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ABSTRACT: In this article, we analyze the appearance of a Hamilton cycle in the following random
process. The process starts with an empty graph on n labeled vertices. At each round we are presented
with K = K(n) edges, chosen uniformly at random from the missing ones, and are asked to add one
of them to the current graph. The goal is to create a Hamilton cycle as soon as possible.

We show that this problem has three regimes, depending on the value of K . For K = o(log n),
the threshold for Hamiltonicity is 1+o(1)

2K n log n, i.e., typically we can construct a Hamilton cycle K
times faster that in the usual random graph process. When K = ω(log n) we can essentially waste
almost no edges, and create a Hamilton cycle in n + o(n) rounds with high probability. Finally, in the
intermediate regime where K = �(log n), the threshold has order n and we obtain upper and lower
bounds that differ by a multiplicative factor of 3. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 37,
1–24, 2010
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1. INTRODUCTION

The random graph process, introduced by Erdős and Rényi in their groundbreaking series of
papers on random graphs around 1960, begins with the edgeless graph on n vertices, and at
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2 KRIVELEVICH, LUBETZKY, AND SUDAKOV

each point adds a single new edge to the current graph. Each new edge is chosen uniformly
and independently out of all missing edges. Clearly, one may “freeze” the random graph
process at a given time-point t = t(n) ∈ {0, . . . ,

(n
2

)}, yielding a random graph distributed
as the the well-known Erdős-Rényi random graph G(n, m), which is in turn similar to the
binomial random graph G(n, p) with p = m/

(n
2

)
. These two latter models are defined as

follows: G(n, p) is a random graph on n (labeled) vertices, where every edge appears with
probability p, independently of the other edges, whereas G(n, m) is a graph uniformly chosen
out of all graphs with n vertices and m edges. For more information on these models and
the correspondence between them see, e.g., [10, 19].

An important advantage in investigating the random graph process, rather than the two
models G(n, p) and G(n, m), is that it allows a higher resolution analysis of the appearance of
monotone graph properties (a graph property is a set of graphs closed under isomorphism;
it is monotone if it is also closed under the addition of edges).

A well-known example of this sort is the following hitting time result of Bollobás and
Thomason [14] (see also [10], Chapter 7): the edge that touches the last isolated vertex in the
random graph process is typically also the one that makes the graph connected. There are
many additional examples for hitting-time results which link natural monotone properties
to the minimal degree of the random graph process (cf., e.g., [1, 4, 11, 13, 15], for such
results on the appearance of disjoint Hamilton cycles, perfect matchings and the value of
the isoperimetric constant).

The aforementioned examples indicate that the main obstacle for the appearance of many
natural graph properties is “reaching” the last low-degree vertices. It is therefore natural to
ask how the thresholds for these properties change if we modify the random graph process
so that we can somehow bypass this obstacle. The following model that achieves this was
proposed by Achlioptas, inspired by the celebrated “power of two choices” result of [3]: at
each step, we are presented with K ≥ 1 different edges, chosen uniformly and independently
out of all missing edges, and are required to add one of them to our graph. In this version of
the process (which generalizes the Erdős-Rényi graph process), one can attempt to either
accelerate the appearance of monotone graph properties, or delay them, by applying an
appropriate online algorithm. It is important to stress that the process as described above
is online in nature: the algorithm is denied an ability to see any future edges at the current
round and is forced to make its choice based only on the edges seen so far.

Quite a few papers have thereafter attempted to settle the many open problems that arise
in the above model. These include determining the minimum number of rounds required to
ensure the emergence of a giant component, the longest period one may delay its appearance
by, delaying the appearance of certain fixed subgraphs and so on (see, e.g., [5, 8, 9, 17, 22,
29]).

In this work, we analyze the optimal thresholds in the Achlioptas process for the appear-
ance of a Hamilton cycle, a fundamental and thoroughly studied property in random graphs
(see, e.g., [10] Chapter 8 for further information). We consider only the problem of accel-
erating the appearance of the Hamilton cycle, since the problem of avoiding it is rather
simple. Indeed, this latter task can be achieved by isolating one fixed vertex. To obtain
some immediate bounds for this problem, recall the well-known fact that the threshold for
Hamiltonicity in the random graph G(n, m) is at m = (1 + o(1)) 1

2 n log n (to be precise, the
threshold is at m = 1

2 (log n + log log n ± ω(1))n, where the ω(1)-term tends to ∞ slower
than log log n). Therefore, when presented with K uniformly chosen edges at each round,
the minimum number of rounds required for Hamiltonicity is typically between 1+o(1)

2K n log n
and 1+o(1)

2 n log n (the upper bound is obtained by always selecting the first edge out of the
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HAMILTONICITY IN ACHLIOPTAS PROCESSES 3

given K , whereas the lower bound is obtained by collecting all K edges witnessed). Clearly,
for K ≥ 1

2 log n, the above lower bound can be replaced by the trivial lower bound of n, as
the Hamilton itself consists of n edges.

Our results show that one can indeed construct a Hamilton cycle much faster than in the
standard graph process (the above trivial upper bound), essentially matching the two lower
bounds mentioned earlier. To formulate this statement precisely, we consider three regimes
for the possible values of K , and study the optimal threshold for Hamiltonicity in each of
them.

In the first regime, consisting of the sub-logarithmic values of K , we show that the above
mentioned lower bound of 1+o(1)

2K n log n is tight. That is, for every K = o(log n), there is
an online algorithm that constructs a Hamilton cycle roughly using the same amount of
time it would take for one to appear when collecting all K edges of every round. Putting it
differently, for such values of K the threshold for Hamiltonicity is asymptotically K times
lower than that of the standard random graph process:

Theorem 1.1. Let K ≥ 2 satisfy K = o(log n), and consider the Achlioptas process where
K uniformly chosen new edges are presented at each round. Then the minimum asymptotical
number of rounds needed for Hamiltonicity is whp 1+o(1)

2K n log n.

In the second regime, consisting of the super-logarithmic values of K (that is, K =
ω(log n)), we show that n + o(n) rounds suffice for constructing a Hamilton cycle. In other
words, for such values of K it is possible to achieve Hamiltonicity essentially without waste
(the selected edges of almost all rounds participate in the Hamilton cycle):

Theorem 1.2. Let K satisfy K = ω(log n), and consider the Achlioptas process where K
uniformly chosen new edges are presented at each round. Then the minimum asymptotical
number of rounds needed for Hamiltonicity is whp n + o(n).

In the intermediate regime, where K has order log n, the methods we used in order to
prove Theorems 1.1 and 1.2 show that the threshold for Hamiltonicity has order n, and we
obtain lower bounds and upper bounds that differ by a multiplicative factor of 3. This is
incorporated in the following theorem.

Theorem 1.3. Consider the Achlioptas process where K uniformly chosen new edges are
presented at each round, and K → ∞ with n. Then τH, the minimum number of rounds
needed for Hamiltonicity, is at least (1+o(1))(1+ log n

2K )n and at most (1+o(1))
(
3 + log n

K

)
n

whp. In particular, if K = γ log n for some fixed γ > 0, then 1 + 1
2γ

+ o(1) ≤ τH
n ≤

3 + 1
γ

+ o(1) whp.

Note that Theorems 1.1,1.2 and 1.3 imply a certain discontinuity in the behavior of the
ratio between the threshold for Hamiltonicity in the standard random graph process and
the corresponding threshold in the Achlioptas process. Indeed, Theorem 1.1 asserts that
whenever K = o(log n), this ratio is asymptotically K , whereas Theorem 1.2 implies that
for K = ω(log n) this ratio is roughly 1

2 log n. However, for K = 1
2 log n for instance, where

one might expect this ratio to be roughly 1
2 log n, Theorem 1.3 shows that it is in fact roughly

between 1
10 log n and 1

4 log n.
The rest of this article is organized as follows. Sections 2, 3, and 4 contain the proofs

of Theorem 1.1 (sub-logarithmic regime), Theorem 1.2 (super-logarithmic regime) and
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4 KRIVELEVICH, LUBETZKY, AND SUDAKOV

Theorem 1.3 (intermediate regime), respectively. The final section, Section 5, is devoted to
concluding remarks and open problems. In particular, in that section we discuss how some
of our results can be generalized to an online Ramsey-type game; relevant definitions and
details are given there.

Throughout the article, all logarithms are in the natural basis, and an event, defined for
every n, is said to occur with high probability (whp) or almost surely if its probability tends to
1 as n → ∞. For a given graph G and a subset of its vertices S ⊂ V(G), let Sc := V(G)\S
denote the complement set; also let N(S) be the set of vertices of G with at least one
neighbor in S. Further note that for the sake of simplicity, our arguments will occasionally
move between the random graph models G(n, p) and G(n, m) (for more information on the
connection between these models see, e.g., [10]).

