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Abstract

We consider an algorithmic problem of coloringr-uniform hypergraphs. The problem of findin
the exact value of the chromatic number of a hypergraph is known to be NP-hard, so we d
approximate solutions to it. Using a simple construction and known results on hardness o
coloring, we show that for anyr � 3 it is impossible to approximate in polynomial time t
chromatic number ofr-uniform hypergraphs onn vertices within a factorn1−ε for anyε > 0, unless
NP ⊆ ZPP. On the positive side, improving a result of Hofmeister and Lefmann, we prese
approximation algorithm for coloringr-uniform hypergraphs onn vertices, whose performance rat
isO(n(log logn)2/(logn)2).
 2003 Elsevier Inc. All rights reserved.

1. Introduction

A hypergraphH is an ordered pairH = (V ,E), where V is a finite nonempty set (th
set ofvertices) andE is a collection of distinct nonempty subsets ofV (the set ofedges).
H hasdimensionr if all edges have at mostr vertices. If all edges have size exactlyr,
H is calledr-uniform. Thus, a 2-uniform hypergraph is just a graph. A setU ⊆ V (H)

is calledindependentif U spans no edges ofH . The maximal size of an independent
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in H is called theindependence numberof H and is denoted byα(H). A k-coloring of
H is a mappingc :V (H) → {1, . . . , k} such that no edge ofH (besides singletons) ha
all vertices of the same color. Equivalently, ak-coloring ofH is a partition of the vertex
setV (H) into k independent sets. Thechromatic numberof H , denoted byχ(H) is the
minimalk, for whichH admits ak-coloring.

In this paper we consider an algorithmic problem of coloringr-uniform hypergraphs
for given and fixed value ofr � 2. The special caser = 2 (i.e., the case of graphs)
relatively well studied and many results have been obtained in both positive (that is
approximation algorithms, see, e.g., [3–5,13,16,17,26]) and negative (that is, by sh
the hardness of approximating the chromatic number under some natural com
assumptions, see, e.g., [11,19]) directions. We will briefly survey these developme
the subsequent sections of the paper. However, much less is known about the gene
Lovász [24] showed that it is NP-hard to determine whether a 3-uniform hypergra
2-colorable. Additional results on complexity of hypergraph coloring were obtaine
[7,8,25]. These hardness results give rise to attempts of developing algorithm
approximateuniform hypergraph coloring, aiming to use a small but possibly nonopt
number of colors. The first nontrivial case of approximately coloring 2-color
hypergraphs has been considered in papers of Chen and Frieze [9] and of
et al. ([18], a journal version appeared in [1]). Both papers arrived independen
practically identical results. They presented an algorithm for coloring a 2-colorabr-
uniform hypergraph inO(n1−1/r) colors, using an idea closely related to the ba
idea of Wigderson’s coloring algorithm [26]. Another result of the above mentio
two papers is an algorithm for coloring 3-uniform 2-colorable hypergraphs inÕ(n2/9)

colors. The latter algorithm exploits the semidefinite programming approach, much
spirit of the Karger–Motwani–Sudan coloring algorithm [17]. Not much is known a
general approximate coloring algorithms forr-uniform hypergraphs (that is, when th
chromatic number of a hypergraph is not given in advance). Recently Hofmeiste
Lefmann [15] presented an approximation algorithm for this problem with perform
ratioO(n/(log(r−1) n)2), where log(r) n denotes ther-fold iterated logarithm.

This paper is aimed at trying to fill a gap between the special case of graphs (r = 2)
and the case of a generalr. We present results in both negative and positive directi
In Section 2 we describe a construction which enables to derive immediately resu
hardness of approximating the chromatic number ofr-uniform hypergraphs for anyr � 3
from the corresponding graph results. Thus we get that unless NP⊆ ZPP, for any fixed
r � 3, it is impossible to approximate the chromatic number ofr-uniform hypergraphs on
n vertices in polynomial time within a factor ofn1−ε , for anyε > 0. It should be noted tha
Hofmeister and Lefmann obtained independently the same hardness result in [15].

