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1. Introduction

A Hamilton cycle in a graph or a directed graph is a cycle passing through every 
vertex of the graph exactly once, and a graph is Hamiltonian if it contains a Hamilton 
cycle. Hamiltonicity is one of the most central notions in graph theory, and has been 
intensively studied by numerous researchers. Since the problem of determining Hamil-
tonicity of a graph is NP-complete it is important to find general sufficient conditions 
for Hamiltonicity and in the last 60 years many interesting results were obtained in this 
direction. Once Hamiltonicity is established it is very natural to strengthen such result 
by showing that a graph in question has many distinct or edge-disjoint Hamilton cycles.

In this paper we present a general approach for counting and packing Hamilton cycles 
in dense graphs and oriented graphs. This approach is based on the standard estimates 
for the permanent of a matrix (the famous Minc and Van der Waerden conjectures, es-
tablished by Brégman [4], and by Egorychev [10] and by Falikman [11], respectively). 
In a nutshell, we use these permanent estimates to show that an r-factor in a given 
graph or digraph G on n vertices, where r is linear in n, contains many (edge-disjoint) 
2-factors in the undirected case or 1-factors in the directed case, whose number of cycles 
is relatively small (much smaller than linear); then these factors are converted into many 
(edge-disjoint) Hamilton cycles using rotation–extension type techniques. Strictly speak-
ing, the permanent-based approach to Hamiltonicity problems is not exactly new and 
has been used for the first time in [1] to bound the number of Hamilton paths in tourna-
ments and in [13] to pack Hamilton cycles in pseudo-random graphs (see also [14,19–21]). 
However, these prior papers worked in the setting of random or pseudo-random graphs, 
while the present contribution appears to be the first one where the permanent-based 
approach is applied in the general, extremal graph theoretic setting.

We employ our method to prove several new extremal results and to derive some 
known results in a conceptually different and easier way as well.

One of the first and probably most celebrated sufficient conditions for Hamiltonicity 
was established by Dirac [9] in 1952, who proved that every graph on n vertices, n ≥ 3, 
with minimum degree at least n/2 is Hamiltonian. The complete bipartite graph Km,m+1
shows that this theorem is best possible, i.e., the minimum degree condition cannot be 
improved. Later, Nash-Williams [27] proved that any Dirac graph (that is, a graph G on 
n vertices with minimum degree δ(G) ≥ n/2) has at least 5

224n edge-disjoint Hamilton 
cycles. He also asked [26–28] to improve this estimate. Clearly, �(n + 1)/4� is a general 
upper bound on the number of edge-disjoint Hamilton cycles in a Dirac graph obtained 
by considering an n/2 regular graph, and originally Nash-Williams [26] believed that this 
is tight.

Babai (see also [26]) found a counterexample to this conjecture. Extending his ideas 
further, Nash-Williams gave an example of a graph on n = 4k vertices with minimum 
degree 2k and with at most �(n + 4)/8� edge-disjoint Hamilton cycles. He conjectured 
that this example is tight, i.e., any Dirac graph contains at least �(n +4)/8� edge-disjoint 
Hamilton cycles. Moreover, Nash-Williams pointed out that the example depends heavily 
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on the graph being not regular. He thus also proposed the following conjecture which 
has become known as the “Nash-Williams Conjecture”:

Conjecture 1.1. Every d-regular Dirac graph contains �d/2� edge-disjoint Hamilton cy-
cles.

Recently, this conjecture was settled asymptotically by Christofides, Kühn and Os-
thus [5], who proved that any d-regular graph G on n vertices with d ≥ (1/2 + ε)n, 
contains at least (1 − ε)d/2 edge-disjoint Hamilton cycles. For large graphs, Kühn and 
Osthus [24] further improved this to �d/2� edge-disjoint Hamilton cycles. Even more 
recently, after the first version of the present paper has been submitted, Csaba, Kühn, 
Lo, Osthus and Treglown [6] proved the exact version of the above conjecture for all 
large enough n.

For the non-regular case, Kühn, Lapinskas and Osthus [22] proved that if δ(G) ≥
(1/2 + ε)n, then G contains at least regeven(n, δ(G))/2 edge-disjoint Hamilton cycles 
where regeven(n, δ) is the largest even integer r such that every graph G on n vertices with 
minimum degree δ(G) = δ must contain an r-regular spanning subgraph (an r-factor). 
As for a concrete G, the maximal even degree r of an r-factor of G, which we denote 
by regeven(G), can be much larger than regeven(n, δ). Therefore, it is natural to look for 
bounds in terms of regeven(G). In [24], Kühn and Osthus showed that any graph G with 
δ(G) ≥ (2 −

√
2 + ε)n contains regeven(G)/2 edge-disjoint Hamilton cycles, and in [22], 

Kühn, Lapinskas and Osthus conjectured the following tight result.

Conjecture 1.2. Suppose G is a Dirac graph. Then G contains at least regeven(G)/2
edge-disjoint Hamilton cycles.

Answering an open problem from [22], in this paper we prove an approximate asymp-
totic version of this conjecture.

Theorem 1.3. For every ε > 0 and a sufficiently large integer n the following holds. Every 
graph G on n vertices and with δ(G) ≥ (1/2 + ε)n contains at least (1 − ε)regeven(G)/2
edge-disjoint Hamilton cycles.

Given a graph G, let h(G) denote the number of distinct Hamilton cycles in G. 
Strengthening Dirac’s theorem Sárközy, Selkow and Szemerédi [31] proved that every 
Dirac graph G contains not only one but at least cnn! Hamilton cycles for some small 
positive constant c. They also conjectured that c can be improved to 1/2 − o(1). This 
has later been proven by Cuckler and Kahn [8]. In fact, Cuckler and Kahn proved a 
stronger result: every Dirac graph G on n vertices with minimum degree δ(G) has h(G) ≥(

δ(G)
e

)n

(1 − o(1))n. The random graph G(n, p) with p > 1/2 shows that this estimate is 
sharp (up to the (1 −o(1))n factor). Indeed in this case with high probability δ(G(n, p)) =
pn + o(n) and the expected number of Hamilton cycles is pn(n − 1)! < (pn/e)n.
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To illustrate our techniques we prove the following proposition which gives a lower 
bound on the number of Hamilton cycles in a dense graph G in terms of reg(G), where 
reg(G) is the maximal r for which G contains an r-factor. Although this bound is asymp-
totically tight for nearly regular graphs, it is weaker than the result of Cuckler and Kahn 
in general. On the other hand, since every Dirac graph contains an r-factor with r about 
n/4 (see [17]), our bound implies the result of Sárközy, Selkow and Szemerédi mentioned 
above.

Proposition 1.4. Let G be a graph on n vertices with minimum degree δ(G) ≥ n/2. Then 

the number of Hamilton cycles in G is at least 
(

reg(G)
e

)n

(1 − o(1))n.

Proposition 1.4 implies that, given a dense regular graph G, the number of Hamilton 
cycles in G is asymptotically exactly (in exponential terms) what we expect in a random 
graph with the same edge density.

Corollary 1.5. Let c ≥ 1/2 and let G be a graph on n vertices which is cn-regular. Then

h(G) =
(cn

e

)n

(1 + o(1))n.

Using a technical lemma from [5], in Section 2 we show that given an almost regular 
graph G on n vertices with δ(G) ≥ n/2 + εn, G contains an r-factor with r very close 
to δ(G). Therefore, we conclude that if the minimum degree of G is at least n/2 + εn, 
then condition (ii) in Corollary 1.5 can be relaxed to the requirement that G is “almost 
regular”. Before stating it formally, we introduce the following notation: whenever we 
want to write that x lies in the interval between a − b and a + b, we simply write 
x ∈ (a ± b).

Corollary 1.6. For every c > 1/2 there exists ε > 0 such that for large enough integer n
the following holds. Suppose that:

(i) G is a graph on n vertices, and
(ii) d(v) ∈ (c ± ε)n for every v ∈ V .

Then h(G) ∈
(

(c±ε′)n
e

)n

, where ε′(ε) = ε′ is a specific function of ε tending to 0 with ε.

An oriented graph G is a graph obtained by orienting the edges of a simple graph. 
That is, between every unordered pair of vertices {x, y} ⊆ V (G) there exists at most 
one of the (oriented) edges xy or yx. Hamiltonicity problems in oriented graphs are 
usually much more challenging. Given an oriented graph G, let δ+(G) and δ−(G) denote 
the minimum outdegree and indegree of the vertices in G, respectively. We also use the 
notation d±(v) ∈ (a ±b) for the statement that both d+(v) and d−(v) lie between a −b to 
a + b. In addition, we set δ±(G) = min{δ+(G), δ−(G)} and refer to it as the semi-degree
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of G. In the late 70’s Thomassen [34] raised the natural question of determining the 
minimum semi-degree that ensures the existence of a Hamilton cycle in an oriented 
graph G. Häggkvist [15] found a construction which gives a lower bound of 3n−4

8 − 1. 
The problem was resolved only recently by Keevash, Kühn and Osthus [18], who proved 
that every oriented graph G on n vertices with δ±(G) ≥ 3n−4

8 contains a Hamilton 
cycle.

