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Abstract

We consider an algorithmic problem of coloringuniform hypergraphs. The problem of finding
the exact value of the chromatic number of a hypergraph is known to be NP-hard, so we discuss
approximate solutions to it. Using a simple construction and known results on hardness of graph
coloring, we show that for any > 3 it is impossible to approximate in polynomial time the
chromatic number of-uniform hypergraphs on vertices within a facton1—¢ for anye > 0, unless
NP C ZPP. On the positive side, improving a result of Hofmeister and Lefmann, we present an
approximation algorithm for coloring-uniform hypergraphs on vertices, whose performance ratio
is O (n(loglogn)?/(logn)?).
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

A hypergraphH is an ordered paif{ = (V, E), where V is a finite nonempty set (the
set ofverticed and E is a collection of distinct nonempty subsetslofthe set ofedges.
H hasdimensiorr if all edges have at most vertices. If all edges have size exactly
H is calledr-uniform Thus, a 2-uniform hypergraph is just a graph. A 8et V(H)
is calledindependenif U spans no edges d@f. The maximal size of an independent set
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in H is called theindependence numbef H and is denoted bw(H). A k-coloring of
H is a mapping:: V(H) — {1, ..., k} such that no edge aff (besides singletons) has
all vertices of the same color. Equivalentlykaoloring of H is a partition of the vertex
setV(H) into k independent sets. Ttearomatic numbeof H, denoted byy (H) is the
minimal k, for which H admits ak-coloring.

In this paper we consider an algorithmic problem of colontagniform hypergraphs,
for given and fixed value of > 2. The special case = 2 (i.e., the case of graphs) is
relatively well studied and many results have been obtained in both positive (that is, good
approximation algorithms, see, e.g., [3-5,13,16,17,26]) and negative (that is, by showing
the hardness of approximating the chromatic number under some natural complexity
assumptions, see, e.g., [11,19]) directions. We will briefly survey these developments in
the subsequent sections of the paper. However, much less is known about the general case.
Lovasz [24] showed that it is NP-hard to determine whether a 3-uniform hypergraph is
2-colorable. Additional results on complexity of hypergraph coloring were obtained in
[7,8,25]. These hardness results give rise to attempts of developing algorithms for
approximateuniform hypergraph coloring, aiming to use a small but possibly nonoptimal
number of colors. The first nontrivial case of approximately coloring 2-colorable
hypergraphs has been considered in papers of Chen and Frieze [9] and of Kelsen
et al. ([18], a journal version appeared in [1]). Both papers arrived independently to
practically identical results. They presented an algorithm for coloring a 2-colorable
uniform hypergraph inO(n1=1/") colors, using an idea closely related to the basic
idea of Wigderson’s coloring algorithm [26]. Another result of the above mentioned
two papers is an algorithm for coloring 3-uniform 2-colorable hypergraph@ (@?/9)
colors. The latter algorithm exploits the semidefinite programming approach, much in the
spirit of the Karger—Motwani—Sudan coloring algorithm [17]. Not much is known about
general approximate coloring algorithms fowuniform hypergraphs (that is, when the
chromatic number of a hypergraph is not given in advance). Recently Hofmeister and
Lefmann [15] presented an approximation algorithm for this problem with performance
ratio O (n/(log” =Y n)2), where lod” n denotes the-fold iterated logarithm.

This paper is aimed at trying to fill a gap between the special case of graphg)(
and the case of a general We present results in both negative and positive directions.
In Section 2 we describe a construction which enables to derive immediately results on
hardness of approximating the chromatic number-ahiform hypergraphs for any> 3
from the corresponding graph results. Thus we get that unless KPP, for any fixed
r > 3, itis impossible to approximate the chromatic number-ahiform hypergraphs on
n vertices in polynomial time within a factor af—¢, for anye > 0. It should be noted that
Hofmeister and Lefmann obtained independently the same hardness result in [15].