2. SUB-LOGARITHMIC REGIME: K = o(log n)

In this section, we prove Theorem 1.1, which states that for the Achlioptas process with
K = o(log n) edges in each round, the minimal number of rounds required for Hamiltonicity
is 1+o(1)

2K n log n whp.
The lower bound on the asymptotical optimal number of rounds required to obtain a

Hamilton cycle is immediate from the well-known fact that the threshold for Hamiltonicity
in G(n, m) is m = 1+o(1)

2 n log n (see, e.g., [10] Chapter 2). Thus, even if one were allowed to
collect all K edges presented at every round, the minimum asymptotical number of rounds
for Hamiltonicity would still be 1+o(1)

2K n log n. It remains to show that this number of rounds
is sufficient to create a Hamilton cycle.

Fix 0 < ε < 1
100 . The proof will consist of three steps:

(1) Construct an expander H = (VH, EH) on at least (1 − ε)n vertices, in which every
nonempty set S ⊂ VH of size at most n

100 has at least 3|S| neighbors in VH\S.
Cost: n/ε rounds at the most.

(2) Build a bipartite expander with parts VH, V c
H in which every set S ⊂ V c

H of size at most
n

100 has at least 8|S| neighbors in VH.
Cost: (1 + 3ε) n

2K log n rounds at the most.
(3) Repeatedly apply the Pósa rotation-extension technique in order to construct a

Hamilton cycle.
Cost: 2(1 + 104

K )n rounds at the most.

In what follows, we elaborate on each of the above three steps, and show that at the end of
Step 3 the graph contains a Hamilton cycle whp.

2.1. Constructing an expander H

A k-core of a graph is its maximum induced subgraph with minimum degree at least k.
It is well-known and easy to show that this subgraph is unique, and can be obtained be
repeatedly deleting any vertex of degree smaller than k (in any arbitrarily chosen order).
In [26], the authors analyze the thresholds for the appearance of a k-core in the random
graph, as well as its typical size, for any fixed k ≥ 3. A simple bound on these quantities
will suffice for our purposes, as given in the next lemma:

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 2.1. Let D ≥ 100 be an integer, set p = 3D
2n and consider the random graph

G ∼ G(n, p). Then the D-core of G contains at least
(
1 − 1

D

)
n vertices whp.

Proof. We claim that it is enough to show that

|∂S| ≥ n for any subset S ⊂ V(G) of size |S| = n/D, (1)

where ∂S denotes the set of all edges that have precisely one endpoint in S. Indeed, assuming
that the D-core of G contains less than

(
1 − 1

D

)
n vertices, we may pause the process of

uncovering the D-core after precisely n/D vertices have been deleted. At this point, let S
denote the set of deleted vertices. Clearly, each vertex of S has at most D − 1 neighbors in
V(G)\S, hence |∂S| ≤ (D − 1)n/D in contradiction to (1).

To prove (1), fix a set S of cardinality n/D, and recall that |∂S| is binomially distributed
with parameters M and p, where M = D−1

D2 n2. Therefore, as E[|∂S|] = 3(D−1)

2D n > n, the
monotonicity of the binomial distribution between 0 and its expectation implies that

P(|∂S| ≤ n) ≤ (n + 1)P(|∂S| = n) = (n + 1)

(
M

n

)
pn(1 − p)M−n

≤ (n + 1)

(
eM

n

)n

pne−(1−o(1))pM ≤
(

3(D − 1)e

2D

)n

e−(1−o(1))
3(D−1)

2D n ≤ e−n/14,

where the last inequality holds for any sufficiently large n by our assumption that D ≥ 100
(with room to spare). Since this assumption on D also implies that the number of possible
choices for the set S is

( n
n/D

) ≤ (eD)n/D ≤ exp(n/15), we conclude that (1) holds with high
probability.

Recalling that ε < 1
100 , set D = �1/ε	. By the above lemma, performing random

selections in the Achlioptas process for 3
4 Dn < n/ε rounds already produces a D-core of

size at least (1− ε)n vertices with high probability. Condition on this event, and throughout
the proof let H denote this D-core. The vertex expansion of sets in H follows from basic
properties of the random graph, stated in the following simple lemma.

Lemma 2.2. Let k ≥ 100 be a constant, set p = 3k
2n and consider the random graph

G ∼ G(n, p). Then whp every induced subgraph on at most n/25 vertices of G has average
degree at most k/4.

Proof. For a subset S of the vertices of size |S| = s, let AS denote the event that the induced
subgraph of G on S contains at least sk/8 edges. Then for any 1 ≤ s ≤ n/20 we have

P

( ⋃
S:|S|=s

AS

)
≤

(
n

s

)( (s
2

)
sk/8

)
psk/8 ≤

(
en

s

(
6es

n

) k
8
)s

=
(

(6e2)8
(

6e
s

n

)k−8
) s

8

≤
(

6
11
10 e

6
5

s

n

)10s

<

(
24s

n

)10s

,

where the first inequality in the second line follows from the fact that k − 8 ≥ 80 (with
room to spare). This implies the following upper bound on the probability of

⋃
|S|≤n/25 AS:

Random Structures and Algorithms DOI 10.1002/rsa
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n/25∑
s=1

(
24s

n

)10s

≤
log n∑
s=1

(
24 log n

n

)10s

+
n/25∑

s=log n

(
24

25

)10s

< 2

(
24 log n

n

)10

+ 25

(
24

25

)10 log n

= o(1),

as required.

The above lemma has the following immediate corollary:

Corollary 2.3. For D ≥ 100, set p = 3
2 D/n, let G ∼ G(n, p) and let H = (VH, EH) be the

D-core of G. Then whp, every set S ⊂ VH of size 1 ≤ s ≤ n/100 has at least 3s neighbors
in VH\S.

Proof. Condition on the statement of Lemma 2.2 for k = D, and suppose that some S ⊂ VH

of size |S| ≤ n/100 satisfies |N(S) ∩ (VH\S)| < 3|S|. In this case, the induced subgraph of
G on S ∪ N(S) contains strictly less than 4|S| ≤ n/25 vertices and at least D|S|/2 edges,
hence its average degree is strictly more than D/4, contradicting Lemma 2.2.

Remark 2.4. It is easy to verify that the D-core constructed above is connected whp.
To see this, recall that our graph is an induced subgraph of a random graph G(n, p) with
p = 3D

2n and D ≥ 100, and furthermore, every nonempty set of size s ≤ n/100 in the
D-core has at least 3s external neighbors. Therefore, connectivity will immediately follow
once we show that G(n, p), for the above value of p, almost surely does not contain any
connected component of size n

100 ≤ s ≤ n
2 . Indeed, we obtain with simple calculations that

the probability that G(n, p) contains such a component is at most

n/2∑
s= n

100

(
n

s

)
(1− p)s(n−s) ≤

n/2∑
s= n

100

(en

s
e−p(n−s)

)s ≤
n/2∑

s= n
100

(100e1−pn/2)s ≤
n/2∑

s= n
100

(100e−74)s = o(1).

2.2. Constructing a Bipartite Expander on (H , Hc)

In this section, we elaborate on Step 2 of the proof, and show how to construct a bipartite
expander with parts VH, V c

H in which every set S ⊂ V c
H of size at most n

100 has at least 8|S|
neighbors in VH. To this end, we create a random bipartite graph with parts VH, V c

H, in which
the degree of every vertex in V c

H is at least d = 20. Moreover, the neighbors of each vertex
in V c

H are uniformly distributed over VH. This is achieved by a greedy algorithm, comprising
two stages, as we next describe.

1. In the first stage, for j ∈ {0, . . . , d − 1} we attempt to add an edge between VH and
a vertex of degree j in V c

H, whenever such an edge is presented, settling ambiguities
randomly. Performing this stage for each of the above values of j in a sequence, each
time for ε

2dK n log n rounds, already suffices in order to provide an 1 − ε

2K fraction of
the vertices of V c

H with at least d neighbors in VH. This is established in Lemma 2.5
below.

2. Let X ⊂ V c
H denote the set of vertices with less than d neighbors in VH once the first

stage is done. In the second stage, we “freeze” the set X, and let the greedy algorithm
prefer edges between X and VH (disregarding the actual degrees of the vertices in X).

Random Structures and Algorithms DOI 10.1002/rsa
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With high probability,
(

1
2 + ε

)
n
K log n rounds of this stage suffice to provide every

vertex in X with at least d neighbors in VH. This is shown in Lemma 2.6.

