆ subsets S ⊂ {v1, . . . , vk} such that
S = N(vj) ∩ {v1, . . . , vk} for some neighbor vj of vk with j > k. Since H has chromatic number q,
there is a partition U1 ∪ · · · ∪ Uq of the vertex set of H such that each Ui is an independent set. For
1 ≤ j ≤ n, let r(j) denote the index r of the independent set Ur containing vertex vj. Let N−(vk) be all
the neighbors v` of vk with ` < k. Let Lh = {v1, . . . , vh}. An embedding of a graph H in a graph G is an
injective mapping f : V (H)→ V (G) such that (f (vj), f (vk)) is an edge of G if (vj, vk) is an edge of H .
In other words, an embedding f demonstrates that H is a subgraph of G. We will use induction on h
to find an embedding f of H in G such that for 1 ≤ i ≤ q, f (Ui) ⊂ Vi and for every vertex vk and every
h ∈ [n], the set f (N−(vk) ∩ Lh) is good with respect to r(k).
By our definition, the empty set is good with respect to each i, 1 ≤ i ≤ q. We will embed the

vertices ofH by increasing order of their indices. Supposewe are embedding vh. Then, by the induction
hypothesis, for each vertex vk, the set f (N−(vk) ∩ Lh−1) is good with respect to r(k). Since the set
f (N−(vh) ∩ Lh−1) = f (N−(vh)) is good with respect to r(h), it has at least x common neighbors in
Vr(h). Also, there are at most ∆ subsets S ⊂ Lh for which there is a neighbor vj of vh with j > h such
that Lh∩N(vj) = S. So there are at most∆ sets f (N−(vj)∩Lh−1)where vj is a neighbor of vh and j > h.
Note that r(j) 6= r(h) for vj a neighbor of vh with j > h. By the induction hypothesis each such set
f (N−(vj) ∩ Lh−1) is good with respect to r(j), so there are at most∆ x

2∆ = x/2 vertices in Vr(h) which
are bad with respect to at least one of the pairs f (N−(vj) ∩ Lh−1) and r(j). This implies that there are
at least x− x/2− (h−1) > x/4 vertices in Vr(h) in the common neighborhood of f (N−(vh))which are
not occupied yet and are good with respect to all of the above pairs f (N−(vj) ∩ Lh−1) and r(j). Any of
these vertices can be chosen as f (vh). When the induction is complete, f (vh) is adjacent to f (N−(vh))
for every vertex vh of H . Hence, the mapping f provides an embedding of H as a subgraph of G. �

3. Another bound for Ramsey numbers

The following theorem is a generalization of a bound byGraham, Rödl, and Ruciński [13] on Ramsey
numbers for graphs of bounded maximum degree. The proof is a minor variation of their proof.

Theorem 3.1. The Ramsey number of every (d,∆)-degenerate H with n vertices and chromatic number
q satisfies r(H) ≤

(
27d+8d3d+2∆

)log q n.
We will need the following lemma. The edge density between a pair of vertex subsets W1,W2 of a
graph G is the fraction of pairs (w1, w2) ∈ W1 ×W2 that are edges of G.

Lemma 3.2. Let ε > 0 andH be a (d,∆)-degenerate graphwith n vertices and chromatic number q. Let G
be a graph on N ≥ 4ε−dqn vertices. If every pair of disjoint subsets W1,W2 ⊂ V (G) each with cardinality
at least 12ε

d∆−1q−2N has edge density at least ε between them, then G contains H as a subgraph.
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Proof. Let v1, . . . , vn be a (d,∆)-degenerate ordering for H . Let Lj = {v1, . . . , vj}. Let V (H) =
U1 ∪ · · · ∪ Uq be a partition of the vertex set of H into q color classes which are independent sets.
For i > j, let N(i, j) = N(vi) ∩ Lj denote the set of neighbors vh of vi with h ≤ j and di,j = |N(i, j)|.
Arbitrarily partition V (G) = V1 ∪ · · · ∪ Vq into q subsets of size N/q. We will find an embedding
f : V (H)→ V (G) of H such that if vi ∈ Uk, then f (vi) ∈ Vk. For 1 ≤ i ≤ n and vi ∈ Uk, let Ti,0 = Vk.
Wewill embed the vertices v1, . . . , vn ofH one by one in increasing order.Wewill prove by induction
on j that at the end of step j, we will have vertices f (v1), . . . , f (vj) and sets Ti,j for i > j such that