Counting Hamilton cycles in tournaments is another very old problem which goes 
back some seventy years to one of the first applications of the probabilistic method by 
Szele [33]. He proved that there are tournaments on n vertices with at least (n − 1)!/2n
Hamilton cycles. Alon [1] showed that this result is nearly tight and every n vertex 
tournament has at most O(n3/2(n − 1)!/2n) Hamilton cycles. Thomassen [35] and later 
Friedgut and Kahn [12] conjectured that the randomness is unnecessary in Szele’s result 
and that in fact every regular tournament contains at least n(1−o(1))n Hamilton cycles. 
This conjecture was solved by Cuckler [7] who proved that every regular tournament on n
vertices contains at least n!

(2+o(1))n Hamilton cycles. The following theorem substantially 
extends Cuckler’s result [7].

Theorem 1.7. For every c > 3/8 and every η > 0 there exists a positive constant ε :=
ε(c, η) > 0 such that for every sufficiently large integer n the following holds. Suppose 
that:

(i) G is an oriented graph on n vertices, and
(ii) d±(v) ∈ (c ± ε)n for every v ∈ V (G).

Then h(G) ∈
(

(c±η)n
e

)n

. In particular, if G is cn-regular, then h(G) =
(

(c+o(1))n
e

)n

.

The bound on in/out-degrees in this theorem is tight. This follows from the construc-
tion of Häggkvist [15] (mentioned above), which shows that there are n-vertex oriented 
graphs with all in/outdegrees (3/8 − o(1))n and no Hamilton cycles.

Definitions and notation: Our graph-theoretic notation is standard and follows that 
of [36]. For a graph G, let V = V (G) and E = E(G) denote its sets of vertices and 
edges, respectively. For subsets U, W ⊆ V , and for a vertex v ∈ V , we denote by EG(U)
all the edges of G with both endpoints in U , by EG(U, W ) all the edges of G with one 
endpoint in U and one endpoint in W , and by EG(v, U) all the edges with one endpoint 
being v and one endpoint in U . We write NG(v) for the neighborhood of v in G and 
dG(v) for its degree. For an oriented graph G we write uv for the edge directed from 
u to v. We denote by N+

G (v) and N−
G (v) the outneighborhood and inneighborhood of v, 

respectively, and write d+
G(v) = |N+

G (v)| and d−G(v) = |N−
G (v)|. We will omit the sub-

script G whenever there is no risk of confusion. We will denote the minimum outdegree 
by δ+(G) and the minimum indegree by δ−(G), and set δ±(G) = min{δ+(G), δ−(G)}. 
Finally we write a = (b ± c) for a ∈ (b − c, b + c).
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For the sake of simplicity and clarity of presentation, and in order to shorten some of 
our proofs, no real effort has been made here to optimize the constants appearing in our 
results. We also omit floor and ceiling signs whenever these are not crucial. Most of our 
results are asymptotic in nature and whenever necessary we assume that the underlying 
parameter n is sufficiently large.

2. Tools

In this section we introduce the main tools to be used in the proofs of our results.

2.1. Probabilistic tools

We will need to employ bounds on large deviations of random variables. We will mostly 
use the following well-known bound on the lower and the upper tails of the Binomial 
distribution due to Chernoff (see [3,16]).

Lemma 2.1. If X ∼ Bin(n, p), then

• Pr (X < (1 − a)np) < e−a2np/2 for every a > 0;
• Pr (X > (1 + a)np) < e−a2np/3 for every 0 < a < 3/2.

2.2. r-factors

One of the main ingredients in our results is the ability to find an r-factor in a graph 
with r as large as possible. The following theorem of Katerinis [17] shows that a dense 
graph contains a dense r-factor.

Theorem 2.2. Let r be a positive integer and let G be a graph such that:

(i) r|V (G)| is even, and
(ii) δ(G) ≥ |V (G)|/2, and
(iii) |V (G)| ≥ 4r − 5.

Then G contains an r-factor.

When a given graph G is almost regular, it turns out that G contains r-factors with 
r much closer to δ(G) than given by Theorem 2.2. The following lemma was proved by 
Christofides, Kühn and Osthus in [5].

Lemma 2.3 (Theorem 12 in [5]). Let G be a graph on n vertices of minimum degree 
δ = δ(G) ≥ n/2.
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(i) Let r be an even number such that r ≤ δ+
√

n(2δ−n)
2 . Then G contains an r-factor.

(ii) Let 0 < ξ < 1/9 and suppose (1/2 + ξ)n ≤ Δ(G) ≤ δ + ξ2n. If r is an even number 
such that r ≤ δ − ξn and n is sufficiently large, then G contains an r-factor.

The result of Lemma 2.3 (ii) immediately implies the following useful corollary:

Corollary 2.4. Let 1/2 < c ≤ 1 and let 0 < ε < 1/9 be such that c − ε − 3
√
ε ≥ 1/2. Then 

for every sufficiently large integer n the following holds. Suppose that:

(i) G is a graph with |V (G)| = n, and
(ii) d(v) = (c ± ε)n for every v ∈ V (G).

Then G contains an r-factor for every even r ≤ (c − ε′)n, where ε′ = 3
√
ε + ε.

2.3. Permanent estimates

Let Sn be the set of all permutations of the set [n]. Given a permutation σ ∈ Sn, 
let A(σ) be an n × n matrix which represents the permutation σ, that is, for every 
1 ≤ i, j ≤ n, A(σ)ij = 1 if σ(i) = j and 0 otherwise. Notice that for every σ ∈ Sn, in 
each row and each column of A(σ) there is exactly one “1”. Every permutation σ ∈ Sn

has a (unique up to the order of cycles) cyclic form. Given two n ×n matrices A and B, 
we write A ≥ B in case that Aij ≥ Bij for every 1 ≤ i, j ≤ n. The permanent of an 
n × n matrix A is defined as per(A) =

∑
σ∈Sn

∏n
i=1 Aiσ(i). Notice that in case A is a 

0–1 matrix, every summand in the permanent is either 0 or 1, and the permanent of A
counts the number of distinct permutations σ ∈ Sn which are contained in A, that is, 
the number of σ’s for which A ≥ A(σ). A 0–1 matrix A is called r-regular if it contains 
exactly r 1’s in every row and in every column.

Using the following two well known permanent estimates, in the next subsection we 
prove that if A is any 0–1 αn-regular matrix, then most of the permutations which are 
contained in it have relatively few cycles in their cyclic form.

We state first an upper bound for the permanent. This bound was conjectured by 
Minc and has been proven by Brégman [4].

Theorem 2.5. Let A be an n × n matrix of 0–1 with t ones altogether. Then per(A) ≤
Πn

i=1(ri!)1/ri , where ri are integers satisfying 
∑n

i=1 ri = t and are as equal as possible.

A square matrix A of nonnegative real numbers is called doubly stochastic if each 
row and column of A sum to 1. The following lower bound is also known as the Van 
der Waerden conjecture and has been proven by Egorychev [10] and by Falikman [11]:

Theorem 2.6. Let A be an n × n doubly stochastic matrix. Then per(A) ≥ n!
nn .
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2.4. 2-factors with few cycles

Motivated by ideas from [2,13,21], in this subsection we prove that for every suffi-
ciently large integer n, in every r-regular, 0–1, n ×n matrix A, most of the permutations 
contained in A have relatively few cycles in their cyclic form, provided that r is linear 
in n. For a positive integer r and a graph G, we define a (≤ r)-factor to be any spanning 
subgraph H of G for which each connected components of H is s-regular for some s ≤ r. 
We conclude that in every dense r-regular graph G, most of the (≤ 2)-factors do not 
contain too many cycles (we consider a single edge as a cycle too). We also prove that 
in case r is even, G contains such a 2-factor with all cycles of length at least 3. These 
lemmas are crucial since one of the main ingredients of our proofs is the ability to find 
“enough” 2-factors with only few cycles and then to turn them into Hamilton cycles.

Lemma 2.7. Let α > 0 be a constant and let n be a positive integer. Suppose that:

(i) A is an n × n matrix, and
(ii) all entries of A are 0 or 1, and
(iii) A is αn-regular.

Then the number of permutations σ ∈ Sn for which A ≥ A(σ) and such that there are at 
most s∗ :=

√
n lnn cycles in their cyclic form, is (1 + o(1))n

(
αn
e

)n.

Note that in case A is the adjacency matrix of a graph G, every permutation σ ∈ Sn

for which A ≥ A(σ) corresponds to a (≤ 2)-factor with exactly the same number of 
cycles as in the cyclic form of σ (we consider a single edge as a cycle too); and every 
(≤ 2)-factor F of G corresponds to at most 2s permutations, where s is the number of 
cycles in F (each cycle can be oriented in at most two ways). Therefore, the following is 
an immediate corollary of Lemma 2.7:

Corollary 2.8. Let α > 0 be a constant and let n be a positive integer. Suppose that:

(i) G is a graph on n vertices, and
(ii) G is αn-regular.