Lemma 2.5. Let d be some fixed integer, and U, W be a partition of the vertices with
|U| ≤ |W |. Consider a greedy algorithm which, for each j ∈ {0, . . . , d − 1}, performs
T1 = ε

2dK n log n rounds, where it chooses an edge between a vertex of degree j in U and
a vertex in W whenever possible, settling ambiguities randomly. Then whp, the resulting
graph contains at most ε

2K n vertices with degree smaller than d. Moreover, the neighbors
of each vertex of U are uniformly distributed on W.

Proof. Since we are establishing an asymptotical bound on the threshold of the minimal
degree, we may allow our algorithm to ignore a negligible number of rounds. As we next
explain, we may consider a relaxed version of the input of each round and allow repeated
edges and self loops. That is, at each round we are presented with K ordered pairs chosen
independently and uniformly from [n]2. Whenever this selection of K ordered pairs contains
either a repeating edge (one that already appears in our graph), or a loop, we ignore this
round. Notice that the probability for this event at a given time t is at most K(2t + n)/n2.
Our analysis focuses on the period t = O(n log n) of the graph process, hence for any
K = o(n/ log n) this probability is clearly negligible, and the number of rounds we are
ignoring has no affect on our asymptotical upper bound.

Furthermore, recall that by definition, throughout stage j, our algorithm selects a random
edge out of all those which belong to the cut between the degree j vertices of U and the set
W (whenever such edges are presented). Clearly, conditioning on the appearance of such
edges in a round, each such edge may be treated as the result of two independent choices
corresponding to the two endpoints: the first is uniformly chosen from vertices of degree j in
U, and the second is uniformly chosen from W . Thus, since our algorithm decides between
these edges solely on the basis of their endpoints in U, each edge selected in this manner
has an endpoint which remains uniformly distributed in W .

It remains to analyze the degrees of the vertices of U. Let Xj = Xj(t) denote the set of
vertices of U with degree j at time t, and let At denote the event that an edge between Xj

and W appears among the K edges of a round t. Then as long as |Xj| > ε

2dK n (and recalling
that |W | ≥ n/2), the probability of At satisfies

P(At) = 1 −
(

1 − 2|Xj||W |
n2

)K

≥ 1 − exp

(
−2K

|Xj||W |
n2

)
≥ 1 − exp

(
− ε

2d

)
. (2)

In particular, P(At) is bounded from below by some positive constant. Therefore, for any
given time t0, Chernoff-type concentration results (see, e.g., [2], Appendix A) imply the
following. For some constant c1 > 0, performing �0 := c1|Xj(t0)| rounds either reduces
|Xj(t0 + �0)| below ε

2dK n, or with probability at least 1 − exp(−�(n/K)) yields at least
2|Xj(t0)| random edges incident to Xj(t0). Henceforth, condition on this event.

The classical balls and bins experiment asserts that, when throwing r · m balls indepen-
dently and uniformly into m bins, where r > 0 is fixed and m → ∞, the distribution of the
fraction of the bins with precisely 	 balls (	 = 0, 1, . . .) converges to a Poisson distribution
with mean r (see, e.g., [16, 20]). In particular, the expectation and variance of the number
of empty bins in the above experiment tend to me−r and O(m) respectively. Applying this
to our setting, where r = 2 and m = |Xj(t0)| ≥ ε

2dK n, we deduce that the size of Xj(t0 +�0)

is reduced to at most |Xj(t0)|/e with probability at least 1 − O(1/m) ≥ 1 − O(K/n).

Random Structures and Algorithms DOI 10.1002/rsa
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Repeating this argument for tl = tl−1 +�l−1, �l := c1|Xj(tl)| and l = 1, . . . , log
(

2dK
ε

) ≤
log n (accumulating the individual error probabilities of O(K/n) easily allows this number
of repetitions) we deduce that after

∑
l

�l ≤ c1|Xj(t0)|
∑

l

e−l ≤ 2c1n

rounds, |Xj| < ε

2dK n whp. Since K = o(log n), we indeed have ε n
2dK log n = ω(n) rounds

at our disposal for this stage.
By applying the same argument for j in {1, . . . , d − 1}, we obtain that at the end of

ε

2K n log n rounds, whp| ∪j<d Xj| ≤ ε

2K n, completing the proof.

Lemma 2.6. Let d be some fixed integer and U, W be two disjoint sets of vertices with
|U| ≤ ε

2K n and |W | ≥ (1 − ε)n. Consider a greedy algorithm which chooses an edge
between vertices U and W whenever one appears (otherwise, this round is ignored), settling
ambiguities randomly. Then performing this algorithm for T2 = (

1
2 + ε

)
n
K log n rounds

gives a graph where, whp, every vertex of U has at least d neighbors uniformly distributed
over W.

Proof. As in the proof of Lemma 2.5, we may assume that each rounds presents K ordered
pairs, uniformly and independently chosen from [n]2. Recall that whenever the algorithm
selects an edge between U and W , its two endpoints are uniformly distributed over U and
W , respectively.

Letting At denote the probability of witnessing an edge between U and W at time t, we
have:

P(At) = 1 −
(

1 − 2|U||W |
n2

)K

≥ 1 −
(

1 − 2(1 − ε)
|U|
n

)K

≥ 2(1 − ε)K
|U|
n

(
1 − K

|U|
n

)
≥ (2 − 3ε)K

|U|
n

, (3)

where the first inequality in the second line is by the well-known fact that (1 − p)k ≤
1 − kp + (k

2

)
p2 for any 0 < p < 1 and integer k ≥ 2, and the last inequality is by our

assumption on the size of U.
Therefore, the total number of rounds with edges incident to U along T2 =(

1
2 + ε

)
n
K log n consecutive rounds stochastically dominates a binomial random variable

with mean

T2 · (2 − 3ε)K|U|/n =
(

1 + 1

2
ε − 3ε2

)
|U| log n ≥

(
1 + 2

5
ε

)
|U| log n,

where in the last inequality we used the fact that ε ≤ 1/30. It follows that the probability
of observing at least M = (

1 + ε

3

) |U| log n edges incident to U along those T2 rounds is at
least 1 − n−�(|U|). Condition on this event.

Let Y(t) ⊂ U denote the vertices of U which have degree smaller than d at time t.
Since any edge selected by the algorithm has one endpoint uniformly and independently
distributed on U, we deduce that, for large n, any v ∈ U satisfies

Random Structures and Algorithms DOI 10.1002/rsa
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P(v ∈ Y(T2)) ≤ P(Bin(M, 1/|U|) < d) ≤ d · P(Bin(M, 1/|U|) = d − 1)

≤ d

(
M

d − 1

)
|U|−(d−1)e−(1−o(1)) M|U| ≤ d

(
(1 + ε

3 )e

d − 1
log n

)d−1

n−1− ε
3 +o(1) ≤ n−1−ε/4,

where the last inequality in the second line holds for any sufficiently large n, and the last
inequality in the first line is by the monotonicity of the binomial distribution, as M

|U| =(
1 + ε

3

)
log n > d for any sufficiently large n.

It follows that E[|Y(T2)|] ≤ n−ε/4, and thus Y(T2) is whp empty, as required.

Once we apply Lemmas 2.5 and 2.6, we will have obtained a random bipartite graph on
VH, V c

H, whose expansion will follow from the next lemma:

Lemma 2.7. Let G be the following random bipartite graph on U, W: |U| ≥ 2
3 n, |W | ≤ n

for some integer n, and every vertex of W has 20 neighbors independently and uniformly
chosen from U. Then whp, every set S ⊂ W of size 1 ≤ s ≤ n/100 satisfies |N(S)∩U| > 8s.

Proof. Let u = |U|, and let 1 ≤ s ≤ n/100. The probability that there exists a subset
S ⊂ W of cardinality s such that |N(S) ∩ U| ≤ 8s, is at most

(
n

s

)(
u

8s

) ((
8s

20

)
/

(
u

20

))s

≤
((en

s

) (eu

8s

)8
(

8s

u − 19

)20
)s

=
(

(1 + o(1))
812e9s11

u12/n

)s

≤
(
(1 + o(1))(224 · 312 · e9)

1
11 · s

n

)11s ≤
(

50s

n

)11s

,

where the first inequality in the last line is by the assumption that u ≥ 2n/3, and the
inequality following it holds for any sufficiently large n. Therefore, the following calculation,
similar to the one made in Lemma 2.2, gives that the probability that there exists a set S of
size 1 ≤ s ≤ n/100 that satisfies |N(S) ∩ U| ≤ 8s is at most

n/100∑
s=1

(
50s

n

)11s

≤
log n∑
s=1

(
50 log n

n

)11s

+
n/100∑

s=log n

2−11s < 2 ·
(

50 log n

n

)11

+ 2 · 2−11 log n = o(1).

This completes the proof of the lemma.