In Section 3 we present an approximation algorithm for coloriugiform hypergraphs
on n vertices, whose performance guarante®is (loglogn)?/(logn)?), thus matching
the approximation ratio of Wigderson'’s algorithm [26]. This algorithm is quite similar in
a spirit to the algorithm of Wigderson, though technically somewhat more complicated.
Final Section 4 is devoted to concluding remarks.

All logarithms are natural unless written explicitly otherwise.
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Remark. In the conference version of this paper [23] we also presented an algorithm
for coloring 3-uniform 2-colorable hypergraphs anvertices in O (n4%) colors, thus
improving previous results of Chen and Frieze and of Kelsen, Mahajan and Ramesh. We
omit this algorithm in the current journal version, since the rather slow refereeing process
allowed us enough time to improve this result. Indeed, together with Nathaniel in [22]
we obtained an algorithm for coloring 3-uniform 2-colorable hypergraphs\eertices in

O (n*/®) colors, and we refer the interested reader to this new paper.

2. Hardness of approximation

Several results on hardness of calculating exactly the chromatic numbarriform
hypergraphs have been known previously. Lovasz [24] showed that it is NP-complete
to decide whether a given 3-uniform hypergraphis 2-colorable. Phelps and Rédl
proved in [25] that it is NP-complete to decid&ecolorability of r-uniform hypergraphs
for all k,r > 3, even when restricted to linear hypergraphs. Brown and Corneil [8]
presented a polynomial transformation frérchromatic graphs té-chromatic--uniform
hypergraphs. Finally, Brown showed in [7] that, unless RP, it is impossible to decide
in polynomial time 2-colorability of--uniform hypergraphs for any> 3.

However, until recently, there has been no result showing that it is also hard to
approximatehe chromatic number ofuniform hypergraphs, where> 3. For the graph
case f{ = 2), Feige and Kilian showed in [11], using the result of Hastad [14], that if NP
does not have efficient randomized algorithms, then there is no polynomial time algorithm
for approximating the chromatic number of avertex graph within a factor of'—¢, for
any fixede > 0.

In this section we present a construction for reducing the approximate graph coloring
problem to approximate coloring efuniform hypergraphs, for any > 3. Using this
construction and the above mentioned result by Feige and Kilian we will be able to deduce
hardness results in the hypergraph case. As we learned after having written a conference
version of this paper [23], Hofmeister and Lefmann presented in [15] an essentially
identical construction.

Letr > 3 be a fixed uniformity number. Suppose we are given a gtagh(V, E) on
|V| =n = r vertices with chromatic numbey(G) = k. Define anr-uniform hypergraph
H = (V, F) in the following way. The vertex set off is identical to that ofG. For
every edger € E and for every(r — 2)-subsetVy C V \ e we include the edge U Vp
in the edge sef of H. If F(H) contains multiple edges, we leave only one copy of
each edge. The obtained hypergrdhs r-uniform onn vertices. Now we claim that
k/(r —1) < x(H) < k. Indeed, &-coloring of G is also ak-coloring of H, implying the
upper bound ory (H). To prove the lower bound, let: V — {1, ..., k’} be ak’-coloring
of H. Let Go be a subgraph ofr, whose vertex set i% and whose edge set is composed
of all these edges afi that are monochromatic undgr. It is easy to see that the degree
of every vertexv € V in Gg is at mostr — 2 (otherwise the union of the edges Gp
incident withv would form a monochromatic edge #). ThusGg is (r — 1)-colorable.

We infer that the edge sé(G) of G can be partitioned into two subseigG) \ E(Go)
and E(Go) such that the first subset formscacolorable graph, while the second one is
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(r — 1)-colorable. ThenG is k’(r — 1)-colorable, as we can label each vertex by a pair
whose first coordinate is its color inka-coloration of the first subgraph, and the second
coordinate comes from afr — 1)-coloration of the second subgraph. TherefGreand

H as defined above have the same number of vertices, and their chromatic numbers have
the same order. Applying now the result of Feige and Kilian [11], we get the following
theorem.