Then the number of (≤ 2)-factors of G with at most s∗ :=
√
n lnn cycles is (1 +

o(1))n
(
αn
e

)n.

Proof of Lemma 2.7. Given a 0–1 matrix of order n × n, let S(A) = {σ ∈ Sn : A ≥
A(σ)} be the set of all permutations contained in A, and let f(A, k) be the number of 
permutations σ ∈ S(A) with exactly k cycles. Notice that f(A) :=

∑
k f(A, k) = |S(A)|. 

Given an integer 1 ≤ t ≤ n we also define

φ(A, t) := max{f(A′) : A′ is a t× t submatrix of A}.
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For the upper bound, using Theorem 2.5 and the fact that (k/e)k ≤ k! ≤ k(k/e)k we 
conclude that

per(A) ≤ ((αn)!)n/(αn) = (1 + o(1))n
(αn

e

)n

.

Now, note that

per(A) =
n∑

s=1
f(A, s).

Applying Theorem 2.6 to the doubly stochastic matrix 1
αnA, we obtain

n∑
s=1

f(A, s) = per(A) ≥ n!αn ≥
(αn

e

)n

.

In order to complete the proof we need to show that 
∑

s>s∗ f(A, s) = o 
((

αn
e

)n). Let 
s >

√
n lnn, we wish to estimate f(A, s) from above. Given a permutation σ ∈ S(A)

with s cycles, there must be at least 1
2
√
n lnn cycles, each of which is of length at most 

2
√

n/ lnn. Therefore, by the pigeonhole principle we get that there must be a cycle 
length 	 := 	(σ) ≤ 2

√
n/ lnn which appears at least j = ln n

4 times in σ. The number of 
permutations in S(A) which contain at least j cycles of fixed length 	 is at most:

(
n

j

) j∏
i=1

(αn)�−1 · φ(A,n− j	) ≤
(
en

j

)j

(αn)j�−j · φ(A,n− j	). (2.1)

Indeed, first we fix j cycles of length 	. To do so we choose j elements, x1, . . . , xj , 
one for each such a cycle. This can be done in 

(
n
j

)
ways. Since A is αn-regular, for each 

1 ≤ i ≤ j, there are at most (αn)�−1 options to close a cycle of length 	 which contains xi. 
Given these j cycles of total length j	, there are at most φ(A, n − j	) ways to extend it 
to a cyclic form of a permutation σ ∈ S(A).

Next we estimate φ(A, n − j	). Let t = j	 and let A1 be an arbitrary (n − t) × (n − t)
submatrix of A. By switching order of some rows and columns, we can assume that 

A =
(
A1 B
C A2

)
, where A2, B and C are t × t, (n − t) × t and t × (n − t) submatrices 

of A, respectively. Given a 0–1 matrix M , let g(M) = 1TM1 be the number of 1’s in M

(1 is a vector with all entries equal 1). Since g(A2) ≤ t2 and since A is αn-regular, it 
follows that g(B) ≥ αnt − t2. Therefore, we conclude that g(A1) = αn(n − t) − g(B) ≤
αn(n − t) − (αnt − t2) and that the average number of 1’s in a row or a column of A1 is

g(A1) ≤ αn− t(αn− t) =: d1.

n− t n− t
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Note that α(n − t) ≤ d1 ≤ αn. Now, by Brégman’s Theorem 2.5 we get that

per(A1) ≤ (d1!)
n−t
d1 ≤

((
d1

e

)d1

d1

)n−t
d1

≤
(
αn− t(αn−t)

n−t

e

)n−t

(αn)1/α

≤
(αn

e

)n−t
(

1 − t(αn− t)
αn(n− t)

)n−t

(αn)1/α ≤
(αn

e

)n−t

e−t+t2/(αn)(αn)1/α.

Hence, we conclude that

φ(A,n− t) ≤
(αn

e

)n−t

e−t+t2/(αn)(αn)1/α.

Now, plugging it into the estimate (2.1) and recalling that 	 ≤ 2
√
n/ lnn, j = ln n

4
and t = j	 ≤ 1

2
√
n lnn, we have

f(A, s) ≤
∑

�≤2
√

n/ ln n

(
en

j

)j

(αn)t−jφ(A,n− t)

≤
∑

�≤2
√

n/ ln n

(
en

j

)j

(αn)t−j
(αn

e

)n−t

e−t+t2/(αn)(αn)1/α

≤
(αn

e

)n ∑
�≤2

√
n/ ln n

(
en

j

)j

(αn)−jet
2/(αn)(αn)1/α

≤
(αn

e

)n

2
√
n/ lnn

(
e/α

j

)j

eO(ln n) (αn)1/α

≤
(αn

e

)n

2
√
n/ lnnn−Ω(ln ln n) nO(1) (αn)1/α

=
(αn

e

)n

· o
(

1
n

)
.

This clearly implies that 
∑

s>s∗ f(A, s) = o 
((

αn
e

)n) and completes the proof. �
In the following lemma we prove that given a dense r-regular graph G, if r is even, 

then G contains a 2-factor with not too many components.

Lemma 2.9. Let α > 0 be a constant and let n be sufficiently large integer. Suppose that:

(i) αn is even, and
(ii) G is a graph n vertices, and
(iii) G is αn-regular.

Then G contains a 2-factor with at most 
√
n lnn components.
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Proof. Since αn is even, G has an Eulerian orientation 
−→
E (if G is not connected, then find 

such an orientation for every connected component). Assume that V (G) = [n] and let A
be an n × n matrix of 0 and 1s such that Aij = 1 if and only if (i, j) ∈ −→

E . Note that A
is an (αn/2)-regular n × n matrix, and therefore, by Lemma 2.7 we conclude that there 
exists a permutation σ ∈ Sn such that A ≥ A(σ) and with at most 

√
n lnn cycles in its 

cyclic form. Since every such permutation defines a (≤ 2)-factor of G, and since each 
cycle is built by out-edges of the orientation 

−→
E , we conclude that the shortest possible 

such cycle is of length at least 3. �
2.5. Rotations

The most useful tool in turning a path P into a Hamilton cycle is the Pósa rotation–
extension technique (see [30]). Motivated by this technique, in this section we establish 
tools for turning a path into a Hamilton cycle under certain assumptions suitable for 
proving our main results.

First we need the following notation. Given a path P = v0v1 . . . vk in a graph G and a 
vertex vi ∈ V (P ), define v+

i = vi+1 and v−i = vi−1 (v−0 = vk and v+
k = v0). For a subset 

I ⊆ V (P ), we define I+ = {v+ : v ∈ I} and I− = {v− : v ∈ I}.
Now, given a dense graph and a path in it, the following lemma enables us to obtain 

a longer path with only few rotations.

Lemma 2.10. Let G be a graph on n vertices and with δ(G) ≥ n/2. Let P0 be a path in G. 
Then there exist two vertices a, b ∈ P0 and a path P ∗ in G connecting a to b so that:

(i) V (P ∗) = V (P0).
(ii) |E(P0)ΔE(P ∗)| ≤ 4.
(iii) ab ∈ E(G) and the cycle obtained by adding this edge to P ∗ is a Hamilton cycle, or 

G contains an edge between {a, b} and V (G) \ V (P ∗).

Proof. Let P0 = v0 . . . vk be a path in G. If there exists an edge v0v ∈ E(G) or vkv ∈
E(G) for some v /∈ V (P0), then by setting P0 = P ∗, a = v0 and b = vk we are done. 
Assume then that there is no such edge. In particular, it means that N(v0) ∪ N(vk) ⊆
V (P0). First, we claim that there must be a vertex v ∈ N(v0)− such that vvk ∈ E(G). 
Otherwise, we have that N(vk) ⊆ (V (P0) \ {vk}) \N(v0)−. Since δ(G) ≥ n/2 and since 
|V (P0) \{vk}| ≤ n −1 we conclude that | (V (P0) \ {vk})\N(v0)−| < n/2 which is clearly 
a contradiction.

Let vi ∈ N(v0)− be such vertex with vivk ∈ E(G). Notice that C = v0v1 . . . vivkvk−1
. . . vi+1v0 is a cycle on the vertex set V (P0), obtained be deleting one edge from P and 
adding two new edges. If C is a Hamilton cycle then we are done. Otherwise, since G is a 
connected graph (this follows easily from δ(G) ≥ n/2), there exist two vertices v ∈ V (C)
and u ∈ V (G) \ V (C) such that vu ∈ E(G). By deleting an edge vw from C and by 
denoting a = v and b = w we get the desired path. �
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In the following lemma we prove that every dense graph G contains a subgraph H
with some nice pseudorandom properties for which regeven(G) and regeven(G −H) are 
relatively close to each other. We will use this subgraph H to form edge disjoint Hamilton 
cycles from a set of edge disjoint 2-factors. This is crucial for the proof of Theorem 1.3. 
Before stating the lemma we introduce the following notation which will be used in its 
proof and in later sections. An r-factor of an oriented graph is a spanning subgraph with 
all in- and out-degrees equal to r.

