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We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n
vertices whose edge weights are chosen independently and uniformly at random from [0, 1] is O(n2), in
expectation and with high probability. This resolves a long-standing open problem. The algorithm is a
variant of the dynamic all-pairs shortest paths algorithm of Demetrescu and Italiano [2006]. The analysis
relies on a proof that the number of locally shortest paths in such randomly weighted graphs is O(n2), in
expectation and with high probability. We also present a dynamic version of the algorithm that recomputes
all shortest paths after a random edge update in O(log2 n) expected time.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms; G.3
[Probability and Statistics]

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Shortest paths; probabilistic analysis

ACM Reference Format:
Peres, Y., Sotnikov, D., Sudakov, B., and Zwick, U. 2013. All-pairs shortest paths in O(n2) time with high
probability. J. ACM 60, 4, Article 26 (August 2013), 25 pages.
DOI: http://dx.doi.org/10.1145/2505988

1. INTRODUCTION

The All-Pairs Shortest Paths (APSP) problem is one of the most important, and most
studied, algorithmic graph problems. Given a weighted directed graph G = (V, E, c),
on |V | = n vertices and |E| = m edges, where c : E → IR+ is a length (or cost) function
defined on its edges, we would like to compute the distances between all pairs of vertices
in the graph and a succinct representation of all shortest paths. (The length of a path
is the sum of the lengths of the edges participating in the path.)

The APSP problem can be solved in O(mn + n2 log n) worst-case time by running
Dijkstra’s algorithm from each vertex of the graph. (See Dijkstra [1959] and Fredman
and Tarjan [1987].) A slightly better running time of O(mn + n2 log log n) was obtained
by Pettie [2004], building on techniques developed by Thorup [1999]. Karger et al.
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[1993] and McGeoch [1995] developed algorithms that run in O(m∗n + n2 log n) time,
where m∗ is the number of edges in the graph that are in shortest paths.

Demetrescu and Italiano [2004, 2006] (see also Thorup [2004]) obtained a dynamic
APSP algorithm with an amortized vertex update time of Õ(n2). Thorup [2005] obtained
a dynamic algorithm with an Õ(n2.75) worst-case vertex update time. A vertex update
may insert, delete and change the weight of edges that touch a given vertex v. An edge
update may only insert, delete or change the weight of a single edge. The algorithms
of Demetrescu and Italiano [2004, 2006] and Thorup [2004, 2005] can be used, of
course, to perform edge updates, but the update times may still be Õ(n2) and Õ(n2.75),
respectively.

Many researchers developed APSP algorithms that work well on random instances,
most notably complete directed graphs on n vertices with random weights on their
edges. The simplest such model, on which we focus in this article, is the one in which
all edge weights are drawn independently at random from the uniform distribution on
[0, 1]. Hassin and Zemel [1985] and Frieze and Grimmett [1985] observed that, with
very high probability, only the O(log n) cheapest edges emanating from each vertex
participate in shortest paths. Thus, the APSP in this setting can be solved in O(n2 log n)
expected time using the algorithms of Karger et al. [1993] and McGeoch [1995], or by
simply selecting the O(log n) cheapest edges emanating from each vertex and then
running Dijkstra’s algorithm from each vertex. All these results actually hold in the
more general setting in which edge weights are independent identically distributed
random variables with a common cumulative distribution function F that satisfies
F(0) = 0 and F ′(0) exists and is strictly positive. (The uniform distribution on [0, 1]
with F(x) = x, and the exponential distribution, with F(x) = 1−e−x clearly satisfy these
conditions.) Furthermore, the running time of these algorithms is O(n2 log n) with high
probability, that is, probability that tends to 1 as n tends to infinity, and not just in
expectation.

Spira [1973] obtained an APSP algorithm with an expected running time of
O(n2 log2 n) for complete directed graphs with edge weights drawn in an endpoint inde-
pendent manner. More specifically, for each vertex v a sequence of n positive numbers
is chosen by an arbitrary deterministic or probabilistic process. These n numbers are
then assigned to the n edges emanating from v in a random order, with all n! possible
ordering being equally likely. Bloniarz [1983] presented an improved algorithm with an
expected running time of O(n2 log n log∗ n). Moffat and Takaoka [1987] and Mehlhorn
and Priebe [1997] improved the expected running time to O(n2 log n) and showed that
it also holds with high probability.

Cooper et al. [2000] obtained an APSP algorithm with an expected running time of
O(n2 log n) in the vertex potential model in which edge weights may be both positive
and negative.

Meyer [2003], Hagerup [2006], and Goldberg [2008] obtained Single-Source Shortest
Paths (SSSP) algorithms with an expected running time of O(m). The m-edge input
graph may be arbitrary, but its edge weights are assumed to be chosen at random from
a common non-negative probability distribution. When the edge weights are indepen-
dent, the running time of these algorithms is O(m) with high probability.

Friedrich and Hebbinghaus [2008] presented an average case analysis of the dynamic
APSP algorithm of Demetrescu and Italiano [2004, 2006] on random undirected graphs.
The graphs in their analysis are chosen according to the G(n, p) model, in which each
edge of the complete graph is selected with probability p, and edges of the random
graph are given independent identically distributed uniform random weights. They
show that the expected edge update time is at most O(n4/3+ε), for any ε > 0. This
bound is essentially tight when p = 1/n, that is, at the phase transition of the random
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graph, when the largest component is, with high probability, of size �(n2/3). When
p ≥ (1 + ε′)/n, they show that the expected update time is O(nε/p), for every ε > 0.

Nonalgorithmic aspects of distances and shortest paths in randomly weighted graphs
were also a subject of intensive research in probability theory. We mention here only
the results that are most relevant for us. Davis and Prieditis [1993] and Janson [1999]
showed that the expected distance of two vertices in a complete graph with random
edge weights drawn independently from an exponential distribution with mean 1 (i.e.,
F(x) = 1 − e−x) is exactly Hn−1/(n − 1) = (ln n)/n + O(1/n), where Hk = ∑k

i=1
1
k is the

kth Harmonic number. The probability that a given edge is a shortest path between its
endpoints is also exactly Hn−1/(n− 1). Exponential random variables are convenient to
work with due to their memoryless property. The same asymptotic results hold when the
edges weights are chosen independently and uniformly from [0, 1]. In the exponential
case, the tree of shortest paths from a given vertex has the same distribution as a
random recursive tree on n vertices obtained using the following simple process: Start
with a root; add the remaining n − 1 vertices, each time choosing the parent of the
new vertex uniformly at random among the vertices that are already in the tree. The
expected depth of a vertex in such a tree, and hence the expected number of edges
in a shortest path, is ln n + O(1). For further results regarding recursive trees and
shortest paths, see Devroye [1987], Smythe and Mahmoud [1995], and Addario-Berry
et al. [2010].

In their survey on the algorithmic theory of random graphs, Frieze and McDiarmid
[1997] state the following open problem (Research Problem 22 on p. 28): “Find a
o(n2 log n) expected time algorithm for the all pairs problem under a natural class
of distributions, e.g., i.i.d. uniform on [0, 1].” We solve this open problem by giving an
O(n2) expected time algorithm for the problem, which is, of course, best possible. Fur-
thermore, our algorithm runs in O(n2) time with high probability and works for both
directed and undirected versions of the all-pairs shortest paths problem.

Our O(n2)-time APSP algorithm is a static version of the dynamic APSP algorithm
of Demetrescu and Italiano [2004, 2006] (see especially Section 3.4 of Demetrescu and
Italiano [2006]) with some modified data structures. The novel part of this article is
not the algorithm itself, but rather the probabilistic analysis that shows that it runs in
O(n2) time, in expectation and with high probability.

We also obtain an O(log2 n) upper bound on the expected time needed to update all
shortest paths following a random edge update, that is, an update in which a random
edge of the complete directed graph is selected and given a new random edge weight
drawn uniformly at random from [0, 1].

The rest of the article is organized as follows. In Section 2, we sketch the static and
dynamic versions of the algorithm of Demetrescu and Italiano [2004, 2006] used in this
article. (Complete descriptions of these algorithms are given in Appendices A and B.)
The crucial factor that determines the running time of these algorithms is the number
of locally shortest paths in the graph. A path is a locally shortest path (LSP) if the paths
obtained by deleting its first and last edge, respectively, are shortest paths. In Section 3,
we collect some known and some new results regarding the distances between vertices
in randomly weighted graphs. Using the results of Section 3, we show in Section 4 that
the expected number of LSPs in a complete directed graph with independent uniformly
distributed random weights is O(n2). In Section 5, we show that the number of LSPs
is O(n2) with high probability. Sections 4 and 5 are the main sections of this article.
In Section 6, we show that a fairly simple bucket-based priority queue, with a constant
amortized update time, in conjunction with the fact that the number of LSPs is O(n2), in
expectation and with high probability, yields the promised O(n2)-time APSP algorithm.
In Section 7, we consider the expected time needed to perform random edge updates.
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Interestingly, the arguments used in Sections 5 and 7 are related, as they both focus
on the expected number of shortest paths that change when a single edge is given a
new random edge weight. (The link is the Efron-Stein inequality used in Section 5.)
In Section 8, we very briefly consider other random graph models. In particular, our
algorithm still runs in O(n2) expected time in the directed G(n, p) model, in which
each edge is present with probability p, with independent uniformly distributed edge
weights, at least when p � (ln n)/n. We end in Section 8 with some concluding remarks
and open problems.