Apply Lemma 2.5 with d = 20, W = VH and U = V c
H, followed by Lemma 2.6 with

W = VH and U being the remaining vertices of V c
H of degree smaller than 20. Then Lemma

2.7 (with VH, V c
H playing the roles of U, W , respectively) yields:

Corollary 2.8. The resulting graph G satisfies the following whp: every set S ⊂ V(G) of
size at most n/100 has strictly more than 2|S| neighbors in V(G)\S.

Proof. Let S ⊂ V(G) be a set containing at most n/100 vertices. If |S ∩ VH| > 2
3 |S|,

Corollary 2.3 implies that S has at least 3|S∩VH| > 2|S| neighbors in VH\S alone. Otherwise,
|S ∩ V c

H| ≥ |S|/3, hence Lemma 2.7 gives∣∣N(
S ∩ V c

H

) ∩ (VH\S)
∣∣ > 8

∣∣S ∩ V c
H

∣∣ − (|S| − ∣∣S ∩ V c
H

∣∣) = 9
∣∣S ∩ V c

H

∣∣ − |S| ≥ 2|S|.
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2.3. Pósa’s Rotation-Extension Technique

As we already mentioned in the introduction, a key tool of our proof is the celebrated
rotation-extension technique, developed by Pósa [27] and applied in several subsequent
papers on Hamiltonicity of random and pseudo-random graphs (cf., e.g., [12, 18, 21, 28]).
Below we will cover this approach, including a key lemma and its proof.

Let P = x0x1 . . . xh be a longest path in a graph G = (V , E), starting at a vertex x0.
Suppose G contains an edge (xi, xh) for some 0 ≤ i < h. Then a new path P′ can be
obtained by rotating the path P at xi, i.e., by adding the edge (xi, xh) and erasing (xi, xi+1).
This operation is called an elementary rotation. Note that the obtained path P′ has the same
length h (here and in what follows we measure path lengths in edges and not in vertices)
and starts at x0. We can therefore apply an elementary rotation to the newly obtained path
P′, resulting in a path P′′ of length h, and so on. If after a number of rotations an endpoint
x of the obtained path Q is connected by an edge to a vertex y outside Q, then Q can be
extended by adding the edge (x, y).

The power of the rotation-extension technique of Pósa hinges on the following lemma.

Lemma 2.9. Let G be a graph, P a longest path in G and P the set of all paths obtainable
from P by a sequence of elementary rotations. Denote by R the set of ends of paths in P ,
and by R− and R+ the sets of vertices immediately preceding and following the vertices of
R on P, respectively. Then (N(R)\R) ⊂ R− ∪ R+.

Proof. Let x ∈ R and y ∈ V(G)\(R ∪ R− ∪ R+), and consider a path Q ∈ P ending at
x. If y ∈ V(G)\V(P), then (x, y) 
∈ E(G), as otherwise the path Q can be extended by
adding y, thus contradicting our assumption that P is a longest path. Suppose now that
y ∈ V(P)\(R ∪ R− ∪ R+). Then y has the same neighbors in every path in P , because an
elementary rotation that removed one of its neighbors along P would, at the same time, put
either this neighbor or y itself in R (in the former case y ∈ R− ∪ R+). Then if x and y are
adjacent, an elementary rotation applied to Q produces a path in P whose endpoint is a
neighbor of y along P, a contradiction. Therefore in both cases x and y are nonadjacent.

We will use the following immediate consequence of Lemma 2.9, where the length of a
simple cycle or a simple path is defined to be the number of edges it contains.

Corollary 2.10. Let h, r be positive integers. Let G = (V , E) be a graph such that its
longest path has length h, but it contains no cycle of length h +1. Suppose furthermore that
for every set R ⊂ V with |R| < r we have |N(R)\R| ≥ 2|R|. Then there are at least r2/2
nonedges in G such that if any of them is turned into an edge, then the new graph contains
an (h + 1)-cycle.

Proof. Let P = x0x1 . . . xh be a longest path in G and let R, R−, R+ be as in Lemma 2.9.
Notice that |R+| ≤ |R| − 1 and |R−| ≤ |R|, since xh ∈ R has no following vertex on P and
thus does not contribute an element to R+.

According to Lemma 2.9,

|N(R)\R| ≤ |R− ∪ R+| ≤ 2|R| − 1,

and it follows that |R| ≥ r. Moreover, (x0, v) is not an edge for any v ∈ R (there is no
(h+1)-cycle in the graph), whereas adding any edge (x0, v) for v ∈ R creates a (h+1)-cycle.
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Fix a subset {y1, . . . , yr} ⊂ R. For every yi ∈ R, there is a path Pi ending at yi, that can be
obtained from P by a sequence of elementary rotations. Now fix yi as the starting point of Pi

and let Yi be the set of endpoints of all paths obtained from Pi by a sequence of elementary
rotations. As before, |Yi| ≥ r, no edge joins yi to Yi, and adding any such edge creates a
cycle of length h+1. Altogether we have found r pairs (yi, Yi). As every nonedge is counted
at most twice, the conclusion of the lemma follows.

The reason we are after a cycle of length h+1 in the above argument is that if h+1 = n,
then a Hamilton cycle is created. Otherwise, if the graph is connected, then there will be a
path L connecting a newly created cycle C of length h + 1 with a vertex outside C. Then
combining C and L in an obvious way creates a longer path in G. Indeed, in our case the
graph is whp connected, as it comprises H, which is the D-core (for some D ≥ 100) of
a random graph G(n, p) for p = 3D

2n , and an additional set of vertices V c
H, in which every

vertex has at least 20 neighbors in H. Thus, the connectivity immediately follows the fact
that H itself is connected whp, as argued in Remark 2.4.

We can now return to our setting of the Achlioptas process: Corollary 2.8 implies that
once Step 2 is complete, with high probability the requirements of Corollary 2.10 are met
with r = n

100 . Condition now that this is indeed the case. Thus, at any given round from
this point on, either the graph is Hamiltonian, or there are at least r2/2 pairs of vertices
such that adding any of them to the graph will increase the length of its longest path by at
least 1. Further recall that we have O(n) additional rounds at our disposal for Step 3; we
wish to state that this amount of rounds will almost surely suffice for up to n applications
of Corollary 2.10 (each time on a possibly different edge set). An easy formulation of this
statement, which does not involve stopping times, is the following: let G0 denote the initial
graph (at the beginning of Step 3), set T := �104/K	 and perform the following trials for
t ∈ {1, . . . , 2n}:

• If Gt−1 is already Hamiltonian, set Gt = Gt−1; the trial is successful.
• If Gt−1 does not contain a Hamilton cycle:

– Let Et denote the above mentioned set of pairs, each of which would increase the
length of a maximum path in Gt−1 by at least 1, or would create a Hamilton cycle.

– Perform T rounds of the Achlioptas process, selecting an edge from Et whenever
possible (and settling ambiguities arbitrarily). Let Gt denote the resulting graph.

– The trial is successful iff Gt contains at least one of the edges of Et .

Clearly, the failure probability of the above trial is at most

P(missing Et in T given rounds) ≤
(

1 − |Et|/
(

n

2

))KT

≤ exp

(
−KT ·

( r

n

)2
)

≤ e−1.

Let X be the number of successful trials in the above defined sequence; then X stochastically
dominates a binomial random variable X ′ ∼ Bin(2n, 1 − e−1), and Chernoff’s inequality
implies that P(X ≥ n) ≥ 1 − exp(−�(n)). Recall that as long as the graph is not Hamil-
tonian, every successful trial increases the length of a longest path by at least 1 or creates
a Hamilton cycle. Therefore, after n successful trials the graph surely contains a Hamilton

cycle. Altogether, the above sequence of trials utilized 2Tn ≤ 2
(

1 + 104

K

)
n rounds in order

to generate a Hamiltonian cycle whp.
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3. SUPER-LOGARITHMIC REGIME: K = ω(log n)

Next, we prove Theorem 1.2, which states that, for the Achlioptas process with K = ω(log n)

edges in each round, the minimal number of rounds required for Hamiltonicity is n + o(n)

whp. The lower bound in this setting is obtained by the fact that the Hamilton cycle alone
contains n edges (thus requiring n rounds), and it is left to provide a proof that attains this
bound asymptotically.

Throughout the proof, write

K = h10 log n, m := �n/h2�,

where h = h(n) tends to infinity with n by the assumption on K . Moreover, it will be
convenient to assume that h = o(log n) (we can always restrict ourselves to a prefix of the
sequence of edges given in a round). Following is an outline of the proof:

1. Cover n − m vertices by at most n/(h4 log n) disjoint simple paths, via a greedy
algorithm. Let P denote this set of paths, and let Y = Y(P) be the set of all vertices
in P .

