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Abstract: We prove that for every fixed k and � ≥ 5 and for sufficiently
large n, every edge coloring of the hypercube Qn with k colors contains
a monochromatic cycle of length 2�. This answers an open question of
Chung. Our techniques provide also a characterization of all subgraphs H of
the hypercube which are Ramsey, that is, have the property that for every
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k, any k-edge coloring of a sufficiently large Qn contains a monochromatic
copy of H. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 196–208, 2006
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1. INTRODUCTION

Let Qn denote the graph of the n-dimensional hypercube whose vertex set is {0, 1}n
and two vertices are adjacent if they differ in exactly one coordinate. Ramsey and
Turán-type questions concerning the hypercube were mentioned in a 1984 article
by Erdős [8], but in fact had been considered even earlier, as in this article, he out-
lined a collection of “old unsolved problems which had been perhaps undeservedly
neglected.” In one of these problems, he asked how many edges of an n-dimensional
hypercube are necessary to imply the existence of a 4-cycle. Erdős conjectured that
( 1

2 + o(1))n2n−1 edges are enough to force the appearance of C4. A similar question
was posed for the existence of a cycle C2� for � > 2 where Erdős asked whether
o(n)2n edges would suffice (see also [9]). Since Qn is a bipartite graph, clearly only
cycles of even length are in question.

It is easy to see that there are n2n−2 edges of Qn avoiding a C4, for exam-
ple, for all odd values of 1 ≤ k ≤ n take those edges lying between levels k − 1
and k. This example is not maximal and can be improved by adding some inde-
pendent edges. The best example to date was obtained by Brass, Harborth, and
Nienborg [2]. For n = 4t it has (n + √

n)2n−2 edges, which may well be a tight
bound for Erdős’s conjecture. Bialostocki proved in [1] that for any 2-edge col-
oring of Qn without a monochromatic C4, the number of edges in each color is
at most (n + √

n)2n−2. Hence, this is indeed the maximum size of a C4-avoiding
set of edges, with the additional assumption that it intersects every C4 in at least
one edge. However, this assumption appears difficult to remove. On the other hand,
Chung [4] proved that any subset of αn2n−1 edges, where α=̇0.623, must con-
tain a C4. This remains the best upper bound to this date. For small values of
n, the exact number of edges in a largest C4-free subgraph of Qn was deter-
mined in [7,10]. Some further results on C4-avoiding sets of edges which are
connecting vertices of three consecutive levels of the hypercube can be found
in [11].

For longer cycles C2�, Erdős’s question was resolved positively for even � ≥ 4. In
[4], Chung proved that for a fixed even � ≥ 4, any subset of edges of Qn avoiding
C2� has size o(n)2n. On the other hand, she showed that this is not the case for
cycles of length 6 since the edges of Qn can be colored using 4 colors so that
there is no monochromatic C6 (a similar coloring was discovered also in [3]).
Therefore, a subset of 1

4n2n−1 edges avoiding C6 exists. This sparked new interest
in edge colorings of the hypercube without monochromatic cycles. A 3-coloring
avoiding a monochromatic cycle of length 6 was found in [6]. On the other hand,
it was shown in [4] that any subset of (

√
2 − 1 + o(1))n2n−1 edges must contain

a C6.
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Since a coloring avoiding a monochromatic C2� using a constant number of
colors is impossible for even � ≥ 4 due to [4], it remains to determine whether such
a coloring exists for odd � ≥ 5. This question was posed by Chung in [4] (see also
[5], pp. 43–44). In this article, we prove the following theorem which answers it
negatively.

Theorem 1.1. For every fixed k and � ≥ 5 and sufficiently large n ≥ n0(k, �),
every edge coloring of the hypercube Qn with k colors contains a monochromatic
cycle of length 2�.

In fact, our techniques provide a characterization of all subgraphs H of the
hypercube which are Ramsey, that is, have the property that for every k, any k-edge
coloring of a sufficiently large Qn contains a monochromatic copy of H . We also
present examples of graphs which are not Ramsey but the number of colors required
to avoid their monochromatic copies is arbitrarily large. (In contrast, every even
cycle is either Ramsey or it can be avoided using 2 or 3 colors.) More details are
given in Section 4.