2. THE ALGORITHM OF DEMETRESCU AND ITALIANO

Our O(n2) time bound, in expectation and with high probability, on the complexity of the
solving the APSP problem on complete directed graphs with independent edge weight
drawn uniformly from [0, 1], and the O(log2 n) expected time bound on the complexity
of performing a random edge update are both obtained using variants of the dynamic
APSP algorithm of Demetrescu and Italiano [2004, 2006].

As our main result is the analysis of these variants, and not the variants themselves,
we begin by sketching the main features of the variants we use, mentioning only what
the reader needs to know to understand our analysis. A complete description of the
algorithms is given in Appendices A and B. (We believe that our variants are also of
some interest, as they are not identical to the algorithms of Demetrescu and Italiano
[2004, 2006].)

Let G = (V, E, c) be a weighted directed graph, where c : E → (0,∞) is a cost function
defined on its edges. (We use weights and costs interchangingly.) For simplicity, we as-
sume that all shortest paths in G are unique. Under essentially all probabilistic models
considered in this article, this assumption holds with probability 1. (Nonuniqueness of
shortest paths can be dealt with as in Demetrescu and Italiano [2004].) We let u → v
denote the edge (u, v) ∈ E, and let u � v denote the (unique) shortest path from u to v
in the graph, if they exist.

The key notion behind the algorithm of Demetrescu and Italiano [2004] is the notion
of locally shortest paths.

Definition 2.1 (Locally Shortest Paths). A path is a locally shortest path (or LSP) if
the path obtained by deleting its first edge, and the path obtained by deleting its last
edge, are both shortest paths.

More formally, if we let u → u′ � v′ → v denote the path composed of the edge
u → u′, followed by the shortest path from u′ to v′, and then by the edge v′ → v, then
u → u′ � v′ → v is a locally shortest path if and only if u → u′ � v′ and u′ � v′ → v are
both shortest paths. (If u′ = v′, then u′ � v′ is an empty path.) An edge is considered to
be a locally shortest path. (Empty paths are considered to be shortest paths.) A shortest
path is, of course, also a locally shortest path. A locally shortest path, however, is not
necessarily a shortest path.

2.1. A Static Version

We begin by describing a static version of the algorithm of Demetrescu and Italiano
[2004, 2006]. Let G = (V, E, c) be a weighted directed graph. The algorithm constructs
all shortest paths in G by essentially running Dijkstra’s algorithm in parallel from all
vertices, while only examining LSPs, as explained here.

For every u, v ∈ V , the algorithm maintains a number dist[u, v], which is the length of
the shortest path from u to v found so far. Initially, dist[u, v] is set to c(u, v), if (u, v) ∈ E,
or to ∞, otherwise. Each pair (u, v) ∈ E is inserted into a heap (priority queue) Q, with
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dist[u, v] serving as its key. The heap Q holds all pairs of vertices (u, v) such that at
least one path from u to v in the graph was already discovered, but the shortest path
from u to v was not yet declared.

In each iteration, the algorithm extracts a pair (u, v) with the smallest key in Q. As
in Dijkstra’s algorithm, dist[u, v] is then the distance from u to v in G. The algorithm
then examines LSPs that extend the shortest path u � v and checks whether they are
shorter than the currently best available paths between their endpoints. (An extension
of a path π is a path obtained by adding an edge to its beginning or end.) To efficiently
find the LSPs that extend a shortest path u � v, the algorithm also maintains, in
addition to dist[u, v], the following information for every u, v ∈ V.

p[u, v] – The second vertex on the shortest path from u to v found so far.
q[u, v] – The penultimate (next to last) vertex on the shortest path from u to v found

so far.
L[u, v] – A list of vertices w for which w → u � v is known to be a shortest path.
R[u, v] – A list of vertices w for which u � v → w is known to be a shortest path.

If no path from u to v was found yet, then p[u, v] = q[u, v] = null. The lists L[u, v]
and R[u, v] specify the left and right extensions of u � v that are known to be shortest
paths. Clearly, L[u, v] and R[u, v] are nonempty only after the shortest path u � v was
identified by the algorithm.

Suppose that u → u′ � v′ → v, where u′ = p[u, v] and v′ = q[u, v], was just identified
as a shortest path. For every w ∈ L[u, v′], w → u � v is an LSP. Similarly, for every
w ∈ R[u′, v], u � v → w is an LSP. These paths are now examined by the algorithm. If,
for example, a path w → u � v is found to be shorter than the currently available path
from w to v, or is the first path found from w to v, then dist[w, v], p[w, v] and q[w, v]
are updated accordingly and the key of (w, v) in Q is decreased. (If (w, v) is not already
in Q, it is inserted into Q.)

This is the gist of the static version of the algorithm of Demetrescu and Italiano
[2004, 2006], which, for concreteness, we refer to as algorithm apsp. For a complete
description and pseudocode, see Appendix A.

As algorithm apsp uses a priority queue, its running time depends on the character-
istics of the priority queue used. For a specific implementation, we let Tins(n), Tdec(n)
and Text(n) denote the (amortized) times of inserting an element, decreasing the key
of a given element, and extracting an element of minimum key from a priority queue
containing at most n elements. We next make the following claim.

THEOREM 2.2. If all edge weights are positive and all shortest paths are unique, then
algorithm apsp correctly finds all the shortest paths in the graph. Algorithm apsp runs
in O(n2 · (Tins(n2) + Text(n2)) + |LSP| · Tdec(n2)) time, where |LSP| is the number of LSPs
in the graph, and uses only O(n2) space.

The proof of Theorem 2.2, which is essentially identical to the correctness proof given
by Demetrescu and Italiano [2004, 2006], can be found in Appendix A.

If we use the Fibonacci heaps data structure [Fredman and Tarjan 1987] that sup-
ports extract-min operations in O(log n) amortized time, and all other operations in
O(1), amortized time, where n is the number of elements in the heap, we get a run-
ning time of O(n2 log n + |LSP|). There are, thus, two hurdles on our way to getting
an expected O(n2)-time algorithm. First, we have to show that |LSP| is O(n2), under
natural probability distributions, in expectation and with high probability. We do that
in Sections 4 and 5. Second, we have to find a faster way of implementing heaps. We
do that in Section 6 using a bucket-based implementation.
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2.2. A Dynamic Version

The static algorithm of the previous section examines all locally shortest paths in a
graph, but (implicitly) maintains only those that are currently shortest. The dynamic
algorithm, on the other hand, explicitly maintains all locally shortest paths, even if
they are already known not to be shortest paths.

For every path π , we let l[π ] be the path obtained by deleting the last edge of π ,
and r[π ] be the path obtained by deleting the first edge of π . A path π is represented by
keeping its total cost, its first and last edges, and pointers to its subpaths l[π ] and r[π ].
The collection of all paths maintained by the algorithm is referred to as the path system.

For every pair of vertices u, v ∈ V , the dynamic algorithm maintains a heap P[u, v]
that holds all the LSPs connecting u and v found so far. The key of each path is its cost.
As in the static case, dist[u, v] is the cost of the shortest path π [u, v] from u to v found
so far.

For every LSP π , the dynamic algorithm maintains four lists of left and right exten-
sions of π . The lists SL[π ] and SR[π ] contain left and right extensions of π that are
known to be shortest paths. The lists L[π ] and R[π ] contain extensions of π that are
known to be LSPs.

Let E′ be a set of edges whose costs are changed by an update operation. (We are
mostly be interested in the case in which E′ is composed of a single edge, but the
description here is general.) The dynamic algorithm recomputes all shortest paths as
follows. First, all LSPs containing edges of E′ are removed from the path system. (Note
that each edge of E′ is an LSP, and is thus contained in the path system. All LSPs
containing edges of E′ can be found by recursively following the extension lists of these
edges.)

For every pair of vertices u, v ∈ V such that the shortest path from u to v before the
update passes through an edge of E′, and was therefore removed from the path system,
the algorithm finds the cheapest path in P[u, v], if at least one such path remains, and
assigns it to π [u, v]. It then inserts the pair (u, v) into a global heap Q. The key of (u, v)
in Q is the cost of π [u, v]. Next, it recreates single-edge paths corresponding to the
edges of E′, with their new edge weights, and examines them.

The dynamic algorithm now starts to construct new shortest paths. In each iteration
it extracts from Q a pair (u, v) with the smallest key. As in the static case, the path
π [u, v] is then a shortest path from u to v. LSP extensions of π [u, v], obtained by
combining π [u, v] with paths that are already known to be shortest paths, are now
generated. If such an extension is shorter than the currently shortest available path
containing its endpoints u′ and v′, then π [u′, v′] and dist[u′, v′] are updated accordingly,
and (u′, v′) is inserted into Q with the appropriate key. (If (u′, v′) is already in Q, its key
is decreased.)

An important difference between the dynamic variant used in this article and the
dynamic algorithm of Demetrescu and Italiano [2004, 2006] is that when a path π stops
being a shortest path, it and all its extensions are immediately removed from the path
system. A similar dynamic variant was used by Friedrich and Hebbinghaus [2008].
The algorithm of Demetrescu and Italiano [2004, 2006] keeps such paths as historical
and locally historical paths. (See also Demetrescu et al. [2006].)