Cost: (1 + e−h)n = (1 + o(1))n rounds.
2. Construct a graph on some subset X ⊂ Y c of size |X| ≥ 2

3 m, with the following
expansion property: for any subset A ⊂ X of size at most m/200, there exists a subset
X ′ ⊂ X\A of size at least |X|−2|A|, such that the induced subgraph on X ′ has diameter
at most 3 log m.

Cost: 1500m = o(n) rounds.
3. Using the above properties of X , we repeatedly connect the endpoints of two paths in

P using a simple path of length at most 3 log m in X\Y . The two paths are removed
from P , and the new path is added to P in their place (the set Y is updated accordingly).
At the end of the stage, P contains a single path, which is thereafter closed into a
simple cycle on |Y | vertices.

Cost: 5n/h7 = o(n) rounds.
4. Apply the proof for the sub-logarithmic regime restricted to the induced subgraph on

Y c, in order to turn it into a Hamiltonian graph.
Cost: mh = o(n) rounds.

5. Merging the two simple cycles of Phases 3,4 to a single Hamilton cycle.
Cost: m + n/ log n = o(n) rounds.

We now discuss each phase of the proof in more details. As argued in our analysis of
the sub-logarithmic regime (Section 2), we may assume that the selection of edges in each
round consists of K ordered pairs, independently and uniformly chosen over [n]2. For the
sake of convenience, this will indeed be our assumption throughout this section.

3.1. Phase 1: Covering Most Vertices by Disjoint Simple Paths

This phase is accomplished by the following simple greedy algorithm. Take an arbitrary
subset of L := �n/(h4 log n)� vertices, serving as L trivial disjoint simple paths. At each
step, we attempt to add an edge between an endpoint of one of these L paths and the set
of the remaining vertices (excluding the vertices on the paths), thus extending one of the
paths. It is easy to show that this can be performed repeatedly, as long as there are at least
m vertices beyond those which belong to the L given paths.

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 3.1. Consider the Achlioptas process on n vertices with K = h10 log n edges
per round. Then whp, a greedy algorithm can cover n − m vertices with at most L =
�n/(h4 log n)� disjoint simple paths utilizing at most (1 + e−h)n rounds.

Proof. Let Y denote a set of L arbitrarily chosen vertices, and treat these vertices as
the left endpoints of (trivial) disjoint simple paths. At each step, we will attempt to join
the left endpoint of one of these paths to a new vertex of Y c, thus increasing the length
of the corresponding path by 1, while adding a new vertex to Y . In this case, the newly
added vertex would become the new left endpoint of its path. As long as |Y c| > n/h2, the
probability of witnessing an edge accomplishing this task satisfies

P(extending Y) = 1 −
(

1 − 2L|Y c|
n2

)K

≥ 1 − exp(−2KL|Y c|/n2)

≥ 1 − exp

(
−2L

h8 log n

n

)
≥ 1 − e−h4

,

where the last inequality holds for a sufficiently large n. Stochastically bounding the above
process by the corresponding binomial variable, and applying standard concentration argu-
ments, we deduce that (1 + e−h)n rounds easily suffice to construct a path cover as required
whp.

Remark 3.2. This phase is the most time consuming one of the proof—all other phases
take typically o(n) rounds.

3.2. Phase 2: Constructing an Expander on the Remaining Vertices

In this phase, we consider Y c, the m vertices that were not covered by paths in the previous
phase. We will construct an expander on a subset X ⊂ Y c, which will serve as a “connector”
for the paths in Y , in the following sense: We wish to repeatedly join two paths in Y using
a path in X, then delete this path from X and repeat the process. To this end, the induced
subgraph on X should have a small diameter, and furthermore, this property should be
retained even after deleting a small fraction of its vertices. This is established by the next
lemma.

Lemma 3.3. Consider the Achlioptas process on n vertices with K = h10 log n edges per
round, and let Y c denote a fixed set of m = �n/h2� vertices. Then whp, 1500m rounds suffice
to construct a graph on some subset X ⊂ Y c of size at least 0.999m, with the following
expansion property: For any set A ⊂ X of size at most m/200, there exists a set B ⊂ X\A
of size at most |A| such that X\(A ∪ B) has diameter at most 3 log m.

Proof. At a given round, the probability to witness an edge with both endpoints in Y c is
at least

1 −
(

1 − m(m − 1)

n2

)K

= 1 − exp(−(1 − o(1))K(m/n)2) = 1 − n−�(h6),

hence along any given n rounds, whp every round will contain at least one such edge. Clearly,
given this event, the first such edge (of any given round) witnessed is uniformly distributed
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in Y c. Following Lemma 2.1, take D = 2000, and perform 3
4 Dm rounds, where the first edge

in a round with both endpoints in Y c is selected. Since this essentially establishes a random
graph G ∼ G (

m, 3D
2m

)
on the vertices of Y c, Lemma 2.1 ensures us that the D-core of this

graph has size at least
(
1 − 1

D

)
m whp. Let X denote this D-core, and recall that Corollary

2.3 asserts that every set S ⊂ X of size 1 ≤ s ≤ m/100 has at least 3s neighbors in X\S.
We next claim that, whp, any two sets of size s = m/200 of X have an edge between

them. Indeed, it is enough to show this on the original random graph G ∼ G (
m, p = 3D

2m

)
,

since X is an induced subgraph of G. The following simple calculation shows this fact:

P

(
∃A, B :

{
N(A) ∩ B = ∅,
|A| = |B| = s

)
≤

(
m

s

)2

(1 − p)s2 ≤
(em

s
e−ps/2

)2s = (
200e1− 3D

800
)2s = o(1),

where the last equality holds as D = 2000.
Let A ⊂ X denote an arbitrary (nonempty) subset of the vertices of X of size at most

m/200. Set X ′ = X\A and let B ⊂ X ′ denote a set of maximum size, such that |B| ≤ m/100
and |N(B) ∩ (X\(A ∪ B))| < 2|B| (it may be the case that B is empty). If B is nonempty,
then |B| ≤ m/100, and therefore B has at least 3|B| neighbors in X\B and

3|B| ≤ |N(B) ∩ (X\B)| ≤ |N(B) ∩ (X\(A ∪ B))| + |A| < |A| + 2|B|.
This shows that |B| < |A| ≤ m/200.

Furthermore, consider the set of vertices X ′′ = X\(A ∪ B), and suppose that some
nonempty set C ⊂ X ′′ of size at most m/200 satisfies |N(C) ∩ (X ′′\C)| < 2|C|. Then
clearly the set B ∪ C has less than m/100 vertices and less than 2|B ∪ C| neighbors in
X\(A ∪ B ∪ C), contradicting the maximality of B. We deduce that every nonempty set C
of X ′′ of size at most m/200 has at least 2|C| neighbors in X ′′\C.

It remains to show that the diameter of X ′′ is at most 3 log m. This quickly follows from
the properties we have already established on X. Let u, v be two vertices of X ′′, and set
t = �log2 m�. Since every nonempty set of vertices C ⊂ X ′′ of size |C| ≤ m/200 has at
least 2|C| neighbors in X ′′\C, it follows that the t-neighborhood of u contains at least m/200
vertices, and the same applies to v. Finally, either these two neighborhoods intersect, or we
can select an arbitrary subset of m/200 vertices from each of them, and obtain an edge
between them. Altogether, the distance between u and v is at most 2 log2 m + 1 ≤ 3 log m
(for every sufficiently large m).

3.3. Phase 3: Concatenating the Paths Into a Cycle via the Expander

Recall that we have a collection P of n/(h4 log n) = o(m/ log n) simple paths covering the
vertices of Y , and that X ⊂ Y c is a subset of size 2

3 m ≤ |X| ≤ m, such that the induced
subgraph on X has the following property: upon removing a negligible subset of its vertices,
it still contains an induced subgraph on (1 − o(1))|X| vertices with a diameter of at most
3 log m = O(log n). Thus, once we obtain two edges connecting endpoints of two paths
in P to X, we can concatenate these paths using a path of length at most 3 log m from X,
update X and Y accordingly, and continue the process. Crucially, at each point, we will have
removed at most o(m) vertices from X , thus the above expansion property is maintained.

Lemma 3.4. Let K and X , Y be as above, and suppose that Y is covered by L ≤ n/(h4 log n)

disjoint simple paths. Then a simple cycle going through every vertex in Y can be constructed
in at most 5n/h7 rounds whp.
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Proof. Let P denote the given set of paths covering Y , and for every i ≥ 0 let ai := L2−i.
Given a subset I ⊂ X of o(m) vertices (initially defined to be the empty set), we will write
X̃ ⊂ X\I as the subset of size (1 − o(1))|X|, on which the induced subgraph has diameter
at most 3 log m (as ensured by Lemma 3.3). As long as ai ≥ |P| > ai+1 ≥ 1, consider the
following process:

• Perform Ti := �2nh2/(aiK)	 rounds, preferring an edge between X̃ and an endpoint
of some path in P whenever possible (settling ambiguities randomly). If indeed such
edges were witnessed (and thus selected) in this stage, let P1 ∈ P denote the first path
whose endpoint was connected to X .