In Section 3 we present an approximation algorithm for coloringr-uniform hypergraphs
on n vertices, whose performance guarantee isO(n(log logn)2/(logn)2), thus matching
the approximation ratio of Wigderson’s algorithm [26]. This algorithm is quite simila
a spirit to the algorithm of Wigderson, though technically somewhat more complic
Final Section 4 is devoted to concluding remarks.

All logarithms are natural unless written explicitly otherwise.
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Remark. In the conference version of this paper [23] we also presented an algo
for coloring 3-uniform 2-colorable hypergraphs onn vertices inÕ(n9/41) colors, thus
improving previous results of Chen and Frieze and of Kelsen, Mahajan and Rame
omit this algorithm in the current journal version, since the rather slow refereeing pr
allowed us enough time to improve this result. Indeed, together with Nathaniel in
we obtained an algorithm for coloring 3-uniform 2-colorable hypergraphs onn vertices in
Õ(n1/5) colors, and we refer the interested reader to this new paper.

2. Hardness of approximation

Several results on hardness of calculating exactly the chromatic number ofr-uniform
hypergraphs have been known previously. Lovász [24] showed that it is NP-com
to decide whether a given 3-uniform hypergraphH is 2-colorable. Phelps and Rö
proved in [25] that it is NP-complete to decidek-colorability of r-uniform hypergraphs
for all k, r � 3, even when restricted to linear hypergraphs. Brown and Cornei
presented a polynomial transformation fromk-chromatic graphs tok-chromaticr-uniform
hypergraphs. Finally, Brown showed in [7] that, unless P= NP, it is impossible to decid
in polynomial time 2-colorability ofr-uniform hypergraphs for anyr � 3.

However, until recently, there has been no result showing that it is also ha
approximatethe chromatic number ofr-uniform hypergraphs, wherer � 3. For the graph
case (r = 2), Feige and Kilian showed in [11], using the result of Håstad [14], that if
does not have efficient randomized algorithms, then there is no polynomial time algo
for approximating the chromatic number of ann vertex graph within a factor ofn1−ε , for
any fixedε > 0.

In this section we present a construction for reducing the approximate graph co
problem to approximate coloring ofr-uniform hypergraphs, for anyr � 3. Using this
construction and the above mentioned result by Feige and Kilian we will be able to d
hardness results in the hypergraph case. As we learned after having written a con
version of this paper [23], Hofmeister and Lefmann presented in [15] an essen
identical construction.

Let r � 3 be a fixed uniformity number. Suppose we are given a graphG = (V ,E) on
|V | = n � r vertices with chromatic numberχ(G) = k. Define anr-uniform hypergraph
H = (V ,F ) in the following way. The vertex set ofH is identical to that ofG. For
every edgee ∈ E and for every(r − 2)-subsetV0 ⊆ V \ e we include the edgee ∪ V0
in the edge setF of H . If F(H) contains multiple edges, we leave only one copy
each edge. The obtained hypergraphH is r-uniform onn vertices. Now we claim tha
k/(r − 1) � χ(H)� k. Indeed, ak-coloring ofG is also ak-coloring ofH , implying the
upper bound onχ(H). To prove the lower bound, letf :V → {1, . . . , k′} be ak′-coloring
of H . LetG0 be a subgraph ofG, whose vertex set isV and whose edge set is compos
of all these edges ofG that are monochromatic underf . It is easy to see that the degr
of every vertexv ∈ V in G0 is at mostr − 2 (otherwise the union of the edges ofG0
incident withv would form a monochromatic edge inH ). ThusG0 is (r − 1)-colorable.
We infer that the edge setE(G) of G can be partitioned into two subsetsE(G) \ E(G0)

andE(G0) such that the first subset forms ak′-colorable graph, while the second one
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(r − 1)-colorable. ThenG is k′(r − 1)-colorable, as we can label each vertex by a p
whose first coordinate is its color in ak′-coloration of the first subgraph, and the seco
coordinate comes from an(r − 1)-coloration of the second subgraph. ThereforeG and
H as defined above have the same number of vertices, and their chromatic numbe
the same order. Applying now the result of Feige and Kilian [11], we get the follow
theorem.