A. Definitions and Notation

Recall that Qn denotes the n-dimensional hypercube whose vertex set is {0, 1}n.
We refer to the n coordinates as bits and write vertices as n-bit words, for example
x = [10001], y = [10101]. Edges are between vertices that differ in exactly one
bit. We call the unique bit where xi �= yi the flip-bit. The vertex where the flip-bit
is zero is called the lower vertex and the other vertex is called the upper vertex. For
example, for the vertices x, y above, {x, y} is an edge where x is the lower vertex,
y is the higher vertex and the 3-rd bit is the flip-bit. To simplify notation, we write
such an edge as [10 ∗ 01]; the ∗ symbol denotes the flip-bit and we obtain the two
vertices of the edge by substituting 0 or 1 in place of ∗.

2. CYCLES OF LENGTH 10

First, we address the question for cycles of length 10. The colorings that have been
used in order to avoid monochromatic cycles of length 4 and 6 are based on two
parameters: for an edge e = {x, y} where x is the lower vertex and j is the flip-bit,
define

� w(e) = ∑n
i=1 xi.

� p(e) = ∑j−1
i=1 xi.

The first parameter distinguishes different levels of vertices; each level is defined
by a constant value of

∑n
i=1 xi. The second parameter further distinguishes

the edges between each pair of consecutive levels; we call p(e) the prefix
sum of e. To avoid monochromatic cycles of length 4 and 6, it is enough to
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consider colorings based on these two parameters, taken modulo a suitable number
(see, e.g., [6]).

In contrast, it turns out that for cycles of length 10, no such coloring can work.
The reason is the following cycle in Q5:

e1 = [ 1 ∗ 0 0 1 ]

e2 = [ 1 1 0 0 ∗ ]

e3 = [ 1 1 0 ∗ 0 ]

e4 = [ ∗ 1 0 1 0 ]

e5 = [ 0 1 ∗ 1 0 ]

e6 = [ 0 1 1 ∗ 0 ]

e7 = [ ∗ 1 1 0 0 ]

e8 = [ 1 ∗ 1 0 0 ]

e9 = [ 1 0 1 0 ∗ ]

e10 = [ 1 0 ∗ 0 1 ]

Here, every odd edge e2i−1 goes from ∗ = 0 to ∗ = 1, and every even edge e2i goes
from ∗ = 1 to ∗ = 0. The reader can verify that these edges form a C10. Observe
that w(ei) is equal for all these edges which corresponds to the fact that the cycle
is alternating between two levels of the hypercube. Regarding p(ei), it is not the
same for each edge, but it depends only on the location of the flip-bit; for each pair
of edges with the same flip-bit, p(ei) is the same: either 0, 1, or 2. It is not difficult
to see that for any coloring of the type (p(ei) mod k), we can insert blocks of 1s
between these 5 bits so that the resulting cycle (in a higher-dimensional hypercube)
is monochromatic. In the following, we show that there is a deeper reason why this
kind of coloring cannot avoid monochromatic 10-cycles: in fact, for any coloring
with a fixed number of colors, there is some form of the cycle above which turns
out to be monochromatic.

Theorem 2.1. For any fixed k and sufficiently large n ≥ n0(k), every edge coloring
of Qn with k colors contains a monochromatic cycle of length 10.

Proof. Consider an arbitrary k-edge coloring χ of Qn, for a very large n to
be chosen later. Let’s consider only edges between levels 2k and 2k + 1, which
are defined by 2k coordinates equal to 1 and a given flip-bit. We call these 2k + 1
bits the support of an edge. We can encode each edge uniquely by (S, p) where
S ⊂ [n] is the support of the edge, and p ∈ {0, 1, . . . , 2k} denotes its prefix sum.
In other words, p determines the relative location of the flip-bit in the support of
the edge. Each pair (S, p) gets some color χ(S, p) in our coloring. Let’s assign a
vector c(S) = (χ(S, 0), . . . , χ(S, 2k)) to each subset S, that is the edge colors for all
possible locations of the flip-bit. We get a coloring of the complete (2k + 1)-uniform
hypergraph on [n], using k2k+1 colors.
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By Ramsey’s Theorem for hypergraphs, for sufficiently large n ≥ n0(k), there is
a subset of coordinates T ⊂ [n] of size 2k + 3 such that all (2k + 1)-subsets S ⊂ T