• Repeat the first step (performing Ti rounds), this time attempting to connect an endpoint
of some path in P\{P1} (assuming this set of paths is nonempty) to X.

The probability of not being able to connect any P1 ∈ P to X̃ in the first step above is at
most

(
1 − 4|X̃||P|

n2

)KTi

≤
(

1 − 4 · (1 − o(1))|X| · ai+1

n2

)KTi

≤ exp

(
−(2 − o(1))Ti

ai+1K

nh2

)
≤ 1/e,

where we used that there are 2|P| endpoints of paths, together with the facts that |X| ≥ 2
3 m,

ai = 2ai+1 and m = �n/h2�. Since |P|−1 ≥ ai+1, even if P lost an element in the first step,
the same applies to the probability of connecting some P2 ∈ P\{P1} to X̃ in the second
step.

Hence, with probability at least 1−2/e > 0 we can connect P1 
= P2 ∈ P to X̃ via some
edges e1, e2. If this event occurs, delete P1, P2 from P , and replace them by P = P1PX̃P2,
where PX̃ is a shortest path in X̃ between the two corresponding endpoints of the edges
e1, e2. The vertices of PX̃ are added to I , which is the set of vertices that are deleted from X.
Recall that |PX̃ | is at most the diameter of X̃ , which is at most 3 log m ≤ 3 log n. Combining
this with the assumption that |P| ≤ n/(h4 log n), we deduce that during the whole process,
the cardinality of I is always bounded by 3n/h4 = o(m). Thus, Lemma 3.3 ensures us that
the diameter of X̃ remains at most 3 log m.

Since the aforementioned process costs 2Ti rounds (each of the two steps utilizes Ti

rounds), and succeeds in connecting two paths of P with probability at least 1 − 2/e > 0,
standard Chernoff type bounds imply the following. For some absolute constant c > 0,
performing this process h · ai times (for a total of 2Ti · h · ai rounds) decreases the size of
P by at least ai/2 (that is, we get |P| ≤ ai+1) with probability at least 1 − exp(−chai).

Altogether, performing the above process for all 0 ≤ i ≤ �log2 L� − 1, for a total of

∑
i

2Ti · h · ai ≤ 4�log2 L�nh3

K
≤ 4n/h7

rounds, concatenates P into a single path P with failure probability at most∑
i

exp(−chai) ≤ 2 exp(−ch) = o(1).
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At this point, we arbitrarily identify the endpoints of P as left and right, and wish to join
these two endpoints via a simple path in X̃ . To this end, we essentially repeat the above
process. A calculation similar to the one above shows that performing T = �n/(2h7)�
rounds in an attempt to connect a given endpoint of P to X̃ has a success probability of

1 −
(

1 − 2|X̃|
n2

)KT

≥ 1 − n−(1−o(1))h = 1 − o(1).

Therefore, 2T ≤ n/h7 further rounds enable us to close P into a cycle whp. Altogether, we
have used 5n/h7 rounds in order to produce whp a simple cycle going through every vertex
of Y , as required.

3.4. Phase 4: Creating a Hamilton Cycle on the Remaining Vertices

At this point, there is a simple cycle going through every vertex of Y ; once again, let X = Y c

denote the remaining set of vertices, and recall that |X| = (1 − o(1))m (initially, Y had
cardinality n − m, to which we added a total of o(m) vertices in connector paths).

In our model, at every given round, K ordered pairs are uniformly and independently
chosen out of [n]2, hence each of these pairs has a probability of (1−o(1))(m/n)2 to describe
an edge with both endpoints in X . By standard concentration arguments, at least 1

2 K(m/n)2 =
1
2 h6 log n such edges appear in a given round with probability at least 1−n−�(h6). In particular,
along any given n rounds, whp every round contains at least 1

2 h6 log n edges with both
endpoints in X .

Therefore, restrict the process to the set X, with, say, K ′ = log m/h edges per round.
In this setting, Theorem 1.1 shows how a Hamilton cycle on X can be constructed within
(1 + o(1)) m

2K ′ log m = (
1
2 + o(1)

)
(mh) < mh rounds (for a sufficiently large n) whp, as

required.

3.5. Phase 5: Merging the Two Cycles

Consider the two simple cycles CX , CY on the vertices of X, Y respectively, constructed in
the previous phases, and choose an arbitrary orientation for each of them. For any vertex
x ∈ X and any vertex y ∈ Y , let x+ and y+ denote the subsequent vertices on the cycles CX

and CY respectively. In order to patch the two cycles into one, we do the following.
First, we perform T1 := n/h2 rounds, preferring edges in e(X, Y), the cut between X

and Y , whenever such appear (settling ambiguities arbitrarily). Let E ⊂ e(X, Y) denote all
edges between X , Y added in this manner. At every given round,

P(receiving an edge of e(X , Y)) = 1 −
(

1 − 2|X||Y |
n2

)K

= 1 −
(

1 − (2 − o(1))m(n − m)

n2

)K

≥ 1 − e−(2−o(1))mK/n = 1 − n−�(h8),

hence at the end of T1 rounds as above, by standard Chernoff-type inequalities, the proba-
bility of the event that |E | ≥ n/(2h2) is at least 1 − exp(−�(n/h2)). Condition therefore
on this event.
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Second, let

E+ := {(x+, y+) : e = (x, y) ∈ E},
and note that |E+| = |E | ≥ n/(2h2). We perform T2 := n/ log n rounds, preferring edges
in E+ and settling ambiguities arbitrarily. Letting B denote the event of missing every edge
of E+ throughout these T2 rounds, we get

P(B) ≤ 1 −
(

1 − 2|E+|
n2

)KT2

≤ exp(−2|E+|KT2/n2) ≤ exp(−h8) = o(1).

Therefore, whp, for some x ∈ X and y ∈ Y the above process adds the two edges e = (x, y)
and e+ = (x+, y+), using which the two cycles CX and CY can be patched in the obvious
manner into a Hamilton cycle. This completes the proof of Theorem 1.2.

4. INTERMEDIATE REGIME: K = �(log n)

In this section, we prove Theorem 1.3. The lower and upper bounds we present are straight-
forward corollaries of our results in the previous section, and differ by a multiplicative factor
of 3. While we make no effort to tighten this gap, it seems that the techniques we used in
the previous sections do not suffice for establishing a tight result for K = �(log n).

We begin with the asymptotical upper bound, and recall that for this purpose, we may
allow repeating edges and self-loops, and thus assume that the K edges presented at each
round are independently and uniformly selected from [n]2. The key element of the upper
bound is the application of the results of Section 2.2, where a bipartite random graph of
large (one sided) minimal degree was constructed. The previous analysis of the second stage
of the greedy algorithm employed in that section will suffice for our purposes, yet when
analyzing its first stage we made use of the fact that we have ω(n) rounds at our disposal
[since K was o(log n)], and this is no longer the case. We therefore require a more refined
result, which is incorporated in the next lemma. There, we use the notion of a random d-out
graph: This is a graph on n labeled vertices, obtained by choosing, independently for every
vertex, a set of d out-neighbors, and then erasing edge directions and deleting multiple in
case that appear.

Lemma 4.1. Let d be a fixed integer, let K = K(n) grow to infinity with n, and consider
the Achlioptas process that presents K edges at each round. Then a random d-out graph
can be constructed in at most (1+o(1))

(
d + log n

K

)
n rounds whp, where the o(1)-term tends

to 0 as n → ∞.

Once we prove the above lemma, the upper bound of (1 + o(1))
(
3 + log n

K

)
n will imme-

diately follow from a beautiful result of Bohman and Frieze [7], which states that a random
3-out graph is Hamiltonian whp.

Proof of Lemma 4.1. Recalling that each round consists of K ordered pairs, each chosen
uniformly at random from [n]2, we will ignore the second coordinate of each pair, and base
our decisions solely on the degrees of the first coordinates (rounds featuring either a repeated
edge or a self-loop are automatically ignored). Clearly, such an algorithm, guaranteeing
minimum degree d for every vertex, immediately provides a construction of a random
d-out graph (one can simply take the first d out-neighbors assigned to each vertex).
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Consider the first stage of the greedy algorithm, which for j ∈ {0, . . . , d − 1} pri-
oritizes vertices of degree j for a period of T1 = (

1 + ε

2d

)
n rounds. That is, for every

j ∈ {0, . . . , d−1}, the algorithm performs T1 rounds, where it chooses an ordered pair whose
first coordinate is a vertex of degree j whenever such a pair appears (settling ambiguities
randomly). Whenever no such pair appears, the round is forfeited.