|Ti,j| ≥ εdi,j |Ti,0| = εdi,jN/q ≥ εdN/q

and the following holds. For h, ` ≤ j, (f (vh), f (v`)) is an edge of G if (vh, v`) is an edge of H , and for
i > j and vi ∈ Uk, Ti,j is the subset of Vk consisting of those vertices adjacent to f (vp) for every vertex
vp ∈ N(i, j). In particular, we have that if i, i′ > j are such that vi, vi′ lie in the same independent set
Uk and N(i, j) = N(i′, j), then Ti,j = Ti′,j. Note that any vertex in Ti,j \ {f (v1), . . . , f (vj)} can be used to
embed vi.
The base case j = 0 for the induction clearly holds. Our induction hypothesis is that we have

vertices f (v1), . . . , f (vj−1) and sets Ti,j−1 for i > j − 1 with |Ti,j−1| ≥ εdi,j−1N/q such that if (vh, v`)
is an edge of H and h, ` < j, then (f (vh), f (v`)) is an edge of G, and if (vh, v`) is an edge of H
with h < j ≤ `, then f (vh) is adjacent to every element of T`,j−1. It is sufficient to find a vertex
w ∈ Tj,j−1 \{f (v1), . . . , f (vj−1)} such that for each vi adjacent to vj with i > j, the number of elements
of Ti,j−1 adjacent to w is at least ε|Ti,j−1|. Indeed, if we find such a vertex w, we let f (vj) = w and for
i > j, we let Ti,j = N(w)∩ Ti,j−1 if vi is adjacent to vj in H and otherwise Ti,j = Ti,j−1, which completes
step j. For vi adjacent to vj with i > j, let Xi,j denote the set of vertices in Tj,j−1 with less than ε|Ti,j−1|
neighbors in Ti,j−1. If there is a Xi,j with cardinality at least 1

2q∆ |Tj,j−1|, then letting W1 = Xi,j and
W2 = Ti,j−1, the edge density betweenW1 andW2 is less than ε andW1,W2 each has cardinality at
least 12ε

d∆−1q−2N , contradicting the assumption of the lemma. So each of the sets Xi,j has cardinality
less than 1

2q∆ |Tj,j−1|.
SinceH is (d,∆)-degenerate, there are at most∆ vertex subsets S ⊂ Lj with vj ∈ S for which there

is a vertex vi with i > j and N(i, j) = S. As we already mentioned, if i, i′ > j− 1 are such that vi, vi′ lie
in the same independent set Uk and N(i, j−1) = N(i′, j−1), then Ti,j−1 = Ti′,j−1. If furthermore vi, vi′
are neighbors of vj, then Xi,j = Xi′,j. Since there are q sets Uk and at most ∆ sets S ⊂ Lj with vj ∈ S
for which there is a vertex vi with i > j and N(i, j) = S, then there are at most q∆ distinct sets of the
form Xi,j. Hence, at least

|Tj,j−1| − q∆
1
2q∆
|Tj,j−1| − (j− 1) >

1
2
|Tj,j−1| − n ≥

1
2
εdq−1N − n ≥ n

verticesw ∈ Tj,j−1 can be chosen for f (vj), which by induction on j completes the proof. �

We now mention some useful terminology from [10] that we need before proving Theorem 3.1.
For a graph G = (V , E) and disjoint subsets W1, . . . ,Wt ⊂ V , the density dG(W1, . . . ,Wt) between
the t ≥ 2 vertex subsetsW1, . . . ,Wt is defined by

dG(W1, . . . ,Wt) =

∑
i<j
e(Wi,Wj)∑

i<j
|Wi||Wj|

.

If |W1| = · · · = |Wt |, then

dG(W1, . . . ,Wt) =
(
t
2

)−1∑
i<j

dG(Wi,Wj).