Theorem 2.1. Let r � 3 be fixed. IfNP ⊂ ZPP, it is impossible to approximate th
chromatic number ofr-uniform hypergraphs onn vertices within a factor ofn1−ε for any
fixedε > 0 in time polynomial inn.

Remark. Several quite recent results [10,12,20,21] show that it is hard to colorr-uniform
k-colorable hypergraphs in few colors, for various values ofk andr. Specific statement
can be found in the corresponding papers.

3. A general approximation algorithm

In this section we present an approximation algorithm for the problem of colorinr-
uniform hypergraphs, for a generalr � 3. Throughout the section the uniformity parame
r is assumed to be fixed.

Let us start with describing briefly the history and state of the art of the correspo
graph problem (r = 2), that is, of the problem of approximate graph coloring.
we have already mentioned in the introduction, this question is relatively well-stu
The first result on approximate graph coloring belongs to Johnson [16], who in
proposed an algorithm with approximation ratio of ordern/ logn, where n denotes
the number of vertices in a graphG. The next step was taken by Wigderson [2
whose algorithm achieves approximation ratioO(n(log logn)2/(logn)2). The main idea o
Wigderson’s algorithm was quite simple: if a graph isk-colorable then the neighborhoo
N(v) of any vertexv ∈ V (G) is (k − 1)-colorable, thus opening a way for recursio
Berger and Rompel [3] further improved Johnson’s result by presenting an algo
whose approximation ratio is better than that of Wigderson’s algorithm by a fact
logn/ log logn. They utilized the fact that ifG is k-colorable then one can find efficiently
subsetS of a largest color class which has size|S| � logk n and neighborhoodN(S) of size
at mostn(1 − 1/k). Repeatedly finding suchS and deleting it and its neighborhood lea
to finding an independent set of size(logk n)

2. Finally, Halldórsson [13] came up wit
an approximation algorithm that uses at mostχ(G)n(log logn)2/(logn)3 colors, currently
best known result. His contribution is based on Ramsey-type arguments for finding a
independent set from his paper with Boppana [6]. Both papers [3,13] proceed by repe
finding a large independent set, coloring it by a fresh color and discharging it—q
common approach in graph coloring algorithms. We will also adopt this strategy. It is
noting here than one cannot hope for a major breakthrough in this algorithmic questi
to the hardness results mentioned in Section 2.

Unfortunately, most of the ideas of the above discussed papers do not seem to
plicable smoothly to the hypergraph case (i.e., whenr � 3). It is not clear how to defin
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Also, bounds on the hypergraph Ramsey numbers are too weak to lead to algorithmic
cations in the spirit of [6,13]. A Ramsey-based approach has been applied by Hofm
and Lefmann in [15] to derive an algorithm with performance ratioO(n/(log(r−1) n)2)

(here log(r) n denotes ther-fold iterated logarithm), which becomes much weaker than
above cited graph algorithms asr grows. However, something from the graph case
still be rescued. Both papers [9,18], dealing with the case of 2-colorable hypergrap
ticed that the main idea behind Wigderson’s algorithm is still usable for the hyper
case. Let us describe now the main instrument of these papers, playing a key
our arguments as well. For a hypergraphH = (V ,E) and a subset of verticesS ⊆ V ,
let N(S) = {v ∈ V : S ∪ {v} ∈E}. The following procedure is used in both papers [9,18

Procedure Reduce(H,S).
Input: A hypergraphH = (V ,E) and a vertex subsetS ⊆ V .
Output: A hypergraphH ′ = (V ,E′).

1. Delete fromE the set of edges{S ∪ {v}: v ∈ N(S)};
2. Add toE an edgeS, denote the resulting hypergraph byH ′.

Proposition 3.1. LetH ′ = Reduce(H,S).

(1) if U is an independent set inH ′, thenU is independent inH ;
(2) If H is k-colorable and the induced subhypergraphH [N(S)] is not(k− 1)-colorable,

thenH ′ is k-colorable.