Lemma 2.11. For every 0 < ε < 1/4 and 0 < α < ε2, there exist β > 0 and n0 := n0(ε, α)
such that for every n ≥ n0 the following holds. Suppose that:

(i) G is a graph on n vertices, and
(ii) δ(G) ≥ (1/2 + ε)n.

Then G contains a subgraph H ⊂ G with the following properties:

(P1) G′ = G − E(H) is r-regular and r is an even integer which satisfies r ≥ (1 −
ε/2)regeven(G);

(P2) δ(H) ≥ εn/8;
(P3) for every subset S ⊂ V (G), |S| = αn and for every subset E′ ⊂ E(H) of size 

|E′| ≤ βn2, we have |NH−E′(S) \ S| ≥ (1/2 + ε/4)n;
(P4) H − E′ is a connected graph for every E′ ⊂ E(H) such that δ(H − E′) ≥ αn and 

|E′| ≤ βn2.

Proof of Lemma 2.11. Let R be a regeven(G)-factor of G and observe by Theorem 2.2
that regeven(G) ≥ n/4. Since regeven(G) is even, we can find an Eulerian orientation −→
E and obtain a regeven(G)/2-regular oriented graph 

−→
R = (V (G), −→E ). Now, choose a 

collection F of t := εn/16 ≤ ε · regeven(G)/4 edge-disjoint random 1-factors from 
−→
R

as follows. Let −→R 0 := −→
R , and for i := 1, . . . , t do: let Fi be a 1-factor of −→R i−1 chosen 

uniformly at random among all such 1-factors, and let −→R i := −→
R i−1−Fi (the existence of 

such factors follows immediately from the fact that −→R i−1 is regular and Hall’s Marriage 
Theorem). Delete the orientations of edges in every F ∈ F and let H be the graph 
spanned by all of these edges (that is, ∪F∈FE(F )) and the edges of G − R. We prove 
that with high probability, H satisfies all the properties stated in the theorem.

Properties (P1) and (P2) follow immediately from the definition of H and from The-
orem 2.2.

For proving (P3), it is enough to prove that for every two disjoint subsets S, T ⊆ V (G)
of size |S| = αn and |T | ≥ (1−ε)n

2 , we have |EH(S, T )| ≥ βn2. Property (P3) thus 
follows immediately using the fact that |S| = αn ≤ ε2n ≤ εn/4. Indeed, given a subset 
S ⊂ V (G) for which |S| = αn, the number of edges (in H) between S to every subset 
of size (1/2 − ε/2)n is Θ(n2). Therefore, for some small constant β > 0, by removing at 
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most βn2 edges one cannot delete all the edges between two such sets. It follows that 
|NH−E′(S) \ S| ≥ (1/2 + ε/2 − α)n ≥ (1/2 + ε/4)n as required.

To this end, let S, T ⊆ V (G) be two disjoint subsets for which |S| = αn and |T | =
(1−ε)n

2 . Since δ(G) ≥ (1/2 +ε)n, it follows that d(v, T ) ≥ εn/2 for every v ∈ S. Therefore, 
|EG(S, T )| ≥ |S|εn/2 = ε·α

2 n2. Now, let β be a fixed constant smaller than ε·α4 (to be 
determined later), and note that if |EG−R(S, T )| ≥ ε·α

4 n2, then we are done. Otherwise, 
we have |ER(S, T )| ≥ ε·α

4 n2. We wish to bound from above the probability that for two 
such subsets S and T , the 2-factors in H use at most βn2 edges from ER(S, T ). For this 
end, consider −→R again and let A be an n ×n, 0/1 matrix for which (A)ij = 1 if and only 
if ij ∈ −→

E . Since A is regeven(G)/2-regular, by Theorem 2.6 we conclude that

per(A) ≥
(

regeven(G)
2e

)n

.

Now, note that if A′ is a matrix which is obtained from A by deleting cn2/2 many 1’s 
(where c > 0 is some positive constant), then by Theorem 2.5 we have

per(A′) ≤ (1 + o(1))n
(

regeven(G) − cn

2e

)n

.

Now, picking a 1-factor F of −→R at random, the probability that for some fixed subset 
E0 ⊆ ER(S, T ) of size at most βn2 the 1-factor F does not use any edges from ER(S, T ) \
E0 is bounded from above by per(A

′)
per(A) , where c = 2εα/4 − 2β (recall that |ER(S, T )| ≥

εαn2/4). Note that when we remove a 1-factor from 
−→
R , the new graph remains regular 

(the in- and out-degrees decrease by exactly 1). Therefore, while choosing the (i + 1)st 
factor Fi+1, using the fact that Ri is (regeven(G)/2 − i)-regular and the estimation on 
per(A′) and per(A) mentioned above, we obtain that the probability for not touching 
edges in ER(S, T ) \E0 is upper bounded by

(1 + o(1))n
(

regeven(G) − cn− 2i
regeven(G) − 2i

)n

.

All in all, we conclude that for some 0 ≤ δ < 1, the probability for the existence of such 
a set E0 ⊆ ER(S, T ) of size βn2 for which none of the 1-factors in F uses edges from 
ER(S, T ) \E0 is at most

(1 + o(1))nt
(

n2

βn2

)
·

t∏
i=1

(
regeven(G) − cn− 2i

regeven(G) − 2i

)n

≤ (1 + o(1))nt
(
e

β

)βn2

δnt = δΘ(n2).

Indeed, recall that t = εn/16 and that by Theorem 2.2 we have (say) regeven(G) ≥ n/5, 
and therefore, if we require that β < εα

8 , then for example δ = 1 − 5εα
4 is such that 

regeven(G)−cn−2i ≤ δ holds for every i ≤ t. All in all, for a small enough β we have 
regeven(G)−2i
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(
e
β

)β

δε/16 = δΘ(1) and the last equality holds. Now, by applying the union bound we 

get that the probability for having two such sets is at most 4n · δΘ(n2) = o(1).
For (P4), note that from the minimum degree condition we have that every component 

of H−E′ has size at least αn. Now, by (P3) we have that every connected component is 
in fact of size more than n/2 even after deleting at most βn2 many edges. This completes 
the proof. �

In the next lemma, using some ideas from [32], we prove that in a graph with good 
expansion properties, every non-Hamilton path can be extended by changing only a few 
edges.

Lemma 2.12. For every 0 < ε < 1/200 and a sufficiently large integer n the following 
holds. Suppose that:

(1) H is a graph on n vertices, and
(2) δ(H) ≥ εn/8, and
(3) |NH(S) \ S| > (1/2 + ε/4)n for every subset S ⊂ V (H) of size |S| = ε3n.

Then for every path P with V (P ) ⊆ V (H) (P does not necessarily need to be a subgraph 
of H), there exist a pair of vertices a, b and a path P ∗ in H∪P connecting these vertices 
so that:

(i) V (P ∗) = V (P ), and
(ii) |E(P )ΔE(P ∗)| ≤ 8, and
(iii) ab ∈ E(H) and the cycle obtained by adding this edge is a Hamilton cycle, or H∪P

contains an edge between {a, b} and V (H) \ V (P ∗).

Proof. Let P = v0v1 . . . vk be a path. We distinguish between three cases:
Case I: There exists v ∈ V (H) \ V (P ) for which v0v ∈ E(H) or vkv ∈ E(H). In this 

case, by denoting P ∗ = P , a = v0 and b = vk, we are done.
Case II: v0vk ∈ E(H). Let C be the cycle obtained by adding the edge v0vk to P . 

If C is a Hamilton cycle then we are done. Otherwise, since H is connected (immediate 
from properties (2) and (3)), we can find v ∈ V (C) and u ∈ V (H) \ V (C) for which 
vu ∈ E(H). Now, let P ∗ be the path obtained from C by deleting the edge vv+, a = v, 
b = v+ and we are done.

Case III: NH(v0) ∪NH(vk) ⊆ V (P ) and v0vk /∈ E(H). Let t = 
10/ε� and let I1, . . . , It
be a partition of P into t intervals of length at most |P |/t ≤ εn/10 each. Note that, since 
t = 
10/ε� and since ε < 1/200, we can find Ii for which |NH(v0) ∩ Ii| ≥ (εn/8)/t ≥
ε2n/81. Similarly there exists an interval Ij which contains at least ε2n/81 neighbors 
of vk. If i �= j then set I = Ii and J = Ij . Otherwise, divide Ii into two intervals such 
that each of them contains at least ε2n/162 neighbors of v0. Clearly one of them contains 
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at least ε2n/162 neighbors of vk. Hence, we obtain two disjoint intervals I and J of P
such that |I|, |J | ≤ εn/10 and for which |NH(v0) ∩ I|, |NH(vk) ∩ J | ≥ ε2n/160 ≥ ε3n.