As before, let Xj = Xj(t) denote the set of vertices that have degree j, and whenever the
context of Xj is clear, let AXj denote the event that a pair whose first coordinate belongs to Xj

is presented at a given round. Consider the phase where the algorithm focuses on j-degree
vertices. As long as |Xj| ≥ n/

√
K , the following holds:

P(AXj ) = 1 − (1 − |Xj|/n)K ≥ 1 − exp(−K|Xj|/n) ≥ 1 − exp(−√
K) ≥ 1 − ε

4d
,

where the last inequality holds for any sufficiently large n, given the fact that K → ∞ with
n. Hence, either |Xj(T1)| ≤ n/

√
K , or the number of rounds in which we witness an ordered

pair whose first coordinate is a j-degree vertex stochastically dominates a binomial variable
with T1 trials and mean

(
1 + ε

2d

) (
1 − ε

4d

)
n ≥ (

1 + ε

8d

)
n (as clearly ε ≤ d). In this case,

Chernoff’s inequality implies that, along these T1 rounds, we witness at least n such ordered
pairs whp, and in particular, we again obtain that |Xj(T1)| ≤ n/

√
K whp. Altogether, we

may condition on the event that |Xj(T1)| ≤ n/
√

K .
At this point, we can rejoin the analysis of Lemmas 2.5 and 2.6. Recall that Lemma 2.5

aimed to reduce the fraction of low-degree vertices to ε

2K at the cost of cn rounds for some
large constant c = c(ε), while Lemma 2.6 eliminated all low-degree vertices at the cost of(

1
2 + ε

)
n
K log n additional rounds. In our case, we could not afford the cost of cn rounds

utilized by Lemma 2.5, since we aim to get a bound of (1+o(1))
(
d + log n

K

)
n rounds. Hence,

we worked to reduce the initial fraction of low-degree vertices to 1/
√

K . As we next show,
this will allow the argument of Lemma 2.5 to ensure the same end-result at the permissible
cost of �(n/

√
K) rounds. Furthermore, the analysis of Lemma 2.6 will thereafter hold as

is (up to a factor of 2, owed to the fact that we only examine the first coordinate of each
ordered pair).

Notice that henceforth, as long as |Xj| > ε

2dK n, we have

P(AXj ) ≥ 1 − exp(−K|Xj|/n) ≥ 1 − exp
(
− ε

2d

)
,

precisely bound (2). Therefore, the argument following that equation in Lemma 2.5 implies
that, for some fixed c1 > 0, after at most � = c1|Xj(T1)| rounds we get |Xj| < ε

2dK n whp.

Recalling that Xj(T1) ≤ n/
√

K and that K → ∞ with n, we deduce that � ≤ ε

2d n for every
sufficiently large n.

Altogether, after T1+� ≤ (
1 + ε

d

)
n rounds we obtain that |Xj| < ε

2dK n whp. By applying
this sequentially for j = 0, . . . , d−1, almost surely all but at most ε

2K n vertices obtain degree
at least d (with uniformly distributed neighbors) within a total of (d + ε)n rounds.

The second stage of the algorithm, corresponding to Lemma 2.6, focuses only on the
vertices

⋃d−1
j=0 Xj, that is, the vertices which have degree smaller than d at the end of the

first stage. Call this set of vertices U. The greedy algorithm at this stage will choose an
ordered pair, whose first coordinate is in U, whenever one is presented (settling ambiguities
randomly, and ignoring rounds where no such pair appears).

Let AU denote the event that, at a given round, we witness a pair whose first coordinate
lies in U (recall that (3) gave a bound on the analogous probability in Lemma 2.6). As
|U| < ε

2K n, we have
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P(AU) = 1 −
(

1 − |U|
n

)K

≥
(

1 − K|U|
2n

)
K

|U|
n

≥
(

1 − ε

4

)
K

|U|
n

.

Therefore, applying the same argument as in Lemma 2.6, only with T2 = (1 + ε) n
K log n,

provides a minimal degree of d after T2 additional rounds whp.

The lower bound will follow from the next lemma:

Lemma 4.2. Let d be a fixed integer, and let ε > 0. Consider the Achlioptas process which
presents K = K(n) edges at each round. Then for any edge-choosing online algorithm, after
T = (1 − ε)

(
d + log n

K

)
n/2 rounds there remain nε/2 vertices of degree smaller than d whp.

Proof. Consider the graph after T = (1 − ε)dn/2 rounds of the process have been com-
pleted; clearly, at this point (by a simple counting argument) there are at least εn vertices
of degree smaller than d in the graph. Let X denote this set of vertices. We claim that, whp,
at least nε/2 of these vertices will not be incident to any of the edges that appear in the next
� = (1−ε) n

2K log n rounds altogether. This follows from a straightforward second moment
argument, identical to the one that shows that the random graph G(n, (1−ε)

log n
n ) has nε−o(1)

isolated vertices (and in fact, this is precisely the graph obtained by collecting all K� edges
featured along the � rounds).

Once again, to simplify the analysis, we assume that the input of each round is a sequence
of K ordered pairs, each chosen uniformly at random and independently from [n]2. As argued
before, the number of rounds where this selection contains an “illegal” pair (a repeating
edge or a self loop) is negligible.

For v ∈ X, let Yv denote the indicator of the event that none of the n − 1 potential edges
incident to v appear in any of the � additional rounds we make. The following holds:

EYv =
(

1 − 2(n − 1)

n2

)K�

≥ e−(2−o(1))K�/n = n−1+ε+o(1).

Let Y = ∑
v∈X Yv. We obtain that, for instance, EY ≥ 2nε/2 for any sufficiently large n.

Similarly, for any u, v ∈ X

Cov(Yu, Yv) = E[YuYv] − EYuEYv =
(

1 − 2(2n − 3)

n2

)K�

−
(

1 − 2(n − 1)

n2

)2K�

< 0.

The last inequality holds for any n ≥ 4, since for any such n we have (1 − 2(2n−3)

n2 ) <

(1 − 2(n−1)

n2 )2. Therefore, Var(Y) ≤ EY , and by Chebyshev’s inequality we have Y > nε/2

whp, as required.

The aforementioned lemma implies that after (1−o(1))(1+ log n
2K )n rounds of the Achliop-

tas process, the obtained graph whp contains vertices of degree smaller than 2, and is thus
not Hamiltonian. This concludes the proof of Theorem 1.3.

5. CONCLUDING REMARKS AND OPEN PROBLEMS

In this section, we describe briefly several related results that can be obtained using the
methods of the current article, and also discuss some related problems.
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1. It is quite natural to ask about the validity of the hitting time version of our result.
Specifically, the question is: given the value of K ≥ 2, does there exist an online
algorithm for the Achlioptas process with parameter K that is capable of creating
whp a Hamilton cycle exactly at the moment (round) where for the first time every
vertex is incident to at least two edges in the union of edges presented at all rounds?
In quite a few random graph processes the hitting time of the property of being of
minimum degree at least two coincides whp with that of Hamiltonicity. In our case, we
have reasons to believe that the picture is different even for K = 2. Here is an heuristic
argument supporting this belief of ours. Consider indeed a typical moment when the
last vertex of degree at most one disappears in the union of all presented edges. This
moment comes normally after we have seen about m = n

2 (log n+log log n) edges, that
is, after about m/2 rounds. At this moment the number of vertices of degree exactly
two will be of order log n. In order for the hitting time result to be valid, all edges
incident to these vertices of degree two should have been chosen by the algorithm in
corresponding rounds. There are �(log n) of these edges, and therefore with decent
probability one of them appeared during the first n/2 (say) rounds. Denote this edge by
e, and its counterpart in the corresponding round by f . Again, with decent probability
both e and f were isolated edges at that round, and therefore the algorithm could not
really distinguish between them and had no reasons to choose e over f at that round.
Thus, the hitting time version of our result appears to be rather problematic.