The most impressive feature of the dynamic algorithm of Demetrescu and Italiano
[2004, 2006] is that its update time is proportional to the number of shortest and
locally shortest paths that are destroyed and/or created by the update operation. The
algorithm does not spend time on shortest paths that remain unchanged.

Let SP− and LSP− be the sets of shortest and locally shortest paths destroyed by
an update operation. Similarly, let SP+ and LSP+ be the sets of shortest and locally
shortest paths that are created (or recreated) by an update operation. Note that SP−
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and SP+, and LSP− and LSP+, are not necessarily disjoint, as paths passing through
edges of E′ are first destroyed, and removed from the path system, but may then be
recreated. Let � be an upper bound on the number of LSPs that connect any given pair
of vertices before and after the update.

A complete description of the dynamic variant sketched here and its correctness
proof are given in Appendix B, where the following theorem is proved. (update(E′, c′)
is the function that updates all shortest paths following a change in the costs of the
edges of E′.)

THEOREM 2.3. The running time of update(E′, c′) is

O(|SP−| · (Tdel(�) + Tmin(�) + Tins(n2)) + |SP+| · Text(n2)
+|LSP−| · Tdel(�) + |LSP+| · (Tins(�) + Tdec(n2)).

Here, Tins(n), Tdel(n), Tdec(n), Text(n) and Tmin(n) are the (amortized) times of inserting,
deleting, decreasing the key, extracting the element of minimum key, and finding the
element of minimum key of a priority key containing at most n elements.

We show in Section 7 that, for a random edge update, we have E[ |SP−| ], E[ |SP+| ] =
O(log n) and that E[ |LSP−| ], E[ |LSP+| ] = O(log2 n). We also show that � = O(log n),
with high probability. Using appropriate implementations of the priority queues, we
get an expected edge update time of O(log2 n).

3. DISTANCES IN COMPLETE RANDOMLY WEIGHTED GRAPHS

Let Kn = (V, E) be a complete directed graph on n vertices and let a, b ∈ V . We let
W(a, b) be the random weight attached to the edge (a, b). We assume at first that
W(a, b) is an exponential random variable with mean 1, that is, W(a, b) ∼ EXP(1). Due
to the memoryless property, dealing with exponentially distributed edge weights is
easier than dealing directly with uniformly distributed edge weights. We later explain
why all the results derived in this section for exponential edge weights also hold,
asymptotically, for uniformly distributed edge weights. All n(n−1) random edge weights
are assumed to be independent. (Self-loops, if present, may be ignored.) Let D(a, b) be
the distance from a to b in the graph, that is, the length (sum of weights) on the shortest
path a � b in the graph. (The shortest path a � b is unique with probability 1.) Note
that D(a, b) is now also a random variable. For k ∈ {1, 2, . . . , n − 1}, we let Dk(a) be the
distance from a to the kth closest vertex to a.

Let Hk = ∑n
k=1

1
k be the kth Harmonic number. It is known that Hn = ln n+γ + O( 1

n),
where γ = 0.57721 · · · is Euler’s constant.

The following five lemmas can be found in Janson [1999]. (The expectation of D(a, b),
but not the variance, can also be found in Davis and Prieditis [1993].) The lemmas in
Janson [1999] are stated for undirected graphs, but it is easy to check that they also
hold for directed graphs.

LEMMA 3.1. Let a ∈ V and k ∈ {1, 2, . . . , n − 1}. Then,

Dk(a) =
k∑

i=1

Xi

i(n − i)
,

where X1, X2, . . . , Xk are independent identically distributed exponential variables with
mean 1.
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LEMMA 3.2. Let a 
= b ∈ V . Then,

D(a, b) = DL(a) =
L∑

i=1

Xi

i(n − i)
,

where X1, X2, . . . , Xn−1 are independent identically distributed exponential variables
with mean 1, and L is chosen uniformly at random from {1, 2, . . . , n − 1}.

LEMMA 3.3. Let a 
= b ∈ V . Then,

E[D(a, b)] = Hn−1

n − 1
= ln n

n
+ O

(
1
n

)
, Var[D(a, b)] = π2

2n2 + o
(

1
n2

)
.

LEMMA 3.4. For any constant c > 3, we have

P

[
max

a,b
D(a, b) ≥ c ln n

n

]
= O(n3−c log2 n).

LEMMA 3.5. Let a 
= b ∈ V . Then, the probability that the edge a → b is a shortest
path is Hn−1

n−1 = ln n
n + O( 1

n).

The next two lemmas are new and might be interesting in their own right. They
are used in Section 5 to show that the running time of algorithm apsp is O(n2) with
high probability. The proof that the expected running time of apsp is O(n2), given in
Section 4, does not rely on them.

LEMMA 3.6. Let a 
= b ∈ V . If n−α < α ≤ 1/2, then P
[
D(a, b) > (1 + 12α) ln n

n

] ≤ 5n−α.

PROOF. Let Sk,� = ∑�
i=k

Xi
i(n−i) . (We allow k, � to be nonintegral, in which case, we

have Sk,� = S�k,���.) By Lemma 3.2, we get that D(a, b) = S1,L, where L is uniformly
distributed in {1, 2, . . . , n − 1}. Let m = n1−α. We clearly have

P[D(a, b) > S1,n−m] = P[L > n − m] ≤ m/n = n−α. (1)

We now decompose

S1,n−m ≤ X1

n − 1
+ S2,m + Sm,n/2 + Sn/2,n−m. (2)

Now

P

[
X1

n − 1
> 2α

ln n
n

]
≤ P[X1 > α ln n] = n−α. (3)

Let Y = ∑m
i=2

Xi
i . Using our assumption that n−α < α, we get that

S2,m ≤ Y
n − m

= Y
(1 − n−α)n

≤ Y
(1 − α)n

≤ (1 + 2α)
Y
n

.

Now E[eλXi ] = (1 − λ)−1, for λ < 1, so

E[eY ] = E
[
e

∑m
i=2 Xi/i] =

m∏
i=2

E
[
eXi/i] =

m∏
i=2

(
1 − 1

i

)−1

=
m∏

i=2

i
i − 1

= m.

Therefore,

P

[
S2,m−1 ≥ (1 + 2α)

ln n
n

]
≤ P[Y ≥ ln n] = P[eY ≥ n] ≤ E[eY ]

n
= m

n
= n−α. (4)
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Let Z = ∑n/2
i=m

Xi
i . Clearly, Sm,n/2 ≤ 2Z

n . We again have

E[eZ] =
n/2∏
i=m

(
1 − 1

i

)−1

≤ n
m

= nα.

Therefore,

P

[
Sm,n/2 ≥ 4α

ln n
n

]
≤ P[Z > 2α ln n] = P[eZ ≥ n2α] ≤ E[eZ]

n2α
= n−α. (5)

As Sm,n/2 and Sn/2,n−m have exactly the same distribution, we also get that

P

[
Sn/2,n−m ≥ 4α

ln n
n

]
≤ n−α. (6)

Using (1)–(6) together, we get that P[D(a, b) > (1 + 12α) ln n
n ] ≤ 5n−α, as required.

We made no attempt to optimize the constants appearing in the statement of
Lemma 3.6. The condition n−α < α in the lemma is satisfied for any fixed α > 0,
when n is large enough. It also holds when, say, α = α(n) = (ln ln n)/ ln n.

The proof of our next lemma relies on the following large deviation theorem of Maurer
[2003].

THEOREM 3.7 (MAURER [2003). Let Y1, Y2, . . . , Yn be nonnegative independent ran-
dom variables with finite first and second moments and let S = ∑n

i=1 Yi. Let t > 0.
Then

P[E[S] − S ≥ t] ≤ exp
(

− t2

2
∑n

i=1 E[Y 2
i ]

)
.

For a vertex a ∈ V and r > 0, let Ball(a, r) = {b ∈ V | D(a, b) ≤ r} be the ball of
radius r centered at a. We next bound the probability that Ball(a, α ln n

n ) is exceptionally
large.

LEMMA 3.8. For any a ∈ V , α ≤ 1 and c > 0, we have

P

[∣∣∣∣Ball
(

a, α
ln n
n

)∣∣∣∣ > cnα

]
≤ exp

(
− ln2 c

60

)
.

PROOF. Note that |Ball(a, r)| > k if and only if Dk(a) ≤ r. By Lemma 3.1, we have
Dk = Dk(a) = ∑k

i=1
Xi

i(n−i) , where X1, X2, . . . , Xk are independent identically distributed
exponential variables with mean 1. Thus,

E[Dk] =
k∑

i=1

1
i(n − i)

>
1
n

k∑
i=1

1
i

>
ln k
n

.

As E[X2
i ] = 2, we have

k∑
i=1

E

[(
Xi

i(n − i)

)2
]

=
k∑

i=1

2
i2(n − i)2 ≤

n−1∑
i=1

2
i2(n − i)2

≤ 2
n/2∑
i=1

2
i2(n − i)2 ≤ 16

n2

n/2∑
i=1

1
i2 ≤ 16

n2

π2

6
≤ 30

n2 .
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With k = cnα, we get that E[Dk] > α ln n
n + ln c

n and by Theorem 3.7, with Yi = Xi
i(n−i) , we

have

P

[
Dk ≤ α ln n

n

]
≤ P

[
E[Dk] − Dk ≥ ln c

n

]
≤ exp

⎛
⎝−

( ln c
n

)2

60
n2

⎞
⎠ = exp

(
− ln2 c

60

)
.