Proof. The first part of the proposition is obvious. To prove the second part, fixk-
coloringc :V (H) → {1, . . . , k} of H . If all vertices ofS get the same color underc, say,
they are all colored in color 1, then this color is not used in coloringN(S), thus implying
that the hypergraphH [N(S)] is (k − 1)-colorable and contradicting our assumptio
ThereforeS is not monochromatic inc, showing thatc is a properk-coloring ofH ′ as
well. ✷

Note that the above proposition replaces edges ofH by an edge of smaller size
Therefore, in order to apply it we need to widen our initial task and instead of develop
algorithm for coloringr-uniform hypergraphs to present an algorithm for hypergraph
dimensionr. Based on Proposition 3.1, we can use a recursion onk for coloringk-colorable
hypergraphs of dimensionr. Indeed, if for someS the subsetN(S) is relatively large
andH [N(S)] is (k − 1)-colorable, then applying recursion we can find a relatively la
independent subset ofN(S). If H [N(S)] is not (k − 1)-colorable, we can use procedu
Reduce(H,S) in order to reduce the total number of edges. Finally, when the hypergra
relatively sparse, a large independent set can be found based on the following prop

Proposition 3.2. LetH = (V ,E) be a hypergraph of dimensionr � 2 onn vertices without
singletons. If every subsetS ⊂ V of size1 � |S| � r − 1 has a neighborhoodN(S) of size
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|N(S)| � t , thenH contains an independent setU of size|U | � 1
4(n/t)

1/(r−1), which can
be found in time polynomial inn.

Proof. For every 2� i � r, Let Ei be the set of all edges of sizei in H . ThenE =⋃r
i=2Ei . By the assumptions of the proposition we have

|Ei | �
(

n
i−1

)
t(

i
i−1

) � ni−1t .

Choose a random subsetV0 of V by taking eachv ∈ V into V0 independently and with
probabilityp0 � 1/n, where the exact value ofp0 will be chosen later. Define rando
variablesX,Y by lettingX be the number of vertices inV0 and lettingY be the number o
edges spanned byV0. Then

E[X] = np0,

E[Y ] =
r∑

i=2

|Ei |pi
0 �

r∑
i=2

ni−1tpi
0 � (r − 1)nr−1pr

0t .

Now we choosep0 so that

E[X] � 2E[Y ].
For example, we can takep0 = 1

2(n
r−2t)−1/(r−1). Then by linearity of expectation the

exists a setV0, for whichX − Y � 1
4(n/t)

1/(r−1). Fix such a setV0 and for every edgee
spanned byV0 delete fromV0 an arbitrary vertex ofe. We get an independent setU of size
|U | �X − Y � 1

4(n/t)
1/(r−1).

The above described randomized algorithm can be easily derandomized using s
derandomization techniques (see, e.g., [2, Chapter 15]).✷

We denote the algorithm described in Proposition 3.2 byI (H, t). Here are its forma
specifications.

Algorithm I (H, t).
Input: An integert and a hypergraphH = (V ,E) of dimensionr onn vertices, in which

everyS ⊂ V of size 1� |S| � r − 1 satisfies|N(S)| � t .
Output: An independent setU of H of size|U | = 1

4(n/t)
1/(r−1).

Now we are ready to give a formal description of a recursive algorithm for fin
a large independent set ink-colorable hypergraphs of dimensionr. Define two func-
tions:

gk(n) = 1

4
n1/((r−1)(k−1)+1), fk(n) = n1−(r−1)/((r−1)(k−1)+1).

One can easily check thatg andf satisfy

gk−1
(
fk(n)

) = gk(n),
1

4

(
n

fk(n)

)1/(r−1)

= gk(n).
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Algorithm A(H,k).
Input: An integerk � 1 and a hypergraphH = (V ,E) of dimensionr.
Output: A subsetU of V .

1. n= |V (H)|;
2. if k = 1 takeU to be an arbitrary subset ofV of size|U | = gk(n) andreturn(U );
3. if k � 2 then
4. while there exists a subsetS ⊂ V , 1� |S| � r − 1, such that|N(S)| � fk(n)

5. Fix one suchS and fixT ⊆N(S), |T | = fk(n);
6. U =A(H [T ], k − 1);
7. if U is independent inH return(U );
8. else H = Reduce(H,S);
9. endwhile;
10.return(I (H,fk(n)));

We claim that, given ak-colorable hypergraphH as an input, the above present
algorithm finds a large independent set. This follows from the next two propositions.