2. A setting closely related to the Achlioptas process is that of online Ramsey problems.
In this setting, similarly to the Achlioptas process with parameter K , each round an
online algorithm is presented with K edges, chosen uniformly at random from the
set of edges of the complete graph Kn on n vertices. (The difference with our setting,
where the edges are chosen only from those missing in the current graph, is usually
insignificant.) The algorithm—unlike in the Achlioptas process, where only one edge
is to be chosen and the rest are discarded—colors the K presented edges in K distinct
colors. Usually a graph property P (Hamiltonicity, existence of a copy of a fixed graph
H , etc.) is given, and the algorithm’s goal is either to create a graph possessing P in
each of the K colors as soon as possible, or alternately to avoid creating P in any of the
colors for as long as possible. The aforedescribed setting has been considered by in
Marciniszyn, Mitsche and Stojaković [23], and by Prakash, Spöhel and Thomas [25].
(One should mention that the above described setting is just one of several possible
Ramsey-type online games. Another possible setting is where edges arrive one by one
and are colored in one of K colors: This setting has been considered by Marciniszyn,
Spöhel and Steger in [24] and by Bohman, Frieze, Krivelevich, Loh and Sudakov in
[6].) In our context, the property P under consideration is that of Hamiltonicity, and
the algorithm’s task is to create a Hamilton cycle in each of the K colors. This is
certainly a harder task than creating a Hamilton cycle in the Achlioptas process—the
latter corresponds essentially to creating a Hamilton cycle in the first color.

Using our techniques, we can solve the above described problem asymptotically
for the case where K = o(

√
log n). For this case, we can describe an algorithm that

whp creates a Hamilton cycle in each of the K colors during 1+o(1)

2K n log n rounds, thus
strengthening our main result for this range of the parameter K . Here is a sketch of
the proof. At large it is quite close to the proof presented in Section 2, so we restrict
ourselves to describing the required adjustments in our argument. In the text below,
c, c′ stand for generic positive constants whose values can be adjusted appropriately
from an occasion to an occasion for the argument to go through.
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Just like in Section 2 the algorithm proceeds in three stages. In the first stage,
it aims to create a vertex subset W of size |W | ≥ (1 − ε)n such that the subgraph
spanned by W in each of the K colors is an expander. To achieve this goal, each round
the algorithm colors the K presented edges at random into K distinct colors. The first
stage lasts 3K

4ε
n rounds. Putting D = K/ε, each color class is then distributed as a

random graph G(n, p) with p = 3D
2n . In the proof of Lemma 2.1 we have shown that

with probability 1−e−�(n), for every subset S of G(n, 3D
2n ) of size n/D, there are at least

n edges in the cut (S, Sc). A union bound thus implies that whp this holds for all the
K color classes at once. Next, conditioning on this event, we perform the following
iterative process. Starting with W as the entire set of vertices, we repeatedly remove
from W (in an arbitrary order) any vertex that has less than D neighbors in W in one
of the K color classes. Notice that, once n/D vertices are removed on account of some
given color class, they form a set S with |∂S| < n in that color class, contradicting our
assumption. It thus follows that the process ends after at most Kn/D = εn vertices
are removed from W . Therefore, the resulting subset W has size |W | ≥ (1 − ε)n and
each of its vertices has at least D neighbors in W in every color.

At this point, we apply Corollary 2.3, which in fact applies not only to the D-core
of a random graph G(n, p) with p = 3D

2n , but rather to any subgraph of this random
graph that has minimal degree D, and its statement holds with probability 1 − n−�(1)

(as the calculation in Lemma 2.2 shows). We deduce that for any given color, with
probability 1 − n−�(1), every subset S ⊂ W of size 1 ≤ s ≤ n/100 has at least 3s
neighbors of the same color in W\S. Thus, the above statement holds whp for all K
colors at once, and altogether, the required expansion properties of W are obtained
in each of the K colors at the cost of �(Kn) rounds. Using our assumption that
K = o(

√
log n), this amount of rounds is o((n/K) log n), as desired.

Set U := V\W , and for u ∈ U let d(u, W) denote its number of neighbors in W .
The first part of Stage 2 of the algorithm is again similar to the second stage of the
current proof, but now the algorithm aims to have d(u, W) ≥ dK for all but at most
εn/(2K) vertices of U, where d = 20. The algorithm effectively chooses at most one
edge per round and colors it in the required color, the colors rotate at every vertex
of U (thus, the first chosen edge between u ∈ U and W is colored in the first color,
the second one in the second color, etc.); this way we ensure that once dK chosen
edges in the cut (U, W) touch a vertex u ∈ U, this vertex has at least d neighbors
uniformly chosen over W in each of the K colors. The argument here is quite similar
to that of Subsection 2.2, but now we aim at |Xj| ≤ εn

2dK2 for all 1 ≤ j < dK (where
Xj is the number vertices u ∈ U with d(u, W) = j). In order to analyze the process of
the gradual decrease of |Xj|, we say that a substage i is completed when |Xj| ≤ εn/ei,
i = 1, . . . , log(2dK2). Call a round successful if one of the K presented edges is
between Xj and W . Since the number of non-edges between Xj and W at a given
round is proportional to |Xj| · |W | = �(|Xj|n), the probability that at least one of
the K edges drawn at this round connects between Xj and W is easily seen to be
proportional to |Xj|K/n for |Xj| = O(n/K) and to be bounded away from 0 by an
absolute constant c > 0 for |Xj| = �(n/K). Hence, similarly to (2), the probability

that a round is successful is at least min(c,
c|Xj |K

n ). By the balls-and-bins argument in
the proof of Lemma 2.5, it follows that O(|Xj|) successful rounds would complete
substage i. Therefore, with very high probability we need to wait max(c′|Xj|, c′n

K )

rounds. The total waiting time for all substages then is
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log(2dK2)∑
i=1

max

(
c′εn

ei
,

c′n
K

)
= O(n)

with probability exponentially close to 1. Summing over all j, we see that whp we
need O(Kn) rounds to complete the first part of Stage 2 (recall that d is a constant).
Recalling our assumption K = o(

√
log n), we again derive that whp the first part of

Stage 2 completes successfully in o((n/K) log n) rounds.
The second part of Stage 2 of the algorithm starts with a residual set U0 ⊂ V\W

of cardinality |U0| = O(εn/K) such that all vertices of U\U0 have at least d random
neighbors in W in each of the K colors. The algorithm will choose and color effectively
at most one edge per round. Here the goal is to ensure that by the end of the stage
each vertex u ∈ U0 will have degree at least dK into W (and then, just like before, we
will color these edges while rotating colors). The argument is very similar to that of
Lemma 2.6. Denote |U0| = t. During T2 = (

1
2 + ε

)
n
K log n rounds we observe and

color M = (
1 + ε

3

)
t log n edges between U0 and W with probability 1 − n−�(t), just

as in Lemma 2.6. The final calculation is a bit different here: the probability that after
T2 rounds a vertex v ∈ U0 has less than dK edges incident to v and chosen by the
algorithm is at most:

dK

(
M

dK

) (
1

t

)dK (
1 − 1

t

)M−dK

≤ dK

(
eM

dKt

)dK

e−(1−o(1))M/t

≤ dK(c log n)dK e−(1+ ε
3 ) log n.

Recalling that we assume K = o(
√

log n) (a much weaker assumption would suffice
here), the latter estimate is o(1/n), and we can apply the union bound to derive that
whp after 1

2 (1 + ε) n
K log n rounds the second part of Stage 2 will be completed with

all vertices of U having at least d neighbors in W in each of the K colors.
Stage 3 is essentially identical to the corresponding stage of our algorithm for the

Achlioptas process, as described in Section 2.3. Currently we have an expander in
each of the K colors, and as argued in Section 2.3, adding a linear number of random
edges on top of each color produces with very high probability a Hamilton cycle.
Running the process for Cn additional rounds, with C > 0 being a large enough
constant, and coloring the K edges of each round in K distinct colors at random
meets the above goal.

3. Our techniques can be easily adapted to prove the following result about the Achlioptas
processes: for t = O(1) and K = o(log n), there exists an online algorithm for the
Achlioptas process with parameter K that creates whp a spanning t-connected graph in
1+o(1)

2K n log n rounds. Moreover, a similar adaptation of the argument presented above
allows to derive a Ramsey-type result for the property of creating a t-connected
spanning subgraph in that many rounds as long as K = o(

√
log n).

4. A closely related property to be considered for Achlioptas/Ramsey processes is that
of the existence of a perfect matching (assume the number of vertices n is even). For
K = o(log n), our main result for this regime yields also an algorithm producing whp
a perfect matching in 1+o(1)

2K n log n rounds, and this is clearly asymptotically optimal
(for the same reasons our Hamiltonicity result is asymptotically optimal). For the
regime K = ω(log n), it is possible to create a perfect matching whp in (1+o(1))n/2
rounds as follows. First, we greedily construct an almost perfect matching M1; then, on
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the vertices uncovered by M1 we construct a relatively dense random graph (similarly
to our argument from Section 3.4) that will contain whp a perfect matching M2, due
to standard results from the theory of random graphs. The union of M1 and M2 will
then form a perfect matching.
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