As an immediate corollary, we get:

COROLLARY 3.9. For any a ∈ V , α ≤ 1, ε > 0 and c > 0, we have

P

[∣∣∣∣Ball
(

a, α
ln n
n

)∣∣∣∣ > nα+ε

]
= O(n−c).

The results of this section were derived under the assumption that the edge weights
are exponential. However, as explained in detail in the beginning of Section 2 of Janson
[1999], the same results hold asymptotically also for the uniform distribution. For the
sake of completeness, we show how to deduce from Lemma 3.6 and Corollary 3.9 similar
claims for uniform distributions.

Let G be a complete directed graph on n vertices with independent uniformly dis-
tributed edge weights W(a, b) and let D(a, b) be the distance from a to b in this graph.
Define W ′(a, b) = − ln(1 − W(a, b)) and let G′ be a complete directed graph whose edge
weights are W ′(a, b). Denote by D′(a, b) the distance from a to b in G′. Note that all
the edges of G′ have weights distributed as independent exponential random variables
with mean 1 and that the correspondence between G and G′ is a measure preserving
transformation. It is easy to check that z ≤ − ln(1 − z) ≤ z + 2z2 for all 0 ≤ z ≤ 1/2.

Suppose that G has the property that D(a, b) > (1 + 12α) ln n
n . Since D′(a, b) ≥ D(a, b),

each such G corresponds to a graph G′, which also has D′(a, b) > (1+12α) ln n
n . Therefore,

by Lemma 3.6, the probability of this event is at most 5n−α. Suppose that b is a
vertex of G satisfying D(a, b) ≤ α ln n

n . Then, by this inequality, we have that D′(a, b) ≤
α ln n

n + 2α2 ln2 n
n2 = α′ ln n

n with α′ = (
1 + O( ln n

n )
)
α. For any ε > 0, let ε′ = ε/2. Then, it

is easy to check that nα′+ε′ ≤ nα+ε . Therefore, all G in which |Ball
(
a, α ln n

n

) | > nα+ε

correspond to instances of G′ in which |Ball
(
a, α′ ln n

n

) | > nα′+ε′
. By Corollary 3.9, the

probability of this event is at most O(n−c) for any c > 0.

4. THE EXPECTED NUMBER OF LOCALLY SHORTEST PATHS

Let LSP be the set of LSPs in Kn. Our goal in this section is to show that E[|LSP|] =
O(n2). This would follow immediately from the following lemmas.

LEMMA 4.1. Let a, b, c be three distinct vertices. The probability that a → b → c is
an LSP is O( ln2 n

n2 ).

PROOF. The path a → b → c is an LSP if and only if both a → b and b → c are
shortest paths. By Lemma 3.5, the probability that each one of the edges a → b and
b → c is a shortest path is ln n

n + O( 1
n). Unfortunately, the events “a → b is a shortest

path” and “b → c is a shortest path” are not independent (and probably positively
correlated). To circumvent that, let V1, V2 ⊂ V such that V1 ∪ V2 = V , a ∈ V1, c ∈ V2,
V1 ∩ V2 = {b} and |V1|, |V2| ≥ n/2 be a fixed partition of the vertex set V . If a → b and
b → c are shortest paths in G, then a → b is clearly also a shortest path in G[V1], the
subgraph of G induced by V1, and b → c is also a shortest path in G[V2]. These events
are now independent, as the edge sets of G[V1] and G[V2] are disjoint. The probability
that a → b → c is an LSP is thus at most ( ln(n/2)

n/2 + O( 1
n))2.
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LEMMA 4.2. Let a, b, c, d be four distinct vertices. The probability that a → b � c → d
is an LSP is O( 1

n2 ).

PROOF. If a → b � c → d is an LSP, then by definition

W(a, b) + D(b, c) = D(a, c), D(b, c) + W(c, d) = D(b, d).

If a → b � c → d is an LSP, then b � c does not pass through a or d. (If, e.g., b � c
passes through a, then a � c is a subpath of b � c, and a → b � c is therefore not
a shortest path, contradicting the assumption that a → b � c → d is an LSP.) Thus,
D(b, c) = Da,d(b, c), where Da,d(b, c) is the distance from b to c when a and d are removed
from the graph. We also clearly have D(a, c) ≤ Db,d(a, c) and D(b, d) ≤ Da,c(b, d).

Thus, if a → b � c → d is an LSP, then

W(a, b) + Da,d(b, c) ≤ Db,d(a, c), Da,d(b, c) + W(c, d) ≤ Da,c(b, d),

or equivalently

W(a, b) ≤ Db,d(a, c) − Da,d(b, c), W(c, d) ≤ Da,c(b, d) − Da,d(b, c). (∗)

It is thus sufficient to bound the probability that (∗) happens. For brevity, let

X = Da,d(b, c), Y = Db,d(a, c), Z = Da,c(b, d).

A crucial observation now is that X, Y, and Z do not depend on W(a, b) and W(c, d). This
follows from the fact that in each one of these distances one of a and b, and one of c
and d, is removed from the graph.

We can thus choose the random weights of the edges in two stages. First, we choose
the random weights of all edges except the two edges a → b and c → d. The values
of X, Y and Z are then already determined. We then choose W(a, b) and W(c, d), the
random weights of the two remaining edges. As the choice of W(a, b) and W(c, d) is
independent of all previous choices, and as W(a, b) and W(c, d) are independent and
uniformly distributed in [0, 1], we get that

P[(∗)] = E
[
(Y − X)+ · (Z − X)+

] ≤ E
[|Y − X||Z − X|],

where x+ = max{x, 0}. (Note that we are not assuming here that X, Y and Z are
independent. They are in fact dependent.)

We next note that each of X, Y and Z is the distance between two given vertices in
a randomly weighted complete graph on n − 2 vertices. Thus, E[X] = E[Y ] = E[Z]. By
Lemma 3.3, we have

Var[X] = Var[Y ] = Var[Z] = (1 + o(1))
π2

2n2 .

Now,

P[(∗)] ≤ E
[|Y − X||Z − X|] ≤ 1

2
(E

[
(Y − X)2] + E

[
(Z − X)2]),

using the trivial inequality xy ≤ 1
2 (x2 + y2). All that remains, therefore, is to bound

E[(Y − X)2] and E[(Z − X)2]. Let μ = E[X] = E[Y ]. Using the inequality (x − y)2 ≤
2(x2 + y2), we get,

E[(Y − X)2] = E[((Y − μ) − (X − μ))2]
≤ 2(E[(Y − μ)2] + E[(X − μ)2])
= 2(Var[Y ] + Var[X])

= (1 + o(1))
π2

n2 .
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Exactly the same bound applies to E[(Z− X)2]. Putting everything together, we get that
P[(∗)] ≤ (1 + o(1))π2

n2 .

THEOREM 4.3. E[|LSP|] = �(n2).

PROOF. The number of LSPs of length 1 is exactly n(n − 1). (Every edge is an LSP
of length 1.) By Lemma 4.1, the expected number of LSPs of length 2 is O(n3 · ln2 n

n2 ) =
O(n ln2 n). By Lemma 4.2, the expected number of LSPs of length greater than two is
O(n4 · 1

n2 ) = O(n2).

Experiments that we have done seem to suggest that E[|LSP|] is very close to (π2

6 +
1)n2 � 2.64n2.

The results of this section were stated and proved for directed graphs. It is easy
to check, however, that our methods can be also used to provide an all pairs shortest
paths algorithm with a quadratic running time for the complete undirected graphs on n
vertices with uniform edge weights.

5. HIGH PROBABILITY BOUND ON THE NUMBER OF LOCALLY SHORTEST PATHS

Our goal in this section is to show that the number of LSPs is O(n2) asymptotically
almost surely (a.a.s), that is, that there exists a constant c such that P[|LSP| < cn2] →
1, as n → ∞.

Let E∗ be the set of edges that are shortest paths. Let 
 be the maximum outdegree
in the subgraph G∗ = (V, E∗). (McGeoch [1995] refers to G∗ = (V, E∗) as the essential
subgraph.) We first show that 
 = O(log n), with very high probability.

LEMMA 5.1. For every c > 6, we have P[
 > c ln n] = O(n1−c/6).

PROOF. Let G′ = (V, E′) be the subgraph of G composed of all edges of weight at most
c
2

ln n
n , and let 
′ be the maximum outdegree in G′. The outdegree of each vertex in G′ is

binomially distributed with parameters n and c
2

ln n
n . A special case of Chernoff bound

(see, e.g., Mitzenmacher and Upfal [2005], p. 64) states that if X is a binomial variable
with μ = E[X], then P[X ≥ 2μ] ≤ e−μ/3. Thus, the probability that the degree of a given
vertex exceeds c ln n is at most n−c/6. Thus P[
′ > c ln n] ≤ n1−c/6. Now, 
 > 
′ only if
at least one distance in G is greater than c

2
ln n
n . By Lemma 3.4, the probability that this

happens is at most O(n3−c/2 log2 n). For c > 6, we have 1 − c/6 > 3 − c/2.

The following lemma is trivial and can also be found in Demetrescu and Italiano
[2004].