have the same color c(S) = c∗. Now, since c∗ has 2k + 1 coordinates colored by k

colors, there must be 3 indices p1, p2, p3 ∈ {0, . . . , 2k} such that c∗
p1

= c∗
p2

= c∗
p3

.
This means that all edges (S, pi) where S ⊂ T, |S| = 2k + 1 and i = 1, 2, 3, have
the same color. We show that this set of edges contains a monochromatic cycle of
length 10, which can be obtained from the cycle above by inserting blocks of 1s of
suitable length in front of the first bit, between the first and second bit, and between
the third and fourth bit. Since we want the prefix sum p(ei) for each edge to be
equal to p1, p2, or p3, we choose these blocks as α = 1p1 (a string of p1 ones),
β = 1p2−p1−1, γ = 1p3−p2−1, and δ = 12k−p3 . The cycle looks like this: (only the
coordinates of T are shown, the rest is zero)

e1 = [ α 1 β ∗ 0 γ 0 1 δ ]

e2 = [ α 1 β 1 0 γ 0 ∗ δ ]

e3 = [ α 1 β 1 0 γ ∗ 0 δ ]

e4 = [ α ∗ β 1 0 γ 1 0 δ ]

e5 = [ α 0 β 1 ∗ γ 1 0 δ ]

e6 = [ α 0 β 1 1 γ ∗ 0 δ ]

e7 = [ α ∗ β 1 1 γ 0 0 δ ]

e8 = [ α 1 β ∗ 1 γ 0 0 δ ]

e9 = [ α 1 β 0 1 γ 0 ∗ δ ]

e10 = [ α 1 β 0 ∗ γ 0 1 δ ]

It can be seen that for edges e4 and e7, the prefix sum is |α| = p1, for edges
e1, e5, e8, e10, the prefix sum is |α| + |β| + 1 = p2 and for e2, e3, e6, and e9, the
prefix sum is |α| + |β| + |γ| + 2 = p3. Thus, each of these edges is encoded by
(S, p1), (S, p2), or (S, p3) for some S ⊂ T, |S| = 2k + 1, and therefore they all have
the same color. �

3. CYCLES OF LENGTH 2� ≥ 12

In this section, we extend the proof for 10-cycles to all even cycles of length at
least 12. All we have to do is find a cycle of length 2� with properties similar to the
10-cycle shown above.

Lemma 3.1. For any � ≥ 6, Q� contains a cycle of length 2� in which each edge
has a support of size 3, such that for some 1 < a < b < �,

1. Each edge with a flip-bit located in {1, . . . , a} has prefix sum p(e) = 0.
2. Each edge with a flip-bit located in {a + 1, . . . , b} has p(e) = 1.
3. Each edge with a flip-bit located in {b + 1, . . . , �} has p(e) = 2.
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Proof. For any � ≥ 6, we define a cycle on vertices with � bits, consisting of
edges (e1, e2, . . . , e2�), associated with a permutation π ∈ S�:

� Each edge in the cycle has a support of size 3.
� Every odd edge e2i−1 has bits π(i), π(i + 1) equal to 1, and π(i + 2) is the

flip-bit (going up).
� Every even edge e2i has bits π(i + 1), π(i + 2) equal to 1, and π(i) is the flip-bit

(going down).

To simplify notation, we consider π as a periodic function, that is, π(i + �) = π(i)
for any i.

It is easy to verify that this is indeed a cycle of length 2�. We need to find a
permutation such that the cycle satisfies the requirements of the lemma. Observe
that for a given i, there are exactly two edges with flip-bit π(i). The other non-zero
bits on these two edges are π(i − 1), π(i − 2) for one edge and π(i + 1), π(i + 2)
for the other edge. Thus the prefix sum p(e) for each edge is determined by the two
nearest elements in the permutation, on either side.