Now, assume that the interval I is to the left of the interval J according to the 
orientation of P (the case where I is to the right of J is similar). Let i1 = min{i : vi ∈ I}
and define L := {v0, . . . , vi1−1} to be the set of all vertices of P which are to the left 
of I. For i2 = max{i : vi ∈ I} and i3 = min{i : vi ∈ J}, set M := {vi2+1, . . . , vi3−1} to 
be the set of all vertices between I and J . Similarly, set R := {vi4+1, . . . , vk} to be the 
set of all vertices which are to the right of J in P (where i4 = max{i : vi ∈ J}). We 
prove that by a sequence of at most four additions and at most three deletions of edges 
we can turn P into a cycle C on V (P ), and then the result follows exactly as described 
in Case II (deleting at most one more edge). Let I0 ⊆ NH(v0) ∩ I and J0 ⊆ NH(vk) ∩ J

be two subsets of size exactly ε3n. Let

N :=
(
NH(I−0 )+ ∩ L

)
∪
(
NH(I−0 )− ∩M

)
∪
(
NH(I−0 )+ ∩R

)
.

Then, by Property (3) we have |N | ≥ (1/2 +ε/4)n −|I| −|J | > n/2 and also |NH(J+
0 )| >

n/2. Therefore we conclude that N∩NH(J+
0 ) �= ∅ and need to consider only the following 

three scenarios:

(a)
(
NH(I−0 )+ ∩ L

)
∩ NH(J+

0 ) �= ∅. Let v+ ∈
(
NH(I−0 )+ ∩ L

)
and u+ ∈ J+

0 be such 
that v+u+ ∈ E(H), and let w ∈ I0 be such that w−v ∈ E(H). Then we have the 
following cycle

C = v+ . . . w−v . . . v0w . . . uvk . . . u
+v+.

(b)
(
NH(I−0 )− ∩M

)
∩ NH(J+

0 ) �= ∅. Let v− ∈ (NH(I−0 ))− ∩ M and u+ ∈ J+
0 be such 

that v−u+ ∈ E(H), and let w ∈ I0 be such that w−v ∈ E(G). In this case the cycle 
is

C = v . . . uvk . . . u
+v− . . . wv0 . . . w

−v.

(c)
(
NH(I−0 )+ ∩R

)
∩NH(J+

0 ) �= ∅. Let v+ ∈
(
NH(I−0 )+ ∩R

)
and u+ ∈ J+

0 be such that 
v+u+ ∈ E(H), and let w ∈ I0 be such that w−v ∈ E(H). We obtain the following 
cycle

C = v0 . . . w
−v . . . u+v+ . . . vku . . . wv0.

This completes the proof. �
2.6. Oriented graphs

In this subsection we establish tools needed in the proof of Theorem 1.7 which deals 
with counting the number of Hamilton cycles in oriented graphs. We start with the 
following notion of a robust expander due to Kühn, Osthus and Treglown [25]:
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Definition 2.13. Let G be an oriented graph of order n and let S ⊆ V (G). The ν-robust 
outneighborhood RN+

ν,G(S) of S is the set of vertices with at least νn inneighbors in S. 
The graph G is called a robust (ν, τ)-outexpander if |RN+

ν,G(S)| ≥ |S| + νn for every 
S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n.

The following fact is an immediate consequence of the definition of a robust 
(ν, τ)-outexpander.

Fact 2.14. For every ν, ν′ > 0 such that ν′ < ν, and for every sufficiently large integer n
the following holds. Suppose that:

(i) G is an oriented graph on n vertices, and
(ii) G is a robust (ν, τ)-outexpander.

Then every graph G′ which is obtained from G by adding a new vertex (does not matter 
how) is a robust (ν′, τ)-outexpander.

The following theorem shows that given a robust outexpander G which is almost 
regular, G contains an r-factor with almost the same degree as the degrees of G. Before 
stating the theorem we remark that the constants in the hierarchies used to state our 
results are chosen from the largest to the smallest. More precisely, whenever we write 
something like 0 < 1/n � ν � τ � α < 1 (where n is the order of the graph or 
digraph), then this means that there are non-decreasing functions f : (0, 1] → (0, 1], 
g : (0, 1] → (0, 1] and h : (0, 1] → (0, 1] such that the result holds for all 0 < ν, τ, α < 1
and all positive integers n with τ ≤ f(α), ν ≤ g(τ) and 1/n ≤ h(ν). We will not calculate 
these functions explicitly.

Theorem 2.15. For every α > 0 there exists τ > 0 such that for all ν ≤ τ and η > 0
there exist n0 := n0(α, ν, τ, η) and γ := γ(α, ν, τ, η) > 0 such that the following holds. 
Suppose that G is an oriented graph with |V (G)| = n ≥ n0 satisfying:

(i) d±(v) ∈ (α± γ)n for every v ∈ V (G), and
(ii) G is a robust (ν, τ)-outexpander.

Then G contains an (α− η)n-factor.

In order to prove Theorem 2.15 we need the following lemma from [23].

Lemma 2.16 (Lemma 5.2 in [23]). Suppose that 0 < 1/n � ε � ν ≤ τ � α < 1 and that 
1/n � ξ ≤ ν2/3. Let G be a digraph on n vertices with δ±(G) ≥ αn which is a robust 
(ν, τ)-outexpander. For every vertex x of G, let n+

x , n
−
x ∈ N be such that (1 − ε)ξn ≤

n+
x , n

−
x ≤ (1 + ε)ξn and such that 

∑
x∈V (G) n

+
x =

∑
x∈V (G) n

−
x . Then G contains a 

spanning subdigraph G′ such that d+
G′(x) = n+

x and d−G′(x) = n−
x for every x ∈ V (G).
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Proof of Theorem 2.15. The proof is quite similar to the first paragraph of the proof of 
Corollary 1.2 in [29]. For the convenience of the reader we will add it here.

Since in a digraph G, whenever G contains an r-factor it also contains an (r−1)-factor, 
it is enough to prove the statement for some η > 0. Next, since we are going to use 
Lemma 2.16, it will be convenient to introduce the following parameters. In order to 
call Lemma 2.16 with the corresponding parameters we require that 0 < ε � ν ≤ τ �
α < 1 and ξ ≤ ν2/3. By definition, this means that there exist non-decreasing functions 
f, g : (0, 1] → (0, 1] such that the conclusion of Lemma 2.16 holds for all constant 
0 < ε, ν, τ, α < 1 for which τ ≤ f(α), ν ≤ τ , ε ≤ g(ν).

Now, given α we choose τ so that τ ≤ f(α/2). Next, choose η > 0 so that η ≤
min(g(ν), 

√
α/2, ν2/3), set γ := η2. Since f is non-decreasing, one obtains τ ≤ f(α− γ)

and we therefore have η � ν ≤ τ � α− γ < 1. Next, for each x ∈ V (G) let

n+
x := d+

G(x) − (α− η)n and n−
x := d−G(x) − (α− η)n.

Note that (η − η2)n ≤ n+
x , n

−
x ≤ (η + η2)n for every x ∈ V (G).

Applying Lemma 2.16 to G with ξ = ε = η and α − γ in place of α, we obtain a 
subdigraph G′ for which d+

G′(x) = n+
x , d

−
G′(x) = n−

x , and therefore the graph G′′ = G −G′

is an (α− η)n-regular digraph on n vertices. This completes the proof. �
The following technical lemma is one of the main ingredients in the proof of Theo-

rem 1.7. We use it to turn a directed path of length n − o(n) into a directed Hamilton 
cycle:

Lemma 2.17. For every α > 3/8 and a sufficiently large integer n the following holds. 
Suppose that:

(i) G is an oriented graph on n vertices, and
(ii) δ±(G) ≥ αn.

Then for every two disjoint subsets A, B ⊆ V (G) with |A| = |B| = αn/2, G contains 
a Hamilton path which starts inside A and ends inside B.

Before proving Lemma 2.17 we need the following two results which are stated below. 
The first lemma, due to Kühn and Osthus [23], asserts that a dense oriented graph is 
also a robustly expanding graph.

Lemma 2.18 (Lemma 13.1 in [23]). Let 0 < 1/n � ν � τ ≤ ε/2 ≤ 1 and suppose that 
G is an oriented graph on n vertices with δ+(G) + δ−(G) + δ(G) ≥ 3n/2 + εn (where 
δ(G) := minx∈V (G)(d+

G(x) + d−G(x))). Then G is a robust (ν, τ)-outexpander.

The following theorem states that if a graph G is a robust outexpander with a linear 
minimum degree, then G contains a Hamilton cycle.
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Theorem 2.19 (Theorem 16 in [25]). Let 1/n � ν ≤ τ � η < 1, and let G be a digraph 
on n vertices with δ±(G) ≥ ηn which is a robust (ν, τ)-outexpander. Then G contains a 
Hamilton cycle.

Now we are ready to prove Lemma 2.17.