LEMMA 5.2. If all shortest paths are unique, then |LSP| ≤ 
n2.

PROOF. Every LSP is obtained by appending an edge which is itself a shortest path
to some shortest path. The number of shortest path in a graph is at most n2 (assuming
uniqueness) and each one of these shortest path can be extended by at most 
 edges.

Note that Lemmas 5.1 and 5.2 imply that the number of LSPs is O(n2 log n) with
high probability. To improve this bound to O(n2), we need to work harder.

Definition 5.3 (β-Short Paths). Let β > 0 be a (small) constant. We say that a short-
est path π is β-short if and only if its lengths are at most (1+β) ln n

n , and β-long otherwise.
Similarly, we say that an LSP π is β-short if both shortest paths l[π ] and r[π ] obtained
by removing its first edge and last edge are short, and β-long otherwise. Let SPS, SPL,
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LSPS, LSPL be the sets of β-short and β-long shortest and locally shortest paths. (Note
that these sets depend on the parameter β.)

Clearly, |LSP| = |LSPL|+|LSPS|. We estimate separately the number of β-long LSPs
and the number of β-short LSPs. We begin by bounding the number of β-long shortest
paths and locally shortest paths.

LEMMA 5.4. For every β > 0, we have E[|SPL|] = O(n2−β/12).

PROOF. By Lemma 3.6, with α = β/12, we get that for any a 
= b ∈ V we have

P

[
D(a, b) ≥ (1 + β)

ln n
n

]
= O(n−β/12).

The lemma follows by the linearity of expectation.

LEMMA 5.5. For every β > 0, we have E[|LSPL|] = O(n2−β/12 ln n).

PROOF. Using the same argument used in the proof of Lemma 5.2, we get that
|LSPL| ≤ 
|SPL|. By Lemma 5.1, we get

E[|LSPL|] ≤ E[
|SPL|] ≤ c ln n · E[|SPL|] + n1−c/6n3.

Letting c = 12 and using Lemma 5.4, we get that E[|LSPL|] = O(n2−β/12 ln n), as
required.

LEMMA 5.6. For every β > 0, we have P[|LSPL| ≥ n2] = O(n−β/12 ln n).

PROOF. Follows from Lemma 5.5 using Markov’s inequality.

We next show that |LSPS| = O(n2) with high probability. To do that, we use the
Efron-Stein inequality (see, e.g., Boucheron et al. [2003]) to bound Var[|LSPS|].

THEOREM 5.7 (EFRON-STEIN INEQUALITY). Let Z = f (X1, . . . , Xm), where X1, X2, . . . , Xm
are independent random variables. For any 1 ≤ i ≤ m, let X′

i be a random variable
with the same distribution as Xi but independent from X1, X2, . . . , Xm, and let Z′

i =
f (X1, . . . , X′

i, . . . , Xm). Then,

Var[Z] ≤ 1
2

m∑
i=1

E[(Z − Z′
i)

2].

In our case, we have m = n(n − 1), X1, X2, . . . , Xm are the random edge weights,
and Z = |LSPS|. For every edge e, we need to compute the second moment of the
random variable |LSPS

e,0| − |LSPS
e,1|, where LSPS

e,0 and LSPS
e,1 are the sets of β-short

LSPs when all edges other than e are assigned the same random edge weights, while e
is assigned two independent edge weights. Due to symmetry, the second moment of
|LSPS

e,0|− |LSPS
e,1| does not depend on e. For brevity, we write LSPS

0 and LSPS
1 , instead

of LSPS
e,0 and LSPS

e,1, when the e is clear from the context. We similarly define SPS
0

and SPS
1 to be the corresponding sets of β-short shortest paths.

If A and B are two sets, then ||A| − |B|| ≤ |A⊕ B|, where A⊕ B = (A� B) ∪ (B� A) is
the symmetric difference of the two sets. We thus focus our attention on LSPS

0 ⊕LSPS
1 .

We begin by looking at SPS
0 ⊕SPS

1 . Let SPS
0 (e) and SPS

1 (e) be the set of β-short shortest
paths that pass through e with the two choices of the weight of e.

LEMMA 5.8. For every edge e, we have |SPS
0 ⊕ SPS

1 | ≤ 2(|SPS
0 (e)| + |SPS

1 (e)|).
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PROOF. Let c0(e) and c1(e) be the two costs of e. Suppose at first that c0(e) < c1(e).
A β-short shortest path that stops being β-short shortest path when the cost of e is
increased from c0(e) to c1(e) must pass through e. Thus, SPS

0 �SPS
1 ⊆ SPS

0 (e) and hence
|SPS

0 � SPS
1 | ≤ |SPS

0 (e)|. The only paths in SPS
1 � SPS

0 are paths that replace paths
from SPS

0 � SPS
1 . Thus, we also have |SPS

1 � SPS
0 | ≤ |SPS

0 (e)|. Under the assumption
c0(e) < c1(e), we thus get |SPS

0 ⊕SPS
1 | ≤ 2|SPS

0 (e)|. If c0(e) > c1(e), we similarly get that
|SPS

0 ⊕SPS
1 | ≤ 2|SPS

1 (e)|. In both cases, we have |SPS
0 ⊕SPS

1 | ≤ 2(|SPS
0 (e)|+|SPS

1 (e)|).
We next estimate |SPS

0 (e)| and |SPS
1 (e)|. As they both have the same distribution, we

omit the subscript.

LEMMA 5.9. For every β > 0, we have P[|SPS(e)| > 0] = O( ln n
n ).

PROOF. The set SPS(e) is nonempty only if e is a shortest path between its endpoints,
which, by Lemma 3.5, only happens with probability ln n

n + O( 1
n).

Our next goal is to show that |SPS(e)| = O(n1+β ′
), with high probability, for any

β ′ > β.

LEMMA 5.10. For every β > 0 and every β ′ > β, we have P[|SPS(e)| > n1+β ′
] = O(n−c),

for every c > 0.

PROOF. Let e = a → b be a fixed edge. Let C be the set of pairs (u, v) such that
u � a → b � v is a shortest path of length at most (1+β) ln n

n . Clearly |SPS(e)| = |C|. For
a fixed integer r, and 1 ≤ i ≤ r, let

Ai =
{

u ∈ V
∣∣∣∣ D(u, a) ≤ i(1 + β)

r
ln n
n

}
, Bi =

{
v ∈ V

∣∣∣∣ D(b, v) ≤ i(1 + β)
r

ln n
n

}

be the sets of vertices of distances at most i(1+β)
r

ln n
n to a and from b, respectively. Note

that Bi = Ball(b,
i(1+β)

r
ln n
n ) while Ai = Ball(a,

i(1+β)
r

ln n
n ), in the graph in which all edge

directions are reversed. Clearly

C ⊆
r⋃

i=1

Ai × Br+1−i.

By Corollary 3.9, we have |Ai|, |Bi| ≤ n(1+β)i/r+ε , for every i, with a probability of at least
1 − O(rn−c), for every c > 0. It thus follows that |C| ≤ rn(1+β)(1+1/r)+2ε , again with this
very high probability. Letting r sufficiently large and ε sufficiently small, we obtain the
lemma.

Lemmas 5.9 and 5.10 allow us to bound E[|SPS(e)|2].

LEMMA 5.11. For every β > 0, and every β ′ > β, we have E[|SPS(e)|2] =
O(n2(1+β ′)−1 ln n).

PROOF. For succinctness, let X = |SPS(e)| and a = n1+β ′
. We always have X2 ≤ n4.

Using Lemma 5.10 with c = 4, we have
E[X2] ≤ P[0 < X ≤ a] · a2 + P[X > a] · n4

= O
(

ln n
n

· n2(1+β ′) + n−4 · n4
)

= O
(
n2(1+β ′)−1 ln n

)
.
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We can finally get back to estimating LSPS
0 ⊕LSPS

1 . Let 
0 and 
1 be the maximum
outdegrees in the essential graph, that is, the subgraph composed of the edges that
are shortest paths, under the two independent choices of the weight of e. Let 
 =
max{
0,
1}. By Lemma 5.1, we have P[
 > c ln n] = O(n1−c/6), for every c > 6.

LEMMA 5.12. For every β > 0, we have |LSPS
0 ⊕ LSPS

1 | ≤ 2
 · |SPS
0 ⊕ SPS

1 |.
PROOF. Suppose that π ∈ LSPS

0 � LSPS
1 . Then, either l[π ] ∈ SPS

0 � SPS
1 or r[π ] ∈

SPS
0 � SPS

1 . Each shortest path in SPS
0 has at most 
0 pre-extensions and at most 
0

post-extensions that are locally shortest paths. Thus, |LSPS
0 �LSPS

1 | ≤ 2
0|SPS
0 �SPS

1 |.
Similarly, |LSPS

1 � LSPS
0 | ≤ 2
1|SPS

1 � SPS
0 |, and the lemma follows.

LEMMA 5.13. For every β > 0, every β ′ > β, and every edge e we have

E[||LSPS
1 | − |LSPS

0 ||2] = O(n2(1+β ′)−1 ln3 n).

PROOF. By Lemmas 5.8 and 5.12, we have∣∣|LSPS
1 | − |LSPS

0 |∣∣2 ≤ ∣∣LSPS
0 ⊕ LSPS

1

∣∣2 ≤ 4
2
∣∣SPS

0 ⊕ SPS
1

∣∣2
≤ 16
2(|SPS

0 (e)| + |SPS
1 (e)|)2 ≤ 32
2(|SPS

0 (e)|2 + |SPS
1 (e)|2).