First, consider � ≥ 6 divisible by 3 and set � = 3a, b = 2a. Take an arbitrary
permutation of type (A, B, C, A, B, C, . . . , A, B, C), where each A stands for some
element in {1, . . . , a}, each B for an element in {a + 1, . . . , b}, and each C for an
element in {b + 1, . . . , �}. It can be seen that for each A, the two nearest elements
in the permutation, on either side, are B, C, which defines the location of the other
two non-zero bits. Such an edge looks like this:

∗ 1 1

where the three blocks correspond to bits of type A, B, and C. Therefore, in this
case p(e) = 0. Similarly for each B, the two nearest elements on each side are A, C

and the prefix sum in both cases is p(e) = 1:

1 ∗ 1

For each C, the two nearest elements on each side are A, B and the prefix sum is
p(e) = 2:

1 1 ∗

Next, we handle the case of � = 3a + 1. We insert an element of a new type
X, located between B and C; that is, X stands for 2a + 1 and the range for C is
shifted to {2a + 2, . . . , �}. We take a permutation of type (A, X, B, C, A, B, C, . . .,
A, B, C). Note that for each flip-bit of type A, the other two non-zero bits are of
types B, C or B, X and the prefix sum is p(e) = 0. For flip-bits of type B, the non-
zero bits are of types A, C or A, X; in either case, p(e) = 1. For a flip-bit of type
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X, the non-zero bits are of types A, C or B, C; again, p(e) = 1. Finally, for flip-bits
of type C, the two non-zero bits are of types A, B or X, B, and p(e) = 2. So the
lemma holds with b = 2a + 1.

For � = 3a + 2 > 5, X stands for an element in {2a + 1, 2a + 2} and the range
for C is shifted to {2a + 3, . . . , �}. We take a permutation of type (A, X, B, C,
A, X, B, C, . . ., A, B, C). The same analysis yields that the prefix sums are 0 for
flip-bits of type A, 1 for flip-bits of type B or X, and 2 for flip-bits of type C.
Therefore lemma holds with b = 2a + 2. �

Theorem 3.2. For any fixed k and � ≥ 6 and sufficiently large n ≥ n0(k, �), every
edge coloring of Qn with k colors contains a monochromatic cycle of length 2�.

Proof. Given a coloring χ : E(Qn) → [k], consider only edges with support of
size |S| = 2k + 1. Just like in the proof of Theorem 2.1, encode edges by their sup-
port and prefix sum (S, p), and define a coloring c(S) = (χ(S, 0), . . .,χ(S, 2k)) of the
complete (2k + 1)-uniform hypergraph on [n] using k2k+1 colors. By Ramsey’s the-
orem, for sufficiently large n ≥ n0(k, �), there is a subset T ⊂ [n] of size 2k + � − 2
such that c(S) = c∗ for all S ⊂ T, |S| = 2k + 1. By the pigeonhole principle, there
are three elements p1, p2, p3 ∈ {0, 1, . . . , 2k} such that c∗

p1
= c∗

p2
= c∗

p3
, that is, all

edges (S, pi) for S ⊂ T, |S| = 2k + 1 and i = 1, 2, 3 have the same color.
Now we take the cycle C provided by Lemma 3.1 and embed it in the monochro-

matic subgraph that we found in Qn. The �-bit representation of C consists of three
blocks defined by the parameters 1 < a < b < �. As Lemma 3.1 guarantees, the
prefix sum of each edge is either 0, 1, or 2, depending on the block in which the
flip-bit of the edge appears. We insert strings of 1s between these blocks, in or-
der to convert the prefix sums to p1, p2, and p3: α = 1p1 in front of the first bit,
β = 1p2−p1−1 after the first a bits, γ = 1p3−p2−1 after b bits and δ = 12k−p3 at the end.
We obtain a cycle embedded in Q2k+�−2 where the prefix sum for each edge is p1,
p2, or p3. Finally, we embed this subcube Q2k+�−2 in Qn by laying its (2k + � − 2)-
bit representation on the subset of coordinates T ⊂ [n]; all other coordinates are
fixed to be zero. The edges of C thus embedded in Qn have their support in T and
prefix sums equal to p1, p2, or p3; therefore the cycle is monochromatic. �

4. RAMSEY SUBGRAPHS OF THE HYPERCUBE

A. A Full Characterization

In this section, we consider more generally the question of finding monochromatic
subgraphs in large edge-colored hypercubes. Call a graph H k-Ramsey if every
k-edge coloring of a sufficiently large hypercube contains a monochromatic copy
of H . Call H Ramsey, if it is k-Ramsey for every k. Therefore, Theorem 1.1 asserts
that every even cycle of length at least 10 is Ramsey. Our technique here provides a
characterization of all subgraphs of the hypercube which are Ramsey. This is stated
in the following theorem.
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Theorem 4.1. Let H be a fixed subgraph of a hypercube. Then H is Ramsey if and
only if there exists an embedding of H between two levels of a hypercube such that
in this embedding all edges e ∈ E(H) with the same flip-bit have the same prefix
sum p(e).