Proof of Lemma 2.17. Let α > 3/8 and let G be an oriented graph on n vertices with 
δ±(G) ≥ αn. Let A, B ⊆ V (G) be two disjoint subsets of size |A| = |B| = αn/2. We wish 
to show that G contains a Hamilton path which starts inside A and ends inside B. First, 
notice that since δ−(G) +δ+(G) +δ(G) ≥ 3n/2 +εn (for some small positive constant ε), 
by Lemma 2.18 we get that for every choice of constants 0 < 1/n � ν � τ ≤ ε/2, G is a 
robust (ν, τ)-outexpander. Second, by adding a new vertex x to V (G) in such a way that 
N+(x) = A and N−(x) = B, by Fact 2.14 we obtain a new graph G′ which is a robust 
(ν/2, τ)-outexpander. Third, by applying Theorem 2.19 to G′ (applied with η = α/2), 
we conclude that G′ is Hamiltonian. Last, let C be a Hamilton cycle in G′; by deleting 
x we obtain the desired Hamilton path in G. �

The following lemma enables us to pick a subgraph of an oriented graph which inherits 
some properties of the base graph.

Lemma 2.20. For every c > 0, for every 0 < ε < c/2, and for every sufficiently large 
integer n the following holds. Suppose that:

(i) G is an oriented graph with |V (G)| = n, and
(ii) d±(v) = (c ± ε)n for every v ∈ V (G).

Then there exists a subset V0 ⊆ V (G) of size n2/3 for which the following property holds:

|N+
G (v) ∩ V0| ∈ (c± 2ε)|V0| and |N−

G (v) ∩ V0| ∈ (c± 2ε)|V0| for every v ∈ V (G). (∗)

Proof. Let V0 ⊆ V (G) be a subset of size |V0| = n2/3, chosen uniformly at random 
among all such subsets. We prove that V0 w.h.p. satisfies Property (∗).

For this aim, let v ∈ V (G) be an arbitrary vertex. Since |N+
G (v) ∩ V0| ∼

HG(n, n2/3, d+(v)) and since d+(v) ∈ (c ± ε)n, by Chernoff’s inequality (Lemma 2.1 is 
also valid for the hypergeometric distribution, see [16]) we have that Pr(|N+

G (v) ∩ V0| ≥
(c + 2ε)|V0|) ≤ e−anp, for p = n−1/3 and for some positive constant a = a(ε). Applying 
the union bound we get that

Pr
(
∃v ∈ V (G) such that |N+

G (v) ∩ V0| ≥ (c + 2ε)|V0|
)
≤ ne−anp = ne−an2/3

= o(1).

In a similar way we prove it for |N−
G (v) ∩ V0|. This completes the proof. �
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Last, we need the following simple fact:

Fact 2.21. Let G be an oriented graph with |V (G)| = n and δ±(G) ≥ 3n/8. Then, the 
directed diameter of G is at most 4.

Proof. Let x, y ∈ V (G). We wish to prove that there exists a path P of length at most 4
which is oriented from x to y. Let A ⊆ N+

G (x) and B ⊆ N−
G (y) two subsets of size 

|A| = |B| = 3n/8. If A ∩ B �= ∅ then we are done. Otherwise, let a ∈ A be a vertex for 
which d+(a, A) ≤ |A|/2 (there must be such a vertex since 

∑
z∈A d+(z, A) ≤

(|A|
2
)
), and 

let b ∈ B be a vertex for which d−(b, B) ≤ |B|/2. The result will follow by proving that 
N+

G (a) ∩ B �= ∅, N+
G (a) ∩ N−

G (b) �= ∅ or N−
G (b) ∩ A �= ∅. Indeed, otherwise we get that 

|V (G)| = n ≥ 2 + |A| + |B| + |A|/2 + |B|/2 ≥ 3n/8 + 3n/8 + 3n/16 + 3n/16 > n, which 
is a contradiction. �
3. Counting Hamilton cycles in undirected graphs

In this section we prove Proposition 1.4 and Corollaries 1.5 and 1.6.

Proof of Proposition 1.4. Let H ⊆ G be a reg(G)-factor of G. By Theorem 2.2 we 
have that reg(G) = Θ(n). Therefore, we can apply Corollary 2.8 and conclude that ∑

s≤s∗ f(H, s) ≥
(

reg(G)
e

)n

(1 − o(1))n (where s∗ =
√
n lnn and f(H, s) counts the 

number of (≤ 2)-factors of H with exactly s cycles).
Now, working in G, given a (≤ 2)-factor F with s ≤ s∗ cycles, by repeatedly applying 

Lemma 2.10 we can turn F into a Hamilton cycle of G by adding and removing at most 
O(s) edges in the following way: let C be a non-Hamilton cycle in F . If we can find 
vertex v ∈ V (C) and a vertex u ∈ V (G) \ V (C) for which vu ∈ E(G), then by deleting 
the edge vv+ from C (and doing nothing in case C is a cycle of length two) we get a path 
P which can be extended by the edge vu. Connecting it to a cycle C ′ which contains u
(C ′ can be just an edge) we obtain a longer path P ′. Repeat this argument as long as we 
can. If there are no edges between the endpoints of the current path P ′ and the other 
cycles from F , then we can use Lemma 2.10 in order to turn P ′ either into a Hamilton 
cycle (and then we are done) or into a path P ∗ for which V (P ∗) = V (P ) and for which 
there exists an edge between one of its endpoints to V (G) \ V (P ∗). This can be done 
within 4 edge replacements and we then extend the path using such an edge. Note that 
in each such step we invest at most 4 edge replacements in order to decrease the number 
of cycles by 1, and unless the current cycle is a Hamilton cycle, we can always merge 
two cycles. Therefore, after O(s) edge-replacements we get a Hamilton cycle.

In order to complete the proof, note that given a Hamilton cycle C in G, by replacing 
at most k edges we can get at most 

(
n
k

)
(2k)2k 2-factors in H (choose k edges of C to 

delete, obtain at most k paths which need to be turned into a 2-factor by connecting 
endpoints of paths; for each endpoint we have at most 2k choices of other endpoints to 
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connect it to). Therefore, for some positive constant D we have that 
∑

s≤s∗ f(G, s) ≤
h(G) · s∗

(
n

Ds∗

)
(2Ds∗)2Ds∗ ≤ h(G)nO(s∗). This implies that

h(G) ≥ (1 − o(1))n
(

reg(G)
e

)n

n−O(s∗) = (1 − o(1))n
(

reg(G)
e

)n

,

and completes the proof of Proposition 1.4. �
Corollary 1.5 follows easily from Proposition 1.4.

Proof of Corollary 1.5. Let A be the adjacency matrix of G. Then A is an n × n matrix 
with all entries 0’s and 1’s which is cn-regular (the number of 1’s in each row/column is 
exactly cn). Since G is cn-regular, it follows that reg(G) = cn. Therefore, since cn ≥ n/2, 
by Proposition 1.4 we have

h(G) ≥
(cn

e

)n

(1 − o(1))n.

For the upper bound, note that since the number of Hamilton cycles in G, h(G), is at 
most the number of (≤ 2)-factors in G, which is the permanent of A, using Theorem 2.5
we get that

h(G) ≤ per(A) ≤ ((cn)!)1/c = (1 + o(1))n
(cn

e

)n

.

This completes the proof. �
The proof of Corollary 1.6 follows quite immediately from the previous proof and 

Corollary 2.4.

Proof of Corollary 1.6. Let c > 1/2, let 0 < ε < 1/9 be such that c − ε − √
ε > 1/2, 

and let G be a graph satisfying the assumptions of the corollary. For the upper bound 
on h(G), a similar calculation as in the proof of Corollary 1.5 will do the work. For the 
lower bound, note that by applying Corollary 2.4 to G, one can find a subgraph G′ ⊆ G

which is (c − ε′)n regular, where ε′ = ε +
√
ε. Applying now Proposition 1.4 to G′ gives 

the lower bound. �
4. Counting Hamilton cycles in oriented graphs

In this section we prove Theorem 1.7.

Proof of Theorem 1.7. Let c > 3/8 and let η > 0. Let ε0 > 0 be a sufficiently small 
constant which satisfies 4(c − ε0)n′ > 3n′/2 + ε0n for each n′ ≥ 0.9n (the existence of 
such ε0 follows from the fact that c > 3/8 and that n is sufficiently large).
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Next, note that for a given directed graph G on n′ ≥ 	 vertices with δ±(G) ≥ (c −
ε0)n′, and for each choice of ν, τ satisfying 0 < 1/n′ � ν � τ ≤ ε0/2 ≤ 1, since 
δ+(G) + δ−(G) + δ(G) ≥ 4(c − ε0)n′ > 3n′/2 + ε0n, it follows by Lemma 2.18 that G is 
a robust (ν, τ)-expander. Now, let τ be a constant obtained by applying Theorem 2.15
with α = c and η, and let ν � τ (recall that 0 < 1/n � ν � τ � α < 1). We obtain 
a positive constant γ and a positive integer n0 for which the following holds: for every 
oriented graph G with |V (G)| = n′ ≥ n0, if d±(v) ∈ (c ± γ)n′ for every v ∈ V (G), then 
G contains a (c − η)n′-factor.