Since both |SPS
0 (e)|, |SPS

1 (e)| ≤ n2, from Lemma 5.1 with c = 24, we have

E[||LSPS
1 | − |LSPS

0 ||2] ≤ O(ln2 n · E[|SPS(e)|2] + P[
 > 24 ln n] · n4)

= O(ln2 n · E[|SPS(e)|2] + n−3 · n4).

The claim now follows from Lemma 5.11.

Using the Efron-Stein inequality (Theorem 5.7), we get the following.

LEMMA 5.14. For every β > 0 and every β ′ > β, we have Var[|LSPS|] =
O(n2(1+β ′)+1 ln3 n).

THEOREM 5.15. There is a constant c such that P[|LSP| ≥ cn2] = O(n−1/26).

PROOF. Let β = 12
25 . By Lemma 5.6, we get that

P[|LSPL| ≥ n2] = O(n−β/12 ln n) = O(n−1/25 ln n). (7)

Let β ′ = β + ε, where ε > 0 is tiny. By Lemma 5.14, we get that

Var[|LSPS|] = O(n2(1+β ′)+1 ln3 n) = O(n99/25+2ε ln3 n) = O(n99/25+3ε).

By Theorem 4.3, we have E[|LSP|] = �(n2). By Lemma 5.5, we have E[|LSPL| = o(n2).
As E[|LSP|] = E[|LSPS|] + E[|LSPL|], we get that E[|LSPS|] = �(n2).

By Chebyshev’s inequality (see, e.g., Mitzenmacher and Upfal [2005]), for every
random variable X, we have

P[X ≥ 2E[X]] ≤ P[|X − E[X]| ≥ E[X]] ≤ Var[X]
E[X]2 .

For X = |LSPS|, and using the facts that E[|LSPS|] = �(n2) and Var[|LSPS|] =
O(n99/25+3ε), we thus get

P[|LSPS| ≥ 2E[|LSPS|]] ≤ Var[|LSPS|]
E[|LSPS|]2

= O(n−1/25+3ε). (8)
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As |LSP| = |LSPS| + |LSPL|, combining (7) and (8) and choosing ε small enough, we
get the claim of the theorem.

We believe that, for every a > 0, there exists c such that P
[|LSP| ≥ cn2

] = O(n−a).
Proving, or disproving, this claim would require new techniques.

6. AN O(N2)-TIME IMPLEMENTATION

In this section, we describe an implementation of the algorithm of Section 2.1 (and
Appendix A) that runs in O(n2) time in expectation and with high probability. This
is done using a simple observation of Dinic [1978] and a simple bucket-based priority
queue implementation that goes back to Dial 1969].

Let δ = min(u,v)∈E c(u, v) be the minimal edge weight in the graph. We claim that
algorithm apsp of Section 2.1 remains correct if instead of requiring that the pair
(u, v) extracted from the heap Q is a pair with minimal dist(u, v), we only require
that dist(u, v) < dist(u′, v′) + δ for every other pair (u′, v′) in Q. The proof is a simple
modification of the proof of Theorem 2.2 given in Appendix A. This observation, in the
context of Dijkstra’s algorithm, dates back to Dinic [1978]. Along with many more ideas,
this observation forms the basis for the linear worst-case time single-source shortest
paths algorithm for undirected graphs obtained by Thorup [1999]. It is also used by
Hagerup [2006] to obtain a simple linear expected time algorithm for single source
shortest paths, simplifying results of Meyer [2003] and Goldberg [2008].

In our setting, edge weights are drawn independently and uniformly at random
from [0, 1]. The probability that the minimal edge weight is smaller than n−2.5 is
clearly at most n−0.5. If this unlikely event happens, we simply use an O(n2 log n) time
implementation based on Fibonacci heaps. This only contributes o(n2) to the expected
running time of the algorithm.

We assume now that δ ≥ n−2.5. For every u, v ∈ V , we let dist′(u, v) = �dist(u, v)/δ�
and use dist′(u, v), instead of dist(u, v), as the key of (u, v) in Q.

We implement the heap Q as follows. (There are many possible variants. We describe
the one that seems to be the most natural.) We use L = n2 buckets B1, B2, . . . , BL.
Bucket Bi, for i < L, is a linked list holding pairs (u, v) for which dist′(u, v) = i.
Bucket BL is a special leftover bucket that holds all pairs (u, v) for which dist′(u, v) ≥ L.
It is again implemented as a linked list. We also maintain the index k of the bucket
from which the last minimal pair was extracted.

The implementation of a heap-insert operation is trivial. To insert a pair (u, v) into Q,
we simply add (u, v) to Bi, where i = min{dist′(u, v), L}.

A decrease-key operation is also simple. We simply remove (u, v) from its current
bucket and move it to the appropriate bucket. (Each pair has a pointer to its position
in its current bucket, so these operations take constant time.)

An extract-min operation is implemented as follows. We sequentially scan the buck-
ets, starting from Bk, until we find the first nonempty bucket. If the index of this bucket
is less than L, we return an arbitrary element from this bucket and update k if neces-
sary. If the first nonempty bucket is BL, the leftover bucket, we insert all the elements
currently in BL into a comparison-based heap and use it to process all subsequent heap
operations. (We show here that in our setting, we would very rarely encounter this
case.)

This implementation of the extract-min operation is correct as the priority queue
that we need to maintain is monotone, in the sense that the minimal key contained in
the priority queue never decreases. This follows immediately from then fact that keys
of new pairs inserted into Q, or decreased keys of existing pairs in Q are always larger
than the key of the last extracted pair.
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The total time spent on implementing all heap operations, until all buckets
B1, . . . , BL−1 are empty, is clearly O(N + L), where N is the number of heap opera-
tions performed. By Theorem 2.2, we have N = O(|LSP| + n2). By Theorem 4.3, we
have E[|LSP|] = O(n2). By Theorem 5.15, there is constant c such that P[|LSP| ≥
cn2] = O(n−1/60). As L = n2, the number of operations here is O(n2), both in expectation
and with high probability.

All that remains, therefore, is to show that the probability that BL will be the only
nonempty bucket is tiny. Note that this happens if and only if there is a pair u, v ∈ V
for which D(u, v) ≥ Lδ ≥ n−0.5. By Lemma 3.4, this probability is O(n−c) for every
c > 0. If this extremely unlikely event happens, the running time is only increased
to O(n2 log n), which has a negligible effect on the expected running time of the whole
algorithm. We have thus obtained the following theorem.

THEOREM 6.1. The expected running time of algorithm apsp, when implemented us-
ing a bucket-based priority queue, and when run on a complete directed graph with
edge weights selected uniformly at random from [0, 1] is O(n2). Furthermore, there is a
constant c > 0 such that the probability that the running time of the algorithm exceeds
cn2 is O(n−1/60).

7. POLYLOGARITHMIC UPDATE TIMES

In this section, we consider the expected time needed to update all shortest paths
following a random edge update, that is, an update operation that chooses a random
edge e of the complete directed graph, uniformly at random, and assigns it a new ran-
dom weight, independent of all previous weights chosen, drawn uniformly at random
from [0, 1].

Recall that SP− and LSP− are the sets of shortest and locally shortest paths de-
stroyed by an update operation, and that SP+ and LSP+ are the sets of shortest and
locally shortest paths that are created (or recreated) by an update operation. More
specifically, we have

SP− =SP0(e) ∪ (SP0 � SP1),
SP+ =SP1(e) ∪ (SP1 � SP0),

LSP− =LSP0(e) ∪ (LSP0 � LSP1),
LSP+ =LSP1(e) ∪ (LSP1 � LSP0),

where, as in Section 5, SP0 and SP1 are the sets of shortest paths before and after
the update of e, and SP0(e) and SP1(e) are the sets of shortest paths, before and after
the update, that pass through e. The sets LSP0, LSP1, LSP0(e), and LSP1(e), are the
corresponding sets of locally shortest paths.

Our main goal is to bound the expected sizes of the sets SP−, SP+, LSP−, and
LSP+. This, in conjunction with Theorem 2.3, would supply an upper bound on the
expected update time. By symmetry, it is easy to see that E[|SP−|] = E[|SP+|] and
E[|LSP−|] = E[|LSP+|]. We can thus concentrate on estimating E[|SP−|] and E[|LSP−|].

Let e be the random edge updated by a random edge update operation. For every
u, v ∈ V , let π0[u, v] and π1[u, v] be the shortest path from u to v before and after
the update. Let Bi = {(u, v) | e ∈ πi[u, v]}, for i ∈ {0, 1}, be the set of pairs of vertices
connected, before and after the update, by a shortest path passing through e. (Note
that |Bi| = |SPi(e)|, for i ∈ {0, 1}.) It is easy to see that π0[u, v] ∈ SP− if and only
if e ∈ π0[u, v] or e ∈ π1[u, v]. Thus, SP− = {π0[u, v] | (u, v) ∈ B0 ∪ B1} and similarly
SP+ = {π1[u, v] | (u, v) ∈ B0 ∪ B1}. In particular |SP−| = |SP+|. More importantly,

|SP−| ≤ |SP0(e)| + |SP1(e)|.
To bound E[|SP−|] = E[|SP+|], it is thus enough to bound E[|SP0(e)|] = E[|SP1(e)|].
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LEMMA 7.1. The expected number of edges on a shortest path between two random
vertices is (1 + o(1)) ln n.