Theorem 2.1. Let r > 3 be fixed. IfNP ¢ ZPP, it is impossible to approximate the
chromatic number of-uniform hypergraphs on vertices within a factor oh—¢ for any
fixede > 0 in time polynomial im.

Remark. Several quite recent results [10,12,20,21] show that it is hard to ealoiform
k-colorable hypergraphs in few colors, for various valueg ahdr. Specific statements
can be found in the corresponding papers.

3. A general approximation algorithm

In this section we present an approximation algorithm for the problem of colefing
uniform hypergraphs, for a general 3. Throughout the section the uniformity parameter
r is assumed to be fixed.

Let us start with describing briefly the history and state of the art of the corresponding
graph problem { = 2), that is, of the problem of approximate graph coloring. As
we have already mentioned in the introduction, this question is relatively well-studied.
The first result on approximate graph coloring belongs to Johnson [16], who in 1974
proposed an algorithm with approximation ratio of ordeflogn, wheren denotes
the number of vertices in a grapfi. The next step was taken by Wigderson [26],
whose algorithm achieves approximation rabi: (loglogn)2/(logn)?). The main idea of
Wigderson’s algorithm was quite simple: if a graptkigolorable then the neighborhood
N(v) of any vertexv € V(G) is (k — 1)-colorable, thus opening a way for recursion.
Berger and Rompel [3] further improved Johnson’s result by presenting an algorithm
whose approximation ratio is better than that of Wigderson’s algorithm by a factor of
logn/loglogn. They utilized the fact that if; is k-colorable then one can find efficiently a
subsetS of a largest color class which has sj#& > log, n and neighborhood/ (S) of size
at mostn(1 — 1/k). Repeatedly finding suck and deleting it and its neighborhood leads
to finding an independent set of sigeg, 7). Finally, Halldorsson [13] came up with
an approximation algorithm that uses at mpét)n (loglogn)?/(logn)® colors, currently
best known result. His contribution is based on Ramsey-type arguments for finding a large
independent set from his paper with Boppana [6]. Both papers [3,13] proceed by repeatedly
finding a large independent set, coloring it by a fresh color and discharging it—quite a
common approach in graph coloring algorithms. We will also adopt this strategy. It is worth
noting here than one cannot hope for a major breakthrough in this algorithmic question due
to the hardness results mentioned in Section 2.

Unfortunately, most of the ideas of the above discussed papers do not seem to be ap-
plicable smoothly to the hypergraph case (i.e., whén3). It is not clear how to define
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a notion of the neighborhood of a subset in order to apply the Berger—-Rompel approach.
Also, bounds on the hypergraph Ramsey numbers are too weak to lead to algorithmic appli-
cations in the spirit of [6,13]. A Ramsey-based approach has been applied by Hofmeister
and Lefmann in [15] to derive an algorithm with performance ratio:/(log" > n)2)

(here log” n denotes the-fold iterated logarithm), which becomes much weaker than the
above cited graph algorithms asgrows. However, something from the graph case can
still be rescued. Both papers [9,18], dealing with the case of 2-colorable hypergraphs, no-
ticed that the main idea behind Wigderson’s algorithm is still usable for the hypergraph
case. Let us describe now the main instrument of these papers, playing a key role in
our arguments as well. For a hypergrafih= (V, E) and a subset of vertices C V,

let N(S) ={v e V: SU{v} € E}. The following procedure is used in both papers [9,18].

Procedure Reduce(H, S).
Input: A hypergraphef = (V, E) and a vertex subs&tC V.
Output: A hypergraphel’ = (V, E’).

1. Delete fromkE the set of edgegS U {v}: v e N(S)};
2. Addto E an edgeS, denote the resulting hypergraph Hy.

Proposition 3.1. Let H' = ReducéH, S).

(1) if U is anindependent seti’, thenU is independent i ;
(2) If H isk-colorable and the induced subhypergrafiiN (S)] is not(k — 1)-colorable,
thenH' is k-colorable.