Definition 3.3. For α, ρ, ε ∈ [0, 1] and a positive integer t , a graph G = (V , E) is (α, ρ, ε, t)-
sparse if for all subsets U ⊂ V with |U| ≥ α|V |, there are disjoint subsets W1, . . . ,Wt ⊂ U with
|W1| = · · · = |Wt | = dρ|U|e and dG(W1, . . . ,Wti) ≤ ε.
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By averaging, if α′ ≥ α, ρ ′ ≤ ρ, ε′ ≥ ε, t ′ ≤ t , and G is (α, ρ, ε, t)-sparse, then G is also
(α′, ρ ′, ε′, t ′)-sparse. To prove Theorem 3.1, we use the following simple lemma from [10].

Lemma 3.4 ([10]). If G is (α, ρ, ε/4, 2)-sparse, then G is also
(
( 2
ρ
)h−1α, 21−hρh, ε, 2h

)
-sparse for each

positive integer h.

For this paragraph, let ε = 1
32q2d

, x = 4ε−d∆q2, and y = (2x)log q. Note that Lemma 3.2
demonstrates that if a graph G on N ≥ xn vertices does not contain a (d,∆)-degenerate graph H with
order n and chromatic number q, then G is (xn/N, x−1, ε, 2)-sparse. By Lemma 3.4 with α = xn/N ,
h = log q, ρ = 1/x, this implies that if a graph G on N ≥ yn vertices does not contain a (d,∆)-
degenerate graphH with order n and chromatic number q, then G is

(
yn/N, y−1, 4ε, q

)
-sparse. Hence,

as long as N ≥ yn, then there are vertex subsetsW1, . . . ,Wq of Gwith the same size which is at least
N/y such that dG(W1, . . . ,Wq) is at most 4ε. Consider a red-blue edge-coloring of KN with

N =
(
27d+8d3d+2∆

)log q
n ≥ 8

(
8q2(32dq2)d∆

)log q
n = 8

(
8ε−d∆q2

)log q
n = 8yn,

where we use the fact that the chromatic number q of a d-degenerate graph satisfies q ≤ d+ 1 ≤ 2d.
If the red graph does not contain H , then there are disjoint subsets W1, . . . ,Wq of V (KN) each with
the same cardinality which is at least y−1N ≥ 8n such that dG(R)(W1, . . . ,Wq) is at most 4ε, where
G(R) denotes the graph of color red. Hence, the total number of red edges whose vertices are in
different Wis is at most 4εq2|W1|2. For each Wi, delete those |Wi|/2 vertices of Wi which have the
largest number of neighbors in

⋃
j6=iWj in the red graph, and let Yi be the remaining vertices of Wi.

Notice that |Yi| = |Wi|/2 ≥ 4n and every vertex of Yi is in at most 8εq2|Wi| =
|Yi|
2d red edges with

vertices in
⋃
j6=iWj since otherwise the number of edges between Wi \ Yi and

⋃
j6=iWj is more than

|Wi \ Yi|8εq2|Wi| = 4εq2|W1|2, contradicting the fact that the number
∑
i<j e(Wi,Wj) of red edges

with vertices in different subsets is at most 4εq2|W1|2. Therefore, applying the following lemma to
the blue graph, there is a monochromatic blue copy of H , completing the proof of Theorem 3.1. �

Lemma 3.5. Suppose H is a d-degenerate graph with n vertices and chromatic number q. If G is a graph
with disjoint vertex subsets Y1, . . . , Yq with |Y1| = · · · = |Yq| ≥ 4n such that each vertex in Yi is adjacent
to all but at most |Yi|2d vertices of

⋃
j6=i Yj, then H is a subgraph of G.