PROOF. When edge weights are exponential, the expected number of edges on a
shortest path between two random vertices is exactly equal to the average depth of a
vertex in a random recursive tree of size n. (See, e.g., Janson [1999].) It is known that
this average depth is (1+ o(1)) ln n [Moon 1974]. The same asymptotic result holds also
under the uniform distribution. (See Section 2 of Janson [1999].)

LEMMA 7.2. The expected number of shortest paths that pass through a random edge e
is (1 + o(1)) ln n.

PROOF. For every u, v ∈ V , let π [u, v] be the shortest path from u to v, and let |π [u, v]|
be the number of edges on it. For every edge e of the complete graph, let SP(e) be the
set of shortest paths that pass through e. By symmetry, we have

E[|SP(e)|] = E
[

1
n(n − 1)

∑
e′

|SP(e′)|
]

= E
[

1
n(n − 1)

∑
u
=v

|π [u, v]|
]

= E[|π [u, v]|].

By Lemma 7.1, we get that E[|SP(e)|] = (1 + o(1)) ln n.

THEOREM 7.3. Following a random edge update, we have E[|SP−|] = E[|SP+|] ≤
(2 + o(1)) ln n.

Let 
 be the maximal degree of the essential graph G∗ = (V, E∗) defined in the
previous section. Lemma 5.1 says that with high probability 
 = O(log n).

THEOREM 7.4. Following a random edge update, we have E[|LSP−|] = E[|LSP+|] =
O(log2 n).

PROOF. Clearly, π ∈ LSP− if and only if l[π ] ∈ SP− or r[π ] ∈ SP−. Each shortest
path has at most 2
 LSP extensions. Thus, |LSP−| ≤ 2
 · |SP−|. By Lemma 5.1, we
have P[
 > 24 ln n] = O(n−3). As |LSP| is always at most n3, we get E[|LSP−|] ≤
48 ln n · E[|SP−|] + n−3 · n3 = O(log2 n).

We believe that the O(log2 n) bound in Theorem 7.4 can be improved, possibly to
O(log n), and leave it as an open problem.

THEOREM 7.5. The expected running time of a random edge update, when a Fibonacci
heap is used to implement the global heap, and simple linked lists are used to implement
the local heaps, is O(log2 n).

8. CONCLUDING REMARKS

We presented an algorithm that solves the APSP problem on complete directed graphs
with random edges weights in O(n2) time with high probability. The expected run-
ning time of the algorithm is also O(n2). This solves an open problem of Frieze and
McDiarmid [1997].

We also presented a dynamic algorithm that performs random edge updates in
O(log2 n) expected time. It is an interesting open problem whether this can be im-
proved to O(log n).

Our results also hold in the directed G(n, p) model in which each edge is selected
with probability p, where p � (ln n)/n. Selected edges are again assigned independent,
uniformly distributed, weights. Similarly, it is easy to see that our results apply when
edge weights are integers chosen uniformly at random from, say, {1, 2, . . . , n}, where n
is the number of vertices.
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Function apsp(G = (V,E, c))

init(G)
Q ← heap()

foreach (u, v) ∈ E do
dist[u, v] ← c(u, v)
p[u, v] ← v
q[u, v] ← u
heap-insert(Q, (u, v), dist[u, v])

while Q �= ∅ do
(u, v) ← extract-min(Q)
insert(L[p[u, v], v], u)
insert(R[u, q[u, v]], v)
foreach w ∈ L[u, q[u, v]] do

examine(w, u, v)

foreach w ∈ R[p[u, v], v] do
examine(u, v, w)

Function init(G = (V,E, c))

foreach u, v ∈ V do
dist[u, v] ← ∞
p[u, v] ← null
q[u, v] ← null
L[u, v] ← ∅
R[u, v] ← ∅

foreach u ∈ V do
dist[u, u] ← 0

Function examine(u, v, w)

if dist[u, v] + dist[v, w] < dist[u,w] then
dist[u,w] ← dist[u, v] + dist[v, w]
if p[u,w] = null then

heap-insert(Q, (u,w), dist[u,w])
else

decrease-key(Q, (u,w), dist[u,w])

p[u,w] ← p[u, v]
q[u,w] ← q[v, w]

Fig. A.1. A static version of the APSP algorithm of Demetrescu and Italiano [2004, 2006].

APPENDIXES

A. THE STATIC ALGORITHM – COMPLETE DESCRIPTION

In this section, we give a full description, and a correctness proof, of the static version
of the Demetrescu and Italiano [2004, 2006] used in this article. Pseudocode of the
algorithm, called apsp, is given in Figure A.1. The input to the algorithm is a weighted
directed graph G = (V, E, c), where c : E → (0,∞) assigns positive weights (or costs)
to the edges of the graph. The algorithm in Figure A.1 works correctly only under
the assumption that all shortest paths are unique. Under essentially all probabilistic
models considered in this article, this assumption holds with probability 1. Algorithm
apsp is also interesting, however, in nonprobabilistic settings. For a simple way of
dispensing with the uniqueness assumption, without increasing the running time of
the algorithm by more than a constant factor, see Demetrescu and Italiano [2004].

We next prove Theorem 2.2 of Section 2, which we repeat for the convenience of the
reader.

THEOREM 2.2. If all edge weights are positive and all shortest paths are unique, then
algorithm apsp correctly finds all the shortest paths in the graph. Algorithm apsp runs
in O(n2 · (Tins(n2) + Text(n2)) + |LSP| · Tdec(n2)) time, where |LSP| is the number of LSPs
in the graph, and uses only O(n2) space.

PROOF. It is easy to check that each stage during the operation of the algorithm,
dist[u, v] corresponds to some path from u to v in the graph and that this path, or an
even shorter path, can be traced using the p and q fields. Thus, the distances returned
by the algorithm can never be too small.

It is also easy to check that the keys of the pairs (u, v) extracted from Q form a
non-decreasing sequence and that a pair (u, v) removed from Q is never inserted to Q
again. Thus, the algorithm always terminates.
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Assume, for the sake of contradiction, that the algorithm fails to find a shortest path
u � v, for some u, v ∈ V . Let u � v be a shortest shortest-path not found by the
algorithm. (In other words, if u′ � v′ is shorter than u � v, then u′ � v′ is found by the
algorithm.)

If u � v is simply the edge u → v, then we immediately get a contradiction, as the
algorithm starts by setting dist[u, v] to c(u, v) (and p[u, v] to v, and q[u, v] to u), for
every (u, v) ∈ E. Thus, the algorithm does find the shortest path u � v = u → v, a
contradiction.

Assume, therefore, that u � v = u → u′ � v′ → v is composed of at least two edges.
(If it is composed of exactly two edges, then u′ = v′.) Clearly u → u′ � v′ and u′ � v′ → v
are also shortest paths and their length is strictly smaller than the length of u � v,
as c(u, u′), c(v′, v) > 0. Thus, by the our assumptions, u → u′ � v′ and u′ � v′ → v
are discovered by the algorithm. When the second of these is discovered, the algorithm
examines the path u � v = u → u′ � v′ → v and sets dist[u, v] to its length. Also
(u, v) is added to Q if it is not already there. As there is no shorter path from u to v
in the graph, the values of dist[u, v], p[u, v] and q[u, v] would never be changed again,
contradicting the assumption that the algorithm does not find the shortest path from u
to v.

We next analyze the running time of algorithm. Each pair (u, v) is inserted and
extracted from the priority queue Q at most once. The total cost of these operations is
O(n2(Tins(n2)+Text(n2))). All paths considered by the algorithm are LSPs. The algorithm
examines each LSP exactly once. For each LSP, it performs a constant number of
operations followed perhaps by a decrease-key operation. The total cost of all these
operations is O(|LSP| Tdec(n2)). The complexity of all other operations is negligible.

Finally, to see that the algorithm uses only O(n2) space, note that the removal of a
pair (u, v) from the heap Q causes the insertion of only two elements to lists L[u′, v′]
and R[u′, v′]. As each pair (u, v) is extracted at most once, the total size of all these lists
is O(n2).

B. THE DYNAMIC ALGORITHM – COMPLETE DESCRIPTION

As explained, one of the main differences between the static and dynamic algorithms
is that the dynamic algorithm explicitly maintains all LSPs in a path system, and does
not just examine them. Paths are created by the three constructors path(v), path(e)
and path(π1, π2) given in Figure B.1. path(v) generates a path of length 0 containing
the vertex v. path(e) generates a path composed of the edge e. path(π1, π2) takes two
paths π1 and π2 such that r[π1] = l[π2] and constructs a path π such that l[π ] = π1
and r[π ] = π2. The new path π is composed of the first edge of π1 followed by π2, or
equivalently, by π1 followed by the last edge of π2.