Sketch of proof. Assume there is an embedding as above, between levels t and
t + 1 of a hypercube Qm. Then given a k-edge coloring of a large Qn, we apply
Ramsey’s Theorem for hypergraphs, as in the proof of Theorems 2.1 and 3.2, to
obtain a sufficiently large subcube Qs in which the color of each edge e with support
of size w is determined by the value of p(e) ∈ {0, 1, . . . , w}. We choose w large
enough so that it is possible to find M ⊂ {0, 1, . . . , w}, |M| = m, such that any two
elements i, j ∈ M are at least t apart, and the edges whose prefix sums are in M all
get the same color. Then we can take our embedding of H and add suitable blocks
of 1s between the bits so that all the prefix sums fall in M. Finally, we add a block
of 0s to embed H in Qs so that the color of each edge is determined by p(e) ∈ M

and consequently this copy of H is monochromatic.
Conversely, assume that for every embedding of H between two levels there are

two edges with the same flip bit and different prefix sums. Consider the coloring
χ(e) = (w(e) mod 2, p(e) mod 	d/2
) where d denotes the diameter of H . Then a
copy of H could be possibly monochromatic only if it lies between two levels, but
then there are two edges e1, e2 with the same flip bit and different prefix sums. The
prefix sums cannot differ by a multiple of 	d/2
 because then the suffix sums would
differ by the same amount and together with the flip-bit we would get two vertices
at distance more than d. Therefore, these two edges have different colors. �

We remark that although the above result characterizes all Ramsey subgraphs of
the hypercube, this characterization is not very efficient. Still, it can be checked in
time that depends only on the size of the small graph H . This is because it suffices to
check embeddings of H in a hypercube Qm, with m being the number of edges of H .

B. The Number of Necessary Colors

Considering our characterization of Ramsey subgraphs in the hypercube, we can
ask what is the number of colors necessary to avoid a monochromatic H , given that
H is not Ramsey. We have seen that C4 is not Ramsey, and a monochromatic C4 can
be avoided using only 2 colors. C6 is not Ramsey either, but in fact it is 2-Ramsey
and we need 3 colors to avoid a monochromatic C6. Note that the number of colors
needed in both cases is equal to the diameter of the subgraph in question. The proof
of Theorem 4.1 shows that for any H of diameter d which is not Ramsey, we can
also say that H is not k-Ramsey for any k > d.

Here, we show that for any k, there exists a graph Hm,k which is k-Ramsey but
not (k + 1)-Ramsey. The diameter of Hm,k is O(k) which means that the number
of colors required to avoid a monochromatic subgraph of diameter d can be indeed
�(d).
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Construction. For k > 0, m > k, let Qm,k denote the subgraph of Qm which
contains all vertices on levels k and k + 1 and all edges between them whose prefix
sum is p(e) = 0 or k. We represent vertices by their support, that is, the subset
of coordinates equal to 1. We define Hm,k as the subgraph of Qm,k induced by
all vertices at distance at most 2k + 1 (in Qm,k) from the vertex represented by
K = {1, 2, . . . , k}.

The structure of Qm,k is the following: every vertex on the upper level k + 1 has
degree 2. If this vertex is given by a (k + 1)-subset A = {a1 < a2 < · · · < ak+1},
then its two neighbors on level k are given by A1 = {a1, a2, . . . , ak} and A2 =
{a2, a3, . . . , ak+1}. On the other hand, most vertices on the lower level have a larger
degree and their neighbors are obtained by adding any element which is smaller or
larger than everything in the subset. Thus, edges in terms of subsets correspond to
adding/removing a minimum or maximum element.