Now, let G be an oriented graph on n vertices, where n is such that n′ := n −n2/3 ≥ n0. 
Moreover, assume that in G we have d±(v) ∈ (c ± ε)n for every v ∈ V (G), where 
ε = min{γ/3, ε0/3}. By applying Lemma 2.20 to G we find a subset V0 ⊂ V (G) of size 
|V0| = n2/3 for which |N+

G (v) ∩V0| ∈ (c ±2ε)|V0| and |N−
G (v) ∩V0| ∈ (c ±2ε)|V0| for every 

vertex v ∈ V (G). Let G1 = G[V0] and G2 = G[V (G) \ V0] denote the two subgraphs 
induced by V0 and V (G) \V0, respectively. Note that since n′ := |V (G2)| = n −n2/3 and 
since ε ≤ γ/3, it follows that d±G2

(v) ∈ (c ± γ)n′ holds for each v ∈ V (G2). In addition, 
since ε ≤ ε0/3, it follows that d±G2

(v) ∈ (c ± ε0)n′ holds for each v ∈ V (G2), and 
therefore, using Lemma 2.18 we conclude that G2 is a robust (ν, τ)-expander. Therefore, 
by applying Theorem 2.15 to G2 we conclude that G2 contains a (c − η)n′-factor H.

Next, assume that V (G2) = [n′] and let A be an n′ × n′ matrix with all entries 0’s 
and 1’s for which Aij = 1 if and only if ij ∈ E(H). A is clearly (c − η)n′-regular and 
recall that (c − η)n′ = (1 − o(1))(c − η)n. Therefore, by Lemma 2.7 it follows that there 

are at least 
(

(c−η)n
e

)n

(1 − o(1))n permutations σ ∈ Sn′ such that A ≥ A(σ) and such 

that σ contains at most s∗ :=
√
n lnn cycles in its cyclic form. Note that every such 

permutation corresponds to a 1-factor of G2 with at most s∗ many cycles, and therefore, 
since all the degrees in V0 are larger than 3

8 |V0| we obtain that G1 contains a Hamilton 
cycle (using [18]) and we have that

∑
s≤s∗+1

f(G, s) ≥
∑
s≤s∗

f(G2, s) ≥
(

(c− η)n
e

)n

(1 − o(1))n,

where f(G, s) denotes the number of 1-factors of G with exactly s cycles.
Now, given a 1-factor F of G2, we wish to turn it into a Hamilton cycle of G by 

changing at most O(n2/3) edges. This can be done as follows: Let C be a cycle in F . 
Since G2 is strongly connected (follows for example from Fact 2.21) we can find a vertex 
v ∈ V (C) and a vertex u ∈ V (G2) \ V (C) for which vu ∈ E(G). Deleting the edge 
vv+ from C we get a path Q which can be extended to a longer path Q′ by adding the 
edge vu and all edges of the cycle C ′ in F including u apart from u−u. Let x and y
be the endpoints of the current path Q′ (from x to y). Using the subgraph G1, we can 
close Q′ into a cycle, using at most 6 additional edges. Indeed, by Lemma 2.20 x has an 
in-neighbor and y has an out-neighbor in V0 and by Fact 2.21 y can be connected to x
(in G1) by a directed path of length at most 4. Delete from G1 the edges and vertices we 
used to close Q′. Update F by replacing C and C ′ by the newly created cycle. Repeat this 
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argument until we have a cycle C with V (G2) ⊆ V (C). Note that during this process we 
constantly change G1 and G2 (we use vertices of G1 in order to connect vertices from G2
and then move them into G2 and repeat until a Hamiltonian cycle is obtained). So far, we 
have invested O(s∗) edge replacements and have deleted at most O(s∗) = o(|V0|) vertices 
from G1. Hence, G1 (minus all the edges/vertices deleted so far) still satisfies (i) and (ii)
of Lemma 2.17 with respect to some α > 3/8. Deleting an arbitrary edge vu from C, we 
obtain a path P with v, u as its endpoints. Next, choose disjoint sets A ⊂ N+

G (v) ∩ V0
and B ⊂ N−

G (u) ∩V0, each of size at least (c −η)|V0|/2. Using Lemma 2.20, and applying 
Lemma 2.17 with respect to A = N+

G (v) ∩V0 and B = N−
G (u) ∩V0 we obtain a Hamilton 

path P ′ of G1 which starts inside A and ends inside B. This path together with P forms 
a Hamilton cycle of G. Note that this cycle was obtained from F by changing O(n2/3)
edges and vertices.

In order to complete the proof, we need to show that by performing this transformation 
we do not get the same Hamilton cycle too many times. For this aim we first note that 
given a Hamilton cycle C in G, by replacing at most k edges we can get at most 

(
n
k

)
(2k)2k

1-factors. Indeed, we need to choose k edges of C to delete, we obtain at most k paths 
which need to be turned into a 1-factor by connecting their endpoints; for each endpoint 
we have at most 2k choices of other endpoints to connect it to. Therefore, since in the 
whole process we changed O(n2/3) edges, for some positive constant D we have that ∑

s≤s∗ f(G, s) ≤ h(G) · s∗
(

n
Dn2/3

)
(2Dn2/3)2Dn2/3 ≤ h(G)nO(n2/3). This implies that

h(G) ≥
(

(c− η)n
e

)n

(1 − o(1))nn−O(n2/3) = (1 − o(1))n
(

(c− η)n
e

)n

,

which proves the lower bound on h(G).
For the upper bound, note that since the number of Hamilton cycles in G, h(G), is at 

most the number of 1-factors in G, using Theorem 2.5 and the fact that d±(v) ∈ (c ±η)n
for every v ∈ V (G), we get that

h(G) ≤ # of 1-factors = per(A) ≤ (((c + η)n)!)1/(c+η) = (1 + o(1))n
(

(c + η)n
e

)n

.

This completes the proof. �
5. Packing Hamilton cycles in undirected graphs

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. Let ε > 0 and let G be a graph with minimum degree δ(G) ≥
(1/2 + ε)n. Let ε′ < min{ε, 1/160} be a positive constant, let H ⊂ G be an auxiliary 
subgraph of G obtained by applying Lemma 2.11 to G with ε′ and α = (ε′)3, and let 
G′ = G −H. Recall that by (P1) of Lemma 2.11, G′ is r-regular for some even integer 
r which satisfies
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r ≥ (1 − ε′/2)regeven(G) ≥ (1 − ε/2)regeven(G).

Since (1 − ε/2)2 ≥ 1 − ε, the result will then follow by proving that G contains at least 
(1 − ε/2)r/2 edge disjoint Hamilton cycles.

To this end we first note that since δ(G) > n/2, it follows from Theorem 2.2 that 
r = Θ(n). Therefore, we can use Lemma 2.9 repeatedly (starting with α = r/n and 
until the last time we have α ≥ εr/(2n)) in order to find m = (1 − ε/2)r/2 edge-disjoint 
2-factors of G′, {F1, . . . , Fm}, each of them containing at most s∗ =

√
n lnn cycles, each 

of which is of length at least 3. Note that by removing such a factor from an r′-regular 
graph, the obtained graph is (r′ − 2)-regular, and therefore one can apply Lemma 2.9
over and over. Now, we wish to turn each of the Fi’s into a Hamilton cycle Hi, using the 
edges of G \ (H1 ∪ . . .∪Hi−1 ∪Fi+1 ∪ . . .∪Fm). For this goal, we make an extensive use 
of Lemma 2.12 and the properties of the auxiliary graph H.

Assume inductively that we have built edge-disjoint Hamilton cycles H1, . . . , Hi−1, 
which are edge disjoint from Fi, . . . , Fm, and that the current graph Gi = G \ (H1 ∪
. . . ∪ Hi−1 ∪ Fi ∪ . . . ∪ Fm) satisfies (2) and (3) of Lemma 2.12 with ε′. Moreover, 
assume that each of the Hj ’s has been created from Fj by replacing O(s∗) edges. Note 
that for i = 0, since H is a subgraph of G0, it follows that G0 satisfies (2) and (3)
of Lemma 2.12. Now, starting with Fi, using the fact that Gi satisfies (2) and (3) of 
Lemma 2.12 (the induction hypothesis), by repeatedly applying this lemma, one can turn 
Fi into a Hamilton cycle by using O(s∗) edge replacements. This is done in a similar 
way as in the proof of Proposition 1.4. Now, note that during the procedure, every edge 
that we delete from Fi is added back to Gi and therefore the minimum degree of Gi

remains the same and therefore Gi satisfies (2) of Lemma 2.12. Since this procedure 
takes O(s∗) edge replacements each time and since there are Θ(n) factors to work on, 
the total number of edges deleted (or replaced) from G0 (and in particular, from H) is 
at most O(ns∗) = o(n2). Thus, since H satisfies (P3) and (P4) of Lemma 2.11, using 
the fact that n is sufficiently large, the graph Gi also satisfies (3) of Lemma 2.12, which 
therefore can be further applied. This completes the proof. �
6. Concluding remarks

We presented a general approach, based on permanent estimates, for counting and 
packing Hamilton cycles in dense graphs and oriented graphs. Using this method we 
derived some known results in a simpler way and proved some new results as well. In 
particular, we showed how to apply our technique to find many edge-disjoint Hamilton 
cycles in dense graphs.