Proposition 3.3. AlgorithmA(H,k) returns a subset of sizegk(|V (H)|).

Proof. By induction onk. Letn= |V (H)|. If k = 1, then the proposition is obviously tru
as follows from Step 2. IfA returns an outputU at Step 7, thenU is produced at Step
by recursively callingA on a hypergraph onfk(n) vertices, therefore by the inductio
hypothesis the size ofU is gk−1(fk(n)) = gk(n). Finally, if A outputsU at Step 10,
then by the properties of AlgorithmI , the size ofU satisfies:|U | = 1

4(n/fk(n))
1/(r−1) =

gk(n). ✷
Proposition 3.4. If H is k-colorable thenA(H,k) outputs an independent set inH .

Proof. By induction onk. If k = 1 (i.e.,H has empty edge set), then any subset ofV (H)

is independent, thereforeA returns an independent set at Step 2. Let nowk � 2. Consider
first the while-loop Steps 4–9. Note that if in the beginning of the loop execution (St
H is k-colorable, then eitherA returns an independent set at Step 7, or by the induc
hypothesis the subsetT found at Step 5 spans a subhypergraphH [T ] which is not(k− 1)-
colorable. In the latter case, Step 8 produces an updated hypergraphH ′ = Reduce(H, k),
which is, by Proposition 3.1,k-colorable and such that an independent set inH ′ is also
independent inH . Therefore, eitherA returns an independent set of the input hypergr
H at Step 7, orA reaches Step 10 with a hypergraphH ∗, whose family of independent se
is contained in that ofH . Moreover, at Step 10 for all subsetsS of size 1� |S| � r − 1 we
have|N(S)| � fk(n). Then at this stepA returns an independent set as follows from
specifications of AlgorithmI . ✷

AlgorithmA is relatively effective for small values of the chromatic numberk. Similarly
to Wigderson’s paper, whenk is large we will switch to the following algorithm for findin
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an independent set. It is worth noting that the idea of partitioning the vertex set ok-
colorable hypergraphH onn into bins of sizek logk n and performing an exhaustive sear
for an independent set of size logk n in each bin is due to Berger and Rompel [3].

Let

hk(n) = logk n = logn/ logk.

Algorithm B(H,k).
Input: An integerk � 2 and a hypergraphH = (V ,E).
Output: A subsetU of V (H) of size|U | = hk(|V (H)|).

1. n= |V (H)|; h = hk(n);
2. l = �n/hk�;
3. PartitionV (H) into setsV1, . . . , Vl where|V | = · · · = |Vl−1| = hk andhk � |Vl| <

2hk;
4. for i = 1 to l

5. for each subsetU of Vi of size|U | = h

6. if U is independent inH then return(U);
7. return an arbitrary subset ofV (H) of sizeh;

Proposition 3.5. For a k-colorable hypergraphH on n vertices AlgorithmB outputs an
independent set of sizehk(n), in time polynomial inn.

Proof. If H is k-colorable it contains an independent setI of size |I | � n/k. Then for
some 1� i � k we have|I ∩ Vi | � |I |/l � n/kl � hk(n). Checking all subsets ofVi of
sizehk(n) will reveal an independent set of sizehk(n). The number of subsets of sizehk(n)
to be checked by the algorithm does not exceedl

(2hk(n)k
hk(n)

) = (O(1)k)hk(n) = nO(1). ✷
As we have already mentioned above, an algorithm for finding independent sets

easily converted to an algorithm for coloring. The idea is very simple—as long as
are some uncolored vertices (we denote their union byW ), call an algorithm for finding an
independent set in the spanned subhypergraphH [W ], color its output by a fresh color an
updateW . As we have two different algorithmsA andB for finding independent sets, w
present two coloring algorithmsC1 andC2, usingA andB, respectively, as subroutine
Since the only difference between these two algorithms is in callingA or B, we presen
them jointly.

Algorithms C1(H,k) and C2(H,k).
Input: An integerk � 2 and a hypergraphH = (V ,E) of dimensionr.
Output: A coloring ofH or a message “H is notk-colorable.”