The Ramsey properties that we prove hold equally for Qm,k and Hm,k. However,
note that Qm,k is not a connected graph (for example, {1, 2, . . ., k − 1, m} represents
an isolated vertex). Hm,k is connected and by definition, its diameter is O(k).

Lemma 4.2. For any m > k, Hm,k is k−Ramsey, i.e., for any k-edge-coloring of
a sufficiently large hypercube, there is a monochromatic copy of Hm,k.

Proof. We prove in fact that Qm,k is k-Ramsey. First, we show that for any
t ∈ {1, 2, . . . , k}, there is r(t) such that Qm,k can be embedded in Qr(t),t . That is, we
would like to have prefix sums 0 and t instead of 0 and k. For that purpose, consider
all (k − t + 1)-subsets of [m] and index them lexicographically. The indices go
from 1 up to r(t) = (

m

k−t+1

)
and the index of a subset A ⊆ [m], |A| = k − t + 1

is denoted by φ(A). Define a mapping from the k-th level of Qm to the t-th level
of Qr(t) as follows. For each subset A = {a1 < a2 < · · · < ak} ⊂ [m], let A1 =
{a1, . . . , ak−t+1}, A2 = {a2, . . . , ak−t+2}, . . . , At = {at, . . . , ak}. We map the subset
A to

f (A) = {φ(A1), φ(A2), . . . , φ(At)}.

Similarly, we define a mapping from the (k + 1)-th level of Qm to the (t + 1)-th level
of Qr(t). We cover B = {b1 < b2 < · · · < bk+1} by t + 1 subsets B1, B2, . . . , Bt+1

where Bi = {bi, . . . , bk−t+i} and we set f (B) = {φ(B1), φ(B2), . . . , φ(Bt+1)}. The
edges of Qm,k incident with this vertex are obtained by removing either b1

or bk+1 which produces two neighbors on the lower level. Observe that the
two neighbors map to f (B \ {b1}) = {φ(B2), . . . , φ(Bt+1)} and f (B \ {bk+1}) =
{φ(B1), . . . , φ(Bt)}, which are neighbors of f (B) in Qr(t). Moreover, the lexico-
graphic ordering ensures that φ(B1) < φ(B2) < · · · < φ(Bt+1) and the prefix sums
of these two edges are 0 and t. Thus the edges of Qm,k map to edges of Qr(t),t .

Now consider any k-edge-coloring of Qn. We choose n ≥ n0(m, k) large enough
so that applying Ramsey’s theorem (as in the proof of Theorems 2.1 and 3.2), we
obtain a subcubeQs, s = 2m, where the coloring of edges between levels k and k + 1
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depends only on the prefix sum. Since the available prefix sums are 0, 1, . . . , k, there
must be two prefix sums p1 < p2 which get the same color. Let t = p2 − p1 and
construct an embedding of Qm,k in Qr(t),t . Recall that this embedding is between
levels t and t + 1 so that all the prefix sums are 0 or t. Since r(t) � s, we still have
enough space to add a block of 1p1 in front of the bit representation of Qr(t), a block
of 1k−p2 at the end, and another block of 0s at the end, so that we get an embedding
of Qr(t),t (and thus also of Qm,k) between levels k and k + 1 of Qs such that the
prefix sums of all edges are p1 or p2. This gives a monochromatic copy Qm,k and
since Hm,k ⊂ Qm,k it gives a a monochromatic copy of Hm,k as well. �

Thus at least k + 1 colors are necessary to avoid a monochromatic copy of Hm,k.
We show that k + 1 colors are also sufficient, and the right coloring is the natural
choice of (p(e) mod k + 1). However, first we note a simple property of Hm,k which
will be useful in the proof.

Lemma 4.3. Hm,k contains all the vertices represented by subsets A ⊆ {k + 1,

k + 2, . . . , m} of size |A| = k or k + 1 and the distance between K = {1, 2, . . . , k}
and A in Hm,k is k + |A|.