Proof. Let v1, . . . , vn be an ordering of the vertices of H such that for each vertex vi, there are at most
d neighbors vj of vi with j < i. Let V (H) = U1 ∪ · · · ∪ Uq be a partition of the vertex set of H into
independent sets. We will find an embedding f : V (H) → V (G) of H such that if vi ∈ Uk, then
f (vi) ∈ Yk. We will embed the vertices v1, . . . , vn of H one by one in increasing order. Suppose we
have already embedded v1, . . . , vi−1 and we try to embed vi ∈ Uk. Consider a vertex vj adjacent to vi
with j < i. We have vj 6∈ Uk since Uk is an independent set. Therefore, f (vj) 6∈ Yk and is adjacent to all
but at most |Yk|2d vertices in Yk. Since there are at most d such vertices vj adjacent to vi with j < i, then
there are at least |Yk| − d

|Yk|
2d − (i− 1) =

|Yk|
2 − (i− 1) > n vertices in Yk \ {f (v1), . . . , f (vi−1)}which

are adjacent to f (vj) for all neighbors vj of vi with j < i. Since any of these vertices can be chosen for
f (vi), this completes the proof by induction. �

4. Random graphs

In this section we discuss the arrangeability of sparse random graphs. Our results imply linear
upper bounds on Ramsey numbers of these graphs. We start the section with two simple lemmas
relating (d,∆)-degeneracy with p-arrangeability.

Lemma 4.1. If a graph is (d,∆)-degenerate, then it is (∆(d− 1)+ 1)-arrangeable.

Proof. Let v1, . . . , vn be a (d,∆)-degenerate ordering of the vertices of a graphG. Then for each i, there
are at most ∆ subsets S, each of cardinality at most d, such that S = N(vj) ∩ {v1, . . . , vi} for some
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neighbor vj of vi with j > i. Therefore, for any vertex vi, its neighbors to the right of vi have together
at most∆(d− 1)+ 1 neighbors to the left of vi (including vi), and so the graph G is (∆(d− 1)+ 1)-
arrangeable. �

Lemma 4.2. If a graph is p-arrangeable, then it is (p, 2p−1)-degenerate.

Proof. Let v1, . . . , vn be a p-arrangeable ordering of the vertices of a graph G. For any vertex vi, its
neighbors to the right of vi have together at most p neighbors to the left of vi (including vi). Let N(j, i)
denote the set of neighbors vk of vj with k ≤ i. For every neighbor vj of vi with j > i, the set N(j, i)
lies in a set of size p that contains vi, so there are at most 2p−1 such sets N(j, i). Let vi be the neighbor
of vj which has maximum index i < j. Then using the p-arrangeability property for vi, we get that the
number of neighbors of vj in {v1, . . . , vj} is |N(j, i)| ≤ p. Hence, the ordering demonstrates that G is
(p, 2p−1)-arrangeable. �

We prove for d ≥ 10 that a.s. the random graph G(n, d/n) is 256d2-arrangeable. This follows
from Lemma 4.1 and Theorem 4.8 below which says that for d ≥ 10 a.s. G(n, d/n) is (16d, 16d)-
degenerate. Theorems 4.8 and 3.1 together imply Theorem 1.4, which says that G(n, d/n) almost
surely has Ramsey number at most 2cd log

2 dn, where c is an absolute constant. Since the random
bipartite graph G(n, n, d/n) is a subgraph of G(2n, d/n), Theorem 4.8 implies that almost surely
G(n, n, d/n) is (32d, 32d)-degenerate. Together with Theorem 2.1, this proves Theorem 1.5, which
says that G(n, n, d/n) almost surely has Ramsey number atmost 2cdn, where c is an absolute constant.
The ordering of the vertices of G(n, d/n) used to prove Theorem 4.8 is a careful modification of the

ordering by decreasing degrees. Let A be the set of vertices of degree more than 16d. It is easy to show
that a.s. A is quite small. We then enlarge A to a set F(A) that we show has the property that no vertex
in the complement of F(A) has more than one neighbor in F(A) and a.s. |F(A)| ≤ 4|A|. Since |F(A)|
is small enough, a.s. any set with size |F(A)| (so, in particular, the set F(A) itself) is sparse enough
that the subgraph of G(n, d/n) induced by it is (2, 3)-degenerate. We first order the set F(A) and then
add the remaining vertices of G(n, d/n) arbitrarily. We use this vertex order to demonstrate that a.s.
G(n, d/n) is (16d, 16d)-degenerate.
Before proving Theorem 4.8, we need several simple lemmas.

Lemma 4.3. Almost surely there are at most 24−8dn vertices of G(n, d/n) with degree larger than 16d.