1. i = 1;W = V ;
2. while W = ∅
3. for C1(H, k): U =A(H [W ], k); for C2(H, k): U = B(H [W ], k);
4. if U is not independent inH output (“H is notk-colorable”) andhalt;
5. colorU by colori; i = i + 1;
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6. W =W \U ;
7. endwhile;
8. return a coloring ofH ;

The correctness of both algorithmsC1 andC2 follows immediately from that ofA
andB, respectively. As for the performance guarantee, it can be derived from the follo
easy proposition, proven, for example, implicitly in the paper of Halldórsson [13].

Proposition 3.6. An iterative application of an algorithm that guarantees finding
independent set of sizef (n) = O(n1−ε) in a hypergraphH on n vertices for some fixe
ε > 0, produces a coloring ofH with O(n/f (n)) colors.

Corollary 3.7. (1) AlgorithmC1(H, k) colors ak-colorable hypergraphH of dimensionr
onn vertices in at most2n/gk(n) = 8n1−1/((r−1)(k−1)+1) colors;

(2) AlgorithmC2(H, k) colors ak-colorable hypergraphH on n vertices in at mos
2n/hk(n) = 2n logk/ logn colors.

Proof. Follows immediately from Propositions 3.3–3.6.✷
Now, given ak-colorable hypergraphH of dimensionr, we can run both algorithmsC1

andC2 and then choose the best result from their outputs. This is given by AlgorithD

below.

Algorithm D(H,k).
Input: An integerk � 2 and a hypergraphH = (V ,E) of dimensionr.
Output: A coloring ofH or a message “H is notk-colorable.”

1. ColorH by AlgorithmC1(H, k);
2. ColorH by AlgorithmC2(H, k);
3. if C1 or C2 output “H is notk-colorable,”output(“H is notk-colorable”);
4. else return a coloring which uses fewer colors;

Until now we assumed that the chromatic number of the input hypergraphH is given
in advance. Though this is not the case for general approximation algorithms, w
easily overcome this problem, for example, by trying all possible values ofk from 1 to
n = |V (H)| and choosing a positive output ofD(H,k) which uses a minimal numbe
of colors. Denote this algorithm byE(H). In particular, fork = χ(H), Algorithm C1
produces a coloring with at most 8n1−1/((r−1)(k−1)+1) colors, while AlgorithmC2 gives a
coloring with at most 2n logk/ logn colors. Hence, the approximation ratio of AlgorithmE
is at most

min

{
8n1−1/((r−1)(k−1)+1)/k,

2n logk

k logn

}
.

The first argument of the above min function is an increasing function ofk, while the
second one is decreasing. Fork = (1/(r − 1)) logn/ log logn both expressions have ord
O(n(log logn)2/(logn)2). Therefore we get the following result.
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Notes
Theorem 3.8. For every fixedr � 3, coloring of hypergraphs of dimensionr onn vertices
is O(n(log logn)2/(logn)2)) approximable.

This bound matches the bound of Wigderson [26] for graph coloring.

4. Concluding remarks

We have discussed the problem of approximate coloring ofr-uniform hypergraphs. Ou
main goal was to advance the state of knowledge in this problem to that of the
more studied special case of graph coloring (r = 2). Using a simple construction, we ha
shown that for everyr � 3 the problem of approximate coloring ofr-uniform hypergraphs
is at least as hard as the graph coloring problem. This implies in particular that u
NP⊂ ZPP, it is impossible to approximate the chromatic number ofr uniform hypergraphs
on n vertices within a factor ofn1−ε in polynomial time. We have also presented
general approximation algorithm with approximation ratioO(n(log logn)2/(logn)2)) for
r-uniform hypergraphs onn vertices.

Despite some progress achieved in this paper, many problems remain open an
to be quite interesting. One of them is to develop a general approximation algo
aiming to match the approximation ratioO(n(log logn)2/(logn)3) of the best known grap
coloring algorithm due to Halldórsson [13]. Another interesting problem is to come up
a more involved algorithm for the case ofr-uniform 2-colorable hypergraphs forr � 4.
Also, new ideas for the case of 3-uniform 2-colorable hypergraphs may lead to a f
improvement in this case.
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