Proof. The first part of the proposition is obvious. To prove the second part, fix a
coloringc:V(H) — {1,...,k} of H. If all vertices ofS get the same color under say,
they are all colored in color 1, then this color is not used in colon(g), thus implying
that the hypergraptH[N(S)] is (k — 1)-colorable and contradicting our assumption.
ThereforeS is not monochromatic i, showing thatc is a properk-coloring of H' as
well. O

Note that the above proposition replaces edgedioby an edge of smaller size.
Therefore, in order to apply it we need to widen our initial task and instead of developing an
algorithm for coloringr-uniform hypergraphs to present an algorithm for hypergraphs of
dimensiorr. Based on Proposition 3.1, we can use a recursidnfoncoloringk-colorable
hypergraphs of dimension Indeed, if for someS the subsetV(S) is relatively large
and H[N(S)] is (k — 1)-colorable, then applying recursion we can find a relatively large
independent subset af (S). If H[N(S)] is not (k — 1)-colorable, we can use procedure
ReducéH, S) in order to reduce the total number of edges. Finally, when the hypergraphis
relatively sparse, a large independent set can be found based on the following proposition.

Proposition 3.2. Let H = (V, E) be a hypergraph of dimensiern> 2 onn vertices without
singletons. If every subsstc V of sizel < |S| < r — 1 has a neighborhood/ (S) of size
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IN(S)| < t, thenH contains an independent s&tof size|U| > F(n/1)Y/ =D, which can
be found in time polynomial in.

Proof. For every 2<i < r, Let E; be the set of all edges of siZzein H. ThenE =
U:_, Ei. By the assumptions of the proposition we have

(")t
(1)
Choose a random subsg of V by taking eachv € V into Vg independently and with

probability po > 1/n, where the exact value qfg will be chosen later. Define random

variablesX, Y by letting X be the number of vertices iviy and lettingY be the number of
edges spanned biyy. Then

|E;| < <n'7h.

E[X]=npo,

,
E[Y]1=)_|Eilpy< Y _n'"ltph < (r — Dn" *ppr.
i=2 i=2

Now we chooseyg so that
E[X]>2E[Y].

For example, we can takey = 3 (n"~21)~Y 1. Then by linearity of expectation there
exists a sevp, for whichX — ¥ > (/1) =Y. Fix such a se¥, and for every edge
spanned by, delete fromVy an arbitrary vertex oé. We get an independent gétof size
UI=X—Y > %n/nY0-D,

The above described randomized algorithm can be easily derandomized using standard
derandomization techniques (see, e.g., [2, Chapter 15]).

We denote the algorithm described in Proposition 3.2 b§, ). Here are its formal
specifications.

Algorithm I (H, t).

Input: An integer: and a hypergrap® = (V, E) of dimension- onn vertices, in which
everyS C V of size 1< |S| < r — 1 satisfiegN(S)| <t.

Output: An independent set’ of H of size|U| = 3 (n/H)Y =D,

Now we are ready to give a formal description of a recursive algorithm for finding
a large independent set incolorable hypergraphs of dimensien Define two func-
tions:

() = SpME=DE=D+D  p () LD/ =D G=D+D
4 ’ '

One can easily check thatand f satisfy

1/ n \Yo-D
gk-1(fi(n)) = gk (n), Z(fk (n)> = gk(n).
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Algorithm A(H, k).
Input: Anintegerk > 1 and a hypergrapH = (V, E) of dimensiorv.
Output: A subsetU of V.

lLn=|V(H)I

2.if k =1 takeU to be an arbitrary subset &f of size|U| = gx(n) andreturn(U);
3.if k > 2then

4. whilethere exists a subssStc V, 1< |S| <r — 1, such thatN(S)| > fir(n)

5 Fix one sucts and fixT C N(S), |T| = fr(n);

6. U=AHI[T], k- 1);

7. if U is independent it return(U);

8 else H = ReducéH, S);

9. endwhile

10.return( (H, fr(n)));

We claim that, given &-colorable hypergrapti as an input, the above presented
algorithm finds a large independent set. This follows from the next two propositions.