Proof. Let A be the subset of s = 24−8dn vertices of largest degree in G = G(n, d/n) and D be the
minimum degree of vertices in A. So there are at least sD/2 edges that have at least one vertex in
A. Consider a random subset A′ of A with size |A|/2. Every edge which contains a vertex of A has a
probability at least 1/2 of having exactly one vertex in A′. This can be easily seen by considering the
cases where the edge lies entirely in A and where the edge has exactly one vertex in A. So there is
a subset A′ ⊂ A of size |A|/2 such that the number m of edges between A′ and V (G) \ A′ satisfies
m ≥ sD/4 = |A′|D/2.
We now give an upper bound on the probability that D ≥ 16d. Each subset A′ of G(n, d/n) of size

s/2 has probability at most( s
2 (n−

s
2 )

m

)
(d/n)m ≤

( esn
2m

)m
(d/n)m ≤

(
2sd
m

)m
≤

(
8d
D

)m
≤ 2−4ds

of having at leastm ≥ (s/2)(16d)/2 = 4sd edges between A′ and V (G) \ A′. Therefore the probability
that there is a subset A′ of size s/2 which has at least 4sd edges between A′ and V (G) \ A′ is at most(

n
s/2

)
2−4ds <

(
2en
s

)s/2
2−4ds ≤

(
23−8dn
s

)s/2
= o(1),

completing the proof. �

Lemma 4.4. If a graph G = (V , E) of order n has less than 98n edges, then it contains a vertex of degree at
most one or contains a vertex of degree two whose both neighbors have degree two.
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Proof. Suppose for contradiction thatGhasminimumdegree at least 2 and there is no vertex of degree
2 whose both neighbors have degree two. Let V1 ⊂ V be those vertices with degree 2 and V2 = V \V1
be those vertices of degree at least 3. Let x = |V1|. Since every vertex in V1 has degree at least two and
every vertex in V2 has degree at least three, then the number of edges ofG is at least 2x+3(n−x)2 =

3n
2 −

x
2 .

Since we assumed that every vertex of degree two has at most one neighbor with degree two, then
the subgraph of G induced by V1 has maximum degree at most one. Therefore, V1 spans at most x/2
edges. Since the vertices in V1 have degree 2, then the number of edges of G with at least one vertex
in V1 is 2x− e(V1) ≥ 3

2x. Hence, the number of edges of G is at least max
( 3n
2 −

x
2 ,
3
2x
)
. Regardless of

the value of x, this number is always at least 9n8 , a contradiction. �

Lemma 4.5. If for r, s ≥ 1, every subgraph of a graph G = (V , E) has a vertex with degree at most one or
a vertex with degree at most s all of whose neighbors have degree at most r, then G is (s, r+1)-degenerate.

Proof. Pick out vertices vn, vn−1, . . . , v1 one by one such that for each j, in the subgraph of G induced
by V \ {vn, vn−1, . . . , vj+1}, the vertex vj has degree at most one or it has degree at most s and all of its
neighbors have degree at most r . Let Lj = {v1, . . . , vj}. First note that this ordering has the property
that each vertex vj has at most s neighbors vi with i < j since its degree in the subgraph of G induced
by Lj is at most s. Let N1(vj) be those vertices vk with k > j that are adjacent to vj and have a neighbor
in Lj−1. The cardinality of N1(vj) is at most r since otherwise the vertex vh ∈ N1(vj) with the largest
index h has at least two neighbors in Lh and has a neighbor vj ∈ Lh which has degree more than r in
Lh, contradicting how we chose vh. The vertices vk with k > j that are adjacent to vj and have degree
one in the subgraph of G induced by Lk satisfy N(vk)∩ Lj = {vj}. Therefore, for each j, there are at most
r + 1 sets S ⊂ Lj for which S = N(vk) ∩ Lj for some vertex vk adjacent to vj with k > j. Hence, this
ordering shows that G is (s, r + 1)-degenerate. �

Lemma 4.6. Almost surely every subgraph G′ of G(n, d/n)with t ≤ (5d)−9n vertices has average degree
less than 9/4.