Proof. Recall that Hm,k contains the vertex represented by K = {1, 2, . . . , k}
together with each vertex whose distance from K in Qm,k is at most 2k + 1. Consider
a subset A ⊆ {k + 1, k + 2, . . . , m}, of size k or k + 1. We can transform K into
A by adding elements of A and removing elements of K alternately, starting from
the smallest and ending with the largest. Since we always remove the minimum
element and add the maximum element, this corresponds to a path in Qm,k of length
|K| + |A| ≤ 2k + 1. Therefore A also represents a vertex of Hm,k. �

Lemma 4.4. For m sufficiently large, Hm,k is not (k + 1)-Ramsey. In particular,
for any n, there is no monochromatic copy of Hm,k in the hypercube Qn in which
edge e is colored by (p(e) mod k + 1).

Proof. Consider any embedding of Hm,k in Qn, represented by a function
g : 2[m] → 2[n]. We consider m very large, so that we can use Ramsey’s theo-
rem repeatedly to select a subgraph of Hm,k with specific properties. In the first
step, consider the subset of the lower vertices of Hm,k, represented by k-subsets of
X = {k + 1, . . . , m} (see Lemma 4.3). Since in Hm,k, all these vertices are within
distance 2k from K = {1, 2, . . . , k}, this must also be the case in the new embed-
ding. The images of these vertices can occupy at most 2k + 1 different levels of
Qn. Define the color of A ∈ (

X

k

)
by |g(A)| which can take at most 2k + 1 different

values. By Ramsey’s theorem, there is a large subset X′ ⊆ X such that
(
X′
k

)
maps

to one level, that is, |g(A)| is constant for all A ∈ (
X′
k

)
.

Choose a fixed subset L ⊂ X′ by taking the k smallest elements of X′ and denote
by Y = X′ \ L the remaining elements in X′. Again, all vertices represented by
A ∈ (

Y

k

)
are at distance at most 2k from L and therefore the same holds in the

new embedding. Now, |g(A)| = |g(L)| for all A ∈ (
Y

k

)
and due to the distance
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condition, we have |g(L) \ g(A)| = |g(A) \ g(L)| ≤ k. We set g0(A) = g(L) \ g(A)
and g1(A) = g(A) \ g(L). By Ramsey’s theorem, we can find a large subset Y ′ ⊆ Y

such that |g0(A)| = |g1(A)| = k′ for all A ∈ (
Y ′
k

)
, where 1 ≤ k′ ≤ k.

Consider the upper vertices represented by (k + 1)-subsets of Y ′. For B =
{b1 < b2 < · · · < bk+1} ⊂ Y ′, set A1 = {b1, . . . , bk} and A2 = {b2, . . . , bk+1} to
be its two neighbors in Hm,k. A1 and A2 represent lower vertices at distance 2 in
Hm,k, so likewise, g(A2) can be obtained from g(A1) by swapping one element
for another. Since |g0(A1)| = |g0(A2)| = |g1(A1)| = |g1(A2)|, this means that ei-
ther |g0(A1)�g0(A2)| = 2 and |g1(A1)�g1(A2)| = 0, or vice versa. Denote by q ∈
{0, 1} which of these cases occurs; that is, assume gq(A2) = gq(A1) ∪ {x2} \ {x1},
while g1−q(A1) = g1−q(A2). Also, it could be the case that either g(B) = g(A1) ∪
g(A2) or g(B) = g(A1) ∩ g(A2). Defining g0(B) = g(L) \ g(B) and g1(B) = g(B) \
g(L), we get either gq(B) = gq(A1) ∪ gq(A2) or gq(B) = gq(A1) ∩ gq(A2) (while
g1−q(B) = g1−q(A1) = g1−q(A2)). We denote by r = 0, 1 which of these cases oc-
curs. Finally, denote by p1, p2 the relative locations of x1, x2, that is the number
of elements preceding them, in gq(A1) ∪ gq(A2). We assign the color (p1, p2, q, r)
to the subset B ∈ (

Y ′
k+1

)
. We have 0 ≤ p1 �= p2 ≤ k′, and the number of colors is at

most 4k′(k′ + 1) ≤ 4k(k + 1). By Ramsey’s theorem, we find a subset Z ⊂ Y ′ of
size 2k + 1 such that

(
Z

k+1

)
is monochromatic. This means that for any B ∈ (

Z

k+1

)

and its two neighbors A1, A2 in Hm,k, we have |gq(A1)�gq(A2)| = 2 for the same
q ∈ {0, 1}, gq(B) is always either the union or the intersection of gq(A1) and gq(A2),
and the relative locations of the swapped elements x1, x2 in gq(A1) ∪ gq(A2) are
always the same p1, p2.