Every path π has the following fields:

l[π ] - A pointer to the path obtained by removing the last edge of π.
r[π ] - A pointer to the path obtained by removing the first edge of π.
start[π ] - The first vertex on π.
end[π ] - The last vertex on π.
f irst[π ] - The first edge on π.
last[π ] - The last edge on π.
cost[π ] - The total cost (weighted length) of π.
sp[π ] - true if and only if π is known to be a shortest path.
L[π ] - List of left LSP extensions of π.
R[π ] - List of right LSP extensions of π.
SL[π ] - List of left shortest path extensions of π.
SR[π ] - List of right shortest path extensions of π.
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Function path(v)

π ← new-path()
l[π] ← null
r[π] ← null
start[π] ← v
end[π] ← v
first[π] ← null
last[π] ← null
cost[π] ← 0
sp[π] ← true
L[π], R[π] ← ∅
SL[π], SR[π] ← ∅
return π

Function path(e = (u, v))

π ← new-path()
l[π] ← p[u]
r[π] ← p[v]
start[π] ← u
end[π] ← v
first[π] ← e
last[π] ← e
cost[π] ← c[e]
sp[π] ← false
L[π], R[π] ← ∅
SL[π], SR[π] ← ∅
insert(L[p[v]], π)
insert(R[p[u]], π)
return π

Function path(π1, π2)

if r[π1] �= l[π2] then error
π ← new-path()
l[π] ← π1

r[π] ← π2

start[π] ← start[π1]
end[π] ← end[π2]
first[π] ← first[π1]
last[π] ← last[π2]
cost[π] ← c[first[π]] + cost[π2]
sp[π] ← false
L[π], R[π] ← ∅
SL[π], SR[π] ← ∅
insert(L[π2], π)
insert(R[π1], π)
return π

Fig. B.1. Generating new paths and inserting them into the path system.

The lists SL[π ] and SR[π ] are similar to the lists L[u, v] and R[u, v] used by the
static algorithm. This time, however, they contain actual paths and not vertices. The
lists L[π ] and R[π ] contain all LSPs, already constructed, obtained by extending π by
one edge at its beginning or end, respectively.

The initialization function of the dynamic version, called dapsp-init, is given in
Figure B.2. It is similar to the static apsp algorithm. It too uses a global heap Q that
stores pairs of vertices for which shortest paths are sought. For every v ∈ V , we let p[v]
be the empty path consisting of v. For every edge e ∈ E, we let p[e] denote the path
consisting of e. For every two vertices u, v ∈ V , the dynamic algorithm maintains the
following information:

π [u, v] - The shortest path from u to v found so far.
cost[u, v] - The cost of the shortest path from u to v found so far.
P[u, v] - a heap containing all the LSPs from u to v found so far.

We refer to P[u, v] as the local heap corresponding to the pair (u, v). We refer to Q as
the global heap.
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Function dapsp-init(G = (V,E, c))

Q ← heap()

foreach u, v ∈ V do
π[u, v] ← null
dist[u, v] ← ∞
P [u, v] ← heap()

foreach u ∈ V do
p[u] ← path(u)
π[u, u] ← p[u]
dist[u, u] ← 0

foreach e ∈ E do
p[e] ← path(e)
examine(p[e])

build-paths()

Function update(E′, c′)

A ← ∅
foreach e ∈ E′ do

remove-path(p[e], true)
Q ← heap()
foreach (u, v) ∈ A do

replace-path(u, v)
foreach e ∈ E′ do

c[e] ← c′[e]
p[e] ← path(e)
examine(p[e])

build-paths()

Function build-paths()

while Q �= ∅ do
(u, v) ← extract-min(Q)
new-shortest-path(π[u, v])

Fig. B.2. Initiating and updating the dynamic all-pairs shortest paths data structure.

Function new-shortest-path(π)

sp[π] ← true

insert(SL[r[π]], π)
insert(SR[l[π]], π)

foreach π′ ∈ SL[l[π]] do
π′′ ← path(π′, π)
examine(π′′)

foreach π′ ∈ SR[r[π]] do
π′′ ← path(π, π′)
examine(π′′)

Function examine(π)

u ← start[π] ; v ← end[π]
heap-insert(P [u, v], π, cost[π])

if cost[π] < dist[u, v] then
if π[u, v] �= null then

sp[π[u, v]] ← false
remove-exts(π[u, v], false)

π[u, v] ← π
dist[u, v] ← cost[π]
heap-insert(Q, (u, v), cost[π])

Fig. B.3. The functions new-shortest-path and examine.

The initialization function dapsp-init starts with some obvious initializations. (For
every u, v ∈ V , it sets π [u, v] to null, sets dist[u, v] to ∞, sets P[u, v] to an empty heap,
etc.) For every e ∈ E it then creates the path p[e], by calling path(e), and then examines
it by calling examine(p[e]), given in Figure B.3.

The function examine(π ) receives a newly created LSP connecting two vertices u =
start[π ] and v = end[π ]. It starts by inserting it into the heap P[u, v] with key cost[π ]. It
then checks whether π is the first available LSP from u to v, or whether it is shorter than
all existing LSPs between u and v. If π is shorter than π [u, v], the shortest available
path from u to v, then π [u, v] is clearly not a shortest path. The algorithm thus sets
sp[π [u, v]] to false. It then removes all extensions of π [u, v] from the system, if there
are any. This is done by a call to remove-exts(π [u, v], false) which we discuss later.
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Function remove-path(π, rep)

u ← start[π] ; v ← end[π]
heap-delete(P [u, v], π)

delete(R[l[π]], π)
delete(L[r[π]], π)

if sp[π] = true then
if rep = true then

insert(A, (u, v))

delete(SR[l[π]], π)
delete(SL[r[π]], π)

remove-exts(π, rep)

Function remove-exts(π, rep)

foreach π′ ∈ L[π] ∪R[π] do
remove-path(π′, rep)

Function replace-path(u, v)

if P [u, v] �= ∅ then
π ← find-min(P [u, v])
π[u, v] ← π
dist[u, v] ← cost[π]
heap-insert(Q, (u, v), cost[π])

else
π[u, v] ← null
dist[u, v] ← ∞

Fig. B.4. Removing a path and its extensions from the path system.

Finally, if π is currently the shortest available path from u to v, examine updates π [u, v]
and dist[u, v] accordingly. It also inserts (u, v) into the global heap, if it is not already
there, or decreases its key to cost[π ]. (We assume that heap-insert does exactly that,
that is, inserts an item into a heap with a given key, or decreases its key, if the item is
already in the heap.)
dapsp-init then calls build-paths which is also given in Figure B.2. build-paths

repeatedly removes a pair (u, v) with the smallest key from the global heap Q. The
corresponding path π [u, v] is then a shortest path. The call new-shortest-path(π ) is
then made.

The function new-shortest-path(π ) receives a newly discovered shortest path. It sets
to sp[π ] to true. It inserts π to the lists SL[r[π ]] and SR[r[π ]], as π is now a shortest path
left extension of r[π ] and a shortest path right extension of l[π ]. (Note that π is already
contained in L[r[π ]] and R[l[π ]] at this stage.) Most importantly, new-shortest-path(π )
now constructs LSPs extensions of π and examines each one of them. (These operations
may add new pairs into the global heap Q.)

Using essentially the same arguments used to prove Theorem 2.2, we get that dapsp-
init correctly finds all shortest and locally shortest paths in the graph.

Updates are performed by calling update, also given in Figure B.2. update(E′, c′) as-
signs the edges of E′ new edges weights and recomputes all shortest paths. update(E′, c′)
starts by removing all paths that pass through edges of E′. This done by calling
remove-path(p[e], true), for every e ∈ E′. (Function remove-path is discussed in this
appendix.) These removals create a list A of pairs (u, v) that lost their shortest path.
For every (u, v) ∈ A, a call is made to replace-path(u, v). Paths corresponding to all
edges of E′ are recreated, with their new costs, and these edge paths are examined. All
updated shortest paths are then obtained by a call to build-paths.
replace-path(u, v), given in Figure B.4, receives a pair of vertices (u, v) such that the

shortest path from u to v has just been destroyed. It finds the shortest path π in P[u, v],
if there is one, and performs the necessary updates. (Note that π is not necessarily the
shortest path from u to v. It is just the shortest path currently available.)

Finally, paths and their extensions are removed from the path system by the func-
tions remove-path and remove-exts also given in Figure B.4. To remove a path π from
the path system, remove-path(π, rep) deletes π from P[u, v], where u = start[π ] and
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v = end[π ] are the endpoints of π . It also deletes π from R[l[π ]] and L[r[π ]]. If π is
marked as a shortest path, that is, sp[π ] = true, then π is also removed from SR[l[π ]]
and SL[r[π ]]. Finally, if sp[π ] = true and rep = true, then (u, v) is inserted into a list A
of pairs who lost their shortest paths. remove-exts(π, rep) removes all the extensions
of π from the path system, by calling remove-path(π ′), for every π ′ ∈ L[π ] ∩ R[π ].

Theorem 2.3 now follows by examining the operation of the algorithm. When a
shortest path is destroyed it is removed from its local heap. In some cases, the shortest
path in the local heap is found and a pair (u, v) is inserted into the global heap. The
total cost of these operations is at most Tdel(�)+Tmin(�)+Tins(n2), where � is an upper
bound on the size of the local heaps. Each new shortest path is extracted from the
global heap at a total cost of Text(n2). Each LSP destroyed is removed from its local
heap at a cost of Tdel(�). Finally, each LSP created is inserted into the appropriate local
heap and possibly causes a decrease-key operation on the global heap, a total cost of
Tins(�) + Tdec(n2).
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