Proof. Let S be a subset of size t with t ≤ (5d)−9n. The probability that S has at leastm = 9
8 t edges is

at most
( (

t
2

)
m

)
(d/n)m. Therefore, by the union bound, the probability that there is a subset of size t

with at leastm = 9
8 t edges is at most(n

t

)(( t
2

)
m

)(
d
n

)m
≤

( en
t

)t ( et2
2m

)m (d
n

)m
= et

(
4e
9

)9t/8 (n
t

)t (dt
n

)9t/8
≤ 5t

(n
t

)t (dt
n

)9t/8
= 5t(d9t/n)t/8.

Summing over all t ≤ (5d)−9n, one easily checks that the probability that there is an induced subgraph
with at most (5d)−9n vertices and average degree at least 9/4 is o(1), completing the proof. �

For a graph G = (V , E) and vertex subset S ⊂ V , let F(S) denote a vertex subset formed by adding
vertices from V \ S with at least two neighbors in S one by one until no vertex in V \ F(S) has at least
two neighbors in F(S). It is not difficult to see that F(S) is uniquely determined by S.

Lemma 4.7. Almost surely every vertex subset S of G(n, d/n) with cardinality t ≤ (5d)−10n has |F(S)|
≤ 4t.

Proof. Suppose not, and consider the set T of the first 4t vertices of F(S). By definition, the number
of edges in the subgraph induced by T is at least 2(|T | − |S|) ≥ 3

2 |T |, so the average degree of this
induced subgraph is at least 3. But Lemma 4.6 implies that a.s. every induced subgraph of G(n, d/n)
with at most 4t vertices has average degree less than 3, a contradiction. �

Theorem 4.8. For d ≥ 10, the graph G(n, d/n) is almost surely (16d, 16d)-degenerate.
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Proof. Let A be the (5d)−10n vertices of largest degree in G(n, d/n). Since (5d)−10n ≥ 24−8dn for
d ≥ 10, by Lemma 4.3, a.s. all vertices not in A have degree at most 16d. By Lemma 4.7, a.s. |F(A)| ≤
4|A|. By Lemmas 4.6, 4.4 and 4.5, a.s. the subgraph of G induced by F(A) is (2, 3)-degenerate. Let
v1, . . . , v|F(A)| be an ordering of F(A) that respects the (2, 3)-degeneracy. Arbitrarily order the vertices
not in F(A) as v|F(A)|+1, . . . , vn. Let Lj = {v1, . . . , vj}. We claim that this is the desired ordering for the
vertices of G(n, d/n). Consider a vertex vi. If i ≤ |F(A)|, then vi has the following three properties:

• there are at most two neighbors vj of vi with j < i,
• there are at most three subsets S ⊂ Li for which there is a neighbor vh of vi with i < h ≤ |F(A)|
and N(vh) ∩ Li = S, and
• every neighbor vk of vi with k > |F(A)| has N(vk) ∩ Li = {vi}.

If i > |F(A)|, then vi has maximum degree at most 16d. Therefore, this ordering demonstrates that
G(n, d/n) is a.s. (16d, 16d)-degenerate, completing the proof. �

We next prove Lemma 4.11, which completes the proof of Theorem 1.2, and says that for d ≥ 300
a.s. G(n, d/n) is not d2/144-arrangeable.

Lemma 4.9. Let p = d/n with d ≥ 300. Almost surely every pair A, B of disjoint subsets of G(n, p) of size
at least n/6 have at least p|A||B|/2 edges between them.

Proof. Let s = n/6. If there are disjoint subsets A, B each of size at least s which have less than
p|A||B|/2 between them, then by averaging over all subsets A′ ⊂ A and B′ ⊂ B with |A′| = |B′| = s,
there are subsets A′ ⊂ A and B′ ⊂ B with |A′| = |B′| = s and the number of edges between A′ and B′
is at most p|A′||B′|/2.
Using the standard Chernoff bound (see page 306 of [4]) for s2 independent coin flips each coming

up heads with probability p = d/n, the probability that a fixed pair of disjoint subsets A′, B′ of
G(n, d/n) each of size s have less than ps2/2 edges between them is at most

e−(ps
2/2)2/(2ps2)

= e−ps
2/8.