Denote the elements of Z by z0 < z1 < z2 < · · · < z2k and consider a
path in Hm,k containing vertices A0 = {z0, . . . , zk−1}, B0 = {z0, . . . , zk}, A1 =
{z1, . . . , zk}, B1 = {z1, . . . , zk+1}, . . . , Ak+1 = {zk+1, . . . , z2k}. By the proper-
ties of Z, it holds that |gq(Ai)�gq(Ai+1)| = 2 for i = 0, . . . , k. Also, we have
g1−q(A0) = g1−q(A1) = · · · = g1−q(Ak+1). Since g(Ai) = g(L) ∪ g1(Ai) \ g0(Ai),
the changes in g(Ai) are determined by changes in gq(Ai), and the prefix sums of
edges along the path are determined by the locations of elements being swapped
between gq(Ai) and gq(Ai+1). In the sequence (gq(A0), . . . , gq(Ak+1)), the next sub-
set is always obtained by swapping one element for a new element; this happens
k + 1 times, and the size of each set is k′ ≤ k. Therefore, scanning the sequence from
left to right, there must be an element x∗ that appears and then again disappears from
the subsets. When x∗ appears in gq(Ai+1) \ gq(Ai), its location in gq(Ai) ∪ gq(Ai+1)
is p2; when x∗ ∈ gq(Ai′) \ gq(Ai′+1), its location in gq(Ai′) ∪ gq(Ai′+1) is p1.

We have to be careful since the prefix sums of the two corresponding edges
are not simply p1 and p2. First, there is a contribution from g(L) and g1−q(Ai) =
g1−q(Ai+1), which is always constant and does not influence differences between
prefix sums for the same flip-bit. In addition, we have the non-constant contribution
from gq(Ai) and gq(Ai+1) which depends on r ∈ {0, 1}, that is, whether the interme-
diate vertex is obtained by taking gq(Bi) = gq(Ai) ∪ gq(Ai+1) or gq(Ai) ∩ gq(Ai+1).
Due to our Ramsey argument, we know that the same case occurs everywhere along
the path. In the first case, the prefix sums are indeed given by p1 and p2, modulo
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the constant contribution from g(L) and g1−q(Ai). Then they differ by exactly
|p2 − p1| ≤ k. In the second case, when the intermediate vertices are given by in-
tersections, the prefix sums differ only by |p2 − p1| − 1, due to the fact that there
is another element missing in gq(Ai) ∪ gq(Ai+1) when x∗ is added/removed. This
affects the prefix sum for one of the two edges, whichever of p1 and p2 is larger.
However, in this case we cannot have |p2 − p1| = 1, since this would correspond to
a situation where the intermediate vertex g(Bi) is always the same; in other words,
the path would be embedded as a star. Therefore, in either case, the prefix sums
differ by a number between 1 and k and so these two edges have different colors
under our (k + 1)-coloring. �

5. CONCLUDING REMARKS

We have proved that for any fixed � ≥ 5, every edge coloring of a sufficiently large
hypercube with a fixed number of colors contains a monochromatic cycle of length
2�. For odd �, this answers an open question of Chung. For even � ≥ 4, in fact,
she proved a stronger result, namely that any C2�-free subgraph of Qn has only an
o(1)-fraction of the edges of Qn. It still remains open whether this is also the case
for cycles of length 2� for odd � ≥ 5.

Finally, we note that the cycle of length 10 in Section 2 is not chordless; vertices
[11000] and [11100] are connected. Curiously, there exists a 4-edge coloring of Qn

that avoids monochromatic chordless cycles of length 10: the coloring ν defined
by ν(e) = (w(e) mod 2, p(e) mod 2) works. This is proved by a somewhat tedious
case analysis, which is omitted. Note that for C2�, with � ≥ 6, the cycles provided
by Lemma 3.1 are chordless. Therefore, for each such �, any k-edge coloring of a
sufficiently large hypercube contains a monochromatic induced cycle of length 2�.
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