Proposition 3.3. Algorithm A(H, k) returns a subset of sizg. (|V (H)|).

Proof. By induction onk. Letn = |V (H)|. If k = 1, then the proposition is obviously true
as follows from Step 2. IA returns an outpu/ at Step 7, the is produced at Step 6
by recursively callingA on a hypergraph orf;(n) vertices, therefore by the induction
hypothesis the size of/ is gr—1(fx(n)) = gk (n). Finally, if A outputsU at Step 10,
then by the properties of Algorithmh, the size ofU satisfies|U| = %(n/fk () V=D =
gk(n). O

Proposition 3.4. If H is k-colorable thenA (H, k) outputs an independent seth.

Proof. By induction onk. If k =1 (i.e., H has empty edge set), then any subselt aff )

is independent, thereforé returns an independent set at Step 2. Let kow?2. Consider
first the while-loop Steps 4-9. Note that if in the beginning of the loop execution (Step 5)
H is k-colorable, then eitheA returns an independent set at Step 7, or by the induction
hypothesis the subs&tfound at Step 5 spans a subhypergrafif'] which is not(k — 1)-
colorable. In the latter case, Step 8 produces an updated hypefaplReducéH, k),
which is, by Proposition 3.1-colorable and such that an independent seffins also
independent i . Therefore, eithen returns an independent set of the input hypergraph
H at Step 7, oA reaches Step 10 with a hypergrafgh, whose family of independent sets

is contained in that off . Moreover, at Step 10 for all subseitof size 1< |S| <r —1we
have|N(S)| < fr(n). Then at this stept returns an independent set as follows from the
specifications of Algorithn1. O

Algorithm A is relatively effective for small values of the chromatic numheSimilarly
to Wigderson’s paper, whéhnis large we will switch to the following algorithm for finding
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an independent set. It is worth noting that the idea of partitioning the vertex set-of a
colorable hypergrapH onn into bins of size log, n and performing an exhaustive search
for an independent set of size jogin each bin is due to Berger and Rompel [3].

Let

hi(n) =log, n =logn/logk.

Algorithm B(H, k).
Input: Anintegerk > 2 and a hypergrapH = (V, E).
Output: A subsetl of V(H) of size|U| = hi(|V(H)|).

1 n=|V(H)|; h = hr(n);

= |n/hk];

Partition V(H) into setsV, ..., V; where|V| = ... =|V,_1| = hk andhk < |V}| <
2hk;

4, fori=1tol

5. for each subsel/ of V; of size|U| =h

6

7

wnN

if U is independentirH then return(U);
. return an arbitrary subset of (H) of sizeh;

Proposition 3.5. For a k-colorable hypergraphH on n vertices AlgorithmB outputs an
independent set of sizg (n), in time polynomial im.

Proof. If H is k-colorable it contains an independent $edf size|I| > n/k. Then for
some 1< i < k we have|l NV;| > |I|/1 > n/kl > hig(n). Checking all subsets df; of
sizehy (n) will reveal an independent set of sizg(n). The number of subsets of sizg(n)
to be checked by the algorithm does not exckf AEZ;") = (0 (k)™ =00 g

As we have already mentioned above, an algorithm for finding independent sets can be
easily converted to an algorithm for coloring. The idea is very simple—as long as there
are some uncolored vertices (we denote their unioWhycall an algorithm for finding an
independent set in the spanned subhypergraphi], color its output by a fresh color and
updateW. As we have two different algorithmé and B for finding independent sets, we
present two coloring algorithmS; and C», using A and B, respectively, as subroutines.
Since the only difference between these two algorithms is in calliray B, we present
them jointly.

Algorithms C1(H, k) and C2(H, k).
Input: Anintegerk > 2 and a hypergrapH = (V, E) of dimensiorv.
Output: A coloring of H or a messageH is notk-colorable.”