The probability that no pair of disjoint subsetsA′, B′ each of size shas less than ps2/2 edges between
them is at most(n

s

)(n− s
s

)
e−ps

2/8
≤

( en
s

)2s
e−ps

2/8
=
(
6e · e−d/96

)2s
= o(1).

So a.s. every pair of disjoint subsets A, B each with cardinality at least n/6 has at least p|A||B|/2 edges
between them. �

Lemma 4.10. In G(n, d/n) with d = o(n1/6), a.s. no pair of vertices have three common neighbors.

Proof. A pair of vertices together with its three common neighbors form the complete bipartite graph
K2,3. Let us compute the expected number of K2,3 in G(n, d/n). We pick the vertices and thenmultiply
by the probability that they form K2,3. So the expected number of K2,3 is(n

2

)(n− 3
3

)
(d/n)6 ≤ n5(d/n)6 = o(1),

which implies the lemma. �

Lemma 4.11. For d ≥ 300, almost surely G(n, d/n) is not d2/144-arrangeable.

Proof. Suppose for contradiction that G(n, d/n) is d2/144-arrangeable, so there is a corresponding
ordering v1, . . . , vn of its vertices. Let V1 = {vi}i≤n/3, V2 = {vi}n/3<i≤2n/3, and V3 = {vi}2n/3<i≤n.
Delete from V3 all vertices that have fewer than dn |V1|/2 = d/6 neighbors in V1, and let V

′

3 be the
remaining subset of V3. Note that a.s. |V ′3| ≥ n/3 − n/6 = n/6 since otherwise V3 \ V

′

3 and V1 each
has cardinality at least n/6 and have fewer than dn |V3 \ V

′

3||V1|/2 edges between them, which would
contradict Lemma 4.9. Delete from V2 all vertices that have fewer than dn |V

′

3|/2 neighbors in V
′

3, and
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let V ′2 be the remaining subset of V2. Note that |V
′

2| ≥ n/3 − n/6 = n/6 since otherwise V2 \ V
′

2 and
V ′3 each has cardinality at least n/6 and have fewer than

d
n |V2 \ V

′

2||V
′

3|/2 edges between them, which
would contradict Lemma 4.9. Pick any vertex v ∈ V ′2. Vertex v has at least

d
n |V
′

3|/2 ≥ d/12 neighbors
in V ′3. Let U = {u1, . . . , ur} denote a set of r = d/12 neighbors of v in V

′

3. Let d(ui) denote the number
of neighbors of ui in V1 and d(ui, uj) denote the number of common neighbors of ui and uj in V1. Note
that for each ui ∈ U , d(ui) ≥ d/6. Also, by Lemma 4.10, d(ui, uj) ≤ 2 for distinct vertices ui, uj. By
the inclusion–exclusion principle, the number of vertices in V1 adjacent to at least one vertex in U is
at least∑

1≤i≤r

d(ui)−
∑
1≤i<j≤r

d(ui, uj) ≥ rd/6−
( r
2

)
2 > d2/144.

Hence, a.s. G(n, d/n) is not d2/144-arrangeable. �

5. Concluding remarks

In this paper we proved that for fixed d, the Ramsey number of the random graph G(n, d/n) is
a.s. linear in n. More precisely, we showed that there are constants c1, c2 such that a.s.

2c1d n ≤ r (G(n, d/n)) ≤ 2c2d log
2 d n.

We think that the upper bound can be further improved and that the Ramsey number of the random
graph G(n, d/n) is a.s. at most 2cdn for some constant c.
There are many results demonstrating that certain parameters of random graphs are highly

concentrated (see, e.g., the books [5,16]). Probably the most striking example of this phenomena is
a recent result of Achlioptas and Naor [1]. Extending earlier results from [23,20], they demonstrate
that for fixed d > 0, a.s. the chromatic number of the random graph G(n, d/n) is kd or kd + 1, where
kd is the smallest integer k such that d < 2k log k. We do not think the Ramsey numbers of random
graphs are nearly as highly concentrated. However, it would be interesting to determine if there is
a constant cd > 0 for each d > 1 such that the random graph G(n, d/n) a.s. has Ramsey number
(cd + o(1)) n.
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