It would be interesting to decide whether our approach can be also used to find many 
edge-disjoint Hamilton cycles in dense oriented graphs. The main obstacle here is that 
apparently there is no good analog of Pósa’s rotation extension technique for digraphs.

In Proposition 1.4 we obtained a lower bound on h(G) in terms of regeven(G), for a 
Dirac graph G. For graphs which are not close to being regular our result is worse than 
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the result of Cuckler and Kahn in [8]. It would be very interesting to try and approach 
their result using our method.

Another natural question is to obtain a variant of Theorem 1.7 for non-regular oriented 
graphs similar to the result of Cuckler and Kahn for the non-oriented case. The goal 
here is to estimate the minimum number of Hamilton cycles in an oriented graph on n
vertices with semi-degree δ±(G) ≥ (3/8 + o(1))n. Observe that our technique allows to 
prove easily that an oriented graph G on n vertices with δ±(G) ≥ (3/8 + ε)n contains at 
least 

(
εn
3e
)n Hamilton cycles. Indeed, applying repeatedly the result of Keevash, Kühn 

and Osthus [18] we can extract εn2 edge-disjoint Hamilton cycles in such graph, whose 
union is an εn2 -factor F in G. The rest of the proof is quite similar to our argument in 
Theorem 1.7. This establishes a weak(er) version of the result of Sárközy, Selkow and 
Szemerédi [31] for the oriented case.

Finally it would be also nice to extend the result of Keevash, Kühn and Osthus [18]
and determine the number of edge disjoint Hamilton cycles that oriented graphs with 
δ±(G) ≥ 3n/8 must contain as a function of δ±(G).

Acknowledgments

We would like to thank the anonymous referees for many valuable comments.

References

[1] N. Alon, The maximum number of Hamiltonian paths in tournaments, Combinatorica 10 (1990) 
319–324.

[2] N. Alon, Problems and results in extremal combinatorics I, Discrete Math. 273 (2003) 31–53.
[3] N. Alon, J.H. Spencer, The Probabilistic Method, Wiley, New York, 2008.
[4] L.M. Brégman, Some properties of non-negative matrices and their permanents, Sov. Mat. Dokl. 14 

(1973) 945–949.
[5] D. Christofides, D. Kühn, D. Osthus, Edge-disjoint Hamilton cycles in graphs, J. Combin. Theory 

Ser. B 102 (2012) 1035–1060.
[6] B. Csaba, D. Kühn, A. Lo, D. Osthus, A. Treglown, Proof of the 1-factorization and Hamilton 

decomposition conjectures, Mem. Amer. Math. Soc. (2016), in press.
[7] B. Cuckler, Hamilton cycles in regular tournaments, Combin. Probab. Comput. 16 (2007) 239–249.
[8] B. Cuckler, J. Kahn, Hamiltonian cycles in Dirac graphs, Combinatorica 29 (3) (2009) 299–326.
[9] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69–81.

[10] G. Egorychev, The solution of the Van der Waerden problem for permanents, Dokl. Akad. Nauk 
SSSR 258 (1981) 1041–1044.

[11] D. Falikman, A proof of the Van der Waerden problem for permanents of a doubly stochastic matrix, 
Mat. Zametki 29 (1981) 931–938.

[12] E. Friedgut, J. Kahn, On the number of Hamiltonian cycles in a tournament, Combin. Probab. 
Comput. 14 (2005) 769–781.

[13] A. Frieze, M. Krivelevich, On packing Hamilton cycles in ε-regular graphs, J. Combin. Theory Ser. B 
94 (2005) 159–172.

[14] R. Glebov, M. Krivelevich, On the number of Hamilton cycles in sparse random graphs, SIAM J. 
Discrete Math. 27 (2013) 27–42.

[15] R. Häggkvist, Hamilton cycles in oriented graphs, Combin. Probab. Comput. 2 (1993) 25–32.
[16] S. Janson, T. Łuczak, A. Ruciński, Random Graphs, Wiley, New York, 2000.
[17] P. Katerinis, Minimum degree of a graph and the existence of k-factors, Proc. Indian Acad. Sci. 

Math. Sci. 94 (1985) 123–127.
[18] P. Keevash, D. Kühn, D. Osthus, An exact minimum degree condition for Hamilton cycles in oriented 

graphs, J. Lond. Math. Soc. 79 (2009) 144–166.

http://refhub.elsevier.com/S0095-8956(16)30036-3/bib416C6F6Es1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib416C6F6Es1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib416Cs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4153s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib427265676D616Es1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib427265676D616Es1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib434B4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib434B4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib31666163746F72s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib31666163746F72s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4375636B6C6572s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib434Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4469726163s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib45676F727963686576s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib45676F727963686576s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib46616C696B6D616Es1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib46616C696B6D616Es1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib46724Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib46724Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib464Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib464Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib474Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib474Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib486167676B76697374s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4A4C52s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4154s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4154s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4B4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4B4Fs1


220 A. Ferber et al. / Journal of Combinatorial Theory, Series B 122 (2017) 196–220
[19] F. Knox, D. Kühn, D. Osthus, Approximate Hamilton decompositions of random graphs, Random 
Structures Algorithms 40 (2012) 133–149.

[20] F. Knox, D. Kühn, D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Random Structures 
Algorithms 46 (2015) 397–445.

[21] M. Krivelevich, On the number of Hamilton cycles in pseudo-random graphs, Electron. J. Combin. 
19 (2012), publication P25.

[22] D. Kühn, J. Lapinskas, D. Osthus, Optimal packings of Hamilton cycles in graphs of high minimum 
degree, Combin. Probab. Comput. 22 (2013) 394–416.

[23] D. Kühn, D. Osthus, Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture 
for large tournaments, Adv. Math. 237 (2013) 62–146.

[24] D. Kühn, D. Osthus, Hamilton decompositions of regular expanders: applications, J. Combin. The-
ory Ser. B 104 (2014) 1–27.

[25] D. Kühn, D. Osthus, A. Treglown, Hamiltonian degree sequences in digraphs, J. Combin. Theory 
Ser. B 100 (2010) 367–380.

[26] C. Nash-Williams, Hamiltonian lines in graphs whose vertices have sufficiently large valencies, in: 
Combinatorial Theory and Its Applications, III, North-Holland, 1970, pp. 813–819.

[27] C. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, in: 
L. Mirsky (Ed.), Studies in Pure Mathematics, Academic Press, London, 1971, pp. 157–183.

[28] C. Nash-Williams, Hamiltonian arcs and circuits, in: Recent Trends in Graph Theory, Springer, 
1971, pp. 197–210.

[29] D. Osthus, K. Staden, Approximate Hamilton decompositions of robustly expanding regular di-
graphs, SIAM J. Discrete Math. 27 (2013) 1372–1409.

[30] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976) 359–364.
[31] G. Sárközy, S. Selkow, E. Szemerédi, On the number of Hamiltonian cycles in Dirac graphs, Discrete 

Math. 265 (2003) 237–250.
[32] B. Sudakov, V. Vu, Local resilience of graphs, Random Structures Algorithms 33 (2008) 409–433.
[33] T. Szele, Kombinatorikai vizsgalatok az iranyitott teljes graffal, Kapcsolatban, Mt. Fiz. Lapok 50 

(1943) 223–256.
[34] C. Thomassen, Long cycles in digraphs with constraints on the degrees, in: B. Bollobás (Ed.), 

Surveys in Combinatorics, in: London Math. Soc. Lecture Note Ser., vol. 38, Cambridge University 
Press, 1979, pp. 211–228.

[35] C. Thomassen, Hamilton circuits in regular tournaments, Ann. Discrete Math. 27 (1985) 159–162.
[36] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001.

http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4B4F31s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4B4F31s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4B4F32s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4B4F32s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4Bs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4C4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4C4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4F32s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4F32s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4F54s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4B4F54s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4E61736857696C6C69616D7331s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4E61736857696C6C69616D7331s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4E61736857696C6C69616D7332s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4E61736857696C6C69616D7332s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4E61736857696C6C69616D7333s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4E61736857696C6C69616D7333s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4F53s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib4F53s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib506F7361s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib535353s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib535353s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib5356s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib537As1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib537As1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib54686Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib54686Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib54686Fs1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib54686F31s1
http://refhub.elsevier.com/S0095-8956(16)30036-3/bib57657374s1

	Counting and packing Hamilton cycles in dense graphs and oriented graphs
	1 Introduction
	2 Tools
	2.1 Probabilistic tools
	2.2 r-factors
	2.3 Permanent estimates
	2.4 2-factors with few cycles
	2.5 Rotations
	2.6 Oriented graphs

	3 Counting Hamilton cycles in undirected graphs
	4 Counting Hamilton cycles in oriented graphs
	5 Packing Hamilton cycles in undirected graphs
	6 Concluding remarks
	Acknowledgments
	References