1L.i=1L,w=V;

2. whileW #£¢

3. for C1(H,k): U = A(H[W1,k); for Co(H,k): U= B(H[W],k);

4, if U is notindependent i/ output (“ H is notk-colorable”) anchalt;
5 colorU by colori; i =i +1;
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6. W=W\U,
7. endwhile;
8. return a coloring ofH;

The correctness of both algorithndg and C» follows immediately from that ofA
andB, respectively. As for the performance guarantee, it can be derived from the following
easy proposition, proven, for example, implicitly in the paper of Halldérsson [13].

Proposition 3.6. An iterative application of an algorithm that guarantees finding an
independent set of siz&(n) = O(n'1~¢) in a hypergraphH onn vertices for some fixed
€ > 0, produces a coloring off with O (n/f (n)) colors.

Corollary 3.7. (1) Algorithm C1(H, k) colors ak-colorable hypergraph of dimension
onn vertices in at mos2n /gy (n) = 8p1~ Y/ (r=D&=D+D ¢olors

(2) Algorithm C2(H, k) colors ak-colorable hypergraphH on n vertices in at most
2n/hy(n) = 2nlogk/logn colors.

Proof. Follows immediately from Propositions 3.3-3.63

Now, given ak-colorable hypergrapH of dimensiorr, we can run both algorithms;
and C2 and then choose the best result from their outputs. This is given by Algo#ithm
below.

Algorithm D(H, k).
Input: Anintegerk > 2 and a hypergrapH = (V, E) of dimensiorv.
Output: A coloring of H or a messageH is notk-colorable.”

1. Color H by Algorithm C1(H, k);

2. Color H by Algorithm C2(H, k);

3. if C1 or C2 output “H is notk-colorable,"output(* H is notk-colorable™);
4. elsereturn a coloring which uses fewer colors;

Until now we assumed that the chromatic number of the input hypergiajshgiven
in advance. Though this is not the case for general approximation algorithms, we can
easily overcome this problem, for example, by trying all possible valugsfodm 1 to
n = |V(H)| and choosing a positive output @i(H, k) which uses a minimal number
of colors. Denote this algorithm b (H). In particular, fork = x(H), Algorithm C;
produces a coloring with at most 81/ (" =D&=D+D ¢olors, while AlgorithmC, gives a
coloring with at most 2 logk/ logn colors. Hence, the approximation ratio of Algorithin
is at most

min] g1~/ -DG-1+) 21100k ]
" klogn

The first argument of the above min function is an increasing functiok, efhile the
second one is decreasing. Fkoe (1/(r — 1)) logn/loglogn both expressions have order
O (n(loglogn)?/(logn)?). Therefore we get the following result.
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Theorem 3.8. For every fixed > 3, coloring of hypergraphs of dimensieronn vertices
is O (n(loglogn)2/(logn)?)) approximable.

This bound matches the bound of Wigderson [26] for graph coloring.

4. Concluding remarks

We have discussed the problem of approximate coloringuifiform hypergraphs. Our
main goal was to advance the state of knowledge in this problem to that of the much
more studied special case of graph coloring=(2). Using a simple construction, we have
shown that for every > 3 the problem of approximate coloring ofuniform hypergraphs
is at least as hard as the graph coloring problem. This implies in particular that unless
NP C ZPP, itis impossible to approximate the chromatic numbenaofiform hypergraphs
on n vertices within a factor ofi!=¢ in polynomial time. We have also presented a
general approximation algorithm with approximation rafion (log logn)?/(logn)?)) for
r-uniform hypergraphs on vertices.

Despite some progress achieved in this paper, many problems remain open and seem
to be quite interesting. One of them is to develop a general approximation algorithm,
aiming to match the approximation ratitn (log logn)?/(logn)?) of the best known graph
coloring algorithm due to Halldorsson [13]. Another interesting problem is to come up with
a more involved algorithm for the case ofuniform 2-colorable hypergraphs fer> 4.

Also, new ideas for the case of 3-uniform 2-colorable hypergraphs may lead to a further
improvement in